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A guantum-admixture model for theé donfiguration ferrous complex molecules with the high-spirlow-

spin transition has been established by using the unified crystal-field-coupling (UCFC) scheme. A general
study has been made on the spin transition of octahedrally coordirfatedhglexes, and a special application
has been given to an Fe(ll) compound' @RIM)(PhCQ)(CIO,). The results show the following: (i) The
guantum picture of the spin transition of & s/stem, such as Fe(ll), is much more complex than a simple
transition between the puf&,y andA4 states as usually understood. In practice, owing to-spihit coupling,
spin is no longer a good quantum number and there is no longer &y A4 state. Each of them splits
into substates and each substate is a linear combination of various multiplets. The high-Epinspin
transition of an octahedrally coordinatetlion is practically the crossover of the two lowest substaté3 gf

at the critical point. (ii) At the spin-transition critical point the magnetic momest~ 5.22g, which is
obviously different from the simple average of thg: values of high-spin and low-spin states but near the
saturation value. (iii) The calculation of the effective molecular magnetic momgrfor an octahedrally
coordinated Fe(ll) ion shows that thwez—T curve is in good agreement with Lemercier et al.’s experiment
and both the low-spin valuges = 0.5Iug and the high-spin valuge = 5.4us are comparable with the
experimental values 0.76 and 5.4:g, respectively. (iv) Th& dependence of the crystal field paramedey

in the spin-transition region is approximately linear.

I. Introduction To understand the physical origin and to determine the main
The ferrous molecules with spin-transition effects, which have Mechanism of the HS> LS transition, chemists have synthe-
received considerable attention in the past decade, are found irsized @ number of model complexes. Among those, an especially

chemical and biochemical systems. This spin-transition phe- important one is the P¢TRIM)2(PhCQ)(CIOs), which is
nomenon arises when the ligand-field splitting energy becomesprepared by Lemercier et &lThis interesting model complex
comparable with the mean spin pairing energy. At the molecular displays a gradudll g <> *A14 Spin-state conversion and shows
scale, it is possible to understand the spin transition as anthat the effective magnetic momemig: in the LS and HS states
intraionic transfer with spin flip of the transferred electrons. are respectively 0.76 and 5.4g, being evidently larger than
For the ferrous molecules this transfer, depending on the those usually evaluated by the Curie formula? = ug? 9SS
coordination and distortion of the molecules, may involve either + 1), i.e., 0 and 4.8s. Lemercier et al. have explained this
two electrons or one electron, the former being associated with difference by supposing the existence of some Fe(lll) impurity.
the high-spin— low-spin (HS<> LS) transition and havindS However, this viewpoint is not confirmed and they of all

= 2, and the latter with the high-spif~ intermediate-spin  octahedral HS complexes that we know is larger evidently than
transition or the intermediate-spirr low-spin transition and  4.9ug. A greater challenge that faces the theoretical works is
having AS = 11712 To reproduce the spin transition, several that, owing to spir-orbit (S-O) coupling, each multiplet of

physical models, such aflethe spin-equilibrium n;i%ethe an Fe(ll) ion is split into substates and each substate is a linear
therm(_)dynamlcabl zrpodeFé, the Ising-like models; thzg combination of multiplets with different spin and different
vibronic models;??* and the quantum-admixture modéts; symmetry, then spin is no longer a good quantum number and

have been proposed and some great progresses have been madgere is no pure’T,y and A4 states. Therefore, it is not
However, dug to the limitation of.the vyeak-fleld scheme, the appropriate to regard the spin transition of Fe(ll) complex
guantum-admixture model fof donfiguration ferrous molecules molecules as a simple transition betwé@a, and*Ay, Up to

with HS = LS transition has not yet been established and up |,y there is no microscopic theory that can be used to reveal

to now, ttr:'e Egjlﬁg tmech?nlsm ?nd the malln |n|terar::t|ons t?athow the electronic structure and molecular magnetic property
govern the ransition in ferrous molecules have Mot or 5 ¢ configuration ion in a ligand field changes in a HS

yet been determined. LS spin transition. There is also no reasonable quantum
* Corresponding author. E-mail: zkwxx@263.net. explanation about the Lemercier et al.’s experimental résult.
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In present work, using the unified crystal-field-coupling
(UCFC) scheme crystal field theof§,we will develop a
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the UCFC theory® It is well-known that for an energy matrix
of a d" system, if its parameter®q and ¢ are replaced

guantum theory based upon a concept of standard basis andaespectively by— Dqg and — ¢, it will be changed into a4

standard energy matrix for the electronic structure df (Bd=

4, 6) compounds. By this theory we will calculate the electronic
structure, the molecular magnetic moment, and the multiplet
structure of the quantum states of a general octahedrally
coordinated élion and study how these change in a H9LS

spin transition. From this theory a detailed description will be
made for the spin-transition course. Again, an interpretation will
be given for Lemercier et al.’s experiment. In the second part
of the paper, we will introduce the Hamiltonian and construct
for the first time the standard basis in the sporbit coupling
representation of thebdonfiguration space and the correspond-
ing standard complete energy matrix of an octahedrally coor-
dinated §ion. It should be emphasized that although the concept
of standard basis was introduced by Griffitfor the irreducible
representations of the point groups, our standard basis is define
for the whole & configuration space. The dimension of the
former is only -4, whereas that of the latter is 210. Owing to
the special structure of our standard basis, each eigenvector o
the standard energy matrix carries evidently the information
about spin and space symmetry. Only with this we can describe
the change of state in spin-transition course. In the third and
fourth parts, we will calculate the energy levels, states, and the
molecular magnetic moment and describe how they change in
the spin-transition course.

