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Phase space theory (PST) is applied to the calculation of state-resolved integral and differential cross sections
for the complex-forming atom-diatom insertion reactions A+ H2 f AH2 f AH + H with A ) C(1D),
S(1D), O(1D), and N(2D). In the asymptotic channels, vibration motion is quantized while rotation and translation
motions are treated classically. The approach is compared to exact quantum scattering calculations and quantum
statistical models. Given the simplicity of PST, the agreement with the previous much more refined treatments
is very satisfying. Although PST is a well-established theory, this work is, to our knowledge, the first such
systematic comparison of its predictions with accurate quantum scattering and quantum statistical calculations.

1. Introduction

Atom-diatom insertion reactions have recently attracted a
lot of interest,1,2 namely, the prototypical processes A+ H2 f
AH2 f AH + H with A ) C(1D), N(2D), O(1D), or S(1D). In
contrast with the extensively studied direct abstraction mech-
anisms (e.g. H+ H2, F + H2, or Cl + H2 ), these reactions
proceed via a stable AH2 intermediate complex associated with
a deep potential energy well. From the experimental point of
view, state-resolved integral and differential cross sections
(respectively ICS and DCS) have been measured.3-6 From the
theoretical point of view, tremendous advances in exact time-
independent quantum scattering calculations have allowed the
prediction of the previous observables with an excellent level
of accuracy.7-10 Besides, approximate time-dependent quantum
scattering approaches have also been examined.11-15 However,
both types of quantum dynamics simulations are extremely
difficult to implement routinely because of the huge number of
bound and low-lying resonance states of the collision complex
to account for. Nevertheless, for weak collision energies (lower
than 0.2 eV), the existence of sharp resonances in the computed
reaction probabilities have suggested that the AH2 intermediate
complex may live long enough for its formation and decay into
reactant and product channels to be treatable statistically. The
long lifetime of the intermediate complex has also been
evidenced by quasi-classical trajectory16 and quantum mechan-
ical calculations.17 In other words, the strength of couplings
existing between the AH2 internal degrees of freedom, in the
region of the well (strong coupling region, SCR), may be
responsible for fast randomization of energy among the complex
vibrational modes. Consequently, within the framework of
classical mechanics, the distribution of the SCR phase space
states may be regarded as microcanonical.18

Following this idea, Rackham et al. developed a so-called
coupled-channel statistical model (CCS)19 in which (i) inter-
mediate complex states are assumed to be distributed statistically
and (ii) reactant and product channels dynamics are treated
within a time-independent quantum formalism using the ab initio
potential energy surfaces (PESs).20-23 This model, which has

been tested for the four above-mentioned processes,24 has now
been extended to take into account multiple electronic states.25

Similarly, Lin et al. proposed a wave packet based statistical
model (WPS)26 differing from the CCS one in that asymptotic
channels dynamics are computed within a time-dependent
quantum approach. The WPS model has been illustrated by the
study of the processes involving C(1D) and S(1D).12,26,27Both
the CCS and WPS models are much more convenient to
implement than the exact quantum scattering calculations since,
within the statistical assumption, formation and decay of the
intermediate complex can be regarded as independent events
which only require inelastic collision calculations in both
entrance and exit channels. These “exact” statistical models have
predicted state-resolved integral and differential cross sections
in remarkable agreement with their quantum and experimental
counterparts. Hence, the statistical assumption on which they
rely seems to be justified.

In addition to these statistical approaches, quasi classical
trajectory simulations (QCT)4,5,16,21,28,29have led to a fair
prediction of state-resolved ICSs, provided that product internal
vibration motion is properly quantized.30,31These results imply
that ro-translation dynamics can reasonably be considered as
classical in the asymptotic channels. Conversely, these simula-
tions have not been able to accurately reproduce the sharp
forward/backward peaks existing in the state-resolved and total
DCSs. This strong polarization has been attributed to tunneling
through entrance and exit centrifugal barriers4,24 and, thus, is
not accounted for in the QCT method.

In summary, the previous studies on the atom-diatom
insertion reactions tend to show that (i) the AH2 species is
sufficiently long-lived for the statistical assumption to be valid
and (ii) rotation and translation dynamics can be treated
classically but internal vibration must be appropriately quantized.

Moreover, for the reactions involving O(1D), S(1D), and
C(1D), reactant and product channels are barrierless. Therefore,
given the collision energies employed in the above studies,
entrance and exit channel dynamics should be governed by long-
range isotropic van der Waals forces. As a consequence, the
phase space theory32-36 (PST) should apply. Briefly, in PST,
complex formation cross section is estimated via the classical
Langevin capture model37 and the probability of formation of
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any given product from the intermediate complex is proportional
to the ratio of the phase space available to that product divided
by the total phase space consistent with conservation of energy
and total angular momentum.

Conversely, a small potential energy barrier and a strong
anisotropy characterize the N(2D) + H2 reactant channel so that
Langevin capture theory cannot apply to determine the NH2

complex formation cross section. To circumvent this limitation,
we recently proposed a model38 going beyond the angular-
dependent line-of-center (ADLOC) model.39 This approach,
referred to in the following as the post-ADLOC model, takes
into account reorientation of the H2 molecule during reactant
approach and tunneling through the entrance barrier.

