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A General Nonlinear Expansion Form for Electronic Wave Functions
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A new expansion form is presented for electronic wave functions. The wave function is a linear combination
of product basis functions, and each product basis function in turn is formally equivalent to a linear combination
of configuration state functions that comprise an underlying linear expansion space. The expansion coefficients
that define the basis functions are nonlinear functions of a smaller number of variables. The expansion form
is appropriate for both ground and excited states and to both closed and open shell molecules. The method
is formulated in terms of spin-eigenfunctions using the graphical unitary group approach (GUGA), and
consequently it does not suffer from spin contamination.

1. Introduction eliminated and replaced with effort that scales only as the

] ) smaller number of variational parameters.
The graphical unitary group approch (GUGA) of Shavitt

has been used to compute electronic wave functions for 2. Method

multiconfiguration self-consistent-field (MCSCG¥) and con- ) . .
figuration interactiof’®(Cl) expansions. It forms the underlying mgvthigrsltnstlﬁgrr{;gre s?gnue Oa]: thfofclivt?]gt ggtg'fxogtr?gﬁggﬁ; <
basis of the COLUMBUS Program Systéfit}2 of which the ’ Y group appro ) pansic

are represented as a sequence of integer triglely( ¢,), which

main emphasis is the accurate computation of global potential form the rows of a Paldus array-15 These integers are related

Fepresentatio of the Ineat expansion space reeuis n an el ("¢ MUMDEr Of obitals, the nurber of electront, and
P . - " exp pace rest . the spin quantum numb&; of that Paldus array row according
approach, in efficient matrix element evaluation, in flexible wave

function expansion spaces, and in efficient wave function

optimization procedures. The entire procedure is based on N,=2a,+b
expansions in terms of spin-adapted configuration state functions " A
(CSFs), and consequently, the resulting wave functions do not S =Db/2

suffer from spin contamination, and the optimization process
is not plagued with artificial spin instabilities. The main

disadvantage of these approaches is that large wave functionI the GUGA h h int triol ds t
expansions result in computationally demanding optimization n the approach, €ach Integer lriple corresponds (o a

procedures with large storage requirements. In particular, node(or vertex or distinct row on aShavitt graph. Each node

MCSCF expansions are limited typically to about 15 valence thereby corresponds to & spin-eigenfunction with eigenvalue

orbitals and benchmark full-Cl expansions are limited to about .S‘(& 1) and to a specific number of electron. The

; . individual orbitals correspond to vertical levels in the graph.
25 orbitals; the largest MR-SDCI expansions that can be . . ; . -
computed are now about A@SFs, and the largest full-Cl The Shavitt graph is a directed graph with a sirtgié(source)

expansions are now about¥TSFs, the limits resulting from node located at a fictitious level O corresponding to the physical

th licati iated with the st d inulati vacuum, and a singlbead (sink) at the highest level corre-
€ complications associated wi € slorage and manipula Ionsponding to theN and S of interest. The nodes at one level are
of such large data sets. It would be of great benefit if those

. O connected witharcs (or edgesor step$ to the nodes at the
practical limitations could be extended. adjacent levels. There are four possible step numbers that
In the new approach presented herein, we attempt to keepconnect the nodes, denoted by the inteder O, ..., 3. The
all of the advantages of the GUGA approach while eliminating changes of the various quantities associated with each of these
both the large data sets and the large computational effort of steps are summarized in Table 1. Each node in the Shavitt graph
the current methods. Because the final wave function is s connected to between one and four nodes at the next higher
represented as a linear combinatiorpodduct basis functions  level, and to one to four nodes at the next lower level (except
both ground and excited electronic states may be computed,for the tail, which has no lower arcs, and the head, which has
and the Ritz variational bounds apply to all of the computed no higher arcs).
eigenvalues. The storage of the large sets of CSF expansion Each CSF expansion term corresponds to a walk from the
coefficients is eliminated and replaced instead with the storage graph tail to the graph head. This walk touches one node at
of a much smaller number of variational parameters. The each level, and it touches only the single arc at each level that
computational effort that scales as the CSF expansion length isconnects the node below it to the node above it in that walk. A
CSF can thereby be represented by denoting either the set of
T Part of the special issue “Jack Simons Festschrift’. nodes in the corresponding walk or by denoting the sequence
*E-mail: shepard@tcg.anl.gov. of steps in that walk. This latter choice is called #tepvector
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TABLE 1: Characterization of Step Numbers TABLE 2: Comparison of Ny and Ness for Singlet Full-Cl
d Aag Abg AGy ANg AS Wave Function Expansions
0 0 0 1 0 0 n=N Neow Nest
1 0 +1 0 1 +1, 2 5 3
2 1 -1 1 1 =1, 4 14 20
3 1 0 0 2 0 6 30 175
8 55 1,764
representation and is especially convenient because it is compact 10 91 19,404
and it is independent of the (arbitrary) labeling and ordering of 12 140 226,512
the nodes. 14 204 2,760,615
. . s 16 285 34,763,300
In a typical Shavitt graph an individual node may be touched 18 385 449,141,836
by many walks, so it is convenient to organize the graph based 20 506 5,924,217,936
on storage of the nodes; each node is indexed by an injeger 22 650 79,483,257,308
and the storage of the connecting arcs, and other information 24 819 1,081,724,803,600
discussed below, associated with that node is callditnct o o 207 996 950 000 00
row table(DRT). Each node (other than the root) is connected 30 1496 2,913,690,606.794.775

by at least one arc to nodes in the next lower level; consequently,

the total number of arcs in the graph satisfiNg( — 1) < Narc

< 4(Nrow — 1). Each CSF may be assigned a contiguous integer giving, very roughly for largen
index that may be computed as a summation of the integer

weightsthat are associated with the arcs. n~ Log,(N.s)

m=1-+ Sy = 1+ 3 ) Nw ~ 207 LOG,(Nee)® (6)
= Z)yd,,ip = zoyﬂ(l)) 24
p= p=

It is clear from the above approximation thbtoy << Nest

for large n. The Log(Ncsf) quantity appears in these expres-
sions because for these types of full-Cl wave function
expansions, almost all of the nodes are connected to 4 nodes

. d al i b inal ind d at the next lower level (however, as we show below, this
convenient to denote alf) pair by a single arc inde, an is not true for all wave function expansions). Our goal is to

4(p) in €q 2is the arc at leved in the walk. These arc weigth, devise, as much as possible, a computational scheme that
along ywth the total number of walks, can be computed with a depends only omNiy rather than the usually much larger
recursive procedure whose effort scales only as the number quuantity Nee

nodes in the Shavitt graph gnd not as the (usu_ally much Ia_rger) To achieve this goal, we assign a numeriaat factor to
number of walks. From the information stored in the DRT’ LIS each of the arcsin a given Shavitt graph. These arc factors will
straightforward to construct the step vector from a given CSF p 4anoted individually asw; where, analogous to thg
indexm, or to do the reverse and to determine the integer CSF | 100 of the arc weights gJiven ab,O\jG'S the index of thJe
indexm from a given step vector; in both cases, the effort scales node at the bottom of the arc anids the step number of the

onII:y ashthehnur_nber OI] orbitals d with tvoical ; . arc. All of the upper arcs associated with ngdell be denoted
or the Shavitt graphs encountered with typical wave function , “ 5. the entire set of these arc factors will be denated

expansions (e.g., MCSCF, MR-SDCI, full-Cl), it is observed 1o csF coefficienk, associated with a particular watk is
that the number of nodes is usually a small fraction of the total yafined to be the product of the arc factors in that walk. That
number of walks. For example, for full-Cl expansions, the '
number of walksNcsf is given by