Il. From d 4Oy) Standard Basis to ¢(Of) Standard
Energy Matrix

The Hamiltonian of the W electron configuration of a
transition metal ion in a ligand field (or named crystal field)
1, z€
—p, —— &Il s+ V()
m r

can be written &
H= Z +
5| 2

In a cubic crystal field it can be simplified as the following
parametrized form:

n 2

. &r

T= A + 7°9B,0) + V(Dq) + 7°C) (1)
where %0 is the effective center potential7Z®qB,C) is the
electrostatic interaction between the d-electragnd C are
the Racah parametei#;1(Dq) is the cubic crystal field energy
of the d-electronsDq is the crystal field intensity parameter
(also named crystal field intensity)%¢) is the S-O coupling
energy, and; is the S-O coupling parameter. When an applied
magnetic field exists, the following Zeeman energy should be
added to the HamiltoniafT,

HEE= b (L + 0.9 @
whereug is the Bohr magnetorgs = 2.0023.

Let Oy stand for the octahedral group ai@ the corre-
sponding double group. Hereafter we will us¢@f) to denote
an octahedrally coordinated slystem with SO coupling, being
described in a SO coupling representation, and(@,) to
denote the same system but without@ coupling, being
described in an uncoupling representation.

To ensure each eigenvector of the matrix of "asgistem
should contain evidently the information about the spin multi-
plicity and space symmetry, we will construct the energy matrix
of the Hamiltonian in the standard basis defined according to

d

matrix. Therefore we need only constructing théQi) and
d*(Op) matrices. For this, we will first construct a standard
basis of a @Oy) system, and then, by linear combinations of
its components, construct a standard basis i@l system,
in which we then construct the standar{@) energy matrix.
Due to the special structure of these standard bases/(®g d
matrix, when S-O coupling is omitted, will be a block diagonal
form with blocks cut from the {Op) matrix. Finally, the
d%Of) matrix, when its parameter®q and ¢ are replaced
respectively by-Dg and—¢, will become the standard complete
energy matrix of a 8{O}) system.

1. Standard Basis and Energy Matrix of a d(Oy,) System.
In constructing the wave functions of a multielectron system,
he standard-@&lectron wave functiong, ¢, &, », {, also named
d orbitals, that have been defined by Grifithill be adopted.
An octahedral crystal field separates the d orbitals into two sets,

]eg(e,e) and by(€,17,0), the energy space between them is usually

determined as IDg. From any four d orbitals g, dy, ..., ta

we can construct a Slater type determinant wave function,
denoted byldkdk...dw|. Such Slater functions are orthonormal
and satisfy the requirement of antisymmetry of the Pauli
principle, and by their linear combinations we can obtain all
wave functions of the 4 electron configuration. All these
functions can be divided into sets according to theetectron
numberm and the g-electron numben. Each set is called a
strong-field configuration and is denoted byd". The electro-
static interaction between the d-electrons separates the quantum
states belonging to @Me" configuration into subgsets; each
subgset has a definite sggand belongs to a definite irreducible
representatiol’ of the octahedral grou@y. The whole of the
states of a subset is called a crystal-field term, denoteSIby

or 25H1T", The terms permitted for &Dy,) system, as well as a
6(Op) system, are listed below according to a definite order and
with their suffix g omitted:

°E, T, *AL %A, °E 3T, °TL, 'AL 1AL, BB 1T 1T, (B)

Each term can include states, which can be distinguished by
the strong-field configuration that they belong to. Of each term
the states will be numbered according to the order defined by
Griffith.2” The S terms of the special strong-field configurations
tog™ and g" have been given by Griffith? Of theseSI" terms

the wave functions of all the states havikg= S have been
given in theSI'My quantization representatioM(is the spin
magnetic quantum number the real component df).?’ These
special strong-field term wave functions are denoted respectively
as |t (SCMy)0and | (STMy)[J each is a linear combination

of Slater functions. With these functions we can construct
strong-field term wave functiong™(SiI')e(SI ) SI'My [of all
general termsyfe” by the following formula,

L (STE(ST,), TMy =
’% [$1§M1M2|SM§ I,y qy,ITyH

Y1v2
It,"(S My )09 [€'(S,I;My,) 0 (4)
The notationg$SM1M,|SMand 112y 1y2|CyOare respec-
tively the Wigner and CG coefficients given by GriffithT is
generated by coupling; andI",, andM is generated by coupling
M1 and My, requiring My + M, = M. Between the states
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[t (SI'My)O and |e(SIMy)Oin (4) we defined a special Therefore we have

multiplication, denoted by the operat@ and named “direct . .

