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A density matrix treatment is presented for the vibrational relaxation of the frustrated translational mode of
a molecule adsorbed on a metal surface. The system is modeled as a vibrating adsorbate oscillator coupled
to a bath of harmonic oscillators representing either phonons or electronic density fluctuations. The
integrodifferential equations for time evolution of the density matrix including a (nonmarkovian) delayed
dissipation are solved using a generalized Rufi§etta scheme. The equations are also solved in the
instantaneous dissipation and the Markov limits, to ascertain their validity. Numerical results are presented
for Na/Cu, CO/Cu, and CO/Pt systems. The population of an initially excited state is given over time for
varying temperatures and shows that memory effects are needed in a proper description valid even at short
times. Calculations of populations for different coupling strengths between the adsorbate species and the
substrate metal surface indicate that a weaker coupling leads to increased oscillation amplitudes and longer
relaxation times. The time evolution of quantum coherence is also described.

1. Introduction

We consider the vibrational relaxation of an atom or molecule
adsorbed on a metal surface and initially excited by collisions
or light absorption, the subject of recent theoretical and
experimental work> This can be described by a model of an
adsorbed oscillator coupled to a bath of oscillators representing
the excitations of the substrate, a reservoir at a given temper-
ature® The surface excitations can be phonons or quantized S T
electron density fluctuations (electrehole or plasmon excita-  Figure 1. Pictorial representation of delayed dissipation from the
tions) described by means of creation and annihilation operators.primary region to the secondary region over timesdt'.

Our theoretical treatment is based on the reduced density atricest® or an expansion of the memory kernel in a basis

operator (RDOp)® for the adsorbate species and a model ggt19 Oy treatment of dissipative dynamics is further applicable
Hamiltonian with a bilinear coupling between adsorbate and 5 short times. It therefore bypasses the need to introduce

surface?'® The equation of motion for the RDOp contains a o dified initial conditions (slippag&?tin the implementation
dissipative memory term, which can be written in terms of the ¢ markovian treatments, and it can be applied to initial
time—correlation function of the reservoir, the metal surface in excitations of varying duration.

our case. This approach allows for a description of temperature  \ya consider as an application of our method a model of
effects on the relaxation of populations and quantum coherence,inrational relaxation of an initially excited species adsorbed
of the system. Special cases are given by the instantaneoug,, 4 metal surface, coupled to phonons in the metal reservoir,
dissipation limit, with a time-dependent friction coefficient, and and in particular, we concentrate on the systems CO/Cu(001),

the markovian limit equivalent, in our case to the well-known Na/Cu(001), and CO/Pt(111) and on the relaxation of the
Redfield equation$!-*2Figure 1 shows a pictorial representation  ¢,strated translation (or T-mode) of the adsort3aEéis model

of delayed dissipation from the primary region (the adsorbate) j5 pased on extensive electronic structure calculations that gave

to the secondary region (the substrate) over tim@sdt'. good agreement with experimental relaxation times for the CO/
Operator equations can be transformed introducing a basisCu(001) systerm? It is known that metal electronic excitations
set of vibrational states of the adsorbate, leading to sets ofare also active in vibrational relaxation, but their role is less
coupled integrodifferential equations for the reduced density pronounced for the low-energy T-mo#é@ur application deals
matrix (RDM). These equations of motion for the RDM are only with the contribution of phonons to relaxation. The
then solved using a generalized Rungritta type algorithm  coupling constants between adsorbate vibrations and phonons
for integrodifferential equation$that we have recently imple-  appearing in our model Hamiltonian contain a contribution from
mented for dissipative molecular dynami¢sThis is a general intermediate short-lived electrethole excitations of the metals,
method applicable to models involving any Hamiltonian and but these are not explicitly considered in the present treatment.
memory terms and provides an alternative to methods basedin recently published work for these systeffisie have obtained
on path integrald?~*’ the introduction of auxiliary density  good agreement with experimental measurements of the tem-
perature dependence of collisional line shapes, using such a
T Part of the special issue “Donald G. Truhlar Festschrift”. parametrized form for the coupling of adsorbate and surface
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motions. We use the same values in the present work. The model |:|R - Z Ao btb 7)

allows us to estimate under what conditions it would be possible : S

to replace delayed dissipation with instantaneous dissipation or

the Markov limit for the systems and conditions of interest here. Hy =H Z K; @' AjT +3 AJ. +a AJ.T +a AJ.) (8)
]

