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High dimensional model representation is under active development as a set of quantitative model assessment
and analysis tools for capturing high-dimensional inpatitput system behavior based on a hierarchy of
functions of increasing dimensions. The HDMR component functions are optimally constructed from zeroth
order to higher orders step-by-step. This paper extends the definitions of HDMR component functions to
systems whose input variables may not be independent. The orthogonality of the higher order terms with
respect to the lower order ones guarantees the best improvement in accuracy for the higher order approximations.
Therefore, the HDMR component functions are constructed to be mutually orthogonal. The RS-HDMR
component functions are efficiently constructed from randomly sampled-iquiput data. The previous
introduction of polynomial approximations for the component functions violates the strictly desirable
orthogonality properties. In this paper, new orthonormal polynomial approximation formulas for the RS-
HDMR component functions are presented that preserve the orthogonality property. An integrated exposure
and dose model as well as ionospheric electron density determined from measured ionosonde data are used
as test cases, which show that the new method has better accuracy than the prior one.

1. Introduction An important concern when undertaking these explorations
is the number of experiments or modeling excursions necessary

In the chemical sciences, many laboratory experiments, . X )
to effectively learn the system input> output behavior.

environmental and industrial processes, as well as modeling ithouah simple loai hat th ber of Id
exercises, are characterized by large numbers of variables. Fof \lthough simple logic suggests that the number of runs cou

example, a petrochemical system or a protein can be composed;row exponentially with the number of input variables, broad-

of thousands species or atoms viewed as variables Proces§cale evidence indicates that the required effort often scales far

simulations are an increasingly important part of industrial more cor_nforta_bly. . .

design, and a major difficulty arises from the computational I—_hgh dimensional model representatl_on_(HDMF%F Is under
burden of the chemical kinetics calculations involved, especially @Ctive development as a set of quantitative model assessment
for petrochemical systems. The kinetics can consume as much®"d @nalysis tools for capturing high-dimensional irpuiitput

as 90% of the total CPU time in simulations employing detailed system behavior. As the_ impact of the multiple Input variables
chemical mechanisms. The full modeling of these processes foroN the output can be mdepensjefnt a_nd cooperative, HDMR
design and control purposes becomes computationally prohibi-EXPresses the outpi(x) as a finite hierarchical correlated
tive on even the largest supercomputers. Another class of UNCtion expansion in terms of the input variables= (x1, X
problems with high dimensional inputs occurs in molecular - **

modeling. Any molecular simulation, regardless of its nature,

can be viewed as establishing a functional relationship between

the physical observables (e.g., cross sections, rate constants, etcfsx) =fo 1) filx) + z fij(xi'xi) Tt

and the underlying potential energy surfaces. This relationship - 1=1==n

can be very complex and nonlinear even for few-body systems, ' z T O, ) e T f (X0 %) (1)

and the relationship generally becomes more involved for many- Ish=.<h=n

body systems. Producing a computationally efficient and ac-

curate global map of the potentiat observable relationships ~ The above expansion was introduced as a statistical ANOVA
would enable a deeper physical understanding of the dynamicaldecompositiort®*” and HDMR has developed systematic
processes involved and also provide the means to acce|era[é)ptimal procedures to construct the distinct component functions

n

molecular simulations. in t_he above_ expgnsiéﬁ'5 to meet different requirements in a
variety of scientific problem3#7.8101118s the HDMR com-
+ To whom correspondence should be addressed. ponent functions are optimally constructed to suit each applica-
iﬁgﬂce}?o”nuﬂ‘r’]?\;‘i'rtsyi-t of Science and Technolo tion, for many realistic systems only low order component
§ Envi?onmegma| and O)écupationa| Health Sciencegsy Institute. functions have significant contributions for the output. Previous
# ATK Mission Research. work®24.7.8.18ndicated that HDMR expansions truncated up to
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second order often provide a satisfactory description of the 2. HDMR with Dependent Variables
output for many high dimensional systems when the input
variables are properly chosen. Thus, HDMR can render the
originally perceived exponential difficulty of creating an input
— output map down to a problem of only low order polynomic
sampling complexity, which makes the treatment of many high
dimensional inputoutput problems feasible. These advantages
are retained even when the number of input variablés in

the t_hogsand?ﬁ: Once _the map is determi_ned for a par_ticular w(x) = 0 (x € K"
application, typically with modest computational or experimental

overhead, it can be used to replace the original system model fKn w(x) dx =1

and dynamical equations; the high efficiency of evaluating the

map permits a thorough exploration of the system physical Here,w(x) may not be separable when the variablgs are

In practice, the chosen input variablgs= (X1, X2, ..., Xn)
may not be independent. For convenience, the input variables
are normalized, i.ex € K" = {(xg, X2, ..., X)[0 < % < 1,i =
1, 2, ...,n} whereK" is ann-dimensional unit hypercube. Let
w(x) be the probability density function (pdf) for satisfying
the conditions

()

behavior. dependent. The HDMR component functions are defined as
Recently, groundwork was laid for improving the capabilities

of the HDMR technique through the introduction of random fo= Anw(x) f(x) dx (©))

sampling (RS)-HDMR, which is a practical procedure based _ _

on randomly sampling the input variables. RS-HDMR is very fi(%) = jllnflwxim(xl) f(x) dx' — f, 4)

efficient for treating high dimensional inpubutput mapping
problems and has been successfully utilized in several scientific f (x x) = [ w. (xU) f(x) dx’ — fx)—f(x)—f, (5)
modeling applications including atmospheric chemigt§# i95% ‘/:( e ' i 0
environmental metal piorgmediatiéﬁi,ntggrated exposure and  gtc where
dose studied!-*® and bio-kinetics modeling’

