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The low-energy capture of homonuclear diatoms by ions is due mainly to the long-range part of the interpartner
potential with leading terms that correspond to chargeadrupole interaction and charge-induced dipole
interaction. The capture dynamics is described by the perturbed-rotor adiabatic potentials and the Coriolis
interaction between manifold of states that belong to a given value of the intrinsic angular momentum. When
the latter is large enough, it can noticeably affect the capture cross section calculated in the adiabatic channel
approximation due to the gyroscopic property of a rotating diatom. This paper presents the low-energy (low-
temperature) state-selected partial and mean capture cross sections (rate coefficients) for theuhdngeole
interaction that include the gyroscopic effect (decoupling of intrinsic angular momentum from the collision
axis), quantum correction for the diatom rotation, and the correction for the charge-induced dipole interaction.
These results complement recent studies on the gyroscopic effect in the quantum regime of-idiatom
capture (Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe,JJ.Chem. Phys2004 120, 9989-9997).

1. Introduction treated classically. The rotation was described either classically
(for temperature3 noticeably above the characteristic rotational
temperaturel,o; = B/kg with B being the rotational constants
of the diatom) or quantum mechanically (for< T.y) within

the adiabatic channel approximatid¥. The latter assumes that
the projection of the intrinsic angular momentum onto the
collision axis is conserved, which is justified for a weak Coriolis

” : interaction, at least in the region of centrifugal barriers. For
addition, the entrance part of the potential energy surface (PES)canonicaI ensembles, this is indeed so provided that the moment

possesses no barrier, and the collision energy (translational”". =~ "~ - . .

temperature) is low enough, then the formation of the complex .Of mgrtla ofa dlatpm IS appreuaply lower than the m.omen.t of
is governed mainly by a long-range part of the interaction. Since Inertia of the collision complex n the capture conf|gurat|on_
quite often this part of the interaction is known reasonably well, which guarantees that the mean intrinsic angular momentum is

the ambiguities that are normally associated with selection of frzgaélac?mgared to the typical relative angular momentum for
PES disappear and the whole problem becomes purely dynami- apture.
This situation may change when one passes from partners

cal: calculation of the complex formation (capture) cross section . . . .
for a known interaction. The dynamics of the complex formation out of a single qanonlcal en_semble to two d|fferent_ canonical
might still be quite complicated since the approach of reagents ENSembles (as is the case in recent Wot§ or rotationally

is accompanied by the energy transfer between different modesSélected partners. Here, it can oceur that the Intrinsic angular
of collision partners. In this respect, the capture of a neutral MOMentum is comparable to the typical capture relative angular

diatomic molecule by an ion at not too high energies representsrnomentum espe_mally in the region of low collisions energies,
a simple case, since the vibration of the former can be E < B (or translational temperaturéB < Ty,). Under the latter

adiabatically decoupled from its rotation and the relative motion, copdltlon, the |0|+molgcule interaction can be S'mP"f'Ed and
and the internal structure of the ion does not affect the capture. Written as the expectation value of the original potential averaged
The interaction between rotation of a diatom and relative motion over_unpﬁrturb_ed rotational motion of the diatom (the so-called
can be easily handled numerically, both classically and quamtumrc’tat'ona1 y adiabatic perturbed-rotor, RAPR, approximation).

mechanically, as was accomplished in a number of works. Our The ion—diatom Hamiltonian with this interaction corresponds

earlier work on this topic was mainly concerned with calculation [© the conserved value of the intrinsic angular momentum but
of the rate coefficients for iondiatom capture in the Boltz- takes into account the Coriolis interaction omitted in the

mannian ensemble for different representative cases of the@diabatic channel (AC) approximation. The capture cross

interaction potentiald® In this work, the relative motion was ~ Sections calculated in RAPR approximation may differ from
the AC cross section because of the gyroscopic effect of the

Accurate statistical theories of chemical reactions combine
guantum dynamics of complex formation and decay with a
statistical description of intracomplex redistribution of the
available energy-* For noticeably exothermic reactions, the
reaction cross section (the rate coefficient) can be often identified
with similar characteristics for the complex formatidhilf, in

T Part of the special issue “tyen Troe Festschrift”. rotor ignored in the AC approximation.
*To whom correspondence should be addressed. E-mail: chr2led@ The above sets the scene for discussion of the capture
tecthun'x-t‘“?c“”'o”-ac"'- . dynamics of rotationally excited homonuclear molecules by ions
Technion-Israel Institute of Technology. L. :
§ Max-Planck-Institut fu Biophysikalische Chemie. at low collision energies, when the capture occurs under the
Mnstitut fir Physikalische Chemie der Univergi@ottingen. action of charge-quadrupole potential. In principle, the capture
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cross sections can be calculated by soljhtiagonal quantum
capture equations as discussed recéefitiyowever, in view of
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for the conservation of the total angular momentum, then the
number of dynamical variables can be reduced to%ix.

the extremely rapid convergence of the quantum cross sectionsExamples of such Hamiltonians in different angular variables

to the AC cross sections for lower rotational states of a didfom,
we can use classical mechanics for the description of relative
motion unless we want to enter the ultralow energgewdgve

can be found, for instance, in the book ref 16 and the articles
refs 17 and 18.
Still other dynamical approximations correspond to the

scattering). In addition, we can use classical mechanics for theadiabatic limits of the Hamiltonian in eq 1 with respect to the
description of rotation since we are interested in the capture of rotation of the diatom. The validity of these approximations is
scattering of rotationally excited molecules. We therefore adhere determined by the value of a single parameter, the Massey

to the fully classical counterpart of our previous quantum study
of capture.