In what follows, we first present a brief description of the
density operator approach and a model Hamiltonian, which can
be used for either phonon or electreimole excitations of the ~ At . I
metal surface. The numerical procedure is presented for inte(ﬁ:jra-"vherea anda' are _the greatlon and annihilation operators fpr
tion of the coupled matrix integrodifferential equations in the the frustrated T-vibrational mode of the adsorbate A with
general case, with delayed dissipation. The special cases offequencywo, by and bi' are the creation and annihilation
instantaneous dissipation and the Markov limit are also given. operators for the reservoir R excitations of frequeneigsand
Results on state populations and quantum coherence vs timehe «; values are coefficients that determine the coupling
have been obtained for the systems Na/Cu(001), CO/Cu(001),strength. The anda' operators are related to the vibrational
and CO/Pt(111) at several temperatures. Results are alsadisplacement] and momentunp of the adsorbate vibration.

presented in the limit of instantaneous dissipation and in the The operatorsﬁ,— and BJ.T are left undefined for now and may
Markov limit. Calculations have furthermore been done for

varying coupling strengths. Finally, the time evolution of
guantum coherence has been considered and is reported for th
CO/Cu system.

2. Vibrational Relaxation of Adsorbates

2.1. Density Matrix Treatment. When studying dissipative
dynamics using the density matrix framework, we start with
the Liouville von-Neumann equati&# for the density operator
I'(t) for the whole system, composed of a spedidsteracting
with the surface or reservoR, and proceed to define a RDOp
p(t) = trg[I'(t)], which satisfies the following equation in
compact form,

0

a PO

(1)
where /= _/ + /b is the Liouvillian superoperator. Hergy,
is defined by

a1 -
Zip = [H.p] 2)
The operator/p contains dissipative terms and may take one
of several forms. It can generally be expressed in terms of a
memory kernel superoperata#/(t,t'), and the equation now
reads

o _ . o
g = he® + Jo ALY p(t) dt )
This equation must be solved for the initial conditip(®) =
po corresponding to the preparation of the system before
relaxation.

We are thus interested in numerical methods for equations

of the general form

()

o = dte®] + f5KILEp(t)] dr

4)
which is a Volterra integrodifferential equation.

2.2. Model System.We treat the frustrated T-mode of the
adsorbate (the primary region or A subsystem) as a harmonic
oscillator bilinearly coupled to the surface (the secondary region
or R subsystem), treated as a reservoir of harmonic oscillators.
The Hamiltonian for the total system is then

H="H,+ Az + Aug (5)

(6)

A,=ho,a a

correspond to normal mode displaceme@tsnd momenta,

for boson excitations, which can be phonons with spectral
aensity per unit frequenogpn(w) = Y; 0(w — wj) or quanta of
electronic density fluctuations with spectral dengjgjfw).?* If

we now define the operators

N
g=—@ +39 )
V2
B=rvV2Y B +B) =0T 5Q (10
] ]
we have
|:|AR:qB (11)

whereg is dimensionless, whilB has the dimensions of energy.

We now have a couplingHag, which is factored into two
operators, one that acts only on the adsorbate and one that acts
over only the surface.

The energy eigenvalue problem for this Hamiltonian can be
formally solved using a transformation to normal modes of the
whole system, and the total density operdtaran be formally
obtained in terms of normal mode amplitudes. Here, however,
we are interested in the solution of the equation of motion for
the RDOp and on the treatment of delayed dissipation due to
coupling of the p and s regions. A formally exact expression
can be obtained for the dissipative kernel of bilinearly coupled
oscillators. However, in what follows, we construct a simpler
expression, based on the well-known approximation to the
memory kernel to second order in the coupl#i§This relates
the dissipation to correlation functions of the reservoir (the
surface in our case) and provides insight on conditions under
which the dissipation might become instantaneous, or simply
represented by a time-independent friction coefficient. In
addition, we assume that the total density operator can be written
at all times as'(t) = p(t) ['eq(8), where the second factor is
given by the density operator of the reservoir at thermal
equilibrium at temperatur@ = 1/(kgf3).

