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Quasiresonance involves a slow “external” switching on and off of an interaction between internal degrees
of freedom described by action-angle variables having approximate resonances. The resonances or near-
resonances spawn slow coordinates that fail to be adiabatic, but the remaining coordinates may be fast enough
to have conserved actions. The interaction either can be imposed externally as a time dependent coupling or
can arise autonomously due to interactions with other degrees of freedom. A resonance transformation into
slow and fast angles reveals the action corresponding to the fast angle is adiabatic and conserved to very high
accuracy. This paper extends our work on quasiresonance to new systems and regimes, including the He-H2

system, collisions with a periodic lattice, perturbative interactions, and discussion of quasiresonance in higher
dimensional systems.

1. Introduction

Quasiresonant vibration-rotation energy transfer (QRVT)
was discovered experimentally1,2 in the context of low velocity
inelastic collisions between an atom and a vibro-rotationally
excited diatomic molecule. In these collisions, certain vibration-
rotation transitions dominate all others, which would nominally
be allowed, over a significant range of initial conditions. The
first experimental evidence of QRVT1 was reported in a level-
resolved study of vibrotationally inelastic collisions between
Li2* and noble gas atoms. A strong correlation between the
change in the rotational (j) and vibrational (V) quantum numbers
of the diatomic at the most important peak of the final rotational
states was also observed, with the propensity rule∆j ) -4∆V.
Experimental results obtained for different collision species
show a remarkable insensitivity to both the initial vibrational
state and the nature of the interaction potential.1,3,4 A QVRT
type mechanism provides a path to selectively populate ex-
tremely high rotational states of molecules not easily reached
by direct rotational excitation.5

The striking properties of quasiresonant vibro-rotational
energy transfer have stimulated a number of theoretical
studies,2,6-11 both classical trajectories analysis and quantum
mechanical computations, of inelastic cross sections and rate
coefficients for collisions between one atom and a rotationally
excited diatom at ordinary and ultracold temperatures. The good
qualitative agreement between classical and quantum results
found so far suggests that the classical dynamics of the system
is playing a significant role in the mechanism underlying the
QRVT energy transfer.

In a recent paper12 the present authors have extended the
theory of quasiresonance to nonautonomous systems and have
further explored the theory and numerics of the phenomenon.
Here, after a brief review of quasiresonance, we consider two

additional systems: collision of an atom with a lattice and the
perturbative regime, where we encounter some rather bizarre
quasiresonant behavior of what we call “Diophantine” integrals.

2. Basics of Quasiresonance

The quasiresonance phenomenon may be understood as an
extension of the classical adiabatic theorem to systems with at
least one “slow” coordinate, i.e., one which is not adiabatic.
Thus, the actions of the slow coordinate(s) will change as some
interaction is turned on and off. Does that ruin any application
of classical adiabaticity? Not if fast coordinates remain! They
still can be treated adiabatically, and the method of averaging
the potential over the fast motion suggests itself. This average
often has a very pretty physical interpretation, as we will show.

Note that it is not always possible to turn on and off
interactions so slowly that all coordinates become adiabatic,
because when resonances are present there are coordinates with
effectively zero frequency, slower than which nothing can be.
The harbinger of this exists already in one dimension, in the
case of a double well potential. Motion at the energy of the
separatrix will not be adiabatic, due to the vanishing of the
classical frequency.

Consider a time dependent potential, which turns on and then
off, and which internally couples some system of two or more
degrees of freedom. There are many possible outcomes, depend-
ing on the strength, form, and duration of the interaction, the
classical frequencies of the system, its internal phase space
structure, etc. Assuming there are initially good actions in the
system,

(i) the interaction time may be fast compared to any
coordinate and no action is generally conserved, or

(ii) the interaction time may be slow compared to any
coordinate (i.e., there are no resonance conditions in the system,
either initially or during the interaction) and all actions are
generally conserved, or

(iii) the interaction time may be slow compared to some
coordinates and fast compared to others, throughout the interac-
tion. Some corresponding “fast” actions will be conserved.
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In the last case, it can happen that
(i) the slow coordinates are intrinsically slow (i.e., they did

not become slow out of resonance between two “fast” coordi-
nates), or

(ii) some of the slow coordinates did arise out of resonance
or near resonance (quasiresonance) between two or more “fast”
coordinates.