Actually, the present study is the classical analogy of the
locking of the intrinsic quantum angular momentum to the
collision axis, a phenomenon studied in detail for atomic
collisions (see, e.qg., ref 14). A byproduct of this study is a direct
test of the main assumption of the AC approach.

The paper is organized as follows. In section 2, we discuss
the representation of classical iediatom Hamiltonians in the
rotationally adiabatic approximation. Section 3 is devoted to
further approximations for the rotationally adiabatic Hamilto-
nians, namely, the AC and flywheel (FW) Hamiltonians. In
section 4, we present the results of numerical calculations of
the gyroscopic effect for the charggquadrupole capture. In

parameter;, which is the ratio of the rotational frequency of
the diatom to the angular velocity of the collision axis. In the
adiabatic approximation, one introduces the adiabatic potentials
V, »(R) which originate from the two last terms in the rhs of eq
1 after introducing new action variablesandw. The variable
w is the projection of the rotor angular momentum onto the
collision axis, andv is a variable which is adiabatically
correlated withj at the limitR — c. The adiabatic criteriog
> 1 guarantees thatis nearly conserved in the course of the
collision; as forw, it is not conserved since asymptotically
different w states correlate (for a giver) with a degenerate
rotor state.

Different types of AC potentialsV45(R) for quantized
rotational states were presented in refs 19 and 20. One of the

section 5, we discuss the results which incorporate correctionsapproximations in these calculations is the so-called weak-field

for quantized rotation of a diatom and for the charge-induced
dipole interaction. In conclusion, we summarize our findings.

2. Rotationally Adiabatic Hamiltonian and Capture Cross
Section for Diatom—lon (atom) System

A classical Hamiltonian for a rigid roteratom (ion) system
(both in closed electronic states) after the separation of the
center-of-mass motion, reads

p.2
. R
HPRj,y) = >m +

2

J

5+ URy)

1)

whereR is the vector between the atom and the diatom center-
of-massmis the reduced mass of the partnétigjs the vectorial
momentum of the relative motion which is conjugateRg is

the angular momentum of a rotdr,s its moment of inertia,
andy is the angle betweeR and the rotor axis. In eq 1, the
angley is a complicated function of polar and azimuthal angles
of the molecular axi$ and the collision axi®R. The Hamil-
tonian in eq 1 contains five degrees of freedom, that is, it
contains 10 dynamical variables (five coordinates and five
conjugate momenta). This Hamiltonian has been used for the
calculation of the capture rate coefficients for different types
of interaction potentials for the canonical (translational and
rotational) ensemble of collision partnérecause the initial
conditions of a single trajectory include quite a number of
parameters, the random selection of theses parameters from th
Boltzmannian translationalrotational distribution function is

an appropriate choice of the averaging. It is difficult to get
however, from the results obtained, information about rate
coefficients for a diatomic partner in a given rotational state,

expansion, which represents'ig(R) as a power series in the
ratio of the interaction parameter to the spacing between the
rotational states of the diatom. The leading terms in this
expansion correspond to the perturbed-rotor (PR) limit when

is identified with j, and VIR (R) is written as a sum of the
unperturbed-rotor energy plus the expectation value(@y)

for givenj andw values. The classical expression for the latter
guantity in the PR limit is obtained frod(R,y) by averaging

it over the angle of the proper rotation of the diatom, the angle
variablea; which is conjugate t. In what follows, we assume
the validity of the PR limit which is applicable for low collision
energie$! The averaging oJ(R,y) over g; with constant,w

is accomplished with the help of the relation cos= (1 —
w?j?)Y? cos o, appropriate for the PR approximation. This
means that ACPR potentialé/\;”(R) can actually be written

U)

asVi, (R) = j2/2I + VACPRRwlj), and the constant part of it
can be omitted. The rotationally adiabatic (RA) Hamiltonian in
the PR limit,HRAPR s obtained from expression 1 by replacing
U(R,y) with ACPR potentialsVA°PRRw/j), passing from the

SF frame to the BF frame, and consideriingas a dynamical
variable, w = p,, both in the ACPR potential and in the
centrifugal energy. The latter step is done by expressing the
square of the relative angular momentdhthrough the total
angular momenturd (conserved), intrinsic angular momentum

j (conserved in the adiabatic approximation), action variable
ps, and the conjugate angle. All this yields the RAPR
Ie—lamiltonian

/2

2uR?