We adopt the convention th§ is the node index of the
bottom of the arc in the walk of interest at leyglandd, is the
step number associated with the arc. In this way the pair of
indices ¢,j) specify an arc. In the following, it is sometimes

is, in analogy to eq 2

n—1 n—-1
_b+1n+1}n+1 = =
) e ol 0
and the number of nodes (distinct rows) in the corresponding . . .
Shavitt graph is given by Because one and only one arc factor is associated with

each orbital level in this product, there are always exattyc

1 1 factors that contribute to each of the CSF coefficients. The
Now = (@+ 1)+ 1)(b +5d+ 1) —gdd+1d+2) mapping of the set of arc factors to the vector of CSF
4) coefficients will be denoted as = /(o). A product function,

denotedML]is then defined in terms of these CSF coefficients
with d = Min(a,c). Table 2 gives some selected values for full- gs

Cl singlet wave functions witm = N up to 30 orbitals. For

larger numbers of orbitals the Stirling approximation iy (=~ Nest
nIn(n) — n + (1/2) In(2tn)) may be used to estimate the M= x, /im0 (8)
binomial coefficients ,TZ\

Niow = (N + 2)(n+ 3)(n + 4)/24 A simple example of this relation is shown in Figure 1

n for a 3-orbital, 3-electron, doublet full-Cl expansion space.
Ncsf“(§)4_ (5) There are eight CSFs in the expansion, and given a set
7TIn? of arc factors o, the expansion coefficients for this
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Figure 2. Arbitrary interior node of a Shavitt graph, labelge= 5,
shown with its connections to the nodes at the next lower and the next
higher level. An arbitrary scaling of the lower arc factors by a factor
1/3, and a simultaneous scaling of the upper arc factorg,bgave
every product @ownigh) unchanged.

for the arc factorsx. For example, if all the arc factors at a
particular level are scaled by a fact®rthen this affects only
the overall norm and does not change any expectation value.
Different levels could, in principle, be scaled by different scale
factors, and only the overall norm would be affected. Further-
more, consider a situation such as npee7 in Figure 1. This
node is connected by a single arc witk= 1 to the level below
it, and it is connected by a single arc with= 2 to the level
b= 1 0 2 1 0 . . .

above it. This pair of arc factors; s and oy, always occur
a= ) ! ) 0 together, and any scaling of this pair of arc factors of the form
Figure 1. Shavitt graph for a three-electron, three-orbital, doublet full- 03— 01 98 andop 7 0z 78 would leave the productig 10z 2)

Cl expansion. The node index is denoted by the circled values, the arc :
weight yg; is indicated by the square boxes, and the arc fagtpris unchanged and, therefore, would leave gisdlinchanged. With

written next to its corresponding arc. this kind of arbitrariness, given two different product functions
IMOand|NC] defined in terms of two sets of arc factar¥ and
product function are given by aN, respectively, is it possible to determingM= S|NCsimply

by examining the individual arc factors? Finally, is there a way

8 . to attach a simple physical or mathematical meaning to the
IMU= melmD individual arc factors?
m= We address all of these issues by introducistgadard form
= (0tg 101 0o &) [3LOTH- (05 100 0y )| 30ITH- for the arc factors. Given an arbitrary set of arc factors, it is
possible to transform them into this standard form with the only
(0t 405 30 1 130CH (a1 10 0 ¢)[1210H significant change tgMCbeing an overall scaling. This standard
form consists of scaling the individual terms in such a way to
112+ 1 . 2 . .
(0,100,432, (0 1000, 415,9[103F achieve overall normalizatioi|MC= 1, and it allows different
(0g 1063 4041 6) [031H- (0 104 405 g)|01 ] 9) sets of arc factors to be compared directly. To achieve this goal,

we consider an arbitrary interior node of a Shavitt graph and

in which the CSFs are denoted with step-vectors. In this small consider all of the arcs that connect this node to the nodes at
8-CSF expansion, there are 15 arc factors and 9 nodes. For largethe adjacent levels above and below. Npee5 in Figure 2 is
expansions of this type, as discussed above, there are typicallya representative example. It is clear that an arbitrary scaling of
many more CSFs than nodes in the graph. However, this the lower arc factors by a factorfl/and a simultaneous scaling
observation leads to the important topics of uniqueness, of the upper arc factors bg, leave every possible product
redundancy, normalization, and interpretation that we now (auw@nigh) unchanged. That is, every walk that passes through
address. that node will have its CSF coefficient unchanged by that

Given a set of arc factors, which define a product function scaling. The other walks in the expansion space that do not pass
IMCJ an expectation value may be written, for example, for the through that node would also be unchanged, the final result
Hamiltonian operator, as being that|MUitself is unchanged by such a scaling. This
allows us to choose a particular scaling factbrfor each
node to enforce, in principle, any scaling convention that we
choose.

The convention that is proposed here is based on the idea of
Even for the normal situation, in which the, are considered  normalization of lower wallkpartial product functions Each
as the variational parameters, there is a redundancy in the abova@ode of the Shavitt graph is associated with such a partial
expression because the coefficients may be scaled by an arbitrarproduct function, and the construction is defined recursively in
nonzero factop; without changing the value d@&. Even if the the following manner. Referring to Figure 2, assume that
coefficients are scaled such that the denominator is unity, therenormalized partial product functions have been computed for
is still the arbitrary choice of sign factgr= +1. When|MLis the nodeg = 1...4, and let these functions be denojteglwith
a product function, there is even more ambiguity in the choices normalizationM;|M;C= 1. We then define the partial product

M|H MO
E_

MO (10)
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dop=1,n !loop over levels

do j =Firsi(p), Lasi(p) ! loop over nodes in level p

3
2,

4=0

1

2
compute 3 =i( J where k70

set Q. Uy, 1B fora=0..3 where k;#0

set o, , <, B ford=0...3 where £;,#0

enddo j
enddo p

Figure 3. Outline of the procedure to convert an arbitrary set of arc
factorso to standard form.

function at nodg = 5 as

IMs[= 0t 4M, ® OCH ay /M, ® 10+

0t My ® 20+ 0y /M, ® 30 (11)

The notatioriM; ® dCmeans that a new orbital with step number

d is appended to each of the step vectors in the expanded

representation of the partial product functidh, L] We impose
normalization onMs[to give

1= MyM.0
= ag,l[Ml ® 0|M, ® O+ GiZEMZ ® 1M, ® 1[H
o2 M, ® 2|M, ® 20 o2 M, ® 3M, ® 30