In the prio.r formulations of t_he HDMR component functions,. Wi(x) = f MW(Xi,Xi) dx! (6)
all input variables were considered to be independent. In this K

paper, we extend the definitions of the HDMR component W (X X)) = Wi X x1) dx’ 7
functions to treat systems whose input variables may not be 6% ﬁ(”’z (%) 0
independent. The resultant formulas for the HDMR component Wxi|xi(xi) = W(Xi,Xi)/Wi(Xi) (8)
functions are the same as the original ones except that the ) -

probability density functions are replaced by conditional prob- Wxi,»|xiyxj(X”) = W% X)W (%) 9

ability density functions, and the formulas after using the
orthonormal polynomial and Monte Carlo approximations are andx!, xi are x without the elemenk; and x, X with range
exactly the same. The formulas for the HDMR component K"1 and K"2, respectively. wyix(X), Wxixx(X!) are the
functions with independent input variables are only a special conditional pdf's ofx for a fixed value ofx;, andx;, .2 w(x,
case of the general treatment given in this paper. x3), w(x;, %;, x1) = w(x) with x written as &, x*) and &, x;, x1)

The previous introduction of polynomial approximations to to emphasize that the integration in eqs 6 and 7 are with respect
the RS-HDMR component functions violates their strictly tox'andx! only. When all of the input variables are sampled
desirable orthogonality properties. In this paper, new orthonor- independently, i.e.,
mal polynomial approximation formulas for the RS-HDMR
component functions are presented that preserve the orthogonal-
ity property. These modifications of HDMR enlarge its applica- W(x) = B wi(x) (10)
tion to different scientific problems and further improve its =
accuracy. The treatment of ionospheric electron dynamics givenihen
in this paper is an example of the new application to real
measured field data. An#hir combustion model with 8 species , n
and a nitrate-ester propellant explosion model with 59 species WX‘IX,(XI) = ﬂwk(xk) (12)
were also successfully treated by the new modified RS-HDMR =
technique and will be reported later. Additional applications in

n

k=i

physical, chemical and other scientific systems are now open i !
as well. Wy x (X7) = ﬂWk(Xk) 12)
The paper is organized as follows. Section 2 presents the k;,j

extension of the definitions of the HDMR component functions S

to treat systems whose input variables may not be independentand the formulas given in eqs-3 become

Section 3 proves that the new formulas for the RS-HDMR .

component functions are the same as the prior ones, regardless _

of whether the input variables are independent or not. Section fo= ,/;(nl_ w(%) f(x) dx (13)
4 provides new orthonormal polynomial approximation formulas r:

for the RS-HDMR component functions that preserve the _ i

orthogonality property. The mathematical proof of the orthogo- fitx) = ﬁ@,l!]Wk(Xk) f(x) ax — o (14)
nality for the new method is given in the Appendix. Section 5 ki

presents illustrations of the method to an integrated environ- n

mental exposure and dose model for trichloroethylene, as well ¢« vy — W fx) A — F.(x) — f.(x) — f 15
as for ionospheric electron density determined from measured i(6%) A”’Z!:l % 1) ) ~hi09) — o (19)
ionosonde data. Finally, section 6 contains conclusions. k=i j
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etc., which were obtained before for HDMR with independent
variables’"1! The formulas given in egs 13l5 are only a
special case of those given in egs® However, the mutual
orthogonality between two distinct HDMR component functions

fKnW(X) £, 06 %) Ty, 5,06, - ) dX =0 (16)

{igip i} = {n o 0hid
cannot be preserved for the new definitions of HDMR compo-
nent functions given in eqs-3%.

3. Polynomial Approximations of the RS-HDMR
Component Functions

The HDMR component functionf(x;), fij(x, %), ... can be
generated numerically at discrete values of the input variables
Xi, %j, ... produced from random sampling the output function
f(x) according to the weight/(x) and employing the right-hand
side of egs 3-5. Thus, numerical data tables can be constructed
for these component functions, and the approximate value of
f(x) for an arbitrary poink can be determined from these tables
by performing only low dimensional interpolation ovi(x;),

04, %), ..

Constructing the numerical data tables for the HDMR
component functions requires evaluating the multidimensional
integrals. Evaluation of the high dimensional integrals may be
carried out by Monte Carlo random samplitf@nd this method
was referred to as RS-HDMR. However, the direct determination
of all RS-HDMR component functions at different valuesef
X, ... by direct Monte Carlo integration requires a large number
of random sample¥.

To reduce the sampling effort, the RS-HDMR component
functions were previously approximated by expansions in terms
of a suitable set of basis functions, for instance, weighted
orthonormal polynomial§ ¢} as!

k

fi(x) ~ Za‘r (%) (17)
I
i (4.%) ~ ;;ﬁ?,q Pp(%) P%) (18)
m m m' B ) )
i (4.%.%9 ~ Voer P00 HX) #K%)  (19)
jk pZ‘qZ‘r: par #p q
wherek, I, I', m, mf, andm" are integersq,, B}, andy}, are

constant coefficients to be determined, and the polynorfigis
possess the weighted orthonormality properties:

Lowx) ¢ix)dx=0 forallr,i  (20)
folwi(>q)[cp‘r(xi)]2 dx=1 forallr,i (21)
L) ghx) i) dx =0 p=q  (22)

i.e., they have a zero mean and unit norm and are mutually
orthogonal with respect to the weight(x;). In most cases, to
achieve satisfactory accuracy, using omiy(x), r < 3, is
sufficient.