It is this last, ubiquitous situation that is our concern. A slow
coordinate arises in the following example, which will serve to
illustrate the general phenomena. Consider a two-dimensional
integrable systemH0, perturbed by the transient interaction with
one structureless particle. The Hamiltonian of the total system
may be expressed as

where J ≡ (J1, J2) and Φ ≡ (Φ1, Φ2) are the action-angle
variables that describe the unperturbed systemH0, Q andP are
the coordinate and the conjugate momentum (not necessarily
action-angle variables) of the incoming particle, andHk is its
kinetic energy.ε is a small parameter that characterizes the
magnitude of the interaction term. We will assume that the term
satisfies the condition

with ê ≡ ê (J, Φ, P, Q) an interaction parameterthat controls
the amplitude of the interaction between the systemH0 and the
particle. In a typical collisional process this parameter would
correspond to the distance between centers of mass of the
colliding species. Consider a collision in which the transient
interaction of the systemH0 with the particle induces a change
in its internal state from the initial state (Ji, Φi) ≡ (J1i, J2i, Φ1i,
Φ2i) at t ) ti (êI f ∞) to the final state (Jf, Φf) ≡ (J1f, J2f, Φ1f,
Φ2f) at t ) tf (êf f ∞), see Figure 1. We assume that the two
independent frequencies of the unperturbed HamiltonianH0

satisfy an approximate resonance condition of the form

where

The secularity in the unperturbed Hamiltonian due to this
resonance condition can be removed by applying standard
secular perturbation theory.13 Namely, we can perform a
canonical transformation from the variables (J, Φ) to a new set
of action-angle variables (I , Φ), which define a frame that rotates
with the resonant frequency. Taking the generating function for

the canonical transformation as

the equations for the transformation between the two sets of
variables of the HamiltonianH0 are given by

In terms of the new variables the transformed Hamiltonian may
be expressed as

If the approximate resonance condition (3) is satisfied, the
evolution of the new angle variables in the rotating frame is
given by

and

Hence, provided that the frequencyω2 is far enough from zero,
the oscillation of the new angle variableφ2 near the resonance
will be fast compared to the variation of the angle variableφ1.
Under these conditions, the dynamics of the system in the
proximity of the nonlinear resonance can be described by the
averaged Hamiltonian

where

BecauseHh does not depend on the angle variableφ2, its
conjugated action variableI2 is an adiabatic invariant of the
motion in the proximity of the resonance. But, according to (8)
and (9), this adiabatic invariance of the action conjugated to
the fast angle variableφ2 implies that

or

which gives the rational ratio in the action changes that is
observed in the quasiresonance effect. Thus, a quasiresonance
is implied by the existence of an adiabatic invariant character-

Figure 1. Sketch of the initial (a) and final (b) states in the transient
interaction process between the systemH0 and a structureless incoming
particle.

H ) H0(J) + Hk(P) + εV(J,Φ,P,Q;ê) (1)

lim
êf∞

V(J,Φ,P,Q;ê) ) 0 (2)

Mω2 - Nω1 = 0 (3)

ωi(J) )
∂H0

∂Ji
(i ) 1, 2) (4)

F(I , P, Φ, Q) ) (MΦ2 - NΦ1)I1 + Φ2I2 + P‚Q (5)

φ1 ) ∂F
∂I1

) MΦ2 - NΦ1 (6)

φ2 ) ∂F
∂I2

) Φ2 (7)

J1 ) ∂F
∂Φ1

) -NI1 (8)

J2 ) ∂F
∂Φ2

) MI1 + I2 (9)

H′ ) H0(I ) + Hk(P) + εV(I ,Φ,P,Q;ê) (10)

φ̇1 ) MΦ̇2 - NΦ̇1 = ε(M∂V
∂J2

- N
∂V
∂J1

) (11)

φ̇2 ) Φ̇2 ) ω2(I ) + ε
∂V
∂J2

(12)

Hh ) H0(I ) + Hk(P) + εVh(I ,φ1,P,Q;ê) (13)

Vh(I ,φ1,P,Q;ê) ) 1
2π∫0

2π
V(I ,Φ,P,Q;ê)dφ2 (14)

I2 ) J2 + M
N

J1 ) const (15)

N∆J2 + M∆J1 ) N(J2f - J2i) + M(J1f - J1i) ) 0 (16)
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izing the quasiperiodic motion of the system, in the proximity
of a nonlinear resonance between its internal degrees of freedom.