2
HRAPR — Pr +

Zu + VACPR(R,g)

)

since many features of an individual state become washed outyhere the square of the relative angular momentdrand the

in the averaging procedure.
To simplify the capture problem and decrease the set of

fractional projection of the intrinsic angular momentum onto
the collision axiss = p,/j are expressed through action-angle

parameters that enter into the capture cross section and captur@ariables

rate coefficient for a state-selected diatom, one tries to reduce

the number of dynamical variables. This is possible by taking
into account the conservation of the total angular momentum
of a colliding pair and by introducing appropriate dynamical
approximation into the Hamiltonian. If one explicitly accounts

(A pypidf) = F + 7= 20,7 — 24/ F — p, 2 /i* — p,’ cosg

§=p, ®3)
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The Hamiltonian in eq 2 with account taken for eq 3 is written certain characteristic time of the relative motion. For the

in terms of the conjugate variablé4?APR = HRAPR pg R pgs,;J,j), capture process, can be identified as the precession frequency
and therefore it immediately generates equations of motion for at the barrier maximum andwith the inverse of the frequency
the radial separation between the fragmeR{f§ and for the of rotation of the molecular axis. For an estimate, we write
precessional motion of the intrinsic angular momentum in the

BF frame in terms opy,(t) and¢(t). Note that the last term in ¢ = 2V*(Rp,/i)lap, ~ V“(Rp,/i)lj
the expression for? is responsible for the Coriolis interaction
in the BF frame which manifests itself as a gyroscopic effect 1t = 8(/22uR )/~ (/*12uR )/ (5)

in the SF frame. Here and below, the semicolon in the arguments

of the Hamiltonians (e.g., i*A"F) separates the dynamical \yhereR; is the capture distance. Since the capture condition is
variables from the parameters. , ~formulated as compensation of the attractive potential and the
The mean capture cross section (for rotationally unpolarized repulsive centrifugal energy, that ACPRR py/j) ~ /Z/ZuRi

diatom) S¥*PF (E, j) is expressed as an average of the partial \ye can write the condition of the applicability of the AC
capture cross section (for rotationally polarized diator8%)"R approximationgr > 1, in the form

(E,j,&), with the polarization state defined through the initial

value of the reduced projectidi = p,,/j of j onto the vector jl/<1 (6)

of the initial relative velocity of the colliding partners. In turn, ~

SFAPR (Ej,&) is determined by the mean capture probability where / is a typical angular momentum for the capture. We

PRAPR(Ej,&i,J) thus consider inequality eq 6 as the condition of applicability
L of the AC approximation.
SYRE)) = [, SYNE).E) dg Conservation of can be regarded as a reasonable approxima-

tion if j remains close, in the course of the collision, to the
APRiC - sr _ TT [ CRAPR/c - exactly conserved vector of the total angular momeniuBue
SYRE.E) _2/4_EL£ PTH(E).E,0)23 dJ to the relationJ = j + |, near conservation df is possible
provided that

RAPR/ [~ : — DRAPR/
P (E,J,gi,J) - [Ptraj (Ea]agiv‘]y(bi)@i (4) j/_/>> 1 (7)

Here, E is the collision energyPy/" is the classical capture We therefore consider inequality eq 7 as the condition of

probability for a single trajectory (zero or one) that depends on applicability of the FW approximation.

the initial conditionss; and¢i, andLl.Lj; means the averaging From eqs 6 and 7, it is expected that the gyroscopic effect

over initial anglesp;. Following our earlier work, we identify  will noticeably show up for such values of intrinsic momentum
the capture (when the probability equals unity) with a moment j which are of the order of: therefore, in these cases, the
when the potential energy between the fragments substantiallyrotation of the diatom can be considered classical, provided the
exceeds the initial energy. capture is adequately described by classical mechanics. To
For brevity of notation, we adopt the following: the PR roughly estimate’ as a function of classical dynamical param-
abbreviation will be dropped since the PR approximation is used eters, we assume that capture occurs under the action of the
everywhere; the AC abbreviation will mean the fully classical charge-quadrupole potentia‘{/AC O qQ/R3 and resort to the
AC approximation, while QAC will stand for the AC ap-  dimensional arguments. From the latter, it follows that-
proximation when the rotation of the diatom is quantal. A list E1/6,112Qj/3 We note in passing that, for canonical ensembles,

of abbreviations is given in Appendix A. according to condition eq 6, the gyroscopic effect is not
) ) o noticeable if the moment of inertia of a diatdrs appreciably
3. Adiabatic Channel and Flywheel Approximations lower than the moment of inertia of the collision complex in