By using the formulas in eqs 719, eq 1 can be expressed
as

Li et al.

n k I
f(x) ~ g +§121a1 ¢r(x) + 2 ZZﬂgq Pp%) Px) +
1=1r= =1<J=np=1lg=

m m m’

DIPYY;

The coefficientsa,, Bl vpq - can be determined by using
the weighted orthonormality properties {gp} combined with

the Monte Carlo integration approximation as follows:

ijk

Vi PX) PLX) @r6) + ... (23)

o = [ w(x) %) ¢i(x) dx =
S 06) W, (%) () ()

. 1N .
= [ W) ) () cx ~ N;f(x“’) P (24)
b= oo (6.%) £ (%) @h(x) (%) dx o
= LW 06.) Wi OO @,(%) )
= [ W09 T(X) (%) @) dx
1N . .
~ 210 506 724°) (25)

PH = Jo S S35 050 )
@405) @r%) dx; o dx,
) 09 @) @0%) @
(%) dx

= ﬂnWijk(Xi,Xj,Xk) Wx”kwxi,xk(xijk

= [ W09 (x) @) @) @r(x) dx

10 . .
2 ) o) gl (26)

whereN is the sample size anx® is the sth sample. These
formulas are exactly the same as those for the systems whose
input variables are independédi As the sample was taken
according to the weighiv(x), the advantage of eqs 226 is
thatw(x) does not need to be known explicitly. This feature is
especially useful for cases when the data is drawn from
industrial, biological, environmental, etc. circumstances where
the w(x) is likely not known.

Equations 24-26 were obtained by using the orthonormality
property of{¢}. However, when Monte Carlo integration is
employed, a small, but significant error is introduced:

. N 4
Jrwe) e o~ 5 i) =g =0 (=1.2,..)
. 27)
) N )
JomO 01 85~ 1S T = 6 =1
(r=1,2,..) (28)
_ _ N _ _
Lo W) (%) i) o ~ N2 ) 7 47) = 0= 0
(p= ) (29)
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here&, andy,,, are small numbers, but not equal to zero, ghd < i o ok
are close to, but not equal to, unity; the values of these errors fi (. %.%) ~ Y [a™ ¢ (x) + o™ ¢l (x) + o™
depend on the sample used. The smaller the sample size, the r=

larger the violation of orthonormality, which may cause errors L i i J. Gikoik i K

in the HDMR expansion. To reduce this erroptimalweighted @ (%] + ZZ[ﬁpq Pp(%) @) T Bpg” Pp(%) Pq(X) +
orthonormal polynomials for different samples were defined as p=la=

follows:'* ik _j K <. Ok i i k
_ ba - Pp(%) Pa(x] + Z‘Zl > Voar  Pp%) #o%) ¢r%)
P1(%) = 8 + & (30) S (36)
PN
@2(%) = bx” + byx + by (31) etc., where the basigp} for approximating the lower order
: 3 ) RS-HDMR component functions is always a subset of those
P3(%) = €%~ + €+ €% + ¢y (32) for the higher order ones. Notice that the bgsi§ given in

o ) ] eqs 34-36 contains all the corresponding baig} given in
etc., where the coeffm@nﬂm a, bo, ..., c3 are determined in egs 17-19. Therefore, the basé} given in eqs 3436 are
such a way that for a given set of random samples (generatedreferred to agxtended baseand those in eqs 1719 are called
by wi(x)) 3:[(§)? + (& — 1F] + Zp<q(n,g? is minimized.  nonextended bases
This implies th_at_the we|ght_ed orthonormality property is forced Using eqs 3436 the mutual orthogonality of the different
to be best satisfied for a given set of data. _ order approximate RS-HDMR component functions can be
Qp'umal we|ghte.d orthonormal polynomials fo.r the single guaranteed when the coefficients, f, ¥} are obtained by
variablex best sat|5fy the Welghted or'thonlormallty property, stepwise least squares regression. The details of this technique
but the Monte Carlo integration approximation of the integrals 5.4 its mathematical proof are given in the Appendix.
with more variables (e.g., the produafs(x) ¢q(x) (i = j)) Using the formulas in eqs 3436, the third order RS-HDMR

cannot guarantee the weighted orthonormality property for any g, yansjon for am-variate functionf(x) can be expressed as
sample size. Therefore, even if optimal weighted orthonormal

polynomials are used, the RS-HDMR component functions with nok n n
different variables will generally still not be strictly orthogonal, ¢,y o £ + O § i oM i () +
especially for small sample sizes. The material below addresses( )~ To ;r: (@ J; ' N o e

this problem. j=i j k=i
I n
4. Orthogonality of RS—HDMR Component Functions z ZZ(ﬂpq(o)” + Zﬁg{"‘)")qo'p(&)qa{q(x‘-) +
The violation of orthogonality pointed out above diminishes 1ErIEeT E;J
the accuracy of the RS-HDMR expansion. In this section, new m m o o _
orthonormal polynomial approximation formulas for the RS- z ZZ Voar K@) @) @) (37)
HDMR component functions are presented. The basis functions 1<i ST=k<np=1G=11=

{@} used for the low order RS-HDMR component functions
are always subsets of those for the higher order ones. The newAfter combining all the coefficientéal}, {5}, respectively, the
orthonormal polynomial approximations for the RS-HDMR final number of constant coefficients is the same as that for the
component functions guarantee that the different order ap- truncated third order RS-HDMR expansion given in eq 23.
proximated RS-HDMR component functions are mutually
orthogonal when the Monte Carlo integration approximation is 5. ||lustrations
used for any sample size.