It is interesting that energy conservation (or here energy
exchange between the system and the atom) is sacrificed in favor
of conservation of the actionI2 of the system, because if∆I2 )
(M/N)∆J1 + ∆J2 ) 0, and therefore

we have

whereωdef is the “defect” from perfect resonance.
Quasiresonance bears some relation withadiabatic switch-

ing,14 which is a method for semiclassical quantization that had
some success in starting with a multidimensional separable
problem of known quantized actions and switching on interac-
tions adiabatically, hoping that the actions do not change, and
thus allowing the energy with those actions to be read off of
the trajectories that have suffered the switching. In that case
the interaction is turned on and left on, and success is measured
by the degree to which all the initial actions remain intact with
the same values. Here, we have different goals, with physical
systems in mind where the additional coupling turns onand off
naturally. In quasiresonance, the system energy may not be
conserved (although in an autonomous system the total energy
of course is), and the actions change as well, with the caveat
that ratios of action changes are special. In a sense we are
tolerant of some action changes as long as other actions respond
adiabatically, which means they stay constant and in so doing
they impose the quasiresonant condition.

Here we present new results on the quasiresonance effect
between the vibrational and rotational internal degrees of
freedom of a diatom molecule in slow inelastic collisions with
an external atom. We also consider the deflection on a plane of
one atom due to the transient interaction potential generated by
an infinite optical lattice, a nonautonomous system. Section 7
analyzes whether infinitely weak interactions are still quasireso-
nant. Finally, in section 8 we summarize the main conclusions
of the work.

3. Examples of Quasiresonance

Once the specific mechanism for how the nonlinear resonance
zones give quasiresonance has been elucidated and illlustrated,
in the following sections we present two examples of quasireso-
nance in autonomous and nonautonomous systems. As an
example of a process that manifests the quasiresonance effect
in a global autonomous system, we present the classical analysis
of an atom-diatom inelastic collision, which reproduces some
previous results by Forrey et al.7 In the case of quasiresonance
arising from a nonautonomous transient interaction we will
analyze the deflection on a plane of one atom by the weak
interaction potential created by an infinite periodic lattice.

As an introduction to quasiresonance we consider the
dynamics of an atom, fixed on a spring as it rotates on a plane,
slightly perturbed by the collision with a slow incoming atom.
Before the interaction occurs the dynamics of the unperturbed
rotating atom is described by the integrable Hamiltonian

wherem is the atom mass,pr andpθ are the momenta conjugated
to the radial and angular variablesr andθ, U(r) is the internal
elastic interaction potential, and

and

the vibrational and rotational action variables.
Initially, the atom is vibrating in and out as it rotates on a

plane, tracing out a “gear” shape that is actually fixed in space
if the radial and angular frequencies satisfy a resonance
condition (3), see Figure 2a. More generally, the “gear” is slowly
rotating clockwise or counterclockwise initially, with angular
frequencyφ̇1, i.e., the slow angle. The gear-shaped potential is
just the potential of the averaged Hamiltonian given in eq 13.

The interaction with the incoming particle induces a coupling
between the internal degrees of freedom of the spinning atom
and, therefore, a change in its vibrational and rotational
frequencies. In the proximity of a resonance, when the condition
Mωr - Nωθ = 0 is satisfied, such variation produces a slow
rotation of thegear, which starts moving as an effectiverigid
rotor, see Figure 2b. The angular momentum associated with
this rotating gear is given by the new action variableIθ, whereas
the action conjugated to the rapid angle variable in the rotating
coordinate system, in this system the radial or vibrational action,
is the modified adiabatic invariant that satisfies the condition
(15). Namely,

This example illustrates the physical nature of the reduced
dimensionality system that results when the average over the
fast variable is performed. As long as the quasiresonance holds,
the reduced dimensionality object acts consistently as if it did
not possess the degrees of freedom removed by averaging.

4. Quasiresonant Effect from He-H2 Collision

In this section we present the classical analysis of the
quasiresonant effect that arises in the vibrationally and rota-
tionally inelastic collisions between the He atom and the diatom
H2. In the center of mass frame the Hamiltonian of the system
can be written as

wherer is the interatomic distance in the H2 molecule,pr is its
conjugate momentum,θ is the angular coordinate of the
molecular axis,R is the distance between the He atom and the
center of mass of the diatom,PR is its conjugate momentum,ψ
is the external atom angular coordinate,m is the reduced diatom
molecular mass,µ is the reduced mass of the He atom with

H0 ) H0(Jr,Jθ) )
pr

2

2m
+

pθ
2

2mr2
+ U(r) (19)

Jr ) 1
2π

Ipr dr ) 1
2π

Ix2m[H0 - U(r)] -
pθ

2

r2
dr (20)

Jθ ) 1
2π

Ipθ dθ ) pθ (21)

Ir ) Jr + M
N

Jθ )

1
2π

Ix2m[H0 - U(r)] -
pθ

2

r2
dr + M

N
pθ ) const (22)

H )
pr

2

2m
+ j2

2mr2
+

PR
2

2µ
+ L2

2µR2
+ U(r) + V(r,R,θ,ψ) (23)

∆J2

∆J1
) -M

N
(17)