= aé,l + aiz + (1;3 + a§‘4 (12)
Given an initial set of arc factors, the scale facfomay be
chosen to satisfy this normalization condition. The partial
product function of the graph tail at level= 0, corresponding

to the physical vacuum, is normalized by convention. The
conversion of an arbitrary set of arc facterso standard form

is outlined in Figure 3. In Figure 3kg; are the downward
chaining indices, andy; are the upward chaining indicethat
give the connecting node indices at the lower and higher levels,
respectively. The sign of thg factor is chosen such that the
lower arc factor with largest magnitude, after scaling, is positive.
The quantitylM|MOis not changed during the above process
for p < n; it is only at the last step, for the head nodepat

n, that the normalization is changed to satisfy the desiéi]

= MheadMhead = 1 normalization condition. In the special case
that = 0 for some node, the lower arc factors may be set to

an arbitrary set of values and the scaling of the upper arc factors

by 8 = 0 will ensure that the product functioOremains
unchanged; by convention, in the standard form the arc factor
of the lowest step number is settdl and any remaining arc
factors are set to zero.

Shepard

for example, physical interpretation of the relative importance
of different arc factors within the graph, and of particular
combinations of arc factors within the graph in the same general
way that, for example, an electron density is a measure of the
importance of a particular orbital.

The above arc factor normalization shows that if a npde
hasz; lower arcs (with 1< »; < 4), then there are onlyy( —
1) independent degrees of freedom among those arc factors.
This is equivalent to the constrained movement on the surface
of a unit #-sphere with § — 1) essential variables. When
considering the dependence on the arc factors of expectation
values and other properties, it is often beneficial to cast the
formulation in terms of a minimal number of essential variables.
There are many ways to parametrize the constrained movement
on the surface of a-sphere. Our choice is based on our
experience with the parametrization of normalized orbital and
CSF coefficient$:®16The essential variablesy for g =1, ...,
(n—1) are associated with nogleThe corresponding arc factors
for that particular node are defined according to

r=lgjl
0,1y = OS)

Q1)) = SINM)@q;/r forg=1,...¢;—1) (13)
whereu(:,j) are then; lower arcs associated with nogleln
other words, this parametrization is equivalent to starting with
an arbitrary unit vectoé, = ¢j/r that is orthogonal t&;, and
the magnitude of; defines an arbitrary rotation of a unit vector
away fromé, within the @,&,) plane. The result is constrained
movement on the surface of the upisphere with coordinates
given bya,. This relationship betweew andg; is local to node

j of the graph. The relation can also be inverted; givean
standard form, a correspondiggcan be determined, although
due to the cyclic nature of the trigonometric functions, the
inverse mapping fromy to ¢j is not unique. Fom; = 1 the
normalization condition requires,j = +1, and, by conven-
tion, we take the positive value.

If each of the nodeg, other than the root, hag; lower
connecting arcs that are parametrized by + 1) essential
variables, then it follows that the total number of essential
variables required to characterize an entire set of arc faotors
is given by the expression

NI'UW Nl'OW
N(/;: Z (77;_1):( z 77j)_(Nrow_]-)
j(#root) j(#root)
= Narc - (Nrow - 1) (14)

If there are more variables thaN, given above, then the
representation af in standard form in terms of those variables

After a set of arc factors have been transformed into standardis either not unique or some of those variables are unnecessary,
form, an individual arc factony; is seen to have a simple and if there are fewer variables than this number, then there
physical and mathematical interpretation. Namely, it is the area sets that cannot be represented. In other words, this number
expansion coefficient used to construct the partial wave function of variables is both necessary and sufficient to represent an
at the node/y; according to eq 11. As such, it is a measure of arbitrary o in standard form, and, in turn, that in standard
the relative importance of the partial wave functidf)Cwithin form is sufficiently flexible to represent (to within a sign) an
the partial wave functiofiVq;C) and thereby, indirectly through  arbitrary normalized product function.
the higher arc factors, to all of the higher partial wave functions ~ We note in passing that other arc factor normalization
including ultimately|ML If a particular arc factor is large in  conventions are also possible. For example, if a reference walk
magnitude, then it means that that particular orbital occupation (with a nonzero coefficient) is chosen, then a scale factor for
and spin coupling combination are important in forming that each level may be chosen such that the arcs that are touched by
partial wave function, and if that arc factor is small, then it the reference walk all have arc factors-bi. The end result
means that particular combination is not important. This allows, would be that the CSF coefficient for that reference walk would
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have the value, = +1, with the other CSF coefficients being for such an approach would scale linearly withss and with
scaled accordingly. This is equivalent to the traditional inter- the total number of distinct elements of the matgixbecause
mediate normalization convention. Another reasonable conven-Sis symmetric, this effort would be proportionalhsfNe(Ne+1).

tion would be to choose scaling factors for each node such thatDepending on the details of the implementation, the storage
the lower arc factor with largest magnitude always has a value requirements with this approach might include also thg{.)

of 41 after scaling. This is a slightly different way to achieve elements ofX = [x}[x?]..xN¢]. Our actual approach requires
an intermediate normalization in which the CSF coefficient of both less computational effort and less storage for large
largest magnitude after scaling would have a valué-df Yet expansions.

another reasonable convention would be to start at the head of We approach the solution to this task recursively. Suppose
the Shavitt graph and proceed down level by level, and scalethat we have available the overlaps of the partial product
the upper arc factors for each node to maintain normalization functions for two expansion terms, labeldd;Cand|N;Cfor all

of the upper walk partial product functions rather than the lower nodesj at some level, and consider computing the overlaps of
walk partial product functions. It is possible that these conven- the partial product functions at the next higher level. Referring
tions, or other similar conventions, would have particular to Figure 2, suppose that we have the quantitj¥¥ = M;|N,0
advantages in special situations. In such a situation, it is very for j = 1...4. Using

easy to take an arbitrary set of arc factors and to transform them

to satisfy the desired normalization convention without changing IMsC= o4/ M; © OCH- oM, ® 10+
the resulting product functiofMOother than by an overall M M
scaling. 55 M3 ® 20H o5 /M, ® 30
Referring back to the DRT in Figure 1, we note that the N N
number of essential variableshg, = 15— (9 — 1) = 7. For INSC= a4 /Ny ® OLH- 0 5N, ® 10H
an 8-CSF expansion space, there are indeed 7 degrees of ag"3|N3®2D+ a’g',4|N4®3D 17)

freedom for a normalized wave function, which means that, for
this small example, a single product functidviChas the same