The HDMR component functions are optimally determined ~ Two examples will be used to illustrate the new method

from zeroth to higher orders in a step-by-step fashion described in section 4 and the Appendix. The first example is
an integrated exposure and dose model where the input variables
f(x) ~ f, + O G CI R (33) are sampled independently; i.e., the weighi) is known and
separable. For the second example, ionospheric critical frequen-
wheref® denotes the collection afth order HDMR terms. cies are determined from ground-based ionosonde measure-
The sufficientcondition forf® to be orthogonal td0(j < i) ments, which may not be independent as input variables. In this
is that the subspace spanned by the basis functiofi® if a case the distribution/(x) of the inputs was not explicitly known.

normal subspace of the subspace spanned by the basis functions 5.1. Application to an Integrated Exposure and Dose

of f. To satisfy the condition, the RS-HDMR component Model. An integrated exposure and dose model was previously

functions can be approximated by orthonormal polynonfials applied to test the correlation method to determine the RS-

as follows HDMR expansion coefficients given in eq 28Here the same
model will be used to test the difference between employing

i eqgs 23 and 37. The model was developed for the study of

~ ©) _i
fi(x) ~ Zar @r(%) (34) multiroute residential human exposures to trichloroethylene
= (TCE) present in tap water. It incorporates dynamic microen-
k vironmental and pharmacokinetic models for the release of TCE
fi (. %) ~ [agij)i (pir(xi) + aﬁ‘i)l' (pjr(xj)] + from water into air considering different rooms in the home,
= the activities of individuals, and the physiological uptake

Lo o ) processes for three exposure routes (ingestion, inhalation, and
ZZ,B;%)” Pp(%) @(%) (35) defrrlnfll absorption). The details of the model can be found in
P=10= ref 11.
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TABLE 1: Input Variable Ranges and Parameter

Li et al.

TABLE 2: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 23 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with
Different Sample Sizes and a Second Order Orthonormal
Polynomial Approximation for the RS-HDMR Component

range
lower upper
input bound bound
age (yeanx 15 80
TCE concentration in tap water (pph}, 0.001 0.5

Functions?

data portion (%)

shower stall volumen(®), xs 9 15

used data

test data

drinking water consumption rate (L/day), 0.8 2.4 ) - - - -
shower flow rate (L/min)xs 7.7 38.3 sample siz&\ rel error first second third first second third
shower time (min)xs 5 30 (20000— N) (%) order order order order order order
. . 9500 10 312 610 786 30.1 544 50.9
The model output of interest(x), is the total body burden (8500) 20 502 77.0 902 492 721 689
of TCE accumulated after one month of continuous exposure 1000 5 16.3 455 60.8 159 425 490
via inhalation, ingestion and dermal contact. Seven input  (9000) 10 300 656 786 300 625 693
variables are selected from the integrated exposure and dose 2% ?517 37—7-% %95-% 51%19 Z%f; %%56
model. The ranges spanned by these seven input variables are ' : : : : ;
. . . . (8500) 10 308 689 829 299 669 770
shown in Table 1. The first four input variables Xz, X3, Xa 20 50.6 837 915 502 810 873
have a uniform distribution, and the last three input variables 2000 5 16,5 50.1 659 153 48.8 615
Xs, X6, X7 have an asymmetric triangular distributiéin. (8000) 10 309 699 827 297 69.6 793
Ten thousand random samples>ofind the corresponding 20 505 824 903 504 821 884
values of the outpu(x) were obtained from the model according 3000 5 164 559 728 152 538 700
. n . . (7000) 10 308 726 849 299 719 834
to the specified pdfvv.(x)' = .|'|i=1 Wi(?q). Figure 1 gives 20 508 828 914 506 824 904
examples of the data distribution f§k) with respect to the two 5000 5 16.4 55.0 757 159 549 74.0
distributed input variableg; andxs. Note thatx, is a discrete (5000) 10 301 725 857 299 717 855
20 50.8 829 915 50.2 827 913

variable, and the results fé{x) correspond to samples over all
of the seven input variables. The uniform and triangular

most of the datd(x) have values less than 0.5.

a Orthogonality of the HDMR component functions is not assured
distributions can be observed to have a distinct influence, and by this procedure.

The nonuniform RS-HDMR methodology was used to thonormal polynomials, i.ek, I, 1’, m, m/, m" = 2) to form an

construct a third order RS-HDMR expansion (whose component efficient fully equivalent operational model (FEOM) for the
functions were approximated by second order weighted or- above integrated exposure and dose model to relieve the
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Figure 1. Data distributions for the integrated exposure and dose model
with respect to the normalized uniformly distributed variakieand

the triangularly distributed variabbe.

computational burden of complex mechanistic assessment. Once
the RS-HDMR component functions are determined, the result-
ant approximation fof(x) serves as a FEOM.

Stepwise least squares regression was used to determine the
expansion coefficients given in eqs 23 and 37 for different
sample sizes (500, 1000, 1500, 2000, 3000, 5000). The accuracy
of the FEOM was calculated for the data used to construct the
RS-HDMR expansion (referred ased datgaand the remaining
data of the 10000 points (i.e., 9500, 9000, 8500, 8000, 7000,
5000, denoted a®st datd. The accuracy is represented by the
portion of the data whose output values given by the FEOM
have relative errors not larger than 5, 10 and 20%. The results
are given in Tables 2 and 3 where the “data portion” gives the
percentage of the data whose relative errors are not larger than
a given value.

Tables 2 and 3 show that the third order RS-HDMR given
by eq 37 has better accuracy than that given by eq 23 for all
sample sizes. When the sample size is larger than 2000 points,
the accuracy of eq 37 for the used data and test data is almost
the same. This implies that from using omy2000 data a
reliable FEOM given by the RS-HDMR expansion can be
constructed, which is valid over the entire input domain. This
demonstrates that orthogonality of the different order RS-HDMR
component functions is important in the construction of the RS-
HDMR expansion, and using the extended bases given in egs
34—36 and stepwise least squares regression can guarantee the
orthogonality of the different order RS-HDMR component
functions.