∆Esys) ω1∆J1 + ω2∆J2 ) ∆J1(ω1 - M
N

Nω2) ≡

-∆J1ωdef ) ∆J1

φ̇1

N
(18)
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respect to the diatom,j ) j ĵ is the diatom angular momentum,
andL ) LL̂ is the orbital angular momentum of the He atom
with respect to the diatom. As in ref 7, we have used in our
simulations the interatomic potentialU(r) of Schwenke16 and
the atom-diatom interaction potentialV(r,R,θ,ψ) of Muchnick
and Russek.17 For the sake of simplicity, and without loss of
generality, we have confined the scattering process to a plane
by setting the molecular and orbital angular momenta along the
same direction.

We will assume that the initial and final positions of the
colliding atom are sufficiently far from the diatom (V = 0 at t
f (∞). Hence, in this example the quasiresonance effect arises
between thequasiresonantvibrational and rotational degrees
of freedom of the molecular system

which has well-defined radial (vibrational) and angular (rota-
tional) action variables,

and

when it is perturbed by the transient (autonomous) interaction
with the incoming atom

whereΦ ≡ (Φr,Φθ) are the molecular angle variables.
Figure 3a displays the root-mean-square (rms) of the change

in the diatomic angular and radial classical actions in a collision
between H2 and He at relative energyE ) 10-6 cm-1, initial
radial actionJr fixed to reproduce the vibrational molecular
quantum numberVi ) 2 by imposing the semiclassical quantiza-
tion rule

and a continuous distribution of initial angular molecular action
Jθ. The initial molecular quantum states correspond to the values
of the angular actions that satisfy the quantization rule

with ji the rotational molecular quantum number.

The different peaks in Figure 3 represent the change in radial
and angular molecular actions due to the transient interaction
with the colliding atom when a quasiresonant condition of the
form

is satisfied. As expected, the main peaks in Figure 3 define a
series of plateau regions (see Figure 4) where the ratio of the
changes in the actions of the quasiresonant vibrational and
rotational molecular degrees of freedom takes a different low
order rational value given by the propensity rule

The location of the center of the main quasiresonance domains
can be predicted in this system from the distribution of the vibro-
rotational molecular energy levels by imposing the condition

or, classically, if we take the action’s changes to be arbitrarily
small, eq 18, the on-resonance condition

Note that this condition is insensitive to the nature of the
interaction potential and depends intstead on the intrinsic
frequencies of the system.

As Figure 3 shows, the action changes are quite small for
the He-H2 system in this range of angular momenta and at
this collision energy, except near resonances. The collision is
so slow compared to both the vibration and rotation of the
molecule that one might be tempted to claim the collision is
always adiabatic in both actions. This claim would be very
nearly true over much of the space of initial conditions.
However, the spawning of a slow coordinate when the two
frequencies approximately satisfy a low order rational ratio, as
labeled by the peaks in Figure 3, causes adiabaticity to break
down. Figure 3a shows a schematic of the shape of the average
potential at each of the resonance peaks for this case of a
homonuclear diatomic molecule. It is clear that as the number
of “teeth” in the gear increases, and the depth or radial variation
of the teeth decreases, the nonadiabtic changes decrease at
resonance. The shapes were generated using the same amplitude
of vibrational motion in each case. For a given number of teeth,
relatively shallow teeth form at higher rotational speeds because
they are more rounded off by the motion.

Outside the quasiresonant zones the changes inj and V
decrease several orders of magnitude and the correlation (31)
that characterizes the quasiresonance effect practically disap-
pears. This is shown in Figure 5 where a nearly perfect
correlation between the changes in the molecular classical
actions can be observed for the initial actionsJθi ) 9 (r )
4.0008) andJθi ) 22 (r ) 2.0000), but not forJθi ) 7 andJθi

) 15.

5. Grazing Collision: Deflection by a Transient Lattice

We next examine the weak interaction of an atom in two
dimensions with a transient periodic lattice. An analogous
autonomous system in one more degree of freedom is a grazing
collision of an atom with a crystal surface.

Suppose we have one atom of massm and energyE moving
freely in a plane along the directionp̂i ) (p̂xi, p̂yi) ) (cosθi, sin

Figure 2. (a) Trajectory (a fixed “gear” shape) described by an atom
fixed on a spring when there is an integer ratio of six between the
vibrational and rotational frequencies. This is the form of the fast angle-
averaged potential in the adiabatic analysis. (b) Sketch of the evolution
of the vib-rotor after it is perturbed by a slow colliding particle.