Under additional assumptions, the adiabatic Hamiltonian in the capture configuratioyR,. We will discuss now the AC
eq 2 can be simplified further: either one assumes the and FW Hamiltonians as well as AC and FW capture cross
conservation of the projection of the intrinsic angular momentum Sections.
onto the collision axis during the passage over the potential AC Hamiltonian and Cross SectionsThe AC Hamiltonian
barriers or the conservation of the direction of the intrinsic is obtained from the RA Hamiltonian by dropping the Coriolis
angular momentum in the space. The former assumption is theinteraction term (the last term in the rhs expressior/fain eq
basis of the well-known AC approximation, while the latter, 3). Then,¢ becomes an ignorable angle, apglbecomes a
introduced in this paper, can be called, by obvious reason, theconstantp, = w. Hence
FW approximation. In the nomenclature used in the theory of
atom—atom (ion) collision® with the intrinsic angular mo- AC . pR2 F +j2 — 202 AC ]
mentum identified with the electronic angular momentum ofa  H (PrRi.0.J) = u + TR + VT (Rol]) (8)
partner, the AC and FW approximations correspond to the Hund 2u

coupling caseb andd or to their extensions for atorrmolecule Condition eq 6 means that the AC Hamiltonian in eq 8 can

ici 23
collisions: L (and actually should) be simplified, for consistency reasons, by
Clee_lrly,_ A_‘C and FW_ app_rOX|ma_t|ons_‘. correspo_nd _to two neglecting the two last terms in the expression for the centrifugal
opposite limits of the adiabatic Hamiltonian. The criterion that energy and, therefore, by identifyidguith /Z Within this change

defines these two limits can be derived from the following 5 harameters) andj can be absorbed into a single parameter
qualitative considerations. Conservatiorpgfthat is neglecting Eac = wlj, yielding

the Coriolis interaction, means that the angle-dependent part in

the expression fof2in eq 3 can be averaged over the precession D 2 P

angleg. This is a legitimate procedure provided the precession HAC(p RIE) = Ry 2 VAC(Rg ) (9)
frequencyg of a diatom is high compared to the inverse of a R A 2u ZuR2 ne
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Since the Hamiltonian in eq 9 includes two dynamical
variables pr andR), the capture probability and cross section
can be calculated analytically

§C(E) = j;l SAC(EvEAc) déac

7 AEEnc)
2uE

PAC(EJ.Enc) = OE — max@2uR? + VAPRR &) T (10)

SAC(Ev‘EA(:) =

whereJn(E,&ac) is the maximal angular momentum that yields
nonzero probability expressed through Bestep function and

E is the collision energy. Note that, in distinction to eq54¢

in eq 10 is not the cosine of an initial orientation angle but that
of an orientation angle in the region where the intrinsic angular
momentunj is “locked” to the collision axis. To get the partial
AC cross section as a function of the initial orientatinS*c-
(E,&), one should transforn®*C(E,éac) by way of locking
probability [T (&i.&ac,E)

FUEE) = [N (EEcDS Edad dipc  (11)

Here, [1 (&i.5ac,E) is the probability of the population
redistribution from the bunch of states with the sam§ =
&ac (but differing in anglesp) in the region of the locked
intrinsic momentum to the bunch of states wiiffj = &; (again
differing in anglesp) in the region of free intrinsic momentum.
The calculation of the probability] (&;,&ac,E) should be based
on the RA Hamiltonian applied only to the incoming part of
the collision, from the asymptotic region to the region of locking.
If the latter is well defined, the functiof] (&i,€ac,E) can be
unambiguously determined and normalized to unity,
f(l, M (&i.éac,E) d& = 1. Otherwise, the transformation ex-
pressed in eq 11 does not exist. Assuming ffati,Eac,E)
exists, one gets the relation

j(;l §C(E’Ei) dg = f(‘)l SAC(EaEAC) dac (12)

In other words, the possibility of replacing the averaging over
the initial orientation angles by the averaging over the orientation
angles of the locked intrinsic momentum constitutes an ad-
ditional assumption of the AC approximation, which was not
spelled out in the initial formulation of the AC mod&l®

Another property that follows from the existence of the
probability function[] (&i,ac,E) is the relation between the
AC and RA cross sections (see eq 6)

(e = lim S(EJ) (13)
Equation 13 relates the conventional AC cross sect®R(E)
to RA cross sectionsRA(E,j) provided that the function
[ (&i.éac,E) exists.

FW Hamiltonian and Cross SectionsThe FW Hamiltonian
is obtained from the RA Hamiltonian in eq 2 takifigas an
angular coordinate and expressingthrough the momentum
ps conjugate to polar anglg and yet another momentupy
conjugate to the azimuthal angbe

paz
sir?
VAC(R,cosp) (14)

p 2
(pRiR!pﬁ!ﬁ;pé) = ZR + 2'(/::-

HFW

+

2
2pﬁ+
R
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where p; is the conserved projection of the (nonconserved)
angular momentum vectdronto thez-axis. The mean capture
cross sectionSW can be calculated as the ratio of the
microcanonical “captured” flux through a sphere of a large
radius to the collision velocity and to the density of states in
the momentum space. Simple derivation, which basically repeats
that in ref 24, leads to the following expression &t

= 1
S5 = B s 05, dB; dlpy, dO; (15)
where the integration over the indicated variables corresponds
to the initial conditions (subscript i) of those trajectories that
get captured. Under the condition in eq 7, the FW cross sections
are expected to be related to the RA cross sections as
sYE) = Il_i»rr} SAE)) (16)

Note that neither the AC cross section nor the FW cross
section depend op Finally, we remark that the Hamiltonian
in eq 14 contains four dynamical variabless,Rps,5) and
therefore trajectory calculations can be performed only numeri-
cally. The reason FW approximation requires more effort,
compared to AC approximation, for calculation of the mean
cross sections is that the latter circumvents the calculation of
the redistribution functiofi] by simply assuming that it exists.