From Figure 1 one can see that many data have very small
internal dose values. For these points, even if the absolute errors
of the FEOMs are quite small, their relative errors can be very
large. In this case, relative error does not give useful information.
Therefore, we set a threshold value of 0.3 mg for the internal
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TABLE 3: Relative Errors of Different Order RS-HDMR TABLE 4: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 37 Whose Expansion Coefficients Expansions Given by Eq 37 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with Were Obtained by Stepwise Least Squares Regression with
Different Sample Sizes and a Second Order Orthonormal Different Sample Sizes and a Second Order Orthonormal
Polynomial Approximation for the RS-HDMR Component Polynomial Approximation for the RS-HDMR Component
Functions? Functions (Threshold = 0.3 mg}
data portion (%) data portion (%)
used data test data used data test data
sample sizéN rel error first second third first second third sample sizéN rel error first second third first second third
(10000— N) (%) order order order order order order (10000— N) (%) order order order order order order
500 5 144 532 948 157 47.1 60.2 500 5 474 852 1000 499 826 87.6
(9500) 10 312 714 972 301 650 764 (9500) 10 61.2 97.0 100.0 61.6 93.0 954
20 50.2 816 984 466 779 86.5 20 754 984 100.0 758 97.2 98.0
1000 5 16.3 539 857 159 505 783 1000 5 48.1 84.2 99.6 499 833 0954
(9000) 10 30,0 728 926 299 688 858 (9000) 10 58.3 95.0 100.0 60.8 94.3 98.3
20 51.1 829 964 50.1 80.2 922 20 743 98.6 100.0 754 97.7 989
1500 5 157 56.7 832 155 533 776 1500 5 48.1 86.1 995 49.0 852 97.0
(8500) 10 308 727 909 299 706 87.6 (8500) 10 59.7 95.0 99.7 60.2 94.8 98.9
20 50.6 823 951 50.2 813 932 20 74.1 98.5 99.7 75.2 98.0 99.1
2000 5 16,5 55.1 808 153 529 76.8 2000 5 499 855 99.2 48.8 84.1 96.8
(8000) 10 309 721 895 29.7 713 88.1 (8000) 10 60.7 95.2 99.6 59.8 94.3 98.8
20 50.5 819 948 504 819 934 20 75.0 98.2 99.6 748 979 99.0
3000 5 16.4 56.5 827 152 547 805 3000 5 49.6 86.6 99.0 48.8 855 975
(7000) 10 308 725 908 299 715 897 (7000) 10 60.8 95.2 99.6 60.2 94.7 99.0
20 50.8 825 952 50.7 819 943 20 75.3 984 99.7 755 98.0 99.1
5000 5 16.3 56.1 815 159 554 80.2 5000 5 49.7 85.9 98.7 49.3 86.1 97.9
(5000) 10 301 723 899 299 714 895 (5000) 10 60.5 945 99.3 604 944 99.0
20 50.8 824 944 50.2 819 941 20 75.4 979 99.3 754 979 991
aOrthogonality of the HDMR component functions is assured in aOrthogonality of the HDMR component functions is assured in
this formulation. this formulation.

; TABLE 5: Relative Errors of Different Order RS-HDMR
dose. When the value of a datum is not larger than the threSh0|dEXpanSi0nS Given by Eq 23 Whose Expansion Coefficients

and the absolute value calculated by the FEOMs is not larger \yere Obtained by Stepwise Least Squares Regression with a
than the threshold as well, then we define the FEOMSs as giving Second Order Orthonormal Polynomial Approximation for

the correct answer. The threshold value of 0.3 mg is chosenthe RS-HDMR Component Function$

because it is smaller than the 30 day referr%?ce dose (RfD) of a data portion (%)

standard 70 kg male for assessing health ri¢kdherefore, we

added the portion of the data satisfying this condition to the S;'Z‘;ﬁ’\'le o used data test data
data whose values are larger than the threshold and with 5, 10 used data error first second third first second third
and 20% relative errors as a representation of the accuracy. Theyytput (test data) (%) order order order order order order
resultant accuracy for eq 37 is given in Table 4 and is very

. 3000 5 684 77.8 813 563 620 63.9
satisfactory. foE  (5711) 10 949 97.4 983 886 91.0 914
5.2. Application to Measured lonosonde DataRS-HDMR 20 99.7 99.7 99.8 99.0 989 98.7
has been tested using ionosonde data measured at Huancayo 3000 5 364 418 453 2900 326 310

; o foF2 (6521) 10 63.8 731 77.0 542 57.7 57.9
Peru, between the years 1957 and 2000. An ionosonde transmits 20 936 951 970 861 867 867

radio wave signals that are reflected when the transmitted
frequency is equal to the local plasma frequency in the ®Orthogonality of the HDMR component functions is not assured
ionosphere. Electron densities as a function of altitude at a givenPY this procedure.

time are calculated from these returned frequencies. The o o )
ionospheric electron density is characterized by the “critical night variations within a day than it does at the same hour from