multiplication”, to overcome the difficulties in antisymmetrizing |ISM= ZEIFMSMD]F)”/D @)
the product functions by usual multiplication. Direct multiplica- V4

tion generates ax{ + n) x (m+ n) Slater determinant from an
m x m and ann x n Slater determinant according to the
following formula,

Then, in any treatment based on pure group theory, we will
apply the following replacement,

|0, STMy Oy T [, STMy O
|dk1dk2 dkm' ® |dpldp2 o dpn|=|dkldk2 dkmdpldpz dpn| . .
Obviously, for anyq;, the whole of the following product

It is automatically antisymmetric. For example, we have functions forms a representation of the direct product I,

IETe T x 10T | = | nT0Te|. As a stipulation we write NN (T
first the t and then the e electrons in a determinant. 1, ST My Iy 0 (8)
We define such an ordered set formed by the 210 strong- | the Of group T’ x T can be reduced into irreducible

field term wave functions (4) as the standard basis of(@x) representations, denoted BY:
system. Each function is a component of this basis and thus we
call it a basis function. In this basis the electrostatic matrix is I'xT = zﬂrr Q)

a block diagonal form. Each block belongs to a defififeterm

and we call it theS[" block. Such blocks are degenerate kor wheref is used to distinguish the repeatE. It can be seen
andy. The ST blocks are the same as that given by Griffith.  from (9) that the basis functions & (O;) can be formed by
The crystal field matrix is an entirely diagonalized form, of |inear combinations of the product functions in (8). For apy
which the diagonal elements are calculated by the following we write such a basis function ag,S'TAT"y'Oand we have

formula,
|0, STTATy' =y My Ty |Br'y' g, STMy 070 (10)
[,"e", STMy |Vt ", STMy = (6n — 4m)Dg ~ (5) 77
whereTyI'y|fI"y'Cis the CG coefficient corresponding T
Then we have obtained thé(@) standard energy matrix of  » [ — I". (10) gives a set of 210-80 coupling states
79B,0) + VA4(Dq). Itis also anST" block diagonal form and  (whereas the states in (4) are uncoupling states). It is a linearly
each block is the electrostatil” block if the corresponding  independent and complete function set, which forms a repre-
crystal field elements (5) are added on the diagonal of the latter. sentation of the 4lelectron configuration space, nameeG
2. Standard Basis of a d(Oj) System.Now we consider coupling representation &TAT"y’ quantization representation.
the S-O coupling of a state described by a strong-field term Therefore the 210 functions in (10) are th&(@) basis

wave function in (4), which can be abbreviated|@SI'MyL] functions; in constructing them, only thé(@y) basis functions
whereq stands for the strong-field configuratiogitS,I'1)e™- with M = Sare needed and the others need not be known.
(SI%). In general]q,SI'My[cannot be written as a form having We divide the 4(O}) basis functions into 10 sets according

its space and spin separated|@¥y[]SML] However, under a  to differentI"y’. Each set is called B'y’ term. They are listed
rotation of the spin space and/or a point-symmetric operation according to a definite order as follows,

in the coordinate space, the behavior of the two forms is exactly

the same. Therefore, in any treatment based on pure groupAi(14),A5(8), E'0(19),E'¢(19), Tjx(23), T1y(23),

theory, |q,S’Mycan be replaced byg,I'y[ISMJand again Tyz(23), ToE(27), Typ(27), ToE(27) (11)
|g,['yOcan be replaced byg,S'My[] which is the function
|g,SI'My [but having its spin frozen and = S. With the word In the parentheses after a term symbol is the number of basis

“frozen” we mean that the function cannot be operated by any functions belonging to that term. We number the functions in
spin operator or/and group element in spin space. Now considereachI"y’ term according to the orde®, T, I', g and define

the spin state$SML] With these states we can obtain a set of such an ordered set of the 210 functions as the standard basis
symmetrically matched standard basis functidrig laccording of a d(O}) system.

to the formula 3. Standard Energy Matrices of d{O}) and d5(O;) Sys-
_ _ tems. The matrix of Hamiltonian (1) constructed in th&{(@?)
ITy0= ;SMWWUSND (6) standard basis is called4@;) standard matrix. Because
Hamiltonian (1) belongs to the representatiépof O}, this
) . matrix is a block diagonal form and each block belongs to a
It forms they component of the irreducible representatioof definite 'y term; thus we denote it also dyy’. Then the
O} These functions are symbols in (11) represent also such ten blocks. The blocks with
L the samd™ are identical. The complete matrix is a sum of the
g I/;Zal — 0.0~ matrices of all operators included in the Hamiltonian; therefore
1 Tix = (IV2)(Til — Ty — 1) = (iIW2)(110- |1 — 10) we need ogly construct res_pectlve!y the matrix of each operator
Ty = (UV2)Til + Ti — 1) = (IW2)(11TH |1 — 10) in the d‘(Oh) stanplard basis, as will be _done be!ow. .
Tiz=—iT,0=—i|100 (1) Matrix of 729B,C) + VA(Dq). Obviously this matrix is
2 E6 = |2000 also a block diagonal form with 1D'y" blocks, each is again
Ee = (1/V/2)(12203+ |2 — 21} a block diagonal form with som&l" blocks cut from the #
ToE = (iIV2)(Tol — T — 1) = (iIv/2)(12 — 10+ [210) (On) standard matrix.
Ty = (UV2)(Tl+ T2 — 1) = (1V/2)(12 — 10— |210) (2) Matrix of 959¢). Obviously this matrix is also a diagonal