S : . it follows th
flexibility as the linear expansion space. It may be proven by t follows that

induction that for an arbitrary Shavitt grapl) < Ncsf; that is, MN — g IN.OJ
there are always fewer essential variables than there are total s 5175
walks in a Shavitt graph. In some small expansions, such as M N
the graph in Figure 1N, takes its maximum value dfl, = = 0o 0o yM; ® OIN, @ OLH-
(Nest - 1),_ a_nd in these cases an arbitrary norma_alized wave (12"2 a?z[Mz‘g’ 1IN, ® 10+
function within the space may be represented by a single product e
function. 0oy 1065 M3 ® 2|N, ® 20+
In general, however, and for most expansions of interest, a MoN
single product function is not sufficiently flexible to reproduce 03 4 03 4M, ® 3N, ® 30
an arbitrary vector within the underlying linear expansion space. MooN N MooN N
Consequently, we write a more general linear combination wave =05 001Y1 TOA,05,Y, T
function expansion as M N MN M N MN
O3V T 03403471 (18)
No,
[yO= ;CWMD (15) This procedure may be applied to each of the nodes at the
higher level. The overlap computation procedure begins

) ) ) ] ] at the tail of the graph with the assignment of the vacuum
in which theN, product functiongM[form an expansion basis. overlapyf"-’l“ = Madvadl= 1 and proceeds upward level by
al

The optimization of the linear expansion coefficients to mini- |ayel until the graph head is reached, at which time we have
mize the energy expectation value takes the form of a general- ' '

ized symmetric eigenvalue equation Sy = xMoN = MNCO= yMN (19)

head
Hc = ScE 16
(16) which is the quantity of interest. Note that, by definition and

with Huy = IM|H|NOand Syy = M|NC In the present work by constructiony;™ = " for all nodeg in the Shavitt graph.
we will discuss in detail only the computation of the metric For each node in the Shavitt graph, there are two floating point
matrix S. The detailed discussion of the computation of the multiplications and one addition for each connecting lower arc,
Hamiltonian matrixH will be deferred to a future publication.  so the effort for this procedure scales only with the number of
Through the Ritz variational principle, the lowest eigenvalues nodes, not as the number of walks. The storage requirements
computed from the product function basis in eq 16 are upper consist of theyMN array, of lengthNio, and the resultinds
bounds to the corresponding eigenvalues of the underlying lineararray. (This assumes the entjrarray is kept; only storage of
CSF expansion space, which in turn are upper bounds to thethe rows for two levels at a time is strictly necessary for the
exact full-Cl eigenvalues. Consequently, the general approachprocedure.) Some minor efficiency can be gained by computing
outlined here is applicable to both ground and excited electronic the yMN arrays for a range df1 andN values simultaneously.
states. In this case, the storage scales as the produttfQf and the

If xM = AaM) and xN = /(aN) are the vectors of CSF  number ofSyy values that are being computed, which might
coefficients of the product functions defined &Y anda™, then be anywhere between 1 amg(N, + 1)/2. This procedure is
Sun = xM-xN s the scalar product between the two product basis outlined in Figure 4.
functions. One way to compute this quantity would be to =~ We now characterize product basis functions and wave
compute the vectorsM andxN explicitly, and to compute the  functions on the basis of the arc factors and partial
scalar products directly from these expanded vectors. The effortproduct overlaps. Using the lower walk partial product
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sety""'=0 for all M,N pairs and atransition arc densitynay be defined as

set Y™ =1 for all M,N pairs MN_ M _N —
D,u - O‘y 074 [MBottom(u) ® d,u ® MTop(u)|NBottom(u) ® du ®

dop=1,n !loop over levels

N g
doj = First(p), Last(p) ! loop over nodes in level p Topk)
MN : —_ M _N_MN —MN
Compute ;" for all M, N pairs =, 0, YBottome) Y Top) (26)
enddo j
enddo p An overlap of two product functions may be written in terms

- _ of transition arc densities as
set Syv="Yhead  for all M|N pairs

M N MN “MN MN
Figure 4. Outline of the efficient computation dy = M|NC MINL= z &, Oy VBottomgs) Y Top) — Z D,
u

(in Level p) (in Lgvel p)
functions [M;0 and the analogous upper walk partial (27)
product functions|M;[] defined with the arcs and corre- MM o . ) .
sponding arc factors from the nogleup to the head of the ~ For M =N, D™, which is a nonnegative quantity, gives a
graph, the product function contribution from a particular node measure of the overall importance of that particular arc to the
jis IM; ® M A product function may be written as a Product functionML] _ o
summation of these contributions from all of the nodes at a  USing eq 15, the wave function overlap may be written in

particular levelp. terms of node densities at some lepehs
IMO= z IM, ® M0 (20) |y= %CMCN[WHND
] ,
(in level p)
. . . ) = z CmCn VjMN 3_’jMN
A transition node densitfor nodej may be defined as T ;
_ _ (in Levelp)
D™ = 4, ® MN, ® N
MN
= Z CyCy D]
— ., MN _MN 1) ; :
yj yj (in Levelp)
For M = N, the node densitijM, which is a nonnegative _ DY (28)
quantity, gives a measure of the overall importance of that Z ]
particular node to the product functigMLC] The procedure (in Le'\,em)

described above for the computation of {i& array begins at

the graph tail and proceeds upward, one level at a time, to theand it may be written in terms of arc densities and individual
graph head. In an entirely analogous manner, the aff8lywith arc factors as

elementg}™ = 0Vj|N,Cmay be computed recursively from the

head of the Shavitt graph down to a particular node. Referring W|yl= %CMCN[BMND

to Figure 2 and eq 18, we define for example

_ M _N_MN —MN
}72AN = (13"5 0.55 73“ + 0.2"5 (1'1\‘5 ‘J_/gAN + = Z %CMCN Q, O, YBottome) Y Topw)
5Y%0, 5%, ¢ :
M N SMN M N —MN (in Levelp)
Q505577 T 03505576 (22)
MN . . = Cy G DMN
The valuey,.,q= 1 is assigned for the head of the graph, and Z % M™N =
then the |0W€Ij_/JMN elements are computed, level by level, until (in Lé‘vem) '
the graph tail is reached. At this point,
= DY (29)
—MN
SN = Ytai (23) ; “
(in Levelp)

in analogy with eq 19. The overlap of two product func-
tions may be written in terms of these transition node densities In the above expressiofi is thewave function node density
as for nodej andDY is thewave function arc densitjor arc u.
These quantities allow product basis functions and wave
MIND= yin N = > D™ (24)  functions to be compared and characterized in terms of nodes
] ] and arcs of the Shavitt graph.
Another property of interest for electronic wave functions is

Equations 19 and 23 are special cases of this more generafhe o_rbital oc_cupatio_n (i.e., a diagonal element of the (_)ne-particle
expression. density matrix), which may be computed for normalized wave

In an analogous manner, a particular arc factor contributes functions as

to a product function according to N .
D, = |E, [y = %CMCNMEWWD (30)

(in Levelp) (in Levelp)

IMC= Z oy [Mgotiomgy ® &, ® Mrgpeyd  (25)