4. Capture for Charge—Quadrupole Interaction

The leading interaction terms for the ieneutral diatom
system at low collision energies are the anisotropic charge
qguadrupole (cq) potential and isotropic charge-induced dipole
(Langevin) potentials. Since the former is proportional &1/
and the latter to B¢, the cq potential is expected to determine
the capture rate coefficients at low enough temperatures. We
therefore first consider the pure chargguadrupole interaction
and then calculate, in section 5, the correction to the rate constant
which is due to the charge-induced dipole interaction. A small
value of this correction would indicate that other possible terms,
which could originate from a full potential energy surface, are
negligible.

The charge-quadrupole potential reads

aQ
R

whereq is the charge of the iorQ is the quadrupole moment
of the diatom andP,(cosy) = (3 cog y — 1)/2 is the Legendre
polynomial. The potential in eq 17 generate the following AC
potentials

Uc(Ry) =5 Py(cosy) (17)

_9Q
R

The Hamiltonian in eq 2 with potential from eq 18 can be
brought to the dimensionless form. Using the Greek characters
for reduced dynamical variables and parameters, we write

p=(E"aQ ) xR 7, =(E ") x pg

16, —1/2
u

VAC(R,cosp) =

P,(cosp) (18)

(I,L,ﬂ¢,ﬂﬂ,ﬂa) = (E_ |QQ|_1/3 X (J!j!p¢’pﬁ’p(§)

t=E"% 9 ) xt, e=(E)xE=1 (19)

The dimensionless Hamiltoniang,"* = Hi"YE expressed
in terms of two dimensionless coordinatesind ¢ and their
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Figure 1. Fractional gyroscopic correctiorS®*(:) to the classical

Dashevskaya et al.

S (1) = Sy ° x (14 CO0)

(24)

We see that the gyroscopic effect in the mean capture cross
section‘ﬁf’s(z) is not very large. We also see that RA cross
sections exceed the AC ones and tendfer 1, to FW cross
sections. We ascribe the former feature to the fact that the RA
Hamiltonian takes into account a mutual adjustment of the
collision axes and the angular momentum vector, while no such
adjustment occurs within the AC approximation. Since the RA
approximation takes into account the Coriolis (i.e., nonadiabatic)
effects with respect to the projectionjainto the collision axis,
we can say that neglect of this kind of nonadiabatic coupling
underestimates the cross sections for the energy range studied
(low collision energies). This is different from nonadiabatic
effects at higher collisions energies, where neglecting nonadia-
batic coupling overestimates the cross sectidnghe final
remark refers to the reason the gyroscopic effect in the mean

AC cq capture cross sections vs reduced angular momentum of thecapture cross section is not very pronounced. This might be

diatom. Open circles correspond $6= + and open triangles te =
—. Filled symbols correspond to AC and FW approximations.

two conjugate action variables, andz, assume the form

2

4
Mo TP Ttppil ) = — +
2+ 2= 272 — 2,17~ 7,2\ — 7,2 cosp
2,02
3@, /)* — 1
S% (20)
4p

wheres = +1 arises from the sign of the produg®. Similarly,
the reduced FW and AC Hamiltonians are

2 2
FWs . % 2, T |
g (TP gl 75) = +2p2 Tt G
s&ﬂs—l 1)
4p
and
2 2
Ao oy = 12 (Fac” 1
7]cq (ﬂp,P.LéAC)— 2 +2p2 S 4p3 (22)

related to the fact that in the averaging procedure over all the
projections ofj onto the collision axis in the configurations,
which are mainly responsible for capture, the direction of the
guantization axis (be it SF or BF axes for FW or AC
approximations, respectively) does not matter much since in
traversing this configuration the projections pfonto the
collision axis presumably do not change a lot. A similar
conclusion, but in a different context, was reached in ref 26,
where it was found, for the potential in eq 17, that the infinite
order sudden (IOS) approximation yields the capture cross
sections which are not very different from the capture cross
sections in the sudden (S) approximation. The IOS approxima-
tion is a counterpart of the AC approximation, while the S
approximation is a counterpart of the FW approximation; the
difference between them is that in the AC and FW approxima-
tions the angle variable i§ (the angle between the collision
axis and the intrinsic angular momentum, eq 18) while in the
IOS and S approximations the angle variable/ifthe angle
between the collision axis and the axis of the diatom, eq 17).
Of course, the absolute values of the cross sections for AC/FW
and 10S/S approximations are quite different.

