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High dimensional model representation is under active development as a set of quantitative model assessment
and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of
functions of increasing dimensions. The HDMR component functions are optimally constructed from zeroth
order to higher orders step-by-step. This paper extends the definitions of HDMR component functions to
systems whose input variables may not be independent. The orthogonality of the higher order terms with
respect to the lower order ones guarantees the best improvement in accuracy for the higher order approximations.
Therefore, the HDMR component functions are constructed to be mutually orthogonal. The RS-HDMR
component functions are efficiently constructed from randomly sampled input-output data. The previous
introduction of polynomial approximations for the component functions violates the strictly desirable
orthogonality properties. In this paper, new orthonormal polynomial approximation formulas for the RS-
HDMR component functions are presented that preserve the orthogonality property. An integrated exposure
and dose model as well as ionospheric electron density determined from measured ionosonde data are used
as test cases, which show that the new method has better accuracy than the prior one.

1. Introduction

In the chemical sciences, many laboratory experiments,
environmental and industrial processes, as well as modeling
exercises, are characterized by large numbers of variables. For
example, a petrochemical system or a protein can be composed
of thousands species or atoms viewed as variables. Process
simulations are an increasingly important part of industrial
design, and a major difficulty arises from the computational
burden of the chemical kinetics calculations involved, especially
for petrochemical systems. The kinetics can consume as much
as 90% of the total CPU time in simulations employing detailed
chemical mechanisms. The full modeling of these processes for
design and control purposes becomes computationally prohibi-
tive on even the largest supercomputers. Another class of
problems with high dimensional inputs occurs in molecular
modeling. Any molecular simulation, regardless of its nature,
can be viewed as establishing a functional relationship between
the physical observables (e.g., cross sections, rate constants, etc.)
and the underlying potential energy surfaces. This relationship
can be very complex and nonlinear even for few-body systems,
and the relationship generally becomes more involved for many-
body systems. Producing a computationally efficient and ac-
curate global map of the potentialf observable relationships
would enable a deeper physical understanding of the dynamical
processes involved and also provide the means to accelerate
molecular simulations.

An important concern when undertaking these explorations
is the number of experiments or modeling excursions necessary
to effectively learn the system inputf output behavior.
Although simple logic suggests that the number of runs could
grow exponentially with the number of input variables, broad-
scale evidence indicates that the required effort often scales far
more comfortably.

High dimensional model representation (HDMR)1-15 is under
active development as a set of quantitative model assessment
and analysis tools for capturing high-dimensional input-output
system behavior. As the impact of the multiple input variables
on the output can be independent and cooperative, HDMR
expresses the outputf(x) as a finite hierarchical correlated
function expansion in terms of the input variablesx ) (x1, x2,
..., xn):

The above expansion was introduced as a statistical ANOVA
decomposition,16,17 and HDMR has developed systematic
optimal procedures to construct the distinct component functions
in the above expansion1,3,5 to meet different requirements in a
variety of scientific problems.2,4,7,8,10,11,18As the HDMR com-
ponent functions are optimally constructed to suit each applica-
tion, for many realistic systems only low order component
functions have significant contributions for the output. Previous
work1,2,4,7,8,18indicated that HDMR expansions truncated up to
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second order often provide a satisfactory description of the
output for many high dimensional systems when the input
variables are properly chosen. Thus, HDMR can render the
originally perceived exponential difficulty of creating an input
f output map down to a problem of only low order polynomic
sampling complexity, which makes the treatment of many high
dimensional input-output problems feasible. These advantages
are retained even when the number of input variablesn is in
the thousands.18 Once the map is determined for a particular
application, typically with modest computational or experimental
overhead, it can be used to replace the original system model
and dynamical equations; the high efficiency of evaluating the
map permits a thorough exploration of the system physical
behavior.

Recently, groundwork was laid for improving the capabilities
of the HDMR technique through the introduction of random
sampling (RS)-HDMR, which is a practical procedure based
on randomly sampling the input variables. RS-HDMR is very
efficient for treating high dimensional input-output mapping
problems and has been successfully utilized in several scientific
modeling applications including atmospheric chemistry,9,13,14

environmental metal bioremediation,10 integrated exposure and
dose studies,11,19 and bio-kinetics modeling.20

In the prior formulations of the HDMR component functions,
all input variables were considered to be independent. In this
paper, we extend the definitions of the HDMR component
functions to treat systems whose input variables may not be
independent. The resultant formulas for the HDMR component
functions are the same as the original ones except that the
probability density functions are replaced by conditional prob-
ability density functions, and the formulas after using the
orthonormal polynomial and Monte Carlo approximations are
exactly the same. The formulas for the HDMR component
functions with independent input variables are only a special
case of the general treatment given in this paper.

The previous introduction of polynomial approximations to
the RS-HDMR component functions violates their strictly
desirable orthogonality properties. In this paper, new orthonor-
mal polynomial approximation formulas for the RS-HDMR
component functions are presented that preserve the orthogonal-
ity property. These modifications of HDMR enlarge its applica-
tion to different scientific problems and further improve its
accuracy. The treatment of ionospheric electron dynamics given
in this paper is an example of the new application to real
measured field data. An H2/air combustion model with 8 species
and a nitrate-ester propellant explosion model with 59 species
were also successfully treated by the new modified RS-HDMR
technique and will be reported later. Additional applications in
physical, chemical and other scientific systems are now open
as well.