The equation of motion fop is written in terms of the basis
set{¢} of eigenstates ofla, with eigenenergie&; = A w(r
+ 1/2). The operator equation is transformed into a matrix-
valued generalized master equation for elements of the RDM
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d . i N We consider two additional ways of dealing with dissipation,
il —l o prs T 5 z (B M0 Prc — G Pe — applicable to cases where the correlation of reservoir amplitudes
¢ ' decays rapidly with time, as compared to the period of vibration
Z ft dt' {Mggel—(t — )] €479 o, (1) + of the adsorbate. This is likely to be the case when the reservoir
&0 ' excitations are due to electronic fluctuations, with fast relaxation
M t— 1) ot 5 (1) — times as compared to the adsorbate period. The first limit is
eca(t 1) € Padt) what we refer to as the instant dissipation limit. If th
N joadt=t) , hat we refer to as the instantaneous dissipation limit. If the
Mygre [t —1)] € Pet’) — dissipation takes place in a short time during which the density
M t — ) dealtt) ) o 12 matrix remains nea_rly constant, th_en we canggg) = p(t) in
asre ( ) Ped(t)} (12) the equations, leading to expressions of the form
wherews = (E: — Eg)/h, Hagr = Exgy, (1B [T= trg[B Deg(8)], d o ©)
Ors = (| §|¢sl) and d_tpoo (1) = poo” () 1(V) + I(V) (20)
Mg cd®) = hlz C(t) 05 Ueq (13) Here the superscript ID refers to the instantaneous dissipation

limit, and thel(t) and J(t) integrals are

where C(t) = [IB(t) B(0) Mis the correlation function of the
vibrational displacements of the reservoir.
Note that

I(t) =— /. 2 cospyt — )] Re[C(t — t)] dt'  (21)

_ 1 pt N a—ioot—t) N Aoot—tN e
I =3 [{Cl-t—t)] e+ Ct—t) e} dt

1 — 0
qrs = qsr = ?2 (6r,s+1 s+ 1+ 6r,s—1\/§)1 A = 0 (14) 2 (22)

and that for our choice o8, (B (= 0.

If we consider only the ground and first excited state for the
adsorbate, valid for temperaturksT < A wo and initial low
excitation, then we arrive at the following expressions written

This approximation is valid when the kernel multiplyipgn
the integral is large arountd= t' and close to zero everywhere
else.

If we further find that the upper limit of the integral can be
extended to infinity, we have the Markov limit, which looks

for atomic units wheré = 1, like
4 o= = (4 cosly (t — )] Re[C(t — V)] poolt!) — d_on gy —
dtPo™ " 2Jo 0 Poo giPoo (O = poo’ (1) 1(e0) + (o) (23)

{Cl-t—t]e ™V +c-t)e ) (15) o . .
There is no time dependence liror J so the equation can be

d 1 pt , , , solved exactly, as
G P =5 Jo (4 coshy (t— )] Re[C (t— t)] pyy(t) — Y
io(t—t Cion(t—t J J
(CI-(t~ )] €0 4 ot~ t) e Oy ot (16) o0 = [pé“é)(m ol - e
00 (o)
d 1 1 t ! ! r . . . . .
i Por =1 @opor — 1 ﬁj 2Re[C(t — t)] Im [pg,(t)] dt and is a special case of the multilevel Redfield equatidigis
a7 then gives the asymptotic limit for the population of the-@h
d state aspogo(e0) = —J(0)/I(0), a function of the temperature.
. . t i i i i
= o= —iw —i " 2Rel[C(t — )] Im Y] dt’ This agrees with the asymptotic form for the general case with
dt P10 0P10 fo [ 1M Les(®)] (18) delayed dissipation, as can be seen integrating by parts the first
term to the right in eq 15 and taking the linit— co.
where we useggo + p11 = 1. The time correlation function 2.4. Numerical Method. To begin, we write eq 4 in a more
can be written in terms of the spectral functid@) given by compact form,
w?J(w) = 29(w) |k(w)|? and it takes the form do(t)
- ho\ o 1, = T ltp(0).20)] (25)
C(t)= [.” [costt) coth o= — i sin(t)| w* I(w) dw
0 2k T .
(19) with
Because of the form afis,, there are no couplings between 2t) = /; K [t.t',p(t)] dt (26)