We now dwell on the partial capture cross sections which
are associated with certain initial values of the projecti&n,
and which for the RA, FW, and AC Hamiltonians in eq222
are L&), Sy (&), and s%(Eac), respectively. The AC
cross section can be expressed analytically as

: _ 3 /
The above reduced Hamiltonians generate capture trajectories schC (Enc) = 4 [5(3§Ac2 - 1)]2 3®(S(3§Ac2 —1)) (25)

for a single reduced collision energy= 1.

For the AC approximation, the mean capture cross sectionsyhere the step® function excludes the channels that are

E{éqc's are calculated analytically and are certain numbers

0= [ 19(3E, 2 — PO — 1) i
Sy =1.249
ST =1.422 (23)

The cross sections for FW Hamiltonian and RA Hamiltonians
are calculated numerically by integration of an equation of
motion with the systematic variation of initial conditions; the
latter allows one to avoid statistical errors inherent in the Monte
Carlo method. The results of calculations f*° are sum-
marized as two plots of gyroscopic correcticBS*(:) in the
following expression fosl; ;) (see Figure 1)

classically closed for capture. The capture cross sections for
the RA and FW Hamiltonians require numerical analyses of
the capture trajectories. Some results of the analysis are
presented by four plotsi(t.&)i=o.1, Sy (tE)i=0.25 Sy (&)

vs &, and si¢"XEac) Vs &ac in Figures 2 and 3. The cross
sectionsi‘f’i(cos PBac) are given by analytical formulas (eq
25) with the vanishing portions of the graphs corresponding to
the initial conditions for which capture is not possible, that is,
Enc < (L/3Y2 and &5 > (1/3YY2 for s = + and s = —,
respectively. The “forbidden” range is also seen
S (1LE)i=0a and sy (1.&)i=o.25 With @ larger extension for a
smaller value of. This is consistent with the condition in eq 6,
implying that, with a decrease in the AC approximation
performs progressively better. We also see that even0.1
notably differs froméﬁf’*(&AC); nonetheless, this difference

in
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4.0 T T T T T T T T T a nonzero projection gfontoR. If this projection (i.e., co5p
in the potential of the FW Hamiltonian, see eq 21) at a proper

38 time moment turns out to be large enough to make the potential
30 attractive, then the colliding pair will see an effective potential
A barrier (made up of an attractive cq interaction and centrifugal
“ 25 repulsion). Occasional crossing of this barrier results in the
é— ¢ 20 capture. The interplay of these rather complicated events is
L responsible for a finite value of the capture cross sectioéﬁfor
+ 18 in the FW limit. More details of the capture dynamics can be
§D=g inferred from the behavior of the individual trajectories near

the separarix that determines the capture region in the system
phase space. The respective material can be obtained from the
authors by request.

5. Discussion

&5 Eac Since the gyroscopic effect does not change the AC mean
Figure 2. Reduced partial capture cq cross sections vs the fractional CaPture cross sections in a very pronounced way, one should
projections of intrinsic angular momentuinéac for s = +. The full consider also other reasons that could affect the charge

curve stands for analytlcaf (SAC) open circles connected by lines ~ quadrupole AC cross sections. There are two of them: quantiza-
for numencals? *(&E)mo01 and s? *(&)=025 and filled circles for tion of the intrinsic angular momentum and the influence of

sEW*(g the isotropic charge-induced dipole (called also Langevin, L)
interaction of the formU_(R) = —og¥2R* The former is
25 v T ' v T T T T v essential only for not too large values of the rotational quantum
numbers of the diatom and the latter for not too small values
20 | of the collision energy. In the spirit of the perturbation approach,
L each correction can be found by proper generalization of the
Er,,ﬂ’ fully classical AC Hamiltoniany,s, eq 22.
. 15 |- g The quantum correction for the diatom rotation is calculated
g - from the AC quantum (with respect to rotor) Hamiltonian
‘r" ol =023 | e in which the cq potential energy is written through the
s, rotational quantum numbgeand the projection quantum number
v’ W o (beginning herej and w mean the quantum numbers that
0s b a ] correspond to the dynamical variables of the intrinsic angular
a momentum and its projection onto the collision axis)
A
L L . . . . ‘,AAA 2 2 2 .
n'nu.n 01 02 03 04 05 06 07 08 09 10 77CQqACS m,.pilj,w) = To + L s So”—j(+1) (26)
2 2 i ; 3
£, Enc 20" (G- +3)p
Figure 3. Same as Figure 2 fos = —, with circles replaced by Then, the standard QAC calculations with cq potential yield
triangles.
_ _ U =50 x (1+CY) (27)
does not mar the main assumption of the AC approach: the
conservation of the projection gfonto the collision axis. It where
should be noted that the RY anisotropic interaction is the
optimum one for probing this basic AC assumption, since the CJ-Q =
onset of interaction is vary gradual and the reorientation of the ] 30w% —j + 1) ?°
j vector from the space-fixed axis to the body-fixed axis occurs  —— s————|  O[s(Bw® —j(j + 1))]
with minimal nonadiabatic effects. 2i+1:51 Q-1 +3)
Yet another interesting observation refers to the fact that the N -1
plots S (1,&)i=0.1 and 3 (1.&)i=0.25 are closer tash(Eac) 2% [0 [s(3¢ — D03 — 1))
than§ (L& )i=0.1 and quRA (t&)i=0.2510 S (Eac). This is (28)

con3|stent with the condition that the precession frequencies in
the region of capture are higher in the= + case, that is, the ~ Quantum correction coefficiean are plotted in Figure 4 for
AC approximation performs better for this case. j=z 2