H0(J) ≡ H0(Jr,Jθ) )
pr

2

2m
+ j2

2mr2
+ U(r) (24)

Jr ) 1
2π

Ipr dr (25)

Jθ ) 1
2π

Ij dθ (26)

V(J,Φ,Q;ê) ≡ V(Jr,Jθ,Φr,Φθ,R,ψ;ê) (27)

Jr ) p(Vi + 1
2) (28)

Jθ ) pj i (29)

Mωθ - Nωr = 0 (30)

∆Jθ

∆Jr
) - M

N
) -r (31)

E(Vi + |∆V|, j i - |∆j|) = E(Vi - |∆V|, j i + |∆j|) (32)

∆Esys) 0 (33)
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θi). We slowly switch on and off an infinite periodic lattice.
We assume that the lattice is weak compared to the energy,V0

, E and that the deflection of the atom is not large. After the
lattice is switched off the atom continues in free motion, but
now along the directionp̂f ) (p̂xf, p̂yf) ) (cos θf, sin θf). The
Hamiltonian that describes the system can be expressed as

where the interaction potential

The quasiresonant effect arises when the integrable systemH0-
(J1,J2) ≡ H0(px,py) ) (1/2m)(px

2 + py
2) is perturbed by the

transient (nonautonomous) interactionV(Φ;ê) ≡ V(x,y;t) )

V0g(t) u(x,y) with g(t) given by

characterized by a parameterσ. For some incident angles the
two unperturbed frequencies

will satisfy a quasiresonant condition of the formMωx - Nωy

= 0.
Figures 6 and 7 display the variation of the root-mean-square

of the change in thex-component of the momentum,∆px ) pxf

- px (because the two components of the momentum are
equivalent, we have only represented one of them), with respect
to the incident direction and after the deflection process by two
different sinusoidal lattices. Both pictures show significant
changes in the component of the linear momentum of the atom
for certain incident angles. In the first process (η ) 2), we
observe a series of relatively sparse peaks with very small
variation of the component of the momentum in the regions
between them. In the second case (η ) 8), which gives a
potential with much sharper peaks, there is a strong variation
with the incident angle including some structure at the top of
the highest peaks and larger action changes in the regions
between them. The locations of the center of the most important
peaks (dashed lines) are the same in the two cases and are given
by the incident angles of the atom whose tangent,

with M and N small integer values, implying a resonance
condition between the two unperturbed frequencies of the

Figure 3. (a) Root-mean-square (rms) of the change in the angular and radial molecular actions,∆Jθ ) Jθf - Jθi and∆Jr ) Jrf - Jri, in a collision
process between H2 and He at energyE ) 10-6 cm-1 and initial molecular vibrational quantum numberVi ) 2. For each value of the molecular
actions the rms was computed using the data of 1000 classical trajectories with all the remaining initial conditions fixed at random. The solid line
corresponds to the change in the angular actionJθ and the dashed line to the change in radial actionJr. The values of the integer numbersM and
N (M:N) that characterize the propensity rule (31) around each peak are indicated. (b) Diatom vibro-rotational energy changes,∆E ) E(Vi + |∆V|,
ji + |∆j|) - E(Vi, j i), for initial molecular vibrational quantum numberVi ) 2 and different initial rotational quantum numberj i. The pairs of indexes
indicate (∆V, ∆j) and the full squares show the positions where the relation (32) is satisfied. A schematic of the shape of the potential averaged over
the fast angle at each of the resonance peaks is also given.

Figure 4. Ratio of molecular action changes∆Jθ/∆Jr vs the initial
angular actionJθi for five of the classical trajectories included in Figure
3.

H ) H0(px,py) + V(x,y,t) ) 1
2m

(px
2 + py

2) + V0g(t) u(x,y)
(34)

u(x,y) ) cosη x cosη y (35)

g(t) ) exp[-(t - tp)
2/2σ2] (36)

ωi )
∂H0

∂Ji
≡ ∂H0

∂pi
)

pi

m
(i ) x, y) (37)

tanθi )
ωyi

ωxi

)
pyi

pxi

) r ≈ M/N (38)
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system. The potential obtained by averaging over the fast angle
φ2 is a periodic series of parallel ridges perpendicular to the
slow angle, i.e., a one-dimensional pendulum Hamiltonian in
the slow angle.

As Figures 8 and 9 show, the locations of the center of the
main peaks in the variation of the components of the momentum
of the atom correspond also to the centers of a series of plateau
regions where the propensity rule

is satisfied, withr the same rational value that appears in (38).
The more sparse and smooth the peaks in the variation of the
actions appear, i.e., the more isolated the main nonlinear

resonance zones are in phase space, the better defined are the
correspondingplateauregions in ratio of action changes.