In this study, we implement a semiclassical version of phase
space theory (labeled PST in the following) in which internal
vibration motion is quantized and tunneling through reactant
and product potential/centrifugal barriers is approximately
accounted for. This approach, presented in section 2, is applied
to the reactions of O(1D), S(1D), and C(1D) with H2. Besides,
PST is slightly modified in order to accurately estimate the
intermediate complex formation cross section for the N+ H2

process. For the four processes, results are compared with exact
quantum calculations and the previously proposed exact statisti-
cal models in section 3. Section 4 concludes.

2. Theory

The complex forming triatomic reactions under consideration
are of the type

As H2 is a homonuclear diatom, product channel P is 2-fold
degenerate. However, the forthcoming developments can be
trivially extended to the general case.40 To implement PST, the
following set of assumptions is considered:

(1) Since the reactant diatom rotational angular momentum
is usually small in molecular beam experiments1,2 (a few p
units), the H2 diatom is initially considered in its ro-vibrational
ground state (V)0, j)0).

(2) Dynamics in reactant and product channels is supposed
to be governed by isotropic van der Waals forces. This standard
approximation is typically valid for barrierless channels in which
the fragment relative energy is not too important.40 Accordingly,
internal vibration, rotation, and translation motions are un-
coupled. The interaction potential energy between fragments is
here approximated by41

whereR is the distance between the atom and the diatom center-
of-mass. In reactant channels, only dispersion forces are
considered so that theC6 term is calculated using the Slater-
Kirkwood formula,42

where Ri and ni are respectively the polarizability and the
number of electrons in the highest occupied molecular orbital
(HOMO) for the speciesi (i ) A, H2), e is the electron charge,

andme is the electron mass. For product channels, in addition
to the dispersion term, the interaction between the AH permanent
dipole and the induced dipole of H is also accounted for so
that

The inductive contribution,C6
ind, is defined by

where RH is the H polarizability andµAH is the AH diatom
dipolar moment. The parameters entering formulas 3 and 5 can
be found in Table 1, and theC6 parameters are collected in
Table 2.

As the collision energies considered in this work are relatively
small (no more than 0.165 eV), the entrance centrifugal barriers
are expected to lie in almost isotropic regions of the PESs. For
exit channels, due to the processes’ exoergicity, this is much
more questionable. Nevertheless, the isotropic assumption for
fragment interactions is mandatory for implementation of PST
which, as presented below, leads to an exceptionally simple and
accurate determination of the state-resolved integral and dif-
ferential cross sections.

Among all the atom-diatom systems studied here, interac-
tions between N(2D) and H2 cannot reasonably be approximated
by eq 2. As a matter of fact, the NH2 PES reveals a small
potential energy barrier associated with a strong anisotropy in
the entrance channel.21 As a consequence, dynamics is governed
by short-range forces that involve couplings between vibration,
rotation, and translation motions. In this case, complex formation
dynamics is estimated via the previously mentioned post-
ADLOC model38 (see Appendix A).

(3) Because of the deep potential energy well existing along
the reaction path,24 strong couplings take place between the AH2

internal vibrational modes. As a result, intravibrational redis-
tribution (IVR) is expected to lead to complete energy random-
ization on a time scale much shorter than the average time for
AH2 dissociation. This assumption associated with the preceding
one (2) makes equally likely all final states available to the
system, subject to conservations of total energy and total angular
momentum.

A + H2 f AH2 f A + H2 (V, j) (reactant channel R) (1a)

f AH (V′, j′) + H (product channel P) (1b)

V(R) ) -
C6

R6
(2)

C6 ) C6
disp ) 3

2
ep

xme( RARH2

xRA

nA
+ xRH2

nH2

) (3)

TABLE 1: Parameters Entering Formulas 3-6

R
(10-24 cm3)62-64

n µ
(D)65

ωe

(cm-1)66
ωexe

(cm-1)66
re

(Å)66

H2 0.8023 2 - 4401.21 121.333 0.741
CH (X 2Π) 1.415 1 1.46 2858.5 63.02 1.12
NH (X 3Σ-) 0.922 2 1.71 3282.2 78.3 1.0362
OH (X 2Π) 0.581 1 1.734 3737.76 84.88 0.969
SH (X 2Π) 1.728 1 1.0476 2711 59.9 1.34
H 0.667 1
C(1D) 0.816 2
N(2D) 0.538 3
O(1D) 0.323 2
S(1D) 1.153 2

TABLE 2: C6 Parameters Characterizing Each Reactant
and Product Channel

C + H2 S + H2 O + H2

C6 (eV‚Å6) 8.089 7.383 3.935

CH + H SH + H OH + H NH + H

∆E0(eV) 0.17 0.18 1.89 1.25
C6

disp (eV‚Å6) 7.394 8.50 3.858 6.463
C6

ind (eV‚Å6) 0.888 0.457 1.252 1.217
C6 (eV‚Å6) 8.282 8.957 5.110 7.680

C6 ) C6
disp + C6

ind (4)

C6
ind ) RHµAH

2 (5)
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(4) Internal fragment vibration is quantized whereas rotation
and translation are treated classically.32,33,43,44Diatomic mol-
ecules are described as rigid-rotor anharmonic oscillators
(RRAO) for which the vibrational energy levels are ap-
proximated by a Dunham expansion up to the second order,

where the wavenumbersωe andωexe are collected in Table 1
for each diatom.