Tol = —iT:0 = — (i/v/2)(1220~ |2 — 2[) form with 10I"y" blocks. EacH™y" block can be divided into



10132 J. Phys. Chem. A, Vol. 109, No. 44, 2005

SI" blocks. EachSI block belongs to twdl terms, e.g. Sl
andSI',. The elements in &8 block can again be divided into
'S blocks. EacH 3 block belongs to twd 5. The (,j)th element
in a8 block can be calculated with the following formula,

-Wij.so(r' 'Sﬁ.rlflﬁ 1,%1}12/3 2)
= @S,y | 7S, ,B,Iy'0
+1
=[G, ST,0,A. Y z Vi (=17 g, S8,y 0
r=-1

[W1V1f1?71|ﬁ1r'7' D]]rzyzfzf/ﬂﬂzr')" K]
y1/172P2

% 0,731 S M, TS, M, | T,
1Vi2
1

z (_1)Hy* M, mliycslrlmﬁ/ﬂv;l;l—y* |ij°SzF2M272E]JSzM2EJ]

y=-1

=K' ST,V S,T,0 (12)

whereK' is the transfer coefficient. We have

K =K'(I", ST, STL0,8,)
1

yw;le A/ (28, + DAY

Z Tl}jl‘ SlMlm]erlflf/ﬂﬁlr'V' Dz [%Mzmz?;zmrzyzf‘z?zmzpf i
Y1 Y2

-1

Z(_l)ﬁy*‘@lMﬂSzleV* [Ty, Ty, T, — y*0 (13)
A=

Except S S 0 the reduced matrix elements
G ST 1| VI |gSI 200N (12) can be calculated with the following
formula,

OGS,y IV " gS,T,0=
(-1 37 /(2S, + 1) dim(T,)
EM 1y SM Ty, Ty — |F1V15.
(@S, M,y 4| 7% G SIM,y,0(14)

whereM; = §, M = S, andy* = § — S, dim() is the
dimension ofl", y1 andy, can be selected arbitrarily as long as
the CG coefficientIzy,T1 — y*|T'1y1= 0. WhenS, = S =

0, we haveK’' = 0; thus the corresponding reduced matrix
elements need not be known.

To ensure the SO matrix element between two basis
functions, e.qg.f; andf,, does not vanish, the necessary condition
in the S-O coupling representation is thitandf, belong to
the samd™y'; in the uncoupling representation the condition
isthatS, — S =+1or0andT, € I'; x I

(3) Zeeman Energy Matrixto establish the Zeeman energy
matrix, we need only establish the matrices of the angular
momentums.

(a) Matrix of Spin Angular Momentunthe matrix of a spin
operatorSy (y = x, Y, z, 1, 0,—1, +, —) constructed in the
d*(O}) standard basis can be divided in to blocks according to
eachly' pair. The elements in eadty’ block can be divided
into subblocks according to ea8RT pair. SuchSI'T subblocks
are diagonal foSI" and depend off, and the elements in each
are diagonal and degenerate piTherefore only the elements
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in eachSI” term cannot be zero; those can be calculated by the
following formula:

[S]; = @ST A Ty1IS7IaST T8 oy50
z m)’fﬁ;ﬂﬂir'ﬂ'lm?/fzf’z|ﬁjr2'V2'D
Y¥iva y o o
[Ty, @I My [Sy|qI My LI,y ,0
= z [Il"yflg;ﬂﬁil“'ly’l[l]]]"g/f‘zf/z|ﬁjF'2y'2|]I]T1)~/1|57|I:2)~/2D
Yviva (15)

(b) Matrix of Orbital Angular MomentunBecause each basis
function is a linear combination of Slater determinants mnite
basis function can be written as

Nm
fm = ZRm,ka,k
=

whereWy, «is thekth determinantRn ks its coefficient,Np, is

the number of determinants. Then the matrix element of an
orbital angular momenturh; = Y15 (¥ = X, y, 2) betweenfy,
andf, can be written as a linear combination of single electron
matrix elementdd|1;|d,(]

Nm Nn

Ly(mrn) = Ijlnl L;7|an= kZ‘ZRm,kRn,lmlvm,k| folvvn,I[|

10
= bymn)l,|d0

i)=1

(16)

where dis theith orbital in the d orbital serie®(¢, &, 1, &, 6,
¢ & 7, £) andby(m,n) is the combination coefficient.