(in Lgvelp) where Ep, is a weight generator of the unitary grobip?12
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Substitution using eq 25 in terms of the arcs at lgvelives Given a product functiofiML] it might be useful to character-
ize it qualitatively by examining a few of the CSF coefficients
— M N MN SMN of largest magnitude. One way to do this would be to compute
Dpp Z AN%%C""CN G G VBottome) VTopt) the CSF vectox and to sort the elements. Using an efficient
(in Levelp) sort procedure, the effort for this would scale betwbknand
Nest Log(Ncsf) depending on how many coefficients are computed
= z AN, %CMCN DL"N and sorted. A more efficient procedure results from the
T “r observation that the coefficients of largest magnitude within a
(inLevelp) partial product functionM;Umay be determined by examining
just the coefficients of largest magnitude of the partial product
= z AN, D;f (31) functions of the lower connecting nodes. This suggests a
T . recursive procedure to extract the largest coefficients from
(in Levelp) IMhead For example, if the large€Q coefficients are required,

) ) . ) then the overall effort for this recursive procedure scales as the
The ANq value is the occupation of the arc as given in Table 1. r6quctQN.y, eliminating all factors related thes. For Q <
In this manner, the computation of the orbital occupations may \ . this is much more efficient than th&-construction

be performed with an effort that depends onlyNyandNyow. approach.
The expression for the off-diagonal density matrix eleménts

is more complicated and will be examined in more detail in a
later publication. However, the computation of these elements
follows the same general approach as above. Namely, the
explicit construction and storage of the CSF vectelsis

It is possible to represent electronic wave functions in terms
of primitive Slater determinants instead of spin-eigenfunctions,
and the spir-orbital occupations of those Slater determinants
can be represented efficiently using graphical approdéhes
. L , similar to GUGA. Product wave functions may be formulated
avoided, and as much effort as possible is cast into the form of i, torms of arc factors in these graphical representations in a

recursgle procedu.:jes Fhadt SCTEN‘&V Ir]ather ltharNCSf' __manner entirely analogous to the method described above.
We do not consider in detail here the analogous computation jess additional constraints of some kind are imposed on the

of the matrixH. We note here only that the efficieht matrix rc factors, such product functions in general would no&be
construction follows the same general guidelines as those use pin-eigenfunctions. However, such product functions would
to Co.n.structS, the orbital occupations, qnd the node and arc 5 e more flexibility (i.e., more arc factors within each product
densities. Namgly, th? explicit construction and storagg of the function) than those presented in the present work, and it is not
CSF vectors" is avoided, and as much effort as possible is  ¢je4r \whether that additional flexibility would compensate in a

cast into the form of recursive procedures that scal®\as practical way for the disadvantages associated with the spin
rather thamNcsr. contamination.

We have not discussed the use of point group symmetry in
the above formulation. We have considered two possible
approaches. One is to ignore point group symmetry entirely. In
this case a product wave function would, in general, contain We first discuss a few general features of the product
mixtures of wave functions corresponding to different irreducible functions described in the previous section. We note that if all
representations (irreps), and the expectation values will consistof the arc factorsyy are set to zero except those touched by a
of averages over these irreps. That is, in general, a productparticular walkm, then we have the identigyvd0= |MCwhere
function would have symmetry contamination. Presumably, the |MOis a primitive expansion CSF. The form of the product
linear combination of several product functions would then allow function is therefore capable of representing any individual CSF
the desired wave function and the desired expectation value toin the expansion space, regardless of its excitation level relative
emerge. The other possibility, which is the one we have chosento some reference CSF.
for the results presented in this paper, is based on symmetry- |n the limit that N, = Negr, with [MO= |MmCfor all m, we
dependent arc weight8.This approach, which is used by the  would have an orthonormal product function basis with full rank.
GUGA codes in COLUMBUS? 1 allows the walks belonging  In other words, the use of the product basis rather than the
to each separate irrep at each node to be identified and indexegrimitive CSF basis represents no inherent formal limitation or

3. Results and Dicussion

separately. In particular, we define at each npdad for all approximation relative to the underlying linear expansion space.
irrepsT a set of partial product functions denoﬂd&tlgr Oand we Of course, the truncated product function bases that will be used
compute, for example, the corresponding overtas". Con- in practice for large wave function expansions will not have

sequently, the CSF expansions with this approach all correspondull rank. The remaining question is how many expansion terms
to the single irrep (or, in the case of state averaging, to the Ny will be required to represent with sufficient accuracy the
specific set of irreps) of interest, and the expectation values will Hamiltonian eigenvectors of chemical interest. This is discussed
have no unwanted symmetry contamination. Given this choice below.

of symmetry treatment, there are two possibilities for the arc ~ Consider next the standard form for a product function based
weights. Either a single arc factor could be associated with eachon the PPMC expansion spat¥.A Shavitt graph for a six-

arc and used for walks corresponding to all irreps, or separateorbital PPMC expansion space is shown in Figure 5. In a PPMC
arc factors could be associated with each symmetry version of expansion, the orbitals are grouped into pairs, and occu-
each arc. The latter choice would result in more flexibility in pation restrictions are imposed such that exactly two elec-
the product function but at the cost of more arc factors. In the trons occupy each of the orbital pairs. Furthermore, no
present work, we have chosen the former simpler approach. Ouropen-shell CSFs are included, so each orbital is either empty
actual implementation is only slightly more complicated than or doubly occupied in each of the expansion CSFs. As dis-
the simple treatment presented above, which ignores point groupcussed elsewhefesuch a wave function expansion form
symmetry. The other possible options for treating point group allows both single and multiple chemical bonds to be broken
symmetry will be examined in more detail in the future. without spurious charge contamination. With these restric-
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functions by setting the additional arc factors to zero. For a
molecule that dissociates into a set of noninteracting, two-
electron, two-orbital, singlet fragments, the nonlinear pp-GVB
wave function reproduces the corresponding exact full-Cl wave
function. Consequently, a single product function that is based
on a Shavitt graph that contains the PPMC Shavitt graph as a
subgraph also has this capability.

If the fragments of such a dissociation are not simple two-
electron subunits (or other special cases such as discussed above
for Figure 1), then in general a single product function will not
be equivalent to the full-Cl wave function. Assume that all of
the orbitals associated with these individual singlet fragments
are grouped together in the Shavitt graph, and that there are no
additional spin or occupation restrictions that would prevent the
molecule from dissociating properly into these fragments. In
this case the product function for the entire molecule can be
written as products of the fragment functions, the energy
expectation value will be the sum of the energies of the
fragments, and an important size-consistency property will be
satisfied. This property also holds for some mixtures of singlet
and nonsinglet fragments. Further work is necessary to fully
understand this feature of the product functions described in

a= 3 2 1 0 this work.
Figure 5. Shavitt graph and arc factors in standard form shown fora  We next turn to the question of accuracy of the linear
six-orbital PPMC expansion space. The product function for this graph combination wave functions with respect to product basis
is equivalent to a nonlinear pp-GVB wave function. dimensionN,. At present, we do not have the capability to
optimize the linear coefficientsy in eq 15 and the nonlinear
tions, there are two arcs at each orbital level, and the two nodesarc factorsxM directly to minimize the energy expectation value.
in each of the odd levels have only a single lower connecting We do, however, have the capability to compute a Hamiltonian
arc each, whereas the single node at each of the even orbitakigenvecton®actindependently and, given that vector, to vary
levels has two lower connecting arcs. For the odd-level nodesthe coefficientey and arc parametetg” to minimize the error
the lower arc factors areq = 1; that is, they contribute no 02 = |[v — v®@|2 This is a somewhat simpler task than direct
essential variables. For each even-level node, the two lower arcenergy-based optimization, yet it still can answer the immediate
factors are determined by a single essential variable. The unitquestions about accuracy and convergence with resp&¢t. to
two-sphere parametrization discussed in the previous sectionThe details of this optimization process are given in the
reduces to the simple form Appendix. Much of the technology presented in the Appendix
will also apply to the computation and optimization of the energy
expectation value. Our optimization approach is based on the
efficient computation of the metri8 using the recursive method
discussed in section 2, and on the efficient computation of the
These arc factors are shown explicitly in Figure 5. The linear quantitiesz = XTvexa¢! along with the analytic derivatives of
expansion space for the PPMC wave function in general hasthese quantities with respect to the essential variapleg/e
dimensionNcss = 272, It is easy to verify that the product have computed the? error for a representative set of Hamil-