Considering assumptions (1)-(4), the state-resolved dif-
ferential cross section (DCS) for reaction 1b can be evaluated
by

where Ec is the collision energy,J is the total angular
momentum,µ is A-H2 reduced mass,φ′ is the center-of-mass
scattering angle, dω is the differential solid angle, andE′ is the
total excess energy with respect to the bottom of the product
channel P. Given assumption 1 and 4,E′ is defined by

where∆E0 is the reaction exoergicity excluding the reactant
and product zero point energies (ZPEs) (see Table 2) andEV)0

is estimated via eq 6 withV ) 0. The method for determining
the maximum valueJMAX of J is presented in Appendix A. In
eq 7, Pcap(Ec,J) is the J-dependent probability for complex
formation (opacity function), which can be estimated via the
Langevin capture model37 for the processes involving C, O, and
S. Alternatively, Pcap(Ec,J) is predicted via the previously
mentioned post-ADLOC model for the reaction involving
N(2D). PP(V′,j′,φ′,E′,J) is the probability that the intermediate
complex dissociates producing the AH molecule in the (V′, j′)
state, at total energyE′ and total angular momentumJ, the
scattering angle beingφ′. The latter probability is calculated,
within the framework of PST,32-36 as the ratio of the number
2ΩP(V′,j,φ′,E′,J) of product states consistent with the preceding
conditions and the total numberΩR(E,J) plus 2ΩP(E′,J) of
reactant and product states energetically accessible, subject to
conservation of total angular momentum

The factor 2 explicitly accounts for the degeneracy of channel
P andE is the total excess energy with respect to the bottom of
the reactant channelR, that is,E ) Ec + EV)0. The number of
statesΩi, entering eq 9, can be numerically estimated via Monte
Carlo calculations45 of phase space integrals.46,47These develop-
ments, presented in Appendix B, include a semiclassical
treatment of tunneling through the centrifugal barriers.

The total differential cross section is recovered from eq 7 by
integration over rotational angular momentumj′ and summation
over vibrational levelsV′,48

where V′MAX is the maximal value of vibrational quantum

number consistent with energyE′ and the maximum valuej′MAX

of the rotational angular momentumj′ is calculated via eq 24
in Appendix B.

The state-resolved integral cross section is determined from
eq 7 by integration with respect to the center-of-mass scattering
angleφ′:49

3. Results and Discussion

The PST approach is compared to exact time-independent
quantum scattering calculations and either the CCS or WPS
models depending on the availability of data in the literature.
As both the CCS and WPS models rely on the same statistical
assumption for the intermediate complex and treat exactly the
entrance/exit channels quantum dynamics, they are assumed to
give identical results. These methods will be referred as “exact
statistical models” in the following. Extensive comparisons
between the CCS model and exact quantum scattering calcula-
tions have been performed for the processes involving N(2D)
and O(1D),19 which are associated with significant exoergicities.
For the much less exoergic reactions involving C(1D) and S(1D),
comparisons are less extensive. Nevertheless, the statistical
assumption is a priori more justified as excess energies in the
product channels are smaller and, as a consequence, complex
resonance states are longer-lived. For these latter reactions, the
agreement between exact quantum scattering calculations and
the CCS model, for DCSs, is almost perfect (see for example
Figures 4 and 8 in ref 24).

C(1D) + H2(W)0, j)0) f CH(X2 Π, W′, j′) + H. This
reaction proceeds through a 4.29 eV deep well relative to the
reactants and is associated with a 0.17 eV exoergicity (ex-
cluding ZPEs). State-resolved ICS and DCS have been predicted
by the exact quantum scattering calculations of Banares et al.7

at 80 meV collision energy. Besides, the CCS24 and WPS26 have
been applied to estimate respectively the total DCS and the
state-resolved ICS. The upper panel of Figure 1 displays the
CH(V′)0) rotationally resolved ICSs resulting from exact
quantum scattring calculations, WPS and PST models. It has
to be noticed that, at this collision energy, the CH(V′)1) popu-
lation is almost negligible. The total DCSs determined by exact
quantum scattering calculations and the CCS and PST models
are displayed in the lower panel of Figure 1. The agreement
between quantum calculations and the CCS model is very good.
The PST approach leads to a fair agreement with both previous
methods forφ′ values ranging from 20° to 160°. However, the
strong polarization in the first and last 20° is not reproduced.