In this context we mention the work of Miklavc18 and
McCaffery,8,19who discuss the interesting perspective of atom-
diatom quasiresonant vibration-rotation energy transfer as
collisional state change consisting of momentum interconversion
(linear-to-linear and angular) within constraints set by energy
conservation. Translating these “momenta” as “actions”, their
conclusions indeed fit within the present framework.

6. Grazing Collision: Weak Interaction Limit

The discussion so far should have left the definite impression
that rational fractions and number theory are tied up in
quasiresonance, as in other resonance phenomena. This is made
very clear by the following perturbative analysis of quasireso-
nance in a collision with a transient lattice. In the process we
also gain insight into the roles of the number of Fourier
components in the perturbation potential (which controls the
sharpness of the peaks) and the speed of the particle, i.e., the
number of unit cells traversed while the interaction is on.

Figure 5. ∆Jθ ) Jθf - Jθi vs ∆Jr ) Jrf - Jri for different initial angular molecular actions in a scattering process between H2 and He at energyE
) 10-6 cm-1 and initial vibrational molecular stateVi ) 2. The result of the linear fitting∆Jθ ) -r∆Jr is indicated for the initial angular molecular
actionsJθi ) 9 andJθi ) 22.

Figure 6. Root-mean-square (rms) of the change in the x-component
of the momentum,∆px ) pxf - pxi, vs the incident angle, for one atom
of massm ) 4.0026 and energyE ) 20, a coupling strengthV0 ) 0.1,
a Gaussian parameterσ ) 20, and the interaction potential (35) with
η ) 2. The rms was obtained from 1000 trajectories with the same
incident angle and initial positions chosen at random. The dotted lines
give the position of the incident angles whose tangent is a rational
number (38),r ) M/N, with M andN small integers. All quantities are
expressed in arbitrary units.

Figure 7. Same as Figure 6 but for a eighth power sinusoidal lattice
(η ) 8) in the interaction potential (35).

∆px

∆py
) - M

N
(39)
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According to our previous results, nothing prevents the
quasiresonance effect from applying in the limit of a weak
transient interaction. As befits first-order classical perturbation
theory, we assume an unperturbed trajectory and compute the
impulse due to the potential, applyingprimitiVe first-order
classical perturbation theory to obtain the change in the actions
J ≡ (J1, J2), J ) J0 ) const, by means of the perturbation
integral

whereΦ0 ≡ (Φ10, Φ20) are the initial angle variables andω ≡
(ω1, ω2) are the frequencies associated with the unperturbed
HamiltonianH0 ≡ H0(J1,J2). For the trajectoryr (t) ) r + vt (v
) const) passing through (x, y) at t ) 0, with v ) (R,â) eq 40
takes the form for the potentialV(x, y) ) cosη x cosη y

where

Expanding the cosines as sums of complex exponentials, we
find

The real exponents are the inner product (projection) of two
vectors,v ) (R,â) and k ) (n - 2m, n - 2m′). In the new
notation,

whereCn(k) ) (m
n )(m′

n ), and then

The derivatives leave the exponentials intact but bring down
factors of n - 2m in the numerator andn - 2m′ in the
denominator. The exponential terms are the key to the unusual
behavior seen in Figure 10. Withx andy chosen generically,
andr large withR ) r cosθ, â ) r sin θ, typically one of the
exponential terms will dominate the others, infinitely so asr f
∞. Because the real exponents-(v‚k)2 are negative definite,
the dominating exponential will have the smallest magnitude
of the projectionv‚k.

The integern must be even so that the potential is a periodic
lattice of positive bumps. Letj ) n/2. Then the ordered sequence
of different irreducible rationals 0e p/q e 1 for q e k
obtainable from the list|(n - 2m)/(n - 2m′)|, 0 e m′ e m e
n is theFarey sequenceof rationals,Fj.20 The Farey sequence
for any positive integern is the set of irreducible rational
numbersp/q with 0 e p e q e n and arranged in increasing

Figure 8. Dots give∆px/∆py vs pyi/pxi. For each incident angle the
data of 20 trajectories with initial position chosen at random are
included. All the parameters are the same as in Figure 6. The straight
solid line represents the curvepyi/pxi ) ∆px/∆py.

Figure 9. Same as Figure 8 but for an eighth power sinusoidal lattice
(η ) 8) in the interaction potential (35).

Figure 10. Devil’s staircase of rational plateaus in∆px/∆py for a tenth
power sinusoidal lattice (η ) 10); with x ) 0.12,y ) 0.77, and|v| )
130; see eq 45 (solid line), and|v| ) 10 (dashed line).