0y = COSp)

. for lower arcs in even levels (32)
oz = sin(e)

function may be written in the step-vector form tonian eigenvectors. The molecules and their wave function
expansions are summarized in Table 3. We have used a variety

|{ cosfp,)30+ sin(gp,)03} ® {cos(p,)30+ of optimization approaches including both those that require
sin(@,)03} ® - ® {cos,,,)30 + sin(@,,)03} = gradients and those that do not. Our results presented below

are computed with the CG_DESCENT() procedure of Hager
and Zhang® which is a conjugate gradient optimization
procedure with line searches that does require gradients.
The first wave function is a 6-orbital, 6-electron, CASSCF
expansion for the Bimolecule usind2, point group symmetry.
) 2 . *2 2 There are 175 CSFs total in the expansion space, 32 of which
A[{cospy)y,” + sinlp)x, “Hcos@)y,” + belong to the Ay irrep of the ground state. We examine two
sin(qu)xz*z} {cos@n,z)xn,z2 + sin(qon,z)xn,z*z}] (34) bond distances for this molecule, oneRa{=2.074,) and one
at a stretched bond distance Rf= 4.0ap. At Re the largest
in which the orbitals in paik are denotegy and y*. This is CSF coefficient is 0.9856, whereas at the stretched distance the
the normalized form of a nonlinear pp-GVB wave functin.  largest CSF coefficient is 0.6334 meaning that the corresponding
For this particular type of Shavitt graph, corresponding to PPMC CSF constitutes only about 40% of the wave function. The
expansions, the product function based on that same Shavittproduct basis functions were optimized in two different ways.
graph is exactly equivalent to the corresponding nonlinear pp- In the sequential approach, each product function is added to
GVB wave function. The product functions for more general the basis, optimized to minimize?, and then those variables
Shavitt graphs (e.g., those that have the above nodes and arcare frozen as the next product function is added. Each optimiza-
as a subset) have the capability to represent pp-GVB wavetion consists of optimizing only the™ for M = N, variables

IG,®G,® + ® G,,1(33)

or in first-quantization form using the antisymmetrized product
of geminals
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TABLE 3: Wave Function Summary

wave function Nrow Narc N, Nes NE,
6° N, in Do, 30 68 39 175 3220+ 20+ 20+ 23+ 20+ 20+ 20
222222229222 C,H, in Cs 52 90 39 3012 3012
102H,CO inCy, 85 230 146 13860 3644 3384+ 3496+ 3336
12803in Cyp, 90 236 147 15730 4067 3858+ 3962+ 3843
SD from3%4* H,0 in Cs 105 226 122 40539 204656 20074

and thec vector. This is analogous to the way that subspace are included in the expansion spdcélthough the PPMC
bases are expanded in Ritz subspace eigenvalue methods suaxpansion is sufficiently flexible to eliminate any spurious ionic
as the Davidson and Lanczos methods. The second optimizatiorcontamination during any dissociation process (e.g., to the
approach consists of optimizing all of thk" variables forM fragments H, @H3;, CH,, CCH,, etc.), it cannot, in general,
=1, ...,,Ny along withc at each step. For a givex,, this is dissociate to fragments that are the correct spin-eigenfunctions.
computationally more demanding than the sequential optimiza- The more flexible RCI-GVB expansion on the other hand does
tion approach, but as seen in Figure 6 it converges much fasterdissociate to spin-eigenfunction fragments and includes also the
For theR, calculation, the full optimization approach converges most important interpair correlati&hcontributions. The product

to 0% < 107 with N, = 3 for the full optimization, whereal§, function optimization is again performed in both ways, with
= 10 product functions are required to achieve that accuracy sequential optimization and with full optimization. As seen in
with sequential optimization. In comparing tie with the R Figure 6, the error with full optimization is significantly less
= 4 calculation with full optimization, it is seen that th& than the error with sequential optimization. In the full optimiza-
error is less than thR = 4 error forN, = 1 andN, = 2; both tion caseN, = 4 product functions are required to achiexe

the Re and R = 4 errors ares? < 10710 for N, = 3. This < 1073, andN, = 10 are required to achiew® < 1074 The

calculation is too small to reliably measure the time required error decreases reasonably well for upNip= 5, and then it

to compute the gradienfim = d02(¢>)/dcp?", with either a finite slows; it is not clear why this occurs, or if it is simply an

difference approach or the analytic approach described in theoptimization artifact of some kind. The sequential optimization

Appendix. requiresN,, = 10 to achieves? < 1073. This calculation is too
The next row of Table 3 corresponds to a six-pair (12-orbital, small to reliably measure the time required to compute an

12-electron) RCI-GVB wave function expansion for the ground analytic gradient, but a finite difference gradient requires about

state of the ethylene moleculeyH. This expansion has the 0.11 s on a 2.8 GHz P4 computer.

same orbital pair occupation restrictions as the PPMC expansion, The third molecule in Table 3 is a 10-orbital, 12-electron,

but all possible open-shell CSFs and all possible spin couplings CASSCF inC,, symmetry for the formaldehyde molecule. With

Eigenvector Error

10° T T T T T T T I I I

—e— N2(Re)
—am— N2(R=4.0)
—o— N2(Re,Seq)
—eo—C2H4
—— 8%H4(Seq)

+
—A—03E8eq)
—»—H2CO

1072

—»—H20

A
LN
108 \
lv-v'ef|?