S(1D) + H2(W)0, j)0) f SH(X 2Π, W′, j′) + H. As far as
energetics is concerned, this process is similar to the previous
one as the PES involves a 4.23 eV deep well relative to the
reactants and is exothermic by about 0.18 eV. Exact quantum
scattering calculations have been performed by Launay and
coworkers.10,16 In addition, for a collision energy of 97 meV,
the WPS12 model has been applied to predict the state-resolved
DCSs and ICSs.12 The comparison between these exact ap-
proaches and PST is displayed in Figure 2. As in the case of
the reaction involving C(1D), the agreement is rather good but
the strong polarization exhibited in the total DCSs is not
accounted for. However, it has to be noticed that such a
disagreement also exists between quantum scattering calculations
and the WPS model atφ′ ) 0° (for V′ ) 0).

O(1D) + H2(W)0, j)0) f OH(X 2Π, W′, j′) + H. This
reaction involves a 7.29 eV deep well relative to the reactants

Ev ) hcωe(V + 1
2) - hcωexe(V + 1

2)2
(6)

dσ(V′,j′,φ′,Ec)

dω
)

1
2 sinφ′ µEc

∫0

JMAX Pcap(Ec,J) PP(V′,j′,φ′,E′,J) J dJ (7)

E′ ) Ec + ∆E0 + EV)0 (8)

PP(V′,j′,φ′,E′,J) )
2ΩP(V′,j′,φ′,E′,J)

ΩR(E,J) + 2ΩP(E′,J)
(9)

dσ(φ′,Ec)

dω
) ∑

V′)0

V′MAX ∫j′)0

j′MAX
dσ(V′,j′,φ′,Ec)

dω
dj (10)

σ(V′,j′,Ec) ) 2π∫0

πdσ(V′,j′,φ′,Ec)

dω
sinφ′ dφ′ (11)
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and a significant exoergicity of 1.89 eV. Extensive comparisons
between exact quantum scattering calculations9 and the CCS19,24

and PST models are displayed in Figures 3 and 4. Vibrationally
resolved ICS and total DCS are presented for various collision
energies in Figure 3. State-resolved ICSs, corresponding to 100
meV collision energy, are shown in Figure 4. Again, except
the backward/forward polarizations appearing in the quantum
and CCS total DCSs, the results of the PST approach are very
satisfactory.

N(1D) + H2(W)0, j)0) f NH(X 3Σ-, W′, j′) + H. This
reaction involves a deep well of 5.48 eV relative to the reactants
and a significant exoergicity of 1.25 eV. However, this process
differs from the three previous ones as it involves a small
potential energy barrier and a strong anisotropy in the N+H2

channel. Accordingly, the PST approach is slightly modified
in that the complex formation opacity functionPcap(Ec,J) is
estimated via the recently developed post-ADLOC model.
Nevertheless, as indicated in Appendix B, the probability
PP(V′,j′,φ′,E′,J) can be calculated via PST, neglecting the term
ΩR(E,J) in eq 9. Figure 5 displays the NH vibrationally resolved
ICSs resulting from exact quantum scattering and the CCS and
modified-PST models for various collision energies. Total DCSs
are also presented. In addition, to point up the close agreement
between the CCS and modified-PST models in this case, the
state-resolved ICSs corresponding to 165 meV collision energy
are displayed in Figure 6.

As illustrated by Figures 1-6, the overall agreement between
PST and exact quantum scattering calculations is unexpectedly
good. Given the excellent results of both the CCS and WPS
models, the statistical assumption for the intermediate complex

was expected to be quite reliable. Nevertheless, the basic
hypothesis (2) of the PST approach seems also to be valid. This
semiclassical PST model (without tunneling correction) has
already led to a rather good description of the product
translational energy distributions for the NO2 and C2O unimo-
lecular dissociation.50 Other applications of quantized PST have
also been performed in the past.51-53 However, to our knowl-
edge, this work is the first such systematic and severe test of
PST for such detailed observables on a class of bimolecular
triatomic reactions. It has to be noticed that ICSs and DCSs
are computed without any normalization factor as it is often
the case for product energy distributions.

For barrierless processes, here those involving C(1D), O(1D),
and S(1D), the strength of the PST approach stems from the
fact that no information on the ab initio potential energy surfaces
is required. For the N+ H2 reaction, very little information on
the PES is needed.38 Therefore, such a method gives trustworthy
estimates of experimental observables without involving cum-
bersome electronic structure and dynamical simulations.

However, the agreement between the PST approach and the
exact statistical and dynamical methods is not perfect. The sharp
forward/backward peaks appearing systematically in the state-
resolved or total DCSs are not predicted. As mentioned earlier,
such polarizations, which are not reproduced by QCT and not
seen in the experiments,54 have been ascribed to tunneling
through centrifugal barriers lying in the long-range regions of
the PESs. In our version of PST, tunneling is approximately
accounted for (see Appendixes A and B) but its effect on the
predicted ICSs and DCSs is found almost negligible. The
discrepancies between PST and other approaches are then

Figure 1. V′ ) 0 state-resolved integral cross section (upper panel)
and total differential cross section (lower panel) for the reaction C(1D)
+ H2(V ) j ) 0) f CH(X 2Π) + H at 80 meV collision energy: (-0-)
quantum scattering calculations; (-O-) CCS model; (-b-) WPS
model; (bold line) present PST approach.