The paper is organized as follows. Section 2 presents the
extension of the definitions of the HDMR component functions
to treat systems whose input variables may not be independent.
Section 3 proves that the new formulas for the RS-HDMR
component functions are the same as the prior ones, regardless
of whether the input variables are independent or not. Section
4 provides new orthonormal polynomial approximation formulas
for the RS-HDMR component functions that preserve the
orthogonality property. The mathematical proof of the orthogo-
nality for the new method is given in the Appendix. Section 5
presents illustrations of the method to an integrated environ-
mental exposure and dose model for trichloroethylene, as well
as for ionospheric electron density determined from measured
ionosonde data. Finally, section 6 contains conclusions.

2. HDMR with Dependent Variables

In practice, the chosen input variablesx ) (x1, x2, ..., xn)
may not be independent. For convenience, the input variables
are normalized, i.e.,x ∈ Kn ) {(x1, x2, ..., xn)|0 e xi e 1, i )
1, 2, ...,n} whereKn is ann-dimensional unit hypercube. Let
w(x) be the probability density function (pdf) forx satisfying
the conditions

Here, w(x) may not be separable when the variablesxi’s are
dependent. The HDMR component functions are defined as

etc., where

and xi, xij are x without the elementxi and xi, xj with range
Kn-1 and Kn-2, respectively. wxi|xi(xi), wxij |xi,xj(xij) are the
conditional pdf’s ofx for a fixed value ofxi, andxi, xj.21 w(x1,
x1), w(xi, xj, xij) ≡ w(x) with x written as (x1, x1) and (xi, xj, xij)
to emphasize that the integration in eqs 6 and 7 are with respect
to xi andxij only. When all of the input variablesxi are sampled
independently, i.e.,

then

and the formulas given in eqs 3-5 become

{w(x) g 0 (x ∈ Kn)

∫Kn w(x) dx ) 1
(2)

f0 ) ∫Knw(x) f(x) dx (3)

fi(xi) ) ∫Kn-1wxi|xi
(xi) f(x) dxi - f0 (4)

fij(xi,xj) ) ∫Kn-2wxij|xi,xj
(xij) f(x) dxij - fi(xi) - fj(xj) - f0 (5)

wi(xi) ) ∫Kn-1w(xi,x
i) dxi (6)

wij(xi,xj) ) ∫Kn-2w(xi,xj,x
ij) dxij (7)

wxi|xi(x
i) ) w(xi,x

i)/wi(xi) (8)

wxij|xi,xj
(xij) ) w(xi,xj,x

ij)/wij(xi,xj) (9)

w(x) )∏
i)1

n

wi(xi) (10)

wxi|xi
(xi) ) ∏

k)1
k*i

n

wk(xk) (11)

wxij|xi,xj
(xij) ) ∏

k)1
k*i,j

n

wk(xk) (12)

f0 ) ∫Kn∏
i)1

n

wi(xi) f(x) dx (13)

fi(xi) ) ∫Kn-1∏
k)1
k*i

n

wk(xk) f(x) dxi - f0 (14)

fij(xi,xj) ) ∫Kn-2∏
k)1
k*i,j

n

wk(xk) f(x) dxij - fi(xi) - fj(xj) - f0 (15)
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etc., which were obtained before for HDMR with independent
variables.9-11 The formulas given in eqs 13-15 are only a
special case of those given in eqs 3-5. However, the mutual
orthogonality between two distinct HDMR component functions

cannot be preserved for the new definitions of HDMR compo-
nent functions given in eqs 3-5.

3. Polynomial Approximations of the RS-HDMR
Component Functions

The HDMR component functionsfi(xi), fij(xi, xj), ... can be
generated numerically at discrete values of the input variables
xi, xj, ... produced from random sampling the output function
f(x) according to the weightw(x) and employing the right-hand
side of eqs 3-5. Thus, numerical data tables can be constructed
for these component functions, and the approximate value of
f(x) for an arbitrary pointx can be determined from these tables
by performing only low dimensional interpolation overfi(xi),
fij(xi, xj), ....

Constructing the numerical data tables for the HDMR
component functions requires evaluating the multidimensional
integrals. Evaluation of the high dimensional integrals may be
carried out by Monte Carlo random sampling,22 and this method
was referred to as RS-HDMR. However, the direct determination
of all RS-HDMR component functions at different values ofxi,
xj, ... by direct Monte Carlo integration requires a large number
of random samples.17

To reduce the sampling effort, the RS-HDMR component
functions were previously approximated by expansions in terms
of a suitable set of basis functions, for instance, weighted
orthonormal polynomials{æ} as9,11

wherek, l, l′, m, m′, andm′′ are integers,Rr
i , âpq

ij , andγpqr
ijk are

constant coefficients to be determined, and the polynomials{æ}
possess the weighted orthonormality properties:

i.e., they have a zero mean and unit norm and are mutually
orthogonal with respect to the weightwi(xi). In most cases, to
achieve satisfactory accuracy, using onlyær

i (xi), r e 3, is
sufficient.