In(x,y;R,â) )

2-2n∑
m,m′

(m
n )(m′

n )ei(n-2m)x+i(n-2m′)ye-(R(n-2m)+â(n-2m′))2/4 (43)

In(r ;v) ) 2-2n∑
k

Cn(k)eik·re-(v·k)2/4 (44)

∆px

∆py

)

∑
k

Cn(k)kxe
ik·re-(v·k)2/4

∑
k

Cn(k)kye
ik·re-(v·k)2/4

)

∑
k

Cn(k)(n - 2m)eik·re-(v·k)2/4

∑
k

Cn(k)(n - 2m′)eik·re-(v·k)2/4

(45)
∆Ji ) - ∂

∂Φi0

∫-∞

∞
V(J0,Φ0+ωt;ê(t)) dt (i ) 1, 2) (40)

∆J1 ) ∆px ) ∂

∂x
In(x,y;R,â)

∆J2 ) ∆py ) ∂

∂y
In(x,y;R,â) (41)

In(x,y;R,â) ) ∫-∞

∞
V(J0,Φ0+ωt;ê(t)) dt )

∫-∞

∞
e-t2 cosη(x + Rt) cosη(y + ât) dt (42)
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order. The Farey sequence is intimately related to rational
approximants to irrational numbers. The closest continued
fraction approximants to a given irrational numberγ of orderj
(i.e., largest denominatorj) are the Farey rationals closest toγ.

The Farey rationalsFn/2 (and their inverses) determine the
resonance for a givenn. That is, when the rational plateau is

then on resonance the condition

holds. This resonance point is not usually at the center of the
plateau. The edges of the resonance plateau, i.e., the transition
point between different resonances, can be found as follows.
Let p1/q1, p2/q2 be two neighboring rational fractions in a Farey
sequence of orderj ) n/2. On resonance 1, we haveRq1 + âp1

) 0, and on resonance 2,Rq2 + âp2 ) 0. At the transition
point between the two resonances, neither projection will vanish
but instead they will be of equal magnitude but opposite in sign,
i.e.,Rq1 + âp1 ) -(Rq2 + âp2). This means that the transition
point marking the jump between plateaus of resonance 1 and
resonance 2 is at

which it turns out is the definition of themediantof the two
adjacent rational fractions. The mediant is the first intermediate
rational fraction that appears between the two in question in a
higher Farey sequence,Fj′. (For the purpose of the mediant,
the first rational in each Farey sequence, namely 0, is considered
to be 0/1, and the last is 1/1.) We have thus found that a given
resonance plateaup/q will hold from the lower mediant to the
upper mediant bracketing the corresponding rational fraction.

We recall that for the transitions from one plateau to another
to be sharp, we must take the limit of an adiabatic perturbation,
i.e., R2 + â2 f ∞. In this limit the perturbation turns on and
off slowly compared to the time required to pass from one unit
cell to another. Figure 10 shows the ratio∆px/∆py as a function
of the incident angleθ for η ) 20 and for two different
velocities,|v| ) 10 and|v| ) 125, calculated from eq 45. The
lower velocity case accesses only a few unit cells of the lattice
during the time the perturbation is on, whereas the higher one
is more nearly adiabatic, displaying all the plateaus predicted
for ∆px/∆py for the Farey sequenceF10. The jumps between
plateaus are indeed at the mediant angles. For the short duration
case, there are sloppy transitions between the plateaus, many
of which are missing or indistinct. Only the lowest order
resonances survive as well formed plateaus. This can be
understood as follows. Consider the two unperturbed trajectories
shown in Figure 11, where a rectangular lattice of soft points
is shown together with two weighted trajectory tracks, one at
tanθ ) 1 and the other at tanθ ) 1/4. In both cases the impulse
is perpendicular to the track, but the 1:1 track is much more
adiabatic, suffering more collisionettes (interactions with indi-
vidual lattice points) during the time the interaction is on (the
interaction strength is indicated by the shading on the track).
For a given duration time of the interaction, sufficiently high
order resonances will not be able to establish themselves through
multiple collisionettes. The condition for a plateaup/q to appear

(assuming again a time profile∼exp[-t2]) is

Comparison with the explicit nonperturbative calculations of
the previous section is instructive. Figure 6 and Figure 8 refer
to the caseη ) 2. The perturbative result forη ) 2 shows
peaks only atF1 ) tan θ ) {0, 1}. The additional peaks and
plateaus seen at1/3, 1/2, etc. are the result of higher order
processes included in the full numerical integration of the
trajectories. Similar statements may be made about the extra
peaks seen in the caseη ) 6.