the diagonal elements of the density matrix corresponding to

populations and the off-diagonal ones corresponding to quantum generalized RungeKutta scheme then introduces time
coherence. If we consider more than two states, couplings do;,, crementsAt = h and a sequence gf= 1 to m stages of
appear. . _ iteration, with value®y; = p(to + nh)0) andZy; = z(to + nh)?,
Properties of the adsorbate varying over time can now be ;.4 \;ses the following relatioks
obtained from the density matrix. In particular, the amount of
energy left in the adsorbate motion after its initial excitation is m
obtained asAEa = Ea(t) — Ea(0), with Ea(t) = tra[p(t) Hal, P =panth) aft,+ch Py Z,] (27)
which reduces in our model tBa(t) = hwozrlzo orr(t) (r + =
1/2) so thatAEa(t) = —h o poo(t)/2. m
2.3. Instantaneous Dissipation and the Markov Limit.The _
above equations include memory terms from the initial time Zoi = Fa GGy +h ; K[t +eht,+ch Pyl
= 0 tot, and we refer to this as the delayed dissipation case. (28)
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n—-1 m

FH=h Z) Z b K[t t + gh, P (29)
=¥=

m
Pn+1 = Pn +h Z bj f [tn + th' Pn,j’ Zn]] (30)
=

wherem is the number of stages of the method anddheb;,
andc; are real coefficients. The values chosen here arenfer
4113

0 0 00 1/6 0
2o ool .. (3| . |1
(a1 =1o 12 0 of [P1={13] (& = {12 (31)
0 0 10 1/6 0

The matrix version is straighforward and does not involve any
inversions, so it is readily applicable to many quantum states.
This method has been previously tested by us and found to be
reliable!* It includes as special cases the propagation algorithm
for instantaneous and markovian dissipation. As expected, the
general case of delayed dissipation is more time-consuming,
insofar that it scales a2, whereNy is the number of time
steps, instead of ther scaling for instantaneous cases. However,
it involves only the physical matrix elements of the density
operator, unlike some of the alternative propagation methods.

3. Results for Populations and Quantum Coherence

So far, we have presented a treatment valid for a reservoir
with unspecified harmonic vibrations. In what follows, we
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Figure 2. Real part ofC(t) for CO/Cu(001) at 150, 300, and 450 K
(upper) and the imaginary part 6{t) for CO/Cu(001) at 150 K (lower).

TABLE 1: Frequencies and Coupling Parameters for
Different Systems

concentrate on adsorbate relaxation due to coupling to phonons

in the substraté The couplingsc contain contributions both

Na/Cu CO/Cu CO/Pt

from direct coupling of vibrations and from their indirect
coupling through short-lived electretiole excitations in the
metal and have been obtained from experiniéftie phonon
frequenciesw; may be considered to form a continuum with
spectral densitg(w).

The time-correlation function for the reservoir requires
knowledge of the spectral densit§w) and of the strengthk-
(w) of the coupling between adsorbate and surface. For the first
one, we use a simple Debye model so that

g(w) = 187 N vV’ (32)

with g(w) = 0 for > wp and whereN is the number of lattice
atoms andvp is the Debye phonon cutoff frequency. We use a
parametrization fok(w) in the neighborhood ofvg from ref
23 of the form

l(@)I? = [p+ (@ — wlIN (33)

2.205x 10%au? 1.448x 10“%au! 2.183x 10 *au?

o
wp 1.013x 10%au? 1.013x 10%au?! 7.283x 10“*au

2.31x 10 7au? 6.44x 10 8au? 1.10x 10%au?
q —5.80x 10%au? 1.58x 10%au?! 3.98x 10°au?

However, fort > 0, this is not the case, and we use the
2k, T
_2Kg i ho

approximation
cot{ 22
2k T ho = 6kgT

providedT is large enough antd> At, a small value; for our
applications, it gives good agreement down to 100 K. For very
small values of, the real part is obtained from an expansion
aroundt = 0, and we us&€(0) as the maximum value @(t).

This has provided accurate results over all times. Results for
the real and imaginary parts of the correlation function of CO/
Cu are shown in Figure 2 for temperatures of 150, 300, and
450 K. Because the imaginary part 6ft) is independent of
temperature, only results for 150 K are shown. The time is given

(35)

wherep and q are parameters, which depend on the system; in atomic units, with 1.0 au(Ty 0.0242 fs, and the correlation
the values of these and other parameters used in the calculationgunction is in units ofi2. The imaginary part is relatively small,
are given in Table 1. and the real part oscillates out to about 50000 au(T), with a

Therefore, the correlation function has been obtained from period around 6500 au(T) or about 160 fs, close to the Debye
the spectral function frequencywp for Cu. It is seen that as the temperature goes up,
the decay of the oscillations is more pronounced.