With an increase im, the AC approximation performs worse The Langevin correction can be found from the AC classical
which is manifested in the shrinking of the forbidden range of Hamiltonian supplemented with the charge-induced dipole
cos B as a result of the increasing Coriolis interaction and Interaction
opening of the capture channels. Finally, in the FW limit, the

2 2
. . . .. . + a 2 3 -1
gyroscopic effe_ct is maX|_maI. It is interesting thﬁf/ _has no 7ess 70 Eacd) = To 4 1 S Eac _1 1
vanishing portions and is nonzero f§f = 0 and& = 1, q 2 20° 40° 20"
respectively. This is explained by the fact that the diatom, say (29)

for thes = + case, with its angular momentum vector directed
normally to the velocity vector (& = 0) and conserved  where a parameter in front of the scaled Langevin interaction
throughout the collision, will enter the interaction region with is 1 = o|g/Q?4?%3 EY3 with o being the polarizability of the
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0.20 —_— TABLE 1: Values of //h and c-~4 at Different
. | Temperatures for the Capture of N, by a Heavy Positive lon
0.15 . TK 1078 10°° 104 103 102
Vi 2.8 4.1 6.1 8.9 13.1
040 -2 0.01 0.02 0.05 0.1 0.24

. ] depends on its dimensionless variable (either intrinsic rotational
i guantum numbey, reduced intrinsic angular momentumor
% /f*\\\é SN ! the strength of the Langevin interactiah
0.00 a U/‘< T o By Dimensionless cross sectiosscan be translated into the
° © | energy-dependent cross sectihtemperature-dependent cross
sections[E] and rate coefficient& in conventional units

§5*(E) = B*(19QIE)**

j SREH(ELL) = Sy (B)A + C2° + C°y) + C-4)) (32)

Figure 4. Fractional quantum correctiom‘sz'i to the classical AC cq

capture cross sections vs angular momentum quantum number of the--Ac,+ GAC,+ - 2 _
diatom. Open circles correspond o= + and open triangles to |:ﬁq M= f$q (E) exp(-E/KTE dE/(KT)" =

T C(lgQ/kD**

014 - - ' KRAE(T) = VBKTImu x [She(T) O
(L+ P+ C%() + C*(2) (33)

+

0.05

Q,

C

-0.05 | .

-0.10 1 L L L 1 1 1 1 1 1 1

¢t =535
" =6.20

012

010 1 where the numerical factoB* andC* areB™ = 0.883,B~ =

1.006,C* = 0.789, andC~ = 0.898. HereCG+(7) andC-*(1)

are the functions which are obtained in the thermal averaging
006 L | of C®%() andC-*(1) and which depend on parameterand

A. The latter are defined as

T — h(J _"_ 1/2)(k-|-)—l/61u—1/2|qQ|—1/3

/7{ — (1|Q/Q2|2/3(kT)1/3 (34)
0.0 L 1 1

0.0 0.005 0.010 0.015 0.020 Since the energy dependence of parameitansl/ is very weak,
A the averaging introduces but minute changes into the functions

Figure 5. Fractional Langevin correctioqu'i(/l) to the classical AC CGiQE and CL’i(L/l)’ and one can simply pU.[tG'i.(L) = C*()
cq capture cross sections vs the reduced strength of the Langevin@dC-*(2) = C-*(1) and use the graphs in Figures 1, 4, and
interactioni. Open circles correspond to= + and open trianglesto 5 for estimating the corrections in eq 31. Note that with a
s = —; full lines represent the linear fit to numerical results with the decrease in temperature and fixed valug,athe gyroscopic
slope coefficients-* = 5.35 andc-~ = 6.20. correction increases and Langevin correction decreases. On the
other hand, with a decrease jmat a fixed temperature, the
guantum correction increases and the gyroscopic correction
decreases.

Equations 32, 33, and 34, together with Figures 1, 4, and 5
summarize the results of this study. They are valid under two
restrictive conditions: the weak effect of the Langevin interac-
tion and the condition of classical capture. The first condition
is not essential since, when the Langevin correction becomes

CL,s(l) =9 (30) higher thap the gyroscopic one, the latter can be neglected and
the resulting AC rate coefficient matches with the ACCI rate

The quality of linear approximation and the values of the Coefficients for more general types of interactions (Langevin
coefficientsc-* are presented in Figure 5. plus higher-order chargedipole intetractionsj? The second

Collecting all the corrections to the fully classical AC capture condition, /> #, defines the lower temperature limit, above
cross section for the PR chargguadrupole interaction, we ~ Which the capture event can be described classically. From Table
arrive at the following expression for the rotationally adiabatic 1, @ppropriate for b+ heavy ion collisions, we see that this
state-selected quantum-classical capture cross section thafemperature limit is about 16 K, and by comparison with
includes the effect of quantization of the intrinsic angular Figure 1, we infer that at this temperature the gyroscopic
momentum, gyroscopic effect, and weak manifestation of the COTection can be larger than the Langevin one.