By using the formulas in eqs 17-19, eq 1 can be expressed
as

The coefficientsRr
i , âpq

ij , γpqr
ijk , ... can be determined by using

the weighted orthonormality properties of{æ} combined with
the Monte Carlo integration approximation as follows:

whereN is the sample size andx(s) is the sth sample. These
formulas are exactly the same as those for the systems whose
input variables are independent.9,11 As the sample was taken
according to the weightw(x), the advantage of eqs 24-26 is
thatw(x) does not need to be known explicitly. This feature is
especially useful for cases when the data is drawn from
industrial, biological, environmental, etc. circumstances where
the w(x) is likely not known.

Equations 24-26 were obtained by using the orthonormality
property of{æ}. However, when Monte Carlo integration is
employed, a small, but significant error is introduced:

∫Knw(x) fi1i2...il(xi1
,xi2

,...,xil
) fj1j2...jk(xj1

,xj2
,...,xjk

) dx ) 0 (16)

{i1, i2, ..., i l} * {j1, j2, ..., jk}

fi(xi) ≈ ∑
r)1

k

Rr
i ær

i (xi) (17)

fij(xi,xj) ≈ ∑
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l

∑
q)1

l′

âpq
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γpqr
ijk æp
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k(xk) (19)

∫0

1
wi(xi) ær

i (xi) dxi ) 0 for all r, i (20)

∫0

1
wi(xi)[ær

i (xi)]
2 dxi ) 1 for all r, i (21)

∫0

1
wi(xi) æp
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i (xi) dxi )
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(xi) f(x) ær

i (xi) dx
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N
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N
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i (xi

(s)) (24)

âpq
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1∫0

1
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) ∫Knwij(xi,xj) wxij|xi,xj
f(x) æp

i (xi) æq
i (xj) dx

) ∫Knw(x) f(x) æp
i (xi) æq

j (xj) dx

≈ 1
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N
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i (xi
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1
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1

N
∑
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ær
i (xi

(s)) ) êr
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(27)

∫0

1
wi(xi)[ær

i (xi)]
2 dxi ≈

1

N
∑
s)1

N

[ær
i (xi

(s))]2 ) úr
i * 1
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1
wi(xi) æp
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1
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∑
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2476 J. Phys. Chem. A, Vol. 110, No. 7, 2006 Li et al.



hereêr
i andηpq

i are small numbers, but not equal to zero, andúr
i

are close to, but not equal to, unity; the values of these errors
depend on the sample used. The smaller the sample size, the
larger the violation of orthonormality, which may cause errors
in the HDMR expansion. To reduce this error,optimalweighted
orthonormal polynomials for different samples were defined as
follows:11

etc., where the coefficientsa0, a1, b0, ..., c3 are determined in
such a way that for a given set of random samples (generated
by wi(xi)) ∑r[(êr

i )2 + (úr
i - 1)2] + ∑p<q(ηpq

i )2 is minimized.
This implies that the weighted orthonormality property is forced
to be best satisfied for a given set of data.

Optimal weighted orthonormal polynomials for the single
variablexi best satisfy the weighted orthonormality property,
but the Monte Carlo integration approximation of the integrals
with more variables (e.g., the productsæp

i (xi) æq
j (xj) (i * j))

cannot guarantee the weighted orthonormality property for any
sample size. Therefore, even if optimal weighted orthonormal
polynomials are used, the RS-HDMR component functions with
different variables will generally still not be strictly orthogonal,
especially for small sample sizes. The material below addresses
this problem.

4. Orthogonality of RS-HDMR Component Functions

The violation of orthogonality pointed out above diminishes
the accuracy of the RS-HDMR expansion. In this section, new
orthonormal polynomial approximation formulas for the RS-
HDMR component functions are presented. The basis functions
{æ} used for the low order RS-HDMR component functions
are always subsets of those for the higher order ones. The new
orthonormal polynomial approximations for the RS-HDMR
component functions guarantee that the different order ap-
proximated RS-HDMR component functions are mutually
orthogonal when the Monte Carlo integration approximation is
used for any sample size.

The HDMR component functions are optimally determined
from zeroth to higher orders in a step-by-step fashion

wheref(i) denotes the collection ofith order HDMR terms.
The sufficientcondition for f(i) to be orthogonal tof(j)(j < i)

is that the subspace spanned by the basis functions off(j) is a
normal subspace of the subspace spanned by the basis functions
of f(i). To satisfy the condition, the RS-HDMR component
functions can be approximated by orthonormal polynomials{æ}
as follows

etc., where the basis{æ} for approximating the lower order
RS-HDMR component functions is always a subset of those
for the higher order ones. Notice that the basis{æ} given in
eqs 34-36 contains all the corresponding basis{æ} given in
eqs 17-19. Therefore, the bases{æ} given in eqs 34-36 are
referred to asextended bases, and those in eqs 17-19 are called
nonextended bases.