We have obtained the elements of the RDM for each of the
systems Na/Cu, CO/Cu, and CO/Pt at 150 and 300 K, starting
with initial valuespi1 = 1, poo = 0, andpos = 0. The results

For computational purposes, we constr@t) in three parts. for the populatiorpoo(t) are shown in Figures-35, from which
The imaginary portion can be integrated exactly, so no ap- the relaxation of the initialr 1 state population can be
proximation is required. For the real part,tat 0, the cosine followed, sinceo1; = 1 — pgo. In each case, higher temperatures
term disappears and we can integrate the real part exactly.lead to decreased oscillation peaks and a faster relaxation to

J(w) = 36N7 |k(w)|wy’ (34)

whereJ(w) = 0 for > wp.
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Figure 3. Population of the ground statgog) for CO/Cu(001) at 150
and 300 K.
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Figure 4. Population of the ground statge) for Na/Cu(001) at 150
and 300 K.
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Figure 5. Population of the ground statgqf) for CO/Pt(111) at 150
and 300 K.

equilibrium. For CO/Cu, the population of the ground state
= 0 oscillates with a period around 2000 au(T) at both
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Figure 6. Population of the ground statgo) for CO/Cu(001) at 150
K for normal coupling strength and at 0.8 times the coupling strength.

1 T T

Py » (1.0x coupling, upper)
- 0.6, (1.2x coupling, lower)| 1

Poo

| |
0 20000 40000
t(au)
Figure 7. Population of the ground statggf) for CO/Cu(001) at 150
K for normal coupling strength and at 1.2 times the coupling strength.
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Figure 8. Population of the ground statpgo) for CO/Cu(001) at 150
K using delayed dissipation, the instantaneous dissipation limit, and
the Markov limit.

temperatures. Comparing this with the decay time of the Weaker couplings I_ead to _Ionge_r relaxation times, as expected
correlation function, one concludes that the correlation of due to decreased interaction with the reservoir.
reservoir vibrations does not decay rapidly enough to justify = The results for the instantaneous dissipation limit and the

an approximation of instantaneous dissipation. Similar conclu-

Markov limit are shown in Figure 8 for CO/Cu(001) at 150 K.

sions are reached for Na/Cu and CO/Pt. From Figure 3, the In the Markov limit, the population goes smoothly and almost

COI/Cu populations are found to relax within aboutx410*

immediately to the equilibrium value. The instantaneous dis-

au(T), or about 1.0 ps, at 150 K, with this time increasing at sipation limit shows an unphysical behavior. In the case of 150
lower temperatures. This is in qualitative agreement with K, the population here goes above one, violating the positivity

experimental results.

of the density matrix, and it also shows repeating oscillations

We have explored the dependence of population relaxationsat long times, after the population from the delayed dissipation

on the adsorbatesurface coupling strength. In Figures 6 and
7, we plotpgo at 150 and 300 K for CO/Cu(001) at the values
of |«|2 from the tabulateg andq values and also gt andq

calculation has already reached equilibrium. It can be concluded
from this that the markovian limit is of some use if one needs
only long time results but that instantaneous dissipation would

values multiplied by 0.8 and by 1.2. The observed trend is that not give a realistic picture of time evolution of populations.
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‘ ' T ' to models where the medium undergoes bosonic excitations
0.1F TR (phonons or electronhole pairs). A numerical procedure has

1 been described that can be used for a primary region with many
guantum states, coupled to a medium with a general distribution
of excitation energies.

As an application, we have calculated the populations over
time of the frustrated T-mode of an adsorbate on a metal surface
using the model of a harmonic oscillator coupled to a bath of
harmonic oscillators and have examined the effects of coupling
strength and the importance of memory terms. We have
presented results for a two-state model of the adsorbate for initial
1006000 ‘ 2006000 3000000 conditionspi; = 1 andpge = O corresponding to an initially

t(au) excited adsorbate, without and with an initial quantum coher-
Figure 9. Real part of the quantum coherengg for CO/Cu(001) at ence.
150 (solid line) and 300 K (dashed line). When the couplings are stronger, we see fewer oscillations
and a shorter relaxation time. This behavior is expected; the
dissipation of energy into the reservoir happens more rapidly
with a stronger interaction, and the system comes to equilibrium
sooner.