Langevin interaction

C™*

0.04 b

0.02 - —

diatom. The calculation of captured trajectories for the AC
Hamiltonian in eq 29 is easy, especially so when one adopts
the parametric description of the captéféor small values of

A, the Langevin correction '&(1) to the cq cross section is
expected to be roughly linear ih (see Appendix B), so that

Sy S =5 S x (1+CHR)

Conclusion

‘g‘?;ﬁ’s(ul) = §CqAC’S(1 + C,-Q’s + C®%) + C%(4)) (31) This study falls into the category of works devoted to analysis
of trajectories in the classical capture for systems with two
Here, ECCfi are numbers (see eq 24), and each correction degrees of freedom. Earlier papers addressed the planar capture
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for the ion—anisotropically polarizable (anisotropic Langevin) Acknowledgment. Dr. Ilya Litvin acknowledges the finan-
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range repulsio?33The parameter space of the models studied Molecular Universe.

was not very wide which allowed one to get some analytical

insight into the problem. Our paper addresses three-dimensionaAppendix A. Glossary of Super- and Subscripts

capture for the chargequadrupole (cq) interaction under the ac. Adiabatic channel, fully classical (Hamiltonian, cross

additional assumption of adiabatic conditions with respect to sections, and rate coefficients)

transitions between rotational states of the diatom. In this respect,cq: charge-quadrupole (interaction, cross sections, and rate
this paper is complimentary to the earlier oA&S2 The final coefficients)

expression for the capture rate constant contains, besides thgy- Flywheel (Hamiltonian, cross sections, and rate coef-
trivial factor (QQ/ksT), three dimensionless parameters: the ficients)

rotational quantum number of the diatom (in the quantum . Gyroscopic (effect, correction)

correction to the classical cq AC rate coefficient), the reduced | . Langevin (interaction, correction)

intrinsic momentum (in the gyroscopic correction to the cq AC .
rate coefficient), and the reduced strength of the isotropic QAC: Adiabatic channel, with quantal rotation and classical
Langevin interaction (in the Langevin correction to the cq AC ' relative motion (’Hamiltonian, cross sections, and rate
rate coefficient). The assumption about the PR approximation, coefficients)

adOF?ted in this paPer’ can be requed within the same formalism, RA: Rotationally adiabatic (Hamiltonian, cross sections, and rate
provided that one is prepared to introduce one more parameter, coefficients)

which will include the rotational constant of the diatom.

However, the deviations from the cq PR approximation will

show up at higher collision energies, when the gyroscopic aAppendix B. Langevin Correction to the

correction is expected to be small. This is the reason we kept Charge—Quadrupole Capture Cross Section

the PR approximation in addressing our main goal: gyroscopic
effect in the capture.

In the capture of a rotating diatomic molecule by an ion, the
gyroscopic property of the former leads to the decoupling of
the intrinsic angular momentum from the collision axis. This
decoupling, which is ignored within the AC treatment of the
capture, is studied in this paper for classical low-energy (low-
temperature) collisions that proceed adiabatically with respect, - ues of cosp at which the cq potential nearly vanishes.
to rotational transitions in the diatomic partner and that are Defining the angular range of a very weak cq potential through
governed mainly by the first-order chargguadrupole interac- AB around cogiy = (1/3)V2, we write the correction aS A
tion (PR approximation). The gyroscopic effect manifests itself where§ is the Langevin (’:ross sectio, 0 (P/E)Y2. The
in the increase of the ACPR cross sections that tend, for Iargeva|ue of A can be estimated from the condition that the
enough intrinsic.momentjato 'Fh.e cross sections calculated_ iN increment in the cq potentiahS/p® is of the order of the
the FW approximation when is assumed to conserve its Langevin potentiali/p* at the Langevin capture distanpe~

orientation in space. The effect of the Coriolis interaction in , “r7'(3)112 |, this way, the Langevin correction to the cq cross
the mean classical capture cross sections is much weaker tha'gection will be prop’ortional t0SA8 O S()Y2 O (ol

its quantum counterpa#tfor the capture in the quantum regime. E)12012g/Q? Y3EVS, The relative correction to the cq cross
This can be explained by t_he hlgher_sensmv_lty of the capture oo iion CL is then calculated a€t O &AB/S?C ~ (B
dynamics at ultralow energies to the interaction potentials and IqQNZ3S.AB O 4, that is, CH(1) = c2 irrespectiv?a ofs. In
the Coriolis coupling. Indeed, the gyroscopic effect is respon- e ity the function€-5(1), calculated numerically, are weakly

s[ble fpr pure gttractwe chargcter of the lowest axially nona- ,,njinear and are characterized by slightly different linear fitting
diabatic potential that determines the zero-temperature Capturecoefficientschi; see Figure 5.
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