frequencies” returned from the peak density in the E-region day-to-day, so separate RS-HDMR expansions were constructed
(foE), and the peak density in the F-regiofoR2) of the at each hour of the day, eliminating the need to use time-of-
ionosphere. These critical frequencies are the RS-HDMR day as an RS-HDMR input. The values of the outputs at anytime
outputs, and there are six measured geophysical input paramWithin a day are obtained by simple interpolation. The sixth
eters: year, day-of-year, time-of-dafs 7 Kp, andDst Here input, the previous day's measuréoE or foF2, is a lagged
F107represents the 10.7 cm solar flux index, which is a surrogate data value that is necessary to eliminate large errors in the RS-
index for solar output: high values Bfo;occur during a solar ~ HDMR expansion coefficients caused by autocorrelation due
maximum, and low values occur during a solar minimugp. to the time series nature of the data. Traditionally, output is
is a 3-hourly index of the solar particle radiation derived from treated as linearly dependent on its lagged value, but RS-HDMR
geomagnetic field variations measured at 13 subauroral loca-treats it as an arbitrary nonlinear function.
tions.Dstis also an index based on the geomagnetic field, which  The results for the data at one time-of-day, 12 UT (universal
is derived from mid- and low-latitude sites and monitors time), are given below. The weight functiarfx) is not known,
occurrences of magnetic storms. but data analysis shows that the input variables are dependent;
The critical frequenciefoE andfoF2 follow the 11 year solar  i.e., w(X) is not separable. The relationship between the input
cycle variation seen in th€i7 solar flux measurements, so  year andrio 7is illustrated in the upper panel of Figure 2, and
the input variable “year” is transformed to “year (year — the relationship between the inpu{p and Dst is plotted on
1957 mod 11)". The ionosphere exhibits much greater day-to- the lower panel.
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Figure 2. lonosonde data distribution. The dependences between Figure 3. Comparison between the measured used data and the second

normalized input variables: year akdo 7 Kp andDst for the data at
12 UT.

TABLE 6: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 37 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with a
Second Order Orthonormal Polynomial Approximation for

the RS-HDMR Component Function$

data portion (%)

used data test data

sample

sizeN rel

used data error first second third first second third
output (test data) (%) order order order order order order

3000 5 684 833 86.7 563 721 70.0

foE (5711) 10 949 978 985 88.6 935 921
20 99.7 99.7 99.7 99.0 988 98.1

3000 5 364 454 482 290 36.1 350

foF2  (6521) 10 638 76.2 794 542 652 625
20 936 961 975 86.1 909 895

@ Orthogonality of the HDMR component functions is assured by
this procedure.

Despite the unknown distributiom(x), these data can be treat-

order RS-HDMR approximations fdoE and foF2 in the ionosonde
illustration.

by eq 23 for both used data and test data. This implies that eq 37
has better interpolation and extrapolation accuracy. The first-
order RS-HDMR expansions for both equations are the same, so
they have the same accuracy. These results further establish that
a system with a nonseparable weiglfk) can be treated in the
same way as a system with independent input variables, and ortho-
gonality of the different order RS-HDMR component functions

is important in the construction of the RS-HDMR expansion.

Comparisons between the measured data and the RS-HDMR
approximations ofoE andfoF2 for used data and test data are
given in Figures 3 and 4. The accuracy is satisfactory, indicating
that a FEOM built with data from one solar cycle (approximately
11 years of data) can be constructed to reliably predict the values
of foE andfoF2 for the following two solar cycles (about 20
years).

Finally, a comparison of the results in Tables 4 and 6 shows
that the exposure and dose model produced a more accurate
FEOM than that arising from the ionosonde data. Comparing
different physical examples is difficult, but a basic distinction

ed by eqs 23 and 37 because the sample is taken with respeci, these two examples is that the exposure and dose model is

to w(x), and the Monte Carlo approximations do not explicitly

built around inputs that are error free whereas the ionosonde

needw(x). The third order RS-HDMR is constructed with the  qata have errors which are not explicitly characterized. The latter
first 3000 data points (between the years 1957 and 1968), grrors are likely a major contribution to the quality difference

referred to auused dataThe RS-HDMR approximations are
tested on the subsequen6000 data points (between the years
1968 and 2000), referred to &sst data The accuracy of the
RS-HDMR expansions acting as FEOMs foE andfoF2 (the
total numbers of the data féoE andfoF2 are 8711 and 9521,
respectively) are given in Tables 5 and 6 for eqs 23 and 37.

between the FEOMs for the two examples. Nevertheless, the
ionosonde example shows that an effective FEOM can be
generated from real data including where there is correlation
between the input variables.

6. Conclusion

Tables 5 and 6 show that second and third order RS-HDMR  The prior definitions of the HDMR component functions are
expansion accuracies given by eq 37 are better than those giverextended in this paper to treat systems whose input variables
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Figure 4. Comparison between the measured test data and the second order RS-HDMR approximdo&enfifioF2 in the ionosonde illustration.
The prediction accuracy for years 1968988 data is satisfactory.

may not be independent. The resultant formulas for the HDMR functions used for the low order RS-HDMR component func-
component functions are the same as the original ones exceptions are always subsets of those for higher order ones. By
that the probability density functions are replaced by conditional utilizing stepwise least squares regression, the new orthonormal
probability density fur]ctlons, and the formulas af@er using the polynomial approximations of the RS-HDMR component func-
orthonormal polynomial and Monte Carlo approximations are tions guarantee that the different order approximated RS-HDMR
exactly the same. The formulas for the HDMR component component functions are mutually orthogonal for any sample
functions with independent input variables are only a special sjze when the Monte Carlo integration approximation is used.
case of the general treatment. The HDMR component functions e tests for an integrated exposure and dose model and
are originally defined to be mutually orthogonal. The orthogo- 644 red ionosonde data demonstrate that the new method has
nality of the different order HDMR component functions better accuracy than the prior one

guarantees that a higher order truncated HDMR expansion '

always has better accuracy than any lower order one. RS-HDMR
is a practical approach within the family of HDMR formulations. _ Acknowledgment. We acknowledge support from the Army

The component functions of RS-HDMR are constructed from Research Office gnd the U.S. Environmental Protection Agency,
randomly sampled inputoutput data by the Monte Carlo under Cooperative Agreement No. EPA CR-827033 to the
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size, the different component functions of RS-HDMR, as Work was also supported by Air Force AFRL/VS contract
originally formulated, are not strictly orthogonal after they are nhumber F19628-02-C-0051. lonosonde data was obtained from
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paper, new orthonormal polynomial approximation formulas for National Geophysical Data Center (NGDC), NOAA Satellite
the RS-HDMR component functions are presented. The basisand Information Service (http://spidr.ngdc.noaa.gov/spidr).