Figure 2. State-resolved integral cross section (upper panel) and total
differential cross section (lower panel) for the reaction S(1D) + H2(V
) j ) 0) f SH(X 2Π) + H at 97 meV collision energy: (-0-)
quantum scattering calculations; (-b-) WPS model; (bold line) present
PST approach.
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presumably related to the isotropic approximation for fragment
interactions. Work is in progress to understand this divergence.

A few years ago, Chang and Lin55 used both PST and
variational RRKM theory in order to predict the S+ H2 (HD,
D2) isotopic reaction rate constants. The predicted cross section
isotope ordering was found in disagreement with the molecular
beam experiments of Lee and Liu.56 Consequently, the authors
concluded that their results were “not in supportive of a long-
lived complex”. Nevertheless, Rackham et al. recently proved
that the statistical assumption for the intermediate complex was
justified and argued that the previous PST and RRKM ap-
proaches were not accurate enough. In particular, they suggested
that the discrepancies could originate from the isotropic ap-
proximation for fragment interactions and the lack of tunneling
in capture dynamics. The quality of our PST description of state-
resolved ICSs and DCSs is not in line with this latter suggestion.
Furthermore, recent theoretical studies based on the statistical
wave packet based model12 and QCT/QM calculations29 have
led to results in fair agreement with those of Chang and Lin
thus questioning experiment.

Our results suggest that the PST-based model comprises the
essential physical ingredients of atom-diatom insertion dynam-
ics. This approach, which is straightforward to implement with
respect to the exact ones, is thus a valuable tool to characterize
experimental data.

Last but not least, several theoretical studies, based on
PST32-36 (and more generally transition-state theory57) have been
recently developed in order to rationalize dynamics of complex-
forming reaction.18,58 The relevance of such studies, that have

evidenced simple key parameters influencing the shape of
product state distributions, is greatly strengthened by the present
results.

4. Conclusion

A PST approach has been developed in order to predict state-
resolved integral and differential cross sections for atom-diatom
insertion reactions of the type A+ H2 f AH2 f AH + H
with A ) C(1D), S(1D), O(1D), and N(2D). This model is based
on three main assumptions: (i) fast energy randomization among
internal degrees of freedom of the AH2 intermediate complex
(statistical assumption), (ii) quantization of the diatomic vibra-
tion motion and classical treatment of the rotation and translation
motions in the entrance/exit channels, and (iii) approximation
of fragment interactions in the reactant/product channels by long-
range van der Waals interactions (except for the N+ H2 channel,
see text). Given the simplicity of PST, the predicted state-
resolved integral and differential cross sections are found in
quite good agreement with exact quantum dynamics scattering
calculations and exact quantum statistical models. These results
highlight the relevancy of such a simple statistical approach in
describing complex-forming reaction dynamics. This work is,
to our knowledge, the first such systematic comparison of PST
predictions with accurate quantum scattering and quantum
statistical calculations.

Appendix A

Coordinates.The reactant atom-diatom system is described
within the following set of 12 canonical coordinates:43 the total

Figure 3. Vibrational integral cross section (left) and total differential cross section (right) for the reaction O(1D) + H2(V ) j ) 0) f OH(X 2Π)
+ H at three collision energies indicated on the left plots: (-9-, left, and bold line, right) present PST approach; (-0-) quantum scattering
calculations; (-O-) CCS model.
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angular momentumJ, its space fixed componentJz, the orbital
angular momentumL, the diatom rotational angular momentum
j, their respective conjugate anglesR, â, RL, Rj, the distanceR
between the atom and the diatom center-of-mass, the diatom
bound distancer and their respective conjugate momentaPR

andpr. Furthermore,µ andmare respectively the reactant atom-
diatom and diatom reduced masses andre is the diatom
equilibrium distance. The product atom-diatom system is
defined by an equivalent set of primed coordinatesJ′, J′z, L′, j′,
R′, â′, R′L, R′j, R′, r′, P′R, p′r, µ′, m′, r′e.

Capture Probability Pcap(Ec,J). The probability for inter-
mediate complex formation is evaluated using the Langevin
capture model.37 As mentioned above,j is neglected so thatJ
) L. Within the framework of the previous model, all atom-
diatom systems colliding with an energyEc and involving a
total angular momentum lower than the maximum value,
JMAX

Cl , lead to formation of the AH2 complex with unit prob-
ability:

Approximating the interaction potential energy by eq 2, the
maximum value of total angular momentum consistent with
capture is given by18

whereC6 is the potential parameter entering eq 2.

For J > JMAX
Cl , complex formation is classically forbidden as

collision energyEc is lower than the top of the centrifugal
barrier. Nevertheless, one-dimensional tunneling through this
effective potential barrier can be estimated using the WKB
semiclassical approximation,59

whereθ is the phase integral defined by

calculated through the effective potential,

whereV(R) is the atom-diatom interaction potential.R+ and
R- are defined by the integrand condition of existence. The
maximum valueJMAX of J consistent with capture and including
tunneling is here arbitrarily defined byPcap(E,JMAX) ) 10-3.60

It has to be noticed thatPcap(E,J) is overestimated, forJ tending
to JMAX

Cl by lower values, as quantum reflection61 is not taken
into account. This way of determining capture probability can
be applied to the processes characterized by barrierless entrance
channels, namely, those involving O(1D), S(1D), and C(1D). In

Figure 4. State-resolved integral cross section for the reaction O(1D) + H2(V ) j ) 0) f OH(X 2Π) + H at 100 meV collision energy, with the
OH vibrational quantum number indicated on each plot: (bold line) present PST approach; (-0-) quantum scattering calculations; (-O-) CCS
model.