Using eqs 34-36 the mutual orthogonality of the different
order approximate RS-HDMR component functions can be
guaranteed when the coefficients{R, â, γ} are obtained by
stepwise least squares regression. The details of this technique
and its mathematical proof are given in the Appendix.

Using the formulas in eqs 34-36, the third order RS-HDMR
expansion for ann-variate functionf(x) can be expressed as

After combining all the coefficients{R}, {â}, respectively, the
final number of constant coefficients is the same as that for the
truncated third order RS-HDMR expansion given in eq 23.

5. Illustrations

Two examples will be used to illustrate the new method
described in section 4 and the Appendix. The first example is
an integrated exposure and dose model where the input variables
are sampled independently; i.e., the weightw(x) is known and
separable. For the second example, ionospheric critical frequen-
cies are determined from ground-based ionosonde measure-
ments, which may not be independent as input variables. In this
case the distributionw(x) of the inputs was not explicitly known.

5.1. Application to an Integrated Exposure and Dose
Model. An integrated exposure and dose model was previously
applied to test the correlation method to determine the RS-
HDMR expansion coefficients given in eq 23.11 Here the same
model will be used to test the difference between employing
eqs 23 and 37. The model was developed for the study of
multiroute residential human exposures to trichloroethylene
(TCE) present in tap water. It incorporates dynamic microen-
vironmental and pharmacokinetic models for the release of TCE
from water into air considering different rooms in the home,
the activities of individuals, and the physiological uptake
processes for three exposure routes (ingestion, inhalation, and
dermal absorption). The details of the model can be found in
ref 11.

æ1
i (xi) ) a1xi + a0 (30)

æ2
i (xi) ) b2xi

2 + b1xi + b0 (31)

æ3
i (xi) ) c3xi
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The model output of interest,f(x), is the total body burden
of TCE accumulated after one month of continuous exposure
via inhalation, ingestion and dermal contact. Seven input
variables are selected from the integrated exposure and dose
model. The ranges spanned by these seven input variables are
shown in Table 1. The first four input variablesx1, x2, x3, x4

have a uniform distribution, and the last three input variables
x5, x6, x7 have an asymmetric triangular distribution.11

Ten thousand random samples ofx and the corresponding
values of the outputf(x) were obtained from the model according
to the specified pdfw(x) ) ∏i)1

n wi(xi). Figure 1 gives
examples of the data distribution off(x) with respect to the two
distributed input variablesx1 andx5. Note thatx1 is a discrete
variable, and the results forf(x) correspond to samples over all
of the seven input variables. The uniform and triangular
distributions can be observed to have a distinct influence, and
most of the dataf(x) have values less than 0.5.

The nonuniform RS-HDMR methodology was used to
construct a third order RS-HDMR expansion (whose component
functions were approximated by second order weighted or-

thonormal polynomials, i.e.,k, l, l′, m, m′, m′′ ) 2) to form an
efficient fully equivalent operational model (FEOM) for the
above integrated exposure and dose model to relieve the
computational burden of complex mechanistic assessment. Once
the RS-HDMR component functions are determined, the result-
ant approximation forf(x) serves as a FEOM.

Stepwise least squares regression was used to determine the
expansion coefficients given in eqs 23 and 37 for different
sample sizes (500, 1000, 1500, 2000, 3000, 5000). The accuracy
of the FEOM was calculated for the data used to construct the
RS-HDMR expansion (referred asused data) and the remaining
data of the 10000 points (i.e., 9500, 9000, 8500, 8000, 7000,
5000, denoted astest data). The accuracy is represented by the
portion of the data whose output values given by the FEOM
have relative errors not larger than 5, 10 and 20%. The results
are given in Tables 2 and 3 where the “data portion” gives the
percentage of the data whose relative errors are not larger than
a given value.

Tables 2 and 3 show that the third order RS-HDMR given
by eq 37 has better accuracy than that given by eq 23 for all
sample sizes. When the sample size is larger than 2000 points,
the accuracy of eq 37 for the used data and test data is almost
the same. This implies that from using only∼2000 data a
reliable FEOM given by the RS-HDMR expansion can be
constructed, which is valid over the entire input domain. This
demonstrates that orthogonality of the different order RS-HDMR
component functions is important in the construction of the RS-
HDMR expansion, and using the extended bases given in eqs
34-36 and stepwise least squares regression can guarantee the
orthogonality of the different order RS-HDMR component
functions.

From Figure 1 one can see that many data have very small
internal dose values. For these points, even if the absolute errors
of the FEOMs are quite small, their relative errors can be very
large. In this case, relative error does not give useful information.
Therefore, we set a threshold value of 0.3 mg for the internal

TABLE 1: Input Variable Ranges and Parameter

range

input
lower
bound

upper
bound

age (year),x1 15 80
TCE concentration in tap water (ppb),x2 0.001 0.5
shower stall volume (m3), x3 9 15
drinking water consumption rate (L/day),x4 0.8 2.4
shower flow rate (L/min),x5 7.7 38.3
shower time (min),x6 5 30
time after shower in bathroom (min),x7 5 30

Figure 1. Data distributions for the integrated exposure and dose model
with respect to the normalized uniformly distributed variablex1 and
the triangularly distributed variablex5.