The standard complete energy matrix of %Qf) system is
the sum of the above matrices. When the param&grand ¢
are replaced by-Dqg and—¢, the d(Of) matrix will become a
standard §O}) matrix.

[ll. Changing of Energy Levels and States under Spin
Transition

To describe the expansion of d orbitals of a transition metal
ion caused by ligand field, we deéra d orbital reduction factor
N, which is similar to the covalency factor in the Curie
formula2® The valueN depends on the crystal field intensity
and the covalency of the complex. Following the Curie
formula?2® the parameter8, C, and{ in the matrix elements
may be approximately expressed as

B=N'B, c=N'c, E=N¢,  (17)
whereBy, Cp, and(p are the corresponding parameters of the
ion in a free state and can be determined by its spectrum. For
Fe(ll), Bp = 3901,Cp = 1058, and, = 410 cntl. However,
we will also adopt these values in the general studies for any
db ions. Then, for a given value d{, the electronic structure
and the character in optics and magnetics of the system are
entirely determined by the crystal field intensigq and
independent of the details of the ligands. In our calculations
we will take a typical value oN and a set of values ddq to
calculate the eigenvalues and eigenfunctions of the system for
eachDq.

For a &(Oy,) ion with out S-O coupling, it can be seen from
the Sugano diagram obtained from tH€Q@},) matrix that in a
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TABLE 1: Lowest Seven Eigenvalues (cmt) of a d%(O}) Systent
Dg—Dqc (cm™)

32 —24 -16 -8 0 8 16 24 32

0(Ty) 0(Ty) 0(Ty) 0 (Ty) 0(T) 0 (A) 0 (A) 0 (A) 0 (A)
162 (E) 161 (E) 161 (E) 153 (A) 14 (A) 131 (T) 280 (T)) 430 (T,) 581 (T,)
178 (T) 178 (T) 177 (T) 161 (E) 161 (E) 292 (E) 440 (E) 589 (E) 740 (B)
363 (A) 337 (&) 270 (A) 177 (T) 177 (T) 308 (T) 457 (T) 606 (T,) 757 (T,)
424 (T) 424 (T) 423 (T) 423 (T) 414 (A) 538 (A) 682 (A) 828 (A) 976 (A)
446 (T,) 445 (T,) 445 (T,) 428 (A) 422 (T) 553 (T)) 700 (T)) 850 (T)) 1000 (T))
677 (A) 550 (A,) 464 (A) 444 (T) 444 (T 574 (T,) 723 (T) 872 (T, 1022 (T,)

a Calculated withBy = 3901,Co = 1058, = 410 cn7!, N = 0.95, andH = 0. The value ofDq at the critical point isDg. = 1373.95 cm™.
The symbol in parentheses following an eigenvalue is @jeirreducible representation that the corresponding eigenstates belong to. The
degeneracy of an eigenvalue that belongs fpE, T;, and T, are respectively 1, 2, 3, and 3.

wide region ofDqg the lowest two states will b&A; and°T». 600
The energy difference is, if neglecting the configuration
interactions, 500

0=E(A) —E(°T,)=8C+5B—20Dg (18)

400
Which state is the ground one is determined by the sigd, of -~
i.e., determined by the competition of the crystal field energy "
(20Dq) and the electrostatic energyd8+ 5B). When the crystal 5
field energy reaches a balance with the electrostatic energy, i.e.,
whend = 0, the two states will intersect with each other, thus 200
leading to spin transition. Therefore the critical crystal field
intensity Dq. is determined by the transition condition 100

20Dq = 8C + 5B (19)

0
Using the approximation formula (17Pqc will be entirely 32 2416 8 0 8 16 24 32

determined byN through the following formula: "

Dgq-Dgc(cm )

20Dq, = (8C, + 5B,)N* (20)
-1 (), 2—E'(CT°T), 311 (T T,

However, in a real §O}) system the SO coupling will break A=A CTH ), 5T CT°T), 6T 2T °T),  T—Ar' (AT
eachSI" term into several substates and causes a term mixture. ‘Figure 1. Lowest seven energy levels of 4(@}) system near the
Each eigenfunction will be a linear combination of substates spin-transition critical point. Calculated wif8, = 3901,Co = 1058,
with different spins and different symmetries and thus there is £, = 410 cn%, N = 0.95, ancH = 0, leading toDg. = 1373.95 cm*.
no pure'A; or 5T, state. Therefore the real spin transition course

can only be sought in the substates'sfi and °T, and the It can be seen from Figure 1 and Table 2 that for the-HMS
transition point will be changed. LS spin transition the lowest substafé ,(*A1—°T,) of 'A;
When the system is certainly in HS or LS state, the symbol transfers its’A; component to the substaf§ ,(°T>—'A;) of
I'(S0), e.q.,A(°Ty), is customarily used to stand for a9 5T,, and the latter crosses the lowest subsT§t§5T2—5T2) of
splitting substate of th&[" term that belongs to the irreducible 5T, at the critical point. They are the states that undertake direct
representatiod” of O}. So ST is the mother term of"(SI) responsibility for this spin transition. The spin-transition process