Supposeωdef ) ω2 - M/Nω1 differs somewhat from 0, and
that a higher order resonanceω′def ) ω2 - M′/N′ω1 is closer to
0. Which resonance will hold? Within perturbation theory, the
Fourier components of the perturbation have to generate the
fractionM′/N′ as part of the Farey sequence if it is to compete
with M/N. (Higher order interactions can do that from a lower
order potential, as was seen in the explicit numerical investiga-
tion of section 4.) Assuming that is the case, theM/N plateau
will actually never appear in the situation above: quasiresonance
will fail until the interaction time is long enough to resolve the
M′/N′ plateau. Figure 12 reveals that, as the adiabaticity is
increased (i.e., the velocityV of the particle is increased) new

p
q

) n - 2m
n - 2m′ (46)

R
â

) - q
p

(47)

R
â

) -(p1 + p2

q1 + q2
) (48)

Figure 11. Rectangular lattice of soft points shown together with two
weighted tracks, one at one at tanθ ) 1 and the other at tanθ ) 1/4.
In both cases the impulse will be perpendicular to the track, but the
tan θ ) 1 track is much more adiabatic, suffering more collisionettes
(interactions with individual lattice points) during the time the interac-
tion is on (the interaction strength is indicated by the shading on the
track).

Figure 12. Formation of the Devil’s Staircase forη ) 16, as a function
of the velocityV ) |v|, assuming the interaction time goes as exp[-
t2].

|v| . xp2 + q2
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plateaus form from smooth, unquantized regions in the ratio of
actions, not from other, lower order plateaus which formed
earlier. This mechanism could change for other forms of the
perturbation.

It can easily happen thatbothactions are adiabatic, e.g., when
no low order resonance condition applies. Then there are two
nearly good constants of the motion, but the ratio of the very
small action changes will not plateau, because there is no
resonance condition to enforce the action ratio.

7. Quasiresonance in Higher Dimensional Systems

From a broader perspective, quasiresonance is a side effect
of the adiabaticity of classical actions that may arise under slow
perturbations. Already in one dimension, adiabaticity of the
action may or may not be guaranteed for slow variation of a
parameter, depending on whether a separatrix and its attendant
zero classical frequencies are present. For a two-dimensional
classical system, subject to a time dependent perturbation, the
resonance conditionNω2 - Mω1 ≈ 0 implies a slow angle
whose conjugate action will not be conserved, and a fast angle
with possible conservation of an action of the formI2 ) J2 +
(M/N)J1. The slow degree of freedom develops separatrices and
violates adiabaticity. This gives the quasiresonance condition
relating∆J1 and∆J2: ∆J1/∆J2 ) -N/M. Thus, in more than
one dimension, something of interest survives even if some of
the actions are not adiabatic. In higher dimensions, one quantity
of interest will hold for each conserved action, i.e., for each
“fast” angle. Mixing could in principle be quite strong among
the slow angles over the course of the perturbation.

The quantities of interest in higher dimensions are more
conveniently the conserved rational combination of actions.
These could be discovered from data. Indeed, this was the case
for the original vib-rotor quasiresonance.1 It is possible that
higher order quasiresonance lies hidden in existing data sets,
because a rational condition involving three or four action
changes might easily go unnoticed.

Quasiresonance may be a useful way to explore Arnold
diffusion,21 which is a presumably slow process of action
diffusion in quasi-integrable systems of three and more degrees
of freedom. Unlike two-dimensional systems where KAM
surfaces divide phase space, three and higher dimensional
systems can bypass such surfaces by going around them, because
they are of co-dimension two and higher, and can be avoided
the same way a line can be avoided in three dimensions. The
mechanism for this is the Arnold web, in which surface
manifolds obeying a resonance condition intersect along lower
dimensional manifolds where two or more resonances prevail.
A phase space point can take a turn there, deciding to follow a
new resonance.

8. Conclusion

In a previous paper,12 we quantified the theory of quasireso-
nance, gave further examples, and showed that the effect holds
both for the original autonomous systems and for nonautono-
mous ones as well. The present paper has further expanded the
theory, uncovering the number theoretical foundations of

quasiresonance in the perturbative limit and stronger collisions,
and investigating a realistic potential for He-H2 collisions.

We have suggested some directions for future work on higher
dimensional systems, including Arnold diffusion. This remains
a largely unexplored territory, however.

Another possibility deserving more attention is the transient
interaction with a perturbation and a system that possesses a
complex phase space replete with resonance zones, etc., even
in the absence of the perturber. Under very weak interactions,
this case does fall under the integrable limit with good actions,
because that is effectively the situation in very local regions of
phase space. We have not treated the case where the definition
of theunperturbedactions changes over some region of phase
space and mixing occurs over a region at least as large.
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