10" ~¢ : 3
1 0-5 = \ =
1 0-6 - \ =
107 i | I I I I I I I I |
1 2 3 4 5 6 7 8 9 10 1 12

Figure 6. Eigenvector error as a function of product basis dimenslgfior some representative wave function expansions.
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full optimization, N, = 5 product functions are required to 4. Conclusions

achieveaz < 1075, andNq = 14 are required to achieve < A new expansion form has been described for electronic wave
107 The error decregses reasorlably well for ugNip= 7 functions that is based on the GUGA method of Shavitt. The
and then it SI.OWS‘ Th_|s calculation is too Sm?“ to r(_ehably wave function is a linear combination of product basis functions,
measure the time required to compute an analytic gradient, buty g each product basis function in turn is formally equivalent
a finite difference gradient foN, = 1 requires about 0.48 S. {5 5 |inear combination of configuration state functions that
The fourth molecule in Table 3 is a 12-orbital, 18-electron, comprise an underlying linear expansion space. The CSF
CASSCF inCy, symmetry for the ozone molecule. With full  expansion coefficients that define the basis functions are
optimization,N, = 7 product functions are required to achieve nonlinear functions of a set of arc factar¥, and the arc factors
0? < 1073, and convergence to? < 10~* is not achieved by  themselves may be represented in terms of a smaller number
N, = 16. The error decreases reasonably well for up to about of essential variablegM. A standard form has been defined
Ny = 9, and then it slows. The sequential optimization does for the arc factors that allows for an intuitive physical interpreta-
not achieve convergence to eveh< 102 by N, = 16. This tion, and it allows different wave functions to be compared by
calculation is too small to reliably measure the time required examining the individual arc factors. Node densities and arc
to compute an analytic gradient, but a finite difference gradient densities have been defined that allow the individual product
requires about 0.57 s. functions and the resulting wave functions to be compared,
The fifth molecule in Table 3 is a single- and double- @nalyzed, and characterized in terms of the nodes and arcs of
excitation CI from the 4-orbital, 4-electron, CASSCF @, the Shavitt graph. Preliminary calculations suggest Mat<

symmetry for the water molecule using a standard cc-pvDz ~20 basis functions are sufficient to approximate typical
orbital basis set. With full optimizationN, = 7 product Hamiltonian eigenvectors. The method described here is ap-

functions are required to achiewd < 10-2, and convergence  Propriate for both ground and excited states and to both closed
to 02 < 1073 is not achieved even bNu, = 16. The error and open shell molecules. In some cases, the method described

decrease stalls several times along the way. Convergence ofrere will be size-consistent with respect to the dissociation of

the conjugate gradient procedure was particularly problematic mo_lgcglgs |rr]1.to fraglj(mentsh. Thebre gr? many comp;utatlonsb.del—
for this calculation. The analytic gradient for this calculation scribed in this work (such as basis function overlaps, orbita

takes about 0.0001 s, whereas a finite difference gradient foroccupations, node densities, arc densities, and the determination
N, =1 requirés abou:[ 1.48 s on a 2.8 GHz P4 computer. We of the largest CSF coefficient, or of the largest few coefficients)
o T . . .

see that there is about a“if@tio difference in efficiency when that may be cast directly anq eff|C|entIy.|r_1 terms of Fhe arc

. . . - - . factors and that do not require the explicit computation and
computing analytic gradients using the procedure outlined in !

. . . S . storage of the CSF expansion vector.

the Appendix. The conjugate gradient optimization for this
problem requires between 16 10* and 2.0x 10° function
and gradient evaluations, depending\yn thus this calculation
would not have been practical without the analytic gradient
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based optimization of andg. In the current calculations it is

necessary to have several vectors of length for debugging Appendix

and development purposes. Eventually all reference to any . . . .
vectors of lengtiNcs will be removed from the procedure, and n th'.s ‘.\F’p.e”d'x' we show_ the details of the computation
much larger expansions can be examined. It is also encouragingand optimization of the quantity
that for the sample calculations so far, it appears that typically
No. < ~20 will be sufficient to represent wave functions to
chemical accuracy using a full-optimization approach. The
sequential-optimization approach converges slower than the full-
optimization approach. This suggests that Davidson-like or Ne
Lanczos-like approaches to build the product function subspaces v= S xMe. = Xc (36)

may not be optimal. The water molecule calculation exhibits h;l M

several kinds of convergence problems, both with respest to

as a function oN, and during the low-level conjugate gradient N, is the number of product function expansion terné=
optimization steps. At this point we are hopeful that these x(aM) = /aM) is the linear representation of a product basis
convergence problems can be solved. It is also observed that iffunction defined by théith set of arc factors, andcy are

the numerical optimization procedure is started with different the subspace expansion coefficients. We assume that the
initial guesses forp, the N, = 1 solution will sometimes expansion vectorX (o) are linearly independent. The quantity
converge to different product functions; in all of these cases, ¢%(a,c) therefore depends on the linear expansion coefficients
the Ny = 2 full-optimization solutions are the same regardless ¢, and on the nonlinear arc factais= {aM; u=1,..,Nao M

of the initial guess. This suggests that, at least for some = 1, ..., N;}. We use the indexx as a shorthand for the
situations, there are local minima encountered during the combination of the step and node inde j) of an individual
convergence trajectory that thwarts convergence to the desiredarc in the Shavitt graph. The goal is to minimize the quantity
global minimum error solution. It remains to be seen if this ¢%(a,c) with respect to the linear and nonlinear parameters. The
applies also to the direct energy-based optimizatiop.of reference vectow™' is assumed to be fixed throughout this

o (a,c) = |v — V2 (35)

with
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optimization procedure, and in most cases it will be normalized, Set zixg =0
|vief| = 1, but the equations in this section will accommodate

the general case. dom=1, Ny
The first task we examine is the optimization of the linear Generate the walk corresponding to m using
coefficientscy for a given set of vectorX. To this end, we the recursive tree-search algorithm.
write Compute X, 1., using the partial products
0'2((1 C) — (V _ VrEf)T(V _ Vref) in the stack
Update zy.y, < Ve, KXon1:Ne
— VTV _ 2VTVref + Vref TVref
enddo m
— TXTXC _ 2CTXTVref+ |Vref|2 . : .
. Figure 7. Outline of the computation of af = X(a)Tv'e".
=c'Sc—2c'z + |vV*? (37)
with of the vectorxM is available. With this approach, the effort per
walk to compute a CSF coefficient decreases from a constant
S= S(0) = X (o) "X (o) (38) down to an average value of about L6y for large expansions.
This is because once one walk has been generated, much of the
z=7(a) = X(o) V' i i i
= effort involved in computing the arc factor products for the next

walk reuses the existing stack information. On the other hand,
there is little additional overhead for using the tree-search
algorithm to generate the walks even in the worst case situations
in which most of the stack elements must be regenerated for
opty \ -1 each walk.
¢ = S(o) () (39) Once the linear expansion coefficienfs are available for
Because this relation holds for any set of linearly independent walk m, they are then multiplied by the corresponding element

Differentiation ofo?(a,c) with respect to a coefficiert, setting
the result to zero, and solving for the vectogive the unique
optimal linear expansion coefficients.

expansion vectorX(a), it defines the dependence o' on of v and accumulated into tha, element of the vector.
the nonlinear parametess For these optimal linear coefficients, ~Some minor efficiency can be gained by computing the products
the following relations hold: corresponding to severM values simultaneously. The overall
computational effort scales roughly as the prodigtiNy
Viv= VP =TSP =2S iz =2 (40) Loga(n) (for large wave function expansions) because of the
use of the recursive algorithm to generate the walks. The total
vV =Z's XV = 7's iz =y (41) memory required for this step consists of storage of the vector
v'ef and storage of the stacks involved with the walk generation
(0 (@) = V12— 2(0)"S(@) z(0)  (42) and the arc factor products. For large expansions, or in a parallel