and also its main multiplet component. However, if the system will be described in detail in what follows.
is in a course of spin transition, the multiplet componentsinan From Table 2 we can see that, for small values of
eigenstate will be, in general, gradually changed and cannot beDqg, A} l(5T2—1A1) and T,,(°T,—°T;) are almost 5Ty,
certain and thus need a dynamic description. Now, to give a A 2(1A1—5T2) is almost*A;, A} 43T1—3Ty) is almost®T;. With
detailed description of the spin transition course, we introduce mcreasngq, a change of muIt|pIet fraction occurs in and only
a dynamic notationl” (SI'1—SI%), e.g., A (°T>—1A), to in Ap,(°T>—?A;) and A} (*A1—°T,). At any moment the
stand for thekth eigenvalue as well as the corresponding set of decrease of the HS fraction iy 1(5To—A;) is equal to the
eigenstates of thE'y" block according to ascending order. Such increase of that inA} 2(1A1—5T2) (see also Figure 2), the
a notation represents an eigenstate changing from a quasiincrease of the LS fractlon i\ ,(°T>—1A) is equal to the
SiI'(Oy) state into a quassI'y(Op) state wherDq increases to decrease of that ||71\'1’2(1A1—5T2) That is, multiplet compo-
lead to a HS— LS spin transition. That is, its mother term is nents exchange betweef, ,(°T,—*A;) and A} (*A1—5T)).
SiI'(0Or) whenDq is small butSI'»(Oy) whenDq is large. This is because a-S0 coupling can occur between each of
In Table 1 we list the lowest seven eigenvalues (correspondingthem and the quasiF; state A| °T:—3Ty), although this
to 16 eigenstates) for ea@dgy—Dq; the corresponding energy  coupling cannot occur directly between them. Such an exchange
curves are given in Figure 1. The changes in the multiplet changes\; ,(°T>—*A;) from a quas®T; gradually into a quasi-
fraction in the lowest 25 eigenstates (corresponding to 11 !A; state, andN A*A1—°T>) from a quasiA; into a quaskT,
eigenvalues) are shown in Table 2. The changes in the HSstate. At the same time, the energy curve Af,(*A1—5T»)
fraction of the most important three sets of eigenstates are showndescends gradually té; ,(°T.—*A;) and then begins to as-
in Figure 2. cend, butA; ,(°T>—'A;) descends continuously owing to the
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TABLE 2: Fractions of the Main Multiplets in the Lowest 25 Eigenstates of a &(O}) Systent

Xiao-Yu and Kang-Wei

Dg — Dqgc (cm™)

state multiplet -32 —24 -16 -8 0 8 16 24 32

A4 (T2—Ay) 5T, .8840 7191 3572 1267 .0540 .0283 .0169 .0111 .0078

A, .0915 .2493 .6056 .8389 19150 .9432 .9563 .9635 .9680
AL (*A1—5T)) 5T, .1030 .2676 .6291 .8593 .9316 .9570 .9679 .9733 .9762

A, .8824 .7253 .3698 1371 .0616 .0341 .0216 .0150 .0111
AL T1—%Ty) Ty .9620 .9625 .9628 .9631 .9634 .9637 .9638 .9640 .9641
T5,(5T2—5T2) 5T, .9985 .9984 .9984 .9984 .9984 .9984 .9984 .9983 .9983
T, (5T2—5T2) 5T, .9934 .9932 .9930 .9928 .9926 .9923 19921 .9918 .9915
T, 4(°T1—5Ty) Ty .9920 .9918 .9916 .9914 19911 .9909 .9906 .9903 .9901
E1(5T2—5Ty) 5T, .9942 .9940 .9939 .9938 .9936 .9935 .9933 9931 .9930
E (°T1—5%Ty) ST, 9921 .9920 9919 .9917 .9916 .9915 .9914 .9913 9911
Ty ,(T2—5T2) 5T, .9965 .9964 .9964 .9963 .9962 .9961 .9960 .9959 .9958
Ty 5T2—5T2) 5T, .9910 .9908 .9905 .9903 .9900 .9897 .9894 .9891 .9888
Ty 4(°T1—5Ty) Ty .9883 .9880 .9877 .9874 .9871 .9867 .9864 .9860 .9856

a Calculated withBy = 3901, Cy = 1058,%o = 410 cnmt, N = 0.95, andH = 0. The criticalDq is Dg. = 1373.95 cm?. A rapid change in
multiplet fraction can be seen only in the eigenstdi6s)) andf,(A}). The multiplet components in other eigenstates remain almost unchanged.
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Figure 2. HS fractionyns in the most important three sets of eigenstates
of an octahedrally coordinated tbn. Calculated witiB, = 3901,Co

= 1058, 5o = 410 cnt!, N = 0.95, andH = 0, leading toDq.
1373.95 cm. The HS fractions of\; ;(°T>—'A;) and A} ,(*A;1—5T»)
become equal whebg—Dq. =~ —18.75 (cnT?).

increase in itstA; fraction; thus they do not intersect. When

1.1
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Figure 3. HS and LS fractions in the ground state of Q) ion.