2482 J. Phys. Chem. A, Vol. 110, No. 7, 2006

Appendix

A. New Basis FunctionsWhen the basis functiof{sp} used
for the low order RS-HDMR component functions are subsets

of those for the higher order ones, and the expansion coefficients
{a, B, v} are determined by stepwise least squares regression,

then the new orthonormal polynomial approximations for the
RS-HDMR component functions guarantee that the different
order approximated RS-HDMR component functions are mutu-
ally orthogonal upon using the Monte Carlo integration ap-
proximation for any sample size. The proof is given below.

The HDMR component functions are optimally determined
from zeroth to higher orders in a step-by-step fashion

f(x) = fy+ fO+ O + {3 (38)

wheref() denotes the collection éth order HDMR terms. Such
systematic approaches to function approximation are quite
common. Consider the Hilbert spaldeof continuous functions
where a set of linearly independent eleméghntsg vy, ..., v} €
H are selected to form the basis for a subspaceH. Suppose
that the first order approximation for a model outpuf(x) is
of the form

ny

v=">»Y by (39)

whereb; are constant coefficients. To get better accuracy, we
wish to find the second-order approximatigne H which is

Li et al.

k
£, () ~ 3 [e @i (%) + o @l ()] +

B [
ZZﬁpq“””ch(m @h(x) (46)
p=1g=

k

000~ Z 10 0]+ 081 ) + g

I
O+ 3 3 B 7hx) 7206) + o™ 75(x) 95 %) +
p=10=

m m m'
U g1 () @] + pzqz Voar € P04) 4 04) @, (X
(47)

where the basi§ ¢} for approximating the lower order RS-
HDMR component functions is always a subset of those for
the higher order ones. Then the mutual orthogonality of the
different order approximated RS-HDMR component functions
can be guaranteed with properly chosen coefficiéntss3, y}.

B. Second-Order Expansion.The remaining task is to
determine all the coefficients in eqs487 so that the different
order orthonormal polynomial terms, and consequently, different
order approximated RS-HDMR component functions are mutu-
ally orthogonal.

SupposeN random samplegx®, x@, ..., xN} for x are
generated according to a given pafx). The inner product of

consistent with a given set of data and is as close as possible 9o functionsz(x) andr(x) is defined as

v. Let

g=v+tr (40)
wherer is in a subspacR = {r, r, ...,y } (N > ng) of H. The
bestg is provided byr that is orthogonal t@.2* The sufficient
condition forr to be orthogonal ta is thatV is a normal
subspace oR, i.e.,

VCR (412)
In this caseR can be decomposed as
R=Veo V- (42)

whereV® = {0} is the orthogonal complementary subspace of
Vin R, and one can always find me V" orthogonal tov.
Similarly, we can consider the third-order approximation

g=utov+r (43)
and the sufficient condition to find the besandr for a given
uis

UcVcR (44)
whereU andV are subspaces spanned by the basgsuy, ...,
Un} and{v1, v, ..., vnt (Nr > N2 > y). In this casey, v, r can
be mutually orthogonal.

To satisfy the condition given in eq 44, the RS-HDMR

component functions can be approximated by orthonormal
polynomials{ ¢} as follows

k

fi(x) ~ Zlar“’)‘fpi(&) (45)

N

:E () ©
(000 109) = 15 o) 1)

=

(48)

Let u(x), r(x) represent the collections of the first and second-
order RS-HDMR component functions, respectively. Tugx),
the second-order RS-HDMR approximationfff) — fo, is

gx¥)=v(x) +r(x) =f(x) — f, Oxex®, x@, .. xV) (49)

with

Ny

ox) =Y by(X)

(50)

N

r(x) =

ari(x) (51)

where;i(x), ri(x) are first and second order RS-HDMR terms
approximated by the orthonormal polynomiéds} given in egs
45—46. The basi{ri(x), ra(x), ..., rn(x)} is composed of all
the elements and their possible product§ @f with one and
two variables. A vy, vy, ..., vn,} is @ subset of r1(x), ra(x), ...,
rn(X)}, we arranggr;} in the ordeq v1, vo, ..
oo M}

Consider the inner products

- Unyy rn1+1, rn1+2,

(ri(), 9(x)) = (). f(x) = f) =di (i =

1,2,..n) (52)

Substituting eqs 4951 into eq 52 yields
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(ri(x), ) by(x) + ) ari(x)) =
; 1Y ;al j

(19, ) by(x) + (ri(x), » ari(x)) =d (53)
JZ 1Y) ]Zal i

Equation 53 may be represented in matrix form as
Bb+ Aa=d (54)

whereAis an @, x n;) symmetric nonsingular matrix with the
(i, j)-entry

Ay = (ri(x), ri(x))

Bis an @ x n;) rectangular matrix with with thei (j)-entry

(55)

B; = (ri(x), 3(x)) (56)
and
a=(a,a, ...a,)" (57)
b= (b, by, ....b,)" (58)
d=(dy, dy, ... d)" (59)

Because the firsh; elements of r} are{u}, the matrixB is
just the firstn; columns of the matriXA.

If r(x) is chosen fronVY, thenr(x) is orthogonal tav, i.e.,
r(x) is orthogonal to the basix}:

(@i(x), r(x)) = (i), Zajf;(x)) =0 (=1,2..n) (60)
=

The above equation may also be represented in matrix form as

B'a=0 (61)
whereBT is the transpose d8.
Combining eqgs 54 and 61 gives
A B _|d
BT ollb - 0] (62)

To attain a better understanding of eq 62, we consider eqs 54

and 61 separately. Becausés nonsingularA—1 exists. AsBT
is the firstn; rows of A, then
B'A'B=[l,[0]B=8B (63)

wherely, is the n;-dimensional identity matrixQ is the @ x
(nr — ng)) null matrix, andB is an {1 x n;) matrix composed
of the first n; rows of B and it is also the submatrix oA
composed of the elements Afin the firstn; rows and firstn;
columns.