Pcap(Ec,J) ) 1

1 + e2θ
(14)

θ ) 2π
h ∫R-

R+x2µ(Veff(R) - Ec) dR (15)

Veff(R) ) J2

2µR2
+ V(R) (16)

Pcap(Ec,J) ) 1 for J < JMAX
Cl (12)

JMAX
Cl ) (3µ)1/2(2C6)

1/6(Ec)
1/3 (13)
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contrast, as mentioned in part 2, it is inappropriate for the
prediction of the NH2-complex formation probability. Instead,
the post-ADLOC model must be employed, which takes into
account fragment reorientation during approach as well as
tunneling (formulas 4.1-4.3 in ref 38).

Appendix B

Calculation of PP(W′,j′,O′,E′,J). As stated in part 2, the PST
calculation of the probability that the intermediate complex leads
to the AH molecule in the (V′, j′) state, at total energyE′, total
angular momentumJ, and the scattering angle beingφ′, requires
the knowledge of the number of product states, 2ΩP(V′,j′,φ′,E′,J),
consistent withV′, j′, andφ′, and the total number of reactant
and product states energetically available under conservation
of total angular momentum, respectivelyΩR(E,J) and 2ΩP(E′,J)
(eq 9).

ΩP(E′,J). The total number of product states 2ΩP(E′,J) can
be estimated as follows:

where ΩP
ROT(V′,E′,J) is the number of rotational and orbital

states such that the diatom rotational energy is lower than
E′ - E′V′ whereE′V′ is the internal vibration energy.V′MAX is
the maximal value of the vibrational quantum numberV′
consistent withE′. As rotational and orbital degrees of freedom
are treated classically,ΩP

ROT(V′,E′,J) is estimated via semi-

classical quantization of the corresponding phase space volume,
that is,

where dΓ is the differential phase space volume associated to
rotational and orbital degrees of freedom, dΓ (dJ′, dJ′z, dL′, dj′,
dR′, dâ′, dR′L, dR′j). The∆is (i ) 1-5) define the constraints
limiting the integration domain (δ and θ are the Dirac and
Heaviside functions, respectively):

∆1 ensures thatJ′ ) J, ∆2 and ∆3 restrict the domain of
integration with respect toj′ and L′ up to the maximal value
energetically available,∆4 imposes the triangular inequality
resulting fromJ ) L′ + j′, and∆5 is a probability associated to
each state whether it is classically accessible from the inter-
mediate complex or not. Its determination is detailed below.

The maximum value of the product diatom angular momen-
tum is given by

Figure 5. Vibrational integral cross section (left) and total differential cross section (right) for the reaction N(2D) + H2(V ) j ) 0) f NH(X 3Σ-)
+ H, with the collision energies indicated on each plot: (-9-, left, and bold line, right) present modified-PST approach; (-0-) quantum scattering
calculations; (-O-) CCS model.

ΩP(E′,J) ) ∑
V′)0

V′MAX

ΩP
ROT(V′,E′,J) (17)

ΩP
ROT(V′,E′,J) ) ∫dΓ

h4
∏
i)1

5

∆i (18)

∆1 ) δ(J′ - J) (19)

∆2 ) θ(j′MAX - j′) (20)

∆3 ) θ(L′MAX - L′) (21)

∆4 ) θ(J - |L′ - j′|) θ(L′ + j′ - J) (22)

∆5 ) P(V′,j′,L′) (23)
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For givenV′ and j′, the translational energy in the products is

so that the maximum value of orbital angular momentum,
consistent with formation of products from the intermediate
complex, is given by (equivalently to eq 13)

whereC′6 is the potential energy parameter of eq 2. However,
as products may be formed by tunneling through the exit
centrifugal barrier,L′ may be greater thanL′MAX

Cl but is limited
in any case, by total angular momentum conservation, to

In analogy with the method used to include tunneling into the
Langevin model (see above), the probabilityP(V′,j′,L′) associated
with a product state (V′, j′, L′) can be predicted using eqs 12-

16, replacingJ by L′ and Ec by E′T (eq 25) and using the
parameters corresponding to the P product channel.