Calculated near the spin-transition critical point, wsh= 3901, Cy

= 1058, %o = 410 cnti, N = 0.95, andH = 0, leading toDq,

1373.95 cm. The direction of the abscissa is opposite to that in Figures
1 and 2.

fraction in the lowest eigenstate, as described by curve b,

changes abruptly at the critical point from 0.054 to 0.9984.
Finally we give an approximate formula for calculating the

real critical crystal field intensityDg. of an octahedrally

Dqg reaches a threshold point, the continuously descendingcoordinated Fe(ll) as follows

A; 1(°T2—*Ay), in which the!A; fraction already dominated,
intersects withT, ,(°T>—5T,) and becomes the ground state,
thus leading to an HS> LS spin transition. Such a threshold
point is the spin-transition point, and suclbg value is called
the critical crystal field intensity, denoted Ig.. Thus it can
be seen that the HS> LS spin transition is an intersection
between two substates 3, instead of an intersection between
1A and®T,. Figure 2 shows the curves of the HS fraction of
A’1’1(5T2—1A1), A’1’2(1A1—5T2), and T'2’1(5T2—5T2) VS Dq—ch.

Let us examine the multiplet fraction in the ground state. In
our opinion, around the critical point, the ground state is the

Dq, = —17.9N+1703.3585>%° (21)
ForN = 0.95, we have nowdg. = 1373.95 cm’. An increase

in N means a decrease in the d orbital expansion, leading to an
increase irDqc. If the relation betweeiq and temperaturé

is known, one can determine the spin transition temperaiure
by Dq. and thus byN. Considering that, besides temperature,
other perturbations may also chan@s and lead to spin
transition, we prefer to takBq rather thanT as the argument

in a general study of spin transition.

approximately degenerate state formed by the lowest eigenstate$V. Molecular Magnetic Behavior in Spin Transition

A ,(°T2—Ay) and T, ,(°T>—°T»), they are close to each other

The molecular magnetic properties of HS and LS states are

and far from the upper levels. The degeneracy of essentially different, and in a H& LS spin transition it will

A (PTo—Aq) and T, ,(°T>—°T;) are 1 and 3, respectively, change from one case into another. The molecular effective
their HS fractiona at the critical point are 0.054 and 0.9984 momentuer can be calculated by the Van Vleck formdfa:

(see Table 2 and Figure 2), respectively; thus the HS fraction
in the ground state igys = (0.054+ 3 x 0.9984)/4= 0.7623
instead of the arithmetic average value 0.5. This is to say, the
point at whichyys = 0.5 is not the spin-transition point. The
change of HS and LS fractions in the ground state are shown
respectively by the curvegys and y s in Figure 3. The HS

> (WK - 2W e WOt

I
:ueff2 = 3KT
z e—W,(O)/kT
I

(22)
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Figure 4. uer—Dq cures of a 8l ion at T = 300 K. Curves +4
correspond tdN = 0.7, 0.8, 0.9, 1.0, respectively. For all curvass
~ 5.2 at the spin-transition point, the saturation ~ 5.5 and the low
Spin uer is greater than zero remarkably.
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Figure 5. ucf—Dq curves of a §Oy) ion with N = 0.95. Curves +4
correspond td = 100, 200, 300, 400 K, respectively. For all curves,
Uet ~ 5.2 at the spin-transition point, the saturatien ~ 5.5, and the
low-spin uer is greater than zero remarkably.

whereW,©@, W) andW@ are the first three coefficients in the
following expanded form of the eigenvalues of the complete
energy matrix in terms oH' = fH, whereH is the weak
magnetic field ang3 is the Bohr magneton.

E=W?2+HWY+HW® (=1-210) (23)
Giving three values foH', we can obtain three such expanded
forms, and if we cut off the terms higher tha#2, we can
calculate th&V coefficients from the three equations. It is known
from the Van Vleck theoreff that the calculation ofiesr may
be carried out in a cubic field approximation if the matrix
elements of the low-symmetry field are all smaller thdn(at
room temperatur&T =~ 200 cnT?).

In what follows we will discuss the changing rule af; in
the spin transition based on the calculation results Bih=
3901,Co = 1058,&p = 410 cn?, B = N*Bp, C = N*Cp, and
= NZC().

1. uet—Dq Curves for Different N and Fixed T. In Figure
4 a set of curves g vs Dg has been given fol = 0.7, 0.8,
0.9, 1.0 and fixed = 300 K. All curves intersect approximately
at one point, which is the spin-transition critical point and
corresponds test &~ 5.22ug, near the saturated value bgb

2. ue—Dq Curves for Different T and Fixed N. In Figure
5 a set of curves qies; Vs Dg has been given fof = 100, 200,
300, 400 K and fixedN = 0.95. All curves intersect ap-

J. Phys. Chem. A, Vol. 109, No. 44, 20080135

proximately at one point, which is the spin-transition critical
point and corresponds e« ~ 5.22ug, near the saturated value
5.5up.