Multiplying both sides of eq 54 b"A~! from the left and
using eqgs 61 and 63 gives

B'A'Bb+B'A'Aa=B'Ad
Bb +B'a= [1,/0]d
Bb=d (64)

whered is the firstn; elements ofd. Note that eq 64 is the

J. Phys. Chem. A, Vol. 110, No. 7, 200483

equation to determine the coefficients of the first-order
approximated RS-HDMR component functions by least squares
regression.

The coefficientsa for the second order approximated RS-
HDMR component functions can be obtained by solving the
following equation

Aa=d—Bb
=d-BBd (65)
which gives
a=A'd-A'BBd
0 DR
— A [Om]sld
=Ald- [E_la] (66)

Equation 66 is the least squares solution for the coefficiants
of the second order approximated RS-HDMR component
functions after substituting in the resultant coefficiemisf the
first-order functions.

Combining all these results, we can rewrite eq 62 as
A Bl|a d
[ Bllb] = [a ©7)
Equation 67 implies that to construct orthogonal first and second
order approximate RS-HDMR component functions, the coef-
ficients b and a should be sequentially determined by least
squares regression.

The orthogonality between(x) andr(x) given by eq 61 can
be proved using eqs 63 and 66 as follows:

B'a=B'A'd - B'A'BB™d
=[I,|0]d — BB™'d
=d—-d=0 (68)

C. Third-Order Expansion. Now letg(x) represent the third
order approximated RS-HDMR expansionf(f) — fo, i.e.,

g(x) = u(x) + v(x) + r(x) =f(x) — f,
Ox e(x®, x@, ... xM (69)

with
u(x) = Zlciui(x) (70)
o0 = 3 b0 (71)
r(x) =) arix) (72)

whereu(x), »(x), andr(x) are the collections of first, second
and third order RS-HDMR component functions approximated
by the orthonormal polynomialksp} given in eqs 4547. The
basis{ri, ra, ..., ry} is all the elements and their possible
products of{ ¢} with one, two and three variables, and the
elements of ui}, {v}, {r;} are arranged as
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{up, uy -oup b

{Uy, Upy oy Uy U 10 Un s oo U}

{up Uy, ..y Uy Unpttr Unt2s oo Unp Poras Tpon oo rnr}

Consider the inner products
(ri(x), 9x)) = (ri(x), f(x) —fp)=d.  (i=1,2,...n
and substituting eqs 7072 into eq 73 yields

) (73)

(ri(x), f(x) — fo) = (), Z U(X)+ b,v,(X)+ Ze,f(x))

= (i), » qu(x) + (r(x), » by(x)) +
; 7% J; Y

), Yare) =d (74)
;61 j

Equation 74 can be represented in matrix form as
Cc+Bb+Aa=d (75)

whereA is an fiy x n)) symmetric matrix;B andC are @ x
ny) and @, x ng) rectangular matrixes, respectively; and

a=(a, a, ..., aﬂr)T (76)
b= (b, by, ....b,)" (77)
c=(C1 Cy - Cy)' (78)
d=(d,d,,...d,)" (79)

The orthogonality of the different order terms is given by the
following equations. BecauseX) is orthogonal toU andV,
r(x) must be orthogonal to their bases, i.e.,

(U(x), r(x)) = (U(x), Za,-f,-(x)) =0 (=1,2..n) (80)
=

(=12 ..n) (81)

((x), r(x)) = (%), » ar(x)) =0
v Y ;ay |

Similarly, if 2(x) is chosen fronUY, theny must be orthogonal
to the basis obJ, i.e.,

(u(x), v(x)) = (u(x), ijuj(x)) =0 (=12 ..n) (82
£

The above equations may also be represented in matrix form

as
C'la=0 (83)
B'a=0 (84)
D'b=0 (85)

whereD is an fi, x n;) rectangular matrix. Note that all the
matrixesB, C, D are submatrixes &k because they are obtained

Li et al.

from the inner products of the orthonormal polynomial basis
functions which are all contained fr}.

Multiplying both sides of eq 75 from the left by'&* and
BTA™1, respectively, and using eqs 83 and 84 yields

C'A'cc+CTABb=CTA ™d (86)
B'A Cc+ B'A 'Bb = B'A 'd (87)
Let
Ay e Alnz l
Bpialg=| ¢ 88
A - A, (88)
A e A1”1 !
c=calc=[, 89
Ag o A (89)
A e Ay
D=BAC= An ; An (90)
2o Ay
d, =C'A =1l [0]d=(d, ...d,)"  (91)
d, =B'A'd =l [0]d=(d, ...d,)"  (92)

By using eq 85, it follows that eqs 86 and 87 reduce to

Cec=d, (93)
D'c+Bb=d, (94)

Then,
c=C (95)

n

which is the least-squares solution for the coefficientd the
first order approximated RS-HDMR component functions. Then

b=8" ld B IDC” ld

- [m]

I
w

(96)

0

This is the solution forb obtained by least squares after
substituting the resultant values ofrom eq 95.

The orthogonality betweemn(x) and(x) given by eq 85 can
be proved by using eq 96

D'b=D'8"d, - D'B'DCd,,
[In1|0] Anz - CA:CA:_lanl
dy, — dy, = (97)
The coefficient vector is obtained by
a=A%d - Bb — Cc) (98)
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