Integrating with respect toR′, â′, RL′, Rj′, J′, and J′z and
expressing the momenta inp units, eq 18 can be rewritten as

The Monte Carlo integration method45 can be further used to
integrate this expression with respect toj′ andL′. N points of
coordinates (j′, L′) are randomly chosen such thatL′ < L′MAX,
and j′ < j′MAX (constraints∆2 and ∆3). For the M points
satisfying constraints∆4, P(V′,j′,L′) is then estimated such that
eq 28 reduces to

ΩP(E′,J) is then recovered by summingΩP
ROT(V′,E′,J) over the

available vibrational levels through eq 17.
ΩR(E,J). ΩR(E,J) can be estimated in a similar way as

ΩP(E′,J), i.e., using eqs 17-29 and replacing all the primed
coordinates and parameters by the equivalent unprimed ones
characterizing the R reactant channel. However, for the process

Figure 6. State-resolved integral cross section for the reaction N(2D) + H2(V ) j ) 0) f NH(X 3Σ-) + H at 165 meV collision energy, with the
NH vibrational quantum number indicated on each plot: (bold line) present modified-PST approach; (-0-) quantum scattering calculations;
(-O-) CCS model.

j′MAX ) x2m′r′e
2(E′ - E′V′) (24)

E′T ) E′ - E′V′ - j′2

2m′r′e
2

(25)

L′MAX
Cl ) (3µ′)1/2(2C′6)

1/6(E′T)1/3 (26)

L′MAX ) J + j′MAX (27)

ΩP
ROT(V′,E′,J) ) 2J∫dj′ dL′ ∏

i)2

5

∆i (28)

ΩP
ROT(V′,E′,J) ) 2JL′MAX j′MAX

∑
M

P(V′,j′,L′)

N
(29)
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involving N(2D), PST cannot be used as reactant channel
dynamics is governed by short-range forces. Alternatively, the
total number of reactant states could be predicted by semiclas-
sical quantization of the phase space flux through the tight
transition state (hypersurface defined by the position of the
barrier along the reaction path). Nevertheless, due to the process
exoergicity and the low value collision energies considered in
this work (lower than 0.165 meV),ΩR(E,J) is negligible with
respect toΩP(E′,J) so that its calculation is unnecessary.

ΩP(W′,j′,O′,E′,J). ΩP(V′,j′,φ′,E′,J) can be evaluated in a similar
way asΩP

ROT(V′,E′,J) with additional constraints on thej′ and
φ′coordinates. Let us divide the range [0, j′MAX] into Nj intervals
Ii
j ) [i‚j′MAX/Nj; (i + 1)‚j′MAX/Nj], i varying from 0 toNj - 1

and j′MAX being the maximal value of the product diatom
rotational momentum (eq 24). Similarly, concerning theφ′
variable, let us divide the range [0,π] into Nφ intervals Ii

φ )
[i‚π/Nφ; (i + 1)‚π/Nφ], i varying from 0 toNφ - 1. The number
of product states corresponding toV′, E′, J with j′ belonging to
the intervalIi

j (i.e. j′ ∼ (i + 0.5)‚j′MAX/Nj) andφ′ belonging to
the intervalIi

φ (i.e. φ′ ∼ (i + 0.5)‚π/Nφ) can be calculated via
eq 18 adding the two following extra constraints:

The relationship linking the scattering angleφ′ to the canonical
coordinates (J, L′, j′, R′, R′L), which can be deduced from the
developments of ref 43, is given by

N points of coordinates (j′, L′) are randomly chosen such that
L′ < L′MAX, andj′ < j′MAX. R′ andR′L are randomly chosen in
the interval [0;2π], andφ′ is calculated from eq 32. For theM
points satisfying constraints∆4, ∆6, and ∆7, ∆5 is evaluated
andΩP(V′,j′,φ′,E′,J) is recovered using eq 29.

References and Notes

(1) Casavecchia, P.Rep. Prog. Phys.2000, 63, 355.
(2) Liu, K. Annu. ReV. Phys. Chem.2001, 52, 139.
(3) Bergeat, A.; Cartechini, L.; Balucani, N.; Capozza, G.; Phillips, L.

F.; Casavecchia, P.; Volpi, G. G.; Bonnet, L.; Rayez, J. C.Chem. Phys.
Lett. 2000, 327, 197.

(4) Balucani, N.; Cartechini, L.; Capozza, G.; Segoloni, E.; Casavec-
chia, P.; Volpi, G. G.; Javier Aoiz, F.; Banares, L.; Honvault, P.; Launay,
J.-M. Phys. ReV. Lett. 2002, 89, 013201/1.

(5) Aoiz, F. J.; Banares, L.; Castillo, J. F.; Herrero, V. J.; Martinez-
Haya, B.; Honvault, P.; Launay, J. M.; Liu, X.; Lin, J. J.; Harich, S. A.;
Wang, C. C.; Yang, X.J. Chem. Phys.2002, 116, 10692.

(6) Lee, S. H.; Liu, K.Appl. Phys. B: Lasers Opt.2000, 71, 627.
(7) Banares, L.; Aoiz, F. J.; Honvault, P.; Bussery-Honvault, B.;

Launay, J. M.J. Chem. Phys.2003, 118, 565.
(8) Honvault, P.; Launay, J. M.J. Chem. Phys.1999, 111, 6665.
(9) Honvault, P.; Launay, J. M.J. Chem. Phys.2001, 114.