TABLE 2: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 23 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with
Different Sample Sizes and a Second Order Orthonormal
Polynomial Approximation for the RS-HDMR Component
Functionsa

data portion (%)

used data test data

sample sizeN
(10000- N)

rel error
(%)

first
order

second
order

third
order

first
order

second
order

third
order

500 5 14.4 39.6 59.6 15.7 36.0 32.2
(9500) 10 31.2 61.0 78.6 30.1 54.4 50.9

20 50.2 77.0 90.2 49.2 72.1 68.9
1000 5 16.3 45.5 60.8 15.9 42.5 49.0
(9000) 10 30.0 65.6 78.6 30.0 62.5 69.3

20 51.1 82.0 89.0 50.1 78.6 83.5
1500 5 15.7 47.7 65.9 15.9 46.7 58.6
(8500) 10 30.8 68.9 82.9 29.9 66.9 77.0

20 50.6 83.7 91.5 50.2 81.0 87.3
2000 5 16.5 50.1 65.9 15.3 48.8 61.5
(8000) 10 30.9 69.9 82.7 29.7 69.6 79.3

20 50.5 82.4 90.3 50.4 82.1 88.4
3000 5 16.4 55.9 72.8 15.2 53.8 70.0
(7000) 10 30.8 72.6 84.9 29.9 71.9 83.4

20 50.8 82.8 91.4 50.6 82.4 90.4
5000 5 16.4 55.0 75.7 15.9 54.9 74.0
(5000) 10 30.1 72.5 85.7 29.9 71.7 85.5

20 50.8 82.9 91.5 50.2 82.7 91.3

a Orthogonality of the HDMR component functions is not assured
by this procedure.
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dose. When the value of a datum is not larger than the threshold
and the absolute value calculated by the FEOMs is not larger
than the threshold as well, then we define the FEOMs as giving
the correct answer. The threshold value of 0.3 mg is chosen
because it is smaller than the 30 day reference dose (RfD) of a
standard 70 kg male for assessing health risks.23 Therefore, we
added the portion of the data satisfying this condition to the
data whose values are larger than the threshold and with 5, 10
and 20% relative errors as a representation of the accuracy. The
resultant accuracy for eq 37 is given in Table 4 and is very
satisfactory.

5.2. Application to Measured Ionosonde Data.RS-HDMR
has been tested using ionosonde data measured at Huancayo,
Peru, between the years 1957 and 2000. An ionosonde transmits
radio wave signals that are reflected when the transmitted
frequency is equal to the local plasma frequency in the
ionosphere. Electron densities as a function of altitude at a given
time are calculated from these returned frequencies. The
ionospheric electron density is characterized by the “critical
frequencies” returned from the peak density in the E-region
(foE), and the peak density in the F-region (foF2) of the
ionosphere. These critical frequencies are the RS-HDMR
outputs, and there are six measured geophysical input param-
eters: year, day-of-year, time-of-day,F10.7, Kp, andDst. Here
F10.7represents the 10.7 cm solar flux index, which is a surrogate
index for solar output: high values ofF10.7occur during a solar
maximum, and low values occur during a solar minimum.Kp
is a 3-hourly index of the solar particle radiation derived from
geomagnetic field variations measured at 13 subauroral loca-
tions.Dst is also an index based on the geomagnetic field, which
is derived from mid- and low-latitude sites and monitors
occurrences of magnetic storms.

The critical frequenciesfoEandfoF2 follow the 11 year solar
cycle variation seen in theF10.7 solar flux measurements, so
the input variable “year” is transformed to “year) (year -
1957 mod 11)”. The ionosphere exhibits much greater day-to-

night variations within a day than it does at the same hour from
day-to-day, so separate RS-HDMR expansions were constructed
at each hour of the day, eliminating the need to use time-of-
day as an RS-HDMR input. The values of the outputs at anytime
within a day are obtained by simple interpolation. The sixth
input, the previous day’s measuredfoE or foF2, is a lagged
data value that is necessary to eliminate large errors in the RS-
HDMR expansion coefficients caused by autocorrelation due
to the time series nature of the data. Traditionally, output is
treated as linearly dependent on its lagged value, but RS-HDMR
treats it as an arbitrary nonlinear function.

The results for the data at one time-of-day, 12 UT (universal
time), are given below. The weight functionw(x) is not known,
but data analysis shows that the input variables are dependent;
i.e., w(x) is not separable. The relationship between the input
year andF10.7 is illustrated in the upper panel of Figure 2, and
the relationship between the inputsKp and Dst is plotted on
the lower panel.