) ) ) environmenty™f can be split into segments of arbitrary size,
We note in passing that # is the angle between the vectars  gnq the procedure can be applied separately to each seg-

andv'®, then cosg) = |v|/|v*®| and sif(6) = o*(o;c°P)/|v"*|2 ment independently and resutcan be globally summed at
This gives a geometrical picture of the optimization in terms the end. Storage of the fully expanded, linearized expansion
of minimization of the angle®). _ vectorsX is not necessary. Because the elements'®fare

We next address the minimization @¥(a) = 0*(a;c") with assumed to be independent quantities, it is difficult to imagine

respect to the nonlinear parametetsThere is no closed-form  pow the effort proportional tdNess could be eliminated from
solution to this problem, as there is for the linear coefficients {njs step.

c°P, so the arc factors must be optimized numerically. We seek  The computation ofS has already been discussed in

valuesa®® that satisfy the local condition section 2; this step does not require any effort proportional to
5 Ncst. With the arraysS and z available, The quantity?(a)

do*(a) =0 for all x andM (43) can .be computgd in the straightforward manner: (1) solve
doM wont the linear equatior8c°Pt = z, and then (2) compute?(at) =

u |Vref|2 — ZTCOpt.

We use a numerical approach to this optimization problem that ~Computation of de*(a)/da”. We now focus on the compu-
requires function evaluations and gradient evaluations at tation of the gradients that are used for the optimization process.
arbitrary values of the parametess For this purpose, it is From eq 42, two separate contributions to the gradient are
necessary to compute efficiently the function valufég), along required.
with the quantities dz(a)/da/':" for all of the arcs« and product
basis functiondvl. We outline below our approach to evaluate doz(a;c"p‘)
these quantities efficiently. Yor) = T

Computation of ¢%(a). We first examine the computation &,
of the quantityo?(a.). According to eq 42, the vectarand the
matrix S are required. The vectaris computed as outlined in

— oot sz((";) _ ZTdS(OL)_lz

Figure 7. Each individual walk is generated on the Shavitt graph da, do)
using a recursive tree-search algorithm (which we implement , s
using a stack). As the walk is generated, the partial products of =dwp) T 9op) (44)

the aL" arc factors are computed and stored in a stack indexed
by the orbital level. As the tree-search algorithm reaches the For brevity, we use the shorthand notatidrto denote A/daf
graph head for each complete walk, the corresponding elementfor some arbitrary quantitp. Differentiating the relatioi S
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= 1 to arrive at the identity$ 1)’ = —S1S'S™1, allows the
required gradient contributions to be written

g = — 2c°" Tz(a)

gS — COpt Ts(a)'copt (45)

We assume that we have availald®! at the time that the

gradients are to be evaluated, and we attempt to contract

together thecoPt coefficients directly into the gradient vector
during the computation procedure. This reduces storage require
ments compared to, for example, computing the m&rixself
for all combinations ofv and P, and then subsequently
contracting those arrays with the vectd?! in the computation
of g5

We examine first the computation of tigeé terms.

v4 J—
gz/P -

Ne
opt
2; e Aa)
=1
No  Nest

_ opt ref
2; ZCM Um
=1m=

The computation ofz(a)' parallels the computation of
z(o) itself. As the walk is constructed using the tree-search

= x(cw)’ (46)

algorithm, the node and step number at each orbital level are

Shepard

dom=1, Ny
Generate the walk corresponding to m using
the recursive tree-search algorithm.

doi=0,(n-1)

n—1
Update g, < —2civi? [T e, forall M

D

enddo i

enddo m

TFigure 8. Outline of the computation of thg? gradient contributions.

doM=1,N,
doN=1,M
compute " and 7"
do v=1, Ny
set f=2

opt opt > MN MN
CuCn Y Tap(v)}’BolIom(V)

update g, , « o) f
if (M) update g, , < ' B
enddov

enddo N
enddo M

stored in the appropriate stack arrays. As the graph head isFigure 9. Outline of the computation of® gradient contributions.

reached for the walk corresponding ma thexm product is
available

n—1
thr/l] = I_Jazﬂ(j,m) (47)
=

u(j,m) is the arc that corresponds to the step from the node at
level j in walk m. The derivative of this coefficient is

o -
da

v

n—1

Oyp0 ﬂayavm) fori = Level() (48)
Z=1)

vu(i,m)
j

Eachx¥ product therefore contributes to distinct gradient
entries.

n-1

z -« __onopt ref
9ui,myM 2C\ U, !—I
i=1)

M

D)

i

fori=0,..,60—1)
(49)

The necessary products of the arc factorsjfer i may be
computed efficiently from the partial product stack with only
two floating point multiplications per gradient contribution. The
overall effort scales approximately as the produdtsiNy
Loga(n) (for large wave function expansions), which is only a
factor of n larger than the computation af itself. No sig-
nificant additional storage is required other than the result
gradient g7 itself. This procedure is outlined in Figure 8.
As discussed previously, because the elements/ ®fare
assumed to be independent quantities, it is difficult to imagine
how the effort proportional tdN.sr could be eliminated from
this step.

We next consider the gradient contributiogd For this
purpose we use the general expression given in eq 27 to

compute an elemer8yy; this expression reveals explicitly the
dependence on an individual arc factdy. Differentiation of
Sun With respect to an arc factar’, results in the gradient
expression

gfp= %

d
_ opt_opt —MN MN M N
- Z CM CN VTop(v) VBottom(v)d P(av (11,)
) (08

4
The entire gradieng® may be computed by looping over all of
the arcs in the Shavitt graph and accumulating the above
contributions over all product term paisl, N. Figure 9
summarizes this procedure assuming the contributions from a
singleM, N pair are constructed at a time. The construction of
yMN andyMN scales adNrow for eachM, N pair. The computa-
tional effort forgSis proportional taN, for eachM, N pair, so
the total effort scales as the produdgN.(N, + 1). Storage
requirements include thgMN andyMN arrays for all of theM,
N pairs of interest, along with the result gradigniThere is no
computational effort or storage requirements that depends
explicitly on Ngsf for these terms.

Derivatives with Respect to Essential Variablesln the
above discussion, we have assumed that the arc faotors
are the fundamental independent variables of interest. For
optimization ofg2 = |v — v®f|2 it is more convenient, robust,
and efficient to perform the optimization directly in terms of
the essential variableg defined in eqs 13. This requires
gradients with respect to these essential variables. For this
purpose we writer’(¢p) = o%(a(¢)) and apply the chain rule to
give

opt_.op
Cnm CN tS\/IN

opt_opt —MN

MN M N
CM CN 7 Topw) ¥ Bottom@)(% Onp T @, Oyp) - (50)
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do’(¢)

Om = d@:\ﬂ

do?(at) doy,

N dogy dey’
da

= %g‘uN@

The gradient elementg,n computed using the procedures

(51)
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