(10) Honvault, P.; Launay, J. M.Chem. Phys. Lett.2003, 370, 371.
(11) Lin, S. Y.; Guo, H.J. Phys. Chem. A2004, 108, 2141.
(12) Lin, S. Y.; Guo, H.J. Chem. Phys.2005, 122, 074304/1.
(13) Mouret, L.; Launay, J.-M.; Terao-Dunseath, M.; Dunseath, K.Phys.

Chem. Chem. Phys.2004, 6, 4105.
(14) Defazio, P.; Petrongolo, C.J. Theor. Comput. Chem.2003, 2, 547.
(15) Hankel, M.; Balint-Kurti, G. G.; Gray, S. K.J. Phys. Chem. A2001,

105, 2330.
(16) Banares, L.; Aoiz, F. J.; Honvault, P.; Launay, J. M.J. Phys. Chem.

A 2004, 108, 1616.
(17) Lin, S. Y.; Guo, H.; Farantos, S. C.J. Chem. Phys.2005, 122,

124308.

(18) Bonnet, L.; Rayez, J. C.Phys. Chem. Chem. Phys.1999, 1, 2383.
(19) Rackham, E. J.; Huarte-Larranaga, F.; Manolopoulos, D. E.Chem.

Phys. Lett.2001, 343, 356.
(20) Bussery-Honvault, B.; Honvault, P.; Launay, J. M.J. Chem. Phys.

2001, 115, 10701.
(21) Pederson, L. A.; Schatz, G. C.; Ho, T. S.; Hollebeek, T.; Rabitz,

H.; Harding, L. B.; Lendvay, G.J. Chem. Phys.1999, 110.
(22) Dobbyn, A. J.; Knowles, P. J.Mol. Phys.1997, 91, 1107.
(23) Ho, T.-S.; Hollebeek, T.; Rabitz, H.; Chao, S. D.; Skodje, R. T.;

Zyubin, A. S.; Mebel, A. M.J. Chem. Phys.2002, 116, 4124.
(24) Rackham, E. J.; Gonzalez-Lezana, T.; Manolopoulos, D. E.J. Chem.

Phys.2003, 119, 12895.
(25) Alexander, M. H.; Rackham, E. J.; Manolopoulos, D. E.J. Chem.

Phys.2004, 121, 5221.
(26) Lin, S. Y.; Guo, H.J. Chem. Phys.2004, 120, 9907.
(27) Lin, S. Y.; Guo, H.J. Phys. Chem. A2004, 108, 10066.
(28) Balucani, N.; Capozza, G.; Cartechini, L.; Bergeat, A.; Bobben-

kamp, R.; Casavecchia, P.; Javier Aoiz, F.; Banares, L.; Honvault, P.;
Bussery-Honvault, B.; Launay, J.-M.Phys. Chem. Chem. Phys.2004, 6,
4957.

(29) Banares, L.; Castillo, J. F.; Honvault, P.; Launay, J. M.Phys. Chem.
Chem. Phys.2005, 7, 627.

(30) Bonnet, L.; Rayez, J. C.Chem. Phys. Lett.1997, 277, 183.
(31) Bonnet, L.; Rayez, J.-C.Chem. Phys. Lett.2004, 397, 106.
(32) Light, J. C.J. Chem. Phys.1964, 40, 3221.
(33) Pechukas, P.; Light, J. C.J. Chem. Phys.1965, 42, 3281.
(34) Light, J. C.Discuss. Faraday Soc.1967, 44, 14.
(35) Nikitin, E. E.Theory of elementary Atomic and Molecular processes

in Gases; Clarendon: Oxford, 1974.
(36) Keck, J. C.J. Chem. Phys.1958, 410.
(37) Langevin, P.Ann. Chim. Phys.1905, 5, 245.
(38) Larregaray, P.; Bonnet, L.; Rayez, J. C.Phys. Chem. Chem. Phys.

2002, 4, 1571.
(39) Smith, I. W. M.J. Chem. Educ.1982, 59, 9.
(40) Bonnet, L.; Rayez, J. C.Chem. Phys.1995, 201, 203.
(41) Given the collision energies considered in this work, much larger

than in typical ultracold processes, the anisotropic quadruopole-quadrupole
interaction existing in the entrance channels is expected to play a minor
role. The interaction potential between reactants becomes significant at
interfragment separations for which the quadrupole-quadrupole interaction
is negligible with respect to the dispersion one (∼3 to 4 Å). The agreement
between the PST total cross sections and the quantum ones, computed using
the ab initio PES, justifies a posteriori this approximation.

(42) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.Molecular Theory of
Gases and Liquids; Wiley: New York, 1954.

(43) Wardlaw, D. M.; Marcus, R. A.J. Chem. Phys.1985, 83, 3462.
(44) It has to be noted that Pechukas and Light originally proposed both

quantized and classical versions of PST (ref 33).
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∆6 ) θ(j′ -
i‚j′MAX

Nj
)θ((i + 1)‚j′MAX

Nj
- j′) (30)

∆7 ) θ(φ′ - i‚π
Nφ

)θ(φ′ - (i + 1)‚π
Nφ

) (31)

cosφ′ ) cosR′L‚sin R′ + cosR′‚sin R′L cos(J2 + L′2 - j′2

2L′J )
(32)
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