TABLE 3: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 37 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with
Different Sample Sizes and a Second Order Orthonormal
Polynomial Approximation for the RS-HDMR Component
Functionsa

data portion (%)

used data test data

sample sizeN
(10000- N)

rel error
(%)

first
order

second
order

third
order

first
order

second
order

third
order

500 5 14.4 53.2 94.8 15.7 47.1 60.2
(9500) 10 31.2 71.4 97.2 30.1 65.0 76.4

20 50.2 81.6 98.4 46.6 77.9 86.5
1000 5 16.3 53.9 85.7 15.9 50.5 78.3
(9000) 10 30.0 72.8 92.6 29.9 68.8 85.8

20 51.1 82.9 96.4 50.1 80.2 92.2
1500 5 15.7 56.7 83.2 15.5 53.3 77.6
(8500) 10 30.8 72.7 90.9 29.9 70.6 87.6

20 50.6 82.3 95.1 50.2 81.3 93.2
2000 5 16.5 55.1 80.8 15.3 52.9 76.8
(8000) 10 30.9 72.1 89.5 29.7 71.3 88.1

20 50.5 81.9 94.8 50.4 81.9 93.4
3000 5 16.4 56.5 82.7 15.2 54.7 80.5
(7000) 10 30.8 72.5 90.8 29.9 71.5 89.7

20 50.8 82.5 95.2 50.7 81.9 94.3
5000 5 16.3 56.1 81.5 15.9 55.4 80.2
(5000) 10 30.1 72.3 89.9 29.9 71.4 89.5

20 50.8 82.4 94.4 50.2 81.9 94.1

a Orthogonality of the HDMR component functions is assured in
this formulation.

TABLE 4: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 37 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with
Different Sample Sizes and a Second Order Orthonormal
Polynomial Approximation for the RS-HDMR Component
Functions (Threshold ) 0.3 mg)a

data portion (%)

used data test data

sample sizeN
(10000- N)

rel error
(%)

first
order

second
order

third
order

first
order

second
order

third
order

500 5 47.4 85.2 100.0 49.9 82.6 87.6
(9500) 10 61.2 97.0 100.0 61.6 93.0 95.4

20 75.4 98.4 100.0 75.8 97.2 98.0
1000 5 48.1 84.2 99.6 49.9 83.3 95.4
(9000) 10 58.3 95.0 100.0 60.8 94.3 98.3

20 74.3 98.6 100.0 75.4 97.7 98.9
1500 5 48.1 86.1 99.5 49.0 85.2 97.0
(8500) 10 59.7 95.0 99.7 60.2 94.8 98.9

20 74.1 98.5 99.7 75.2 98.0 99.1
2000 5 49.9 85.5 99.2 48.8 84.1 96.8
(8000) 10 60.7 95.2 99.6 59.8 94.3 98.8

20 75.0 98.2 99.6 74.8 97.9 99.0
3000 5 49.6 86.6 99.0 48.8 85.5 97.5
(7000) 10 60.8 95.2 99.6 60.2 94.7 99.0

20 75.3 98.4 99.7 75.5 98.0 99.1
5000 5 49.7 85.9 98.7 49.3 86.1 97.9
(5000) 10 60.5 94.5 99.3 60.4 94.4 99.0

20 75.4 97.9 99.3 75.4 97.9 99.1

a Orthogonality of the HDMR component functions is assured in
this formulation.

TABLE 5: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 23 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with a
Second Order Orthonormal Polynomial Approximation for
the RS-HDMR Component Functionsa

data portion (%)

used data test data

output

sample
sizeN

used data
(test data)

rel
error
(%)

first
order

second
order

third
order

first
order

second
order

third
order

3000 5 68.4 77.8 81.3 56.3 62.0 63.9
foE (5711) 10 94.9 97.4 98.3 88.6 91.0 91.4

20 99.7 99.7 99.8 99.0 98.9 98.7
3000 5 36.4 41.8 45.3 29.0 32.6 31.0

foF2 (6521) 10 63.8 73.1 77.0 54.2 57.7 57.9
20 93.6 95.1 97.0 86.1 86.7 86.7

a Orthogonality of the HDMR component functions is not assured
by this procedure.
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Despite the unknown distributionw(x), these data can be treat-
ed by eqs 23 and 37 because the sample is taken with respect
to w(x), and the Monte Carlo approximations do not explicitly
needw(x). The third order RS-HDMR is constructed with the
first 3000 data points (between the years 1957 and 1968),
referred to asused data. The RS-HDMR approximations are
tested on the subsequent∼6000 data points (between the years
1968 and 2000), referred to astest data. The accuracy of the
RS-HDMR expansions acting as FEOMs forfoE andfoF2 (the
total numbers of the data forfoE andfoF2 are 8711 and 9521,
respectively) are given in Tables 5 and 6 for eqs 23 and 37.

Tables 5 and 6 show that second and third order RS-HDMR
expansion accuracies given by eq 37 are better than those given

by eq 23 for both used data and test data. This implies that eq 37
has better interpolation and extrapolation accuracy. The first-
order RS-HDMR expansions for both equations are the same, so
they have the same accuracy. These results further establish that
a system with a nonseparable weightw(x) can be treated in the
same way as a system with independent input variables, and ortho-
gonality of the different order RS-HDMR component functions
is important in the construction of the RS-HDMR expansion.

Comparisons between the measured data and the RS-HDMR
approximations offoE andfoF2 for used data and test data are
given in Figures 3 and 4. The accuracy is satisfactory, indicating
that a FEOM built with data from one solar cycle (approximately
11 years of data) can be constructed to reliably predict the values
of foE and foF2 for the following two solar cycles (about 20
years).