Each of the different treatments of dissipation lead to the same
equilibrium value, but the dynamics at short times are very
different. The delayed dissipation limit shows some strong
oscillations at short times before settling into equilibrium, and
their relaxation times agree in magnitude with experimental

1m(p,,)- (150K, upper) values. In the markovian case, we see only a smooth exponential
Tm(p,,) — 0.1, (300K, Tower) ] rise nearly immediately to the equilibrium value. The instan-
o ‘ ‘ taneous dissipation limit leads to oscillations around the
-0 20000 40000 60000 equilibrium value even at long times and does not appear to be
t(au) valid in this case, insofar that there are no experimental
0.02 ‘ T indications of long-time oscillations. From the calculated trends
] for varying coupling strength, it is found that stronger coupling

leads to faster decay of oscillations and that the markovian
dissipation more closely resembles delayed dissipation in this
case. This suggests that the Markov limit will be more accurate
at stronger couplings. At weak couplings, only the delayed
dissipation treatment will give accurate results. We see a similar
trend when looking at temperature effects. With higher tem-
peratures, we have fewer oscillations and a faster settling to
equilibrium. This suggests that the Markov limit will be more
accurate at high temperatures but that the delayed dissipation
005000 3550000 treatment is required to study low-temperature dynamics at short
t(au) times.

Figure 10. Imaginary part of the quantum coherenggat short times Our calculations. reIat.e to a physical situation where excitati.on
for CO/Cu(001) at 150 and 300 K (upper) and long times (lower). ~ ©f the adsorbate is brief, and we have started the numerical
propagation in time with the adsorbate initially in its first excited

In all of the above cases, we set the initial quantum coherenceiPrational state. However, our numerical procedure is general
(oo = po) equal to zero, in which case it remains zero in our and could also be applied to other situations such as excitation
1 ’

model. Figures 9 and 10 show our results for real and imaginary bIY along l}?_St_'tr_]% l'glht pulﬁhoréor C?;”d'“‘:r?s gorr?spondlng to
parts ofpp1 using an initial value o0f1(0) = 0.1+ 0.1i. The S |ppage_o_t_|n|| Ida} ;/abu?_s 0 ¢ ed enzl 3: ma_lf'r:( ue .? a':. average
imaginary part ofop1 shows a pattern of oscillations similar to overan initial distribution ot-adsorbates. these situalions may

that in the populations at short times, followed by a slow lead to (:iifferent patterns of oscillgtions at §hort times.
oscillation with a frequency of orde, relaxing to zero over Experiments have been done with laser light pulses to probe
very long times. The real part shows only these slow oscillations. felaxation in the present systeth$® and have measured
Hence, here again, the treatment of dissipation must incorporate'€laxation times of the order of picoseconds. It would be of
memory effects. The density matrix elemegt does not couple ~ greatinterest to gxp_lore what happens in th_e femtosecond time
to the populations in our model, as can be seen from egs 17Sc@le, to provide insight on both nonmarkovian phenomena and
and 18, so that our previous observations about population the relative contributions of phonons and electronic excitations

-0.02

changes with time and temperature remain valid. to the relaxation times and quantum decoherence.
The equations and computational procedures presented in this
4. Conclusion paper can also be applied to problems involving electronic

excitations at short times, as measured in femtosecond spec-
We have described a general theoretical method applicabletroscopy with visible or UV light. In our previous work on
to a quantum system evolving with delayed dissipation due to femtosecond photodesorptiéf?®we worked within an instan-
its coupling to a medium. The treatment is readily applicable taneous dissipation limit due to the fast decay of electronic
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excitations, which could now be reconsidered using the present (10) May, V.; Kuhn, O.Charge and Energy Transfer Dynamics in

treatment. Statistical density matrices, with elements giving
populations and quantum decoherence, provide a suitable

Molecular System3dNiley-VCH: Berlin, 2000.
(11) Redfield, A. G.Adv. Magn. Reson1965 1, 1.
(12) Pollard, W. T.; Friesner, R. Al. Chem. Phys1994 100, 5054.

language to describe and calculate the dynamics of electronically  (13) Brunner, H.; van der Houwen, P. The Numerical Solution of
excited system&-31 and together with temperature-dependent Volterra Equations North-Holland: New York, 1986.

dissipation terms, they can also be used for electronically excited

extended systems such as adsorbates on surfaces.
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