3. uei—T Curve. In above two sections we have obtained a
group of theoreticaluer—Dq curves. To obtain thetes—T
relation, we must obtain th& dependence oDq. It is well-
known thatDq is generally expressed as

_ —eq)i'O

D
qeﬁ

with
R 00 —k—
B0 [ RANM? dr + R (R ar

wheree is the charge of an electrogy is the effective charge

of a ligand,Ry(r) is the radial wave function of the d electrons,

r is radial coordinates, and is bond length. It is obvious that
Dqis a function ofR. BecausdR depends off, Dg depends on

T. An increase inT leads to an increase R by pure thermal
expansion; this increase Rileads to a decrease by according

to the above formula. This is only one side of the problem.
The other side, the most important, is, in the neighborhood of
the spin-transition critical point, the above decreadedrieads

to a rapid increase in the HS fraction of the ground state that
leads to a rapid increase R) from the smaller LS bond length
toward the larger HS bond length; this increas®iagain leads

to a further decrease iDq. This is a positive feedback effect,
as graphically shown below,

(LSstate) Tt—R'—Dgl— R —Dgl—--—

(HS state)

It is this positive feedback effect that leads to the spin transition
from the LS into the HS state. THedependence dbq is so
complicated that it is impossible to obtain by a pure theoretical
method. In what follows we will seek it by a method of
combining theory with experiments.

The calculation results in paragraph 1 and 2 of section IV
show an important feature of the octahedrally coordinafed d
ions that the effective molecular magnetic moment at the spin-
transition point isuer & 5.22:4g. On the other hand, this value
in the experimentakes—T curve for the Fe(ll) ion corresponds
to T =270 K. That is to say, the spin-transition temperature of
the Fe(ll) ions isT; ~ 270 K. Again, we found that the shape
of our theoreticalues—Dq curves (see Figures 4 and 5) are
similar to the experimentakes—T curvel If the theoretical
uei—DQ curves correspond to a function relation

Hest = f(DO)
and the experimentaler—T curve corresponds to
thern= ¢(T)
and if the two kinds of curves are strictly similar, then we have
@(X) = f(ax+ b)
Thus we have

Uett = f(Dq)
et = f(aT + b)
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Figure 6. Theoreticaluc«—T curve for an octahedrally coordinated
Fe(ll) ion. AtT =90, 270, and 293 K the experimentak values are
respectively 0.76, 5.22, and g the theoreticaluer values are
respectively 0.51, 5.28, and &g Calculated withBy = 3901,Cy =
1058,&o = 410 cn1t, B = N*B,, C = N*Cy, & = N?o, andN = 0.95.

This leads to a linear relationship

Dg=aT+b

wherea andb are constants. Because the similarity of the two

kinds of curves is not strict, th€ dependence ddq should be

approximately linear. From this we introduce a second-order

term and supposBqg—T relation as

Dg=a,— a,T+ a,T? (24)

whereay, a;, anda, are constants and can be determined by

three set of data from the.s—T experiment, i.e., uer(90K) =
0.76us, te(270K) = 5.22ug, andux(293K) = 5.4ug. By fitting
these experimental points, we obtained

a,=1510.7  a,=0.6929  a,= 0.00069

Xiao-Yu and Kang-Wei

the lowest substaf€, ,(°T>—>T>) of °T, at a certain point. That

is, the spin transition is an intersection between two substates
of 5T,. This is by no means a simple spin transition between
5T2 and 1A1.

(2) The Dq value at the spin-transition point is determined
by the intensity of the electrostatic interaction between the
d-electrons and influenced by-® coupling. In our method, it
is determined by the value of the d orbital reduction fa¢dor
For Fe(ll) ions we havd®q, = —17.9N + 1703.358513-9

(3) Around the spin-transition critical point, the ground state
is the approximately degenerate state formed by the lowest four
eigenstates, i.e., the nondegenerdtg,(°T>—'A;) and the
3-fold degeneratd’, ,(°T>—5T>).

(4) At the HS< LS spin-transition point, th@es value is
approximately 5.2i2g instead of the arithmetic average of the
values in the HS and LS states as is usually expected.

(5) In either the HS or LS state the valuewqf is evidently
larger than that calculated by the Curie formulg? = us?g’S(S
+ 1) and in agreement respectively with the experimental values
5.4ug and 0.7@g of the Fe(ll) iont This is because the orbital
magnetic moments have not been completely annihilated by the
crystal field and thus can contribute ggr. This is true for any
octahedrally coordinatecPdons and need not be explained by
an influence from Fe(lll) impurity as Lemercier et al. supposed.

(6) The Dg—T relation in the spin-transition region is
approximately linear. As for the Fe(ll) ions, our theoretical
values ofuerr and theuens—T curve agree well with Lemercier
et al!s experimental findings.
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