Finally, a comparison of the results in Tables 4 and 6 shows
that the exposure and dose model produced a more accurate
FEOM than that arising from the ionosonde data. Comparing
different physical examples is difficult, but a basic distinction
in these two examples is that the exposure and dose model is
built around inputs that are error free whereas the ionosonde
data have errors which are not explicitly characterized. The latter
errors are likely a major contribution to the quality difference
between the FEOMs for the two examples. Nevertheless, the
ionosonde example shows that an effective FEOM can be
generated from real data including where there is correlation
between the input variables.

6. Conclusion
The prior definitions of the HDMR component functions are

extended in this paper to treat systems whose input variables

Figure 2. Ionosonde data distribution. The dependences between
normalized input variables: year andF10.7, Kp andDst for the data at
12 UT.

TABLE 6: Relative Errors of Different Order RS-HDMR
Expansions Given by Eq 37 Whose Expansion Coefficients
Were Obtained by Stepwise Least Squares Regression with a
Second Order Orthonormal Polynomial Approximation for
the RS-HDMR Component Functionsa

data portion (%)

used data test data

output

sample
sizeN

used data
(test data)

rel
error
(%)

first
order

second
order

third
order

first
order

second
order

third
order

3000 5 68.4 83.3 86.7 56.3 72.1 70.0
foE (5711) 10 94.9 97.8 98.5 88.6 93.5 92.1

20 99.7 99.7 99.7 99.0 98.8 98.1
3000 5 36.4 45.4 48.2 29.0 36.1 35.0

foF2 (6521) 10 63.8 76.2 79.4 54.2 65.2 62.5
20 93.6 96.1 97.5 86.1 90.9 89.5

a Orthogonality of the HDMR component functions is assured by
this procedure.

Figure 3. Comparison between the measured used data and the second
order RS-HDMR approximations forfoE and foF2 in the ionosonde
illustration.
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may not be independent. The resultant formulas for the HDMR
component functions are the same as the original ones except
that the probability density functions are replaced by conditional
probability density functions, and the formulas after using the
orthonormal polynomial and Monte Carlo approximations are
exactly the same. The formulas for the HDMR component
functions with independent input variables are only a special
case of the general treatment. The HDMR component functions
are originally defined to be mutually orthogonal. The orthogo-
nality of the different order HDMR component functions
guarantees that a higher order truncated HDMR expansion
always has better accuracy than any lower order one. RS-HDMR
is a practical approach within the family of HDMR formulations.
The component functions of RS-HDMR are constructed from
randomly sampled input-output data by the Monte Carlo
integration approximation. For this reason, with a modest sample
size, the different component functions of RS-HDMR, as
originally formulated, are not strictly orthogonal after they are
approximated by orthonormal polynomial expansions. In this
paper, new orthonormal polynomial approximation formulas for
the RS-HDMR component functions are presented. The basis

functions used for the low order RS-HDMR component func-
tions are always subsets of those for higher order ones. By
utilizing stepwise least squares regression, the new orthonormal
polynomial approximations of the RS-HDMR component func-
tions guarantee that the different order approximated RS-HDMR
component functions are mutually orthogonal for any sample
size when the Monte Carlo integration approximation is used.
The tests for an integrated exposure and dose model and
measured ionosonde data demonstrate that the new method has
better accuracy than the prior one.
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Figure 4. Comparison between the measured test data and the second order RS-HDMR approximations forfoEandfoF2 in the ionosonde illustration.
The prediction accuracy for years 1968-1988 data is satisfactory.
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Appendix

A. New Basis Functions.When the basis functions{æ} used
for the low order RS-HDMR component functions are subsets
of those for the higher order ones, and the expansion coefficients
{R, â, γ} are determined by stepwise least squares regression,
then the new orthonormal polynomial approximations for the
RS-HDMR component functions guarantee that the different
order approximated RS-HDMR component functions are mutu-
ally orthogonal upon using the Monte Carlo integration ap-
proximation for any sample size. The proof is given below.

The HDMR component functions are optimally determined
from zeroth to higher orders in a step-by-step fashion

wheref(i) denotes the collection ofith order HDMR terms. Such
systematic approaches to function approximation are quite
common. Consider the Hilbert spaceH of continuous functions
where a set of linearly independent elements{V1, V2, ..., Vn1} ∈
H are selected to form the basis for a subspaceV ⊂ H. Suppose
that the first order approximationV for a model outputf(x) is
of the form

wherebi are constant coefficients. To get better accuracy, we
wish to find the second-order approximationg ∈ H which is
consistent with a given set of data and is as close as possible to
V. Let

wherer is in a subspaceR ) {r1, r2, ..., rnr}(nr > n1) of H. The
bestg is provided byr that is orthogonal toV.24 Thesufficient
condition for r to be orthogonal toV is that V is a normal
subspace ofR, i.e.,

In this case,R can be decomposed as

whereV⊥ * {0} is the orthogonal complementary subspace of
V in R, and one can always find ar ∈ V⊥ orthogonal toV.
Similarly, we can consider the third-order approximation

and the sufficient condition to find the bestV andr for a given
u is

whereU andV are subspaces spanned by the bases{u1, u2, ...,
un1} and{V1, V2, ...,Vn2} (nr > n2 > n1). In this case,u, V, r can
be mutually orthogonal.

To satisfy the condition given in eq 44, the RS-HDMR
component functions can be approximated by orthonormal
polynomials{æ} as follows

where the basis{æ} for approximating the lower order RS-
HDMR component functions is always a subset of those for
the higher order ones. Then the mutual orthogonality of the
different order approximated RS-HDMR component functions
can be guaranteed with properly chosen coefficients{R, â, γ}.

B. Second-Order Expansion.The remaining task is to
determine all the coefficients in eqs 45-47 so that the different
order orthonormal polynomial terms, and consequently, different
order approximated RS-HDMR component functions are mutu-
ally orthogonal.

SupposeN random samples{x(1), x(2), ..., x(N)} for x are
generated according to a given pdfw(x). The inner product of
two functionsV(x) and r(x) is defined as

Let V(x), r(x) represent the collections of the first and second-
order RS-HDMR component functions, respectively. Then,g(x),
the second-order RS-HDMR approximation off(x) - f0, is

with

whereVi(x), ri(x) are first and second order RS-HDMR terms
approximated by the orthonormal polynomials{æ} given in eqs
45-46. The basis{r1(x), r2(x), ..., rnr(x)} is composed of all
the elements and their possible products of{æ} with one and
two variables. As{V1, V2, ...,Vn1} is a subset of{r1(x), r2(x), ...,
rnr(x)}, we arrange{ri} in the order{V1, V2, ..., Vn1, rn1+1, rn1+2,
..., rnr}.

Consider the inner products

Substituting eqs 49-51 into eq 52 yields

f(x) ≈ f0 + f(1) + f(2) + f(2) + ... (38)

V ) ∑
i)1

n1

biVi (39)

g ) V + r (40)

V ⊂ R (41)

R ) V x V⊥ (42)

g ) u + V + r (43)

U ⊂ V ⊂ R (44)

fi(xi) ≈ ∑
r)1

k

Rr
(0)iær

i (xi) (45)

fij(xi,xj) ≈ ∑
r)1

k

[Rr
(ij )i ær

i (xi) + Rr
(ij )j ær

j (xj)] +

∑
p)1

l

∑
q)1

l′

âpq
(0)ijæp

i (xi) æq
j (xj) (46)

fijk(xi,xj,xk) ≈ ∑
r)1

k

[Rr
(ijk)i ær

i (xi) + Rr
(ijk)j ær

j (xj) + Rr
(ijk)k ær

k

(xk)] + ∑
p)1

l

∑
q)1

l′

[âpq
(ijk)ij æp

i (xi) æq
j (xj) + âpq

(ijk)ik æp
i (xi) æq

k(xk) +

âpq
(ijk)jk æp

j (xj) æq
k(xk)] + ∑

p)1

m

∑
q)1

m′

∑
r)1

m′′

γpqr
(0)ijk æp

i (xi) æq
j(xj) ær

k(xk)

(47)

(V(x), r(x)) )
1

N
∑
s)1

N

V(x(s)) r(x(s)) (48)

g(x))V(x) + r(x) ) f(x) - f0 ∀ x ∈(x(1), x(2), ...,x(N)) (49)

V(x) ) ∑
i)1

n1

biVi(x) (50)

r(x) ) ∑
i)1

nr

airi(x) (51)

(ri(x), g(x)) ) (ri(x), f(x) - f0) ) di (i ) 1, 2, ...,nr) (52)
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Equation 53 may be represented in matrix form as

whereA is an (nr × nr) symmetric nonsingular matrix with the
(i, j)-entry

B is an (nr × n1) rectangular matrix with with the (i, j)-entry

and

Because the firstn1 elements of{ri} are{Vi}, the matrixB is
just the firstn1 columns of the matrixA.

If r(x) is chosen fromV⊥, thenr(x) is orthogonal toV, i.e.,
r(x) is orthogonal to the basis{Vi}:

The above equation may also be represented in matrix form as

whereBT is the transpose ofB.
Combining eqs 54 and 61 gives

To attain a better understanding of eq 62, we consider eqs 54
and 61 separately. BecauseA is nonsingular,A-1 exists. AsBT

is the firstn1 rows of A, then

whereIn1 is then1-dimensional identity matrix,0 is the (n1 ×
(nr - n1)) null matrix, andB̂ is an (n1 × n1) matrix composed
of the first n1 rows of B and it is also the submatrix ofA
composed of the elements ofA in the firstn1 rows and firstn1

columns.
Multiplying both sides of eq 54 byBTA-1 from the left and

using eqs 61 and 63 gives

where d̂ is the first n1 elements ofd. Note that eq 64 is the

equation to determine the coefficientsb of the first-order
approximated RS-HDMR component functions by least squares
regression.

The coefficientsa for the second order approximated RS-
HDMR component functions can be obtained by solving the
following equation

which gives

Equation 66 is the least squares solution for the coefficientsa
of the second order approximated RS-HDMR component
functions after substituting in the resultant coefficientsb of the
first-order functions.

Combining all these results, we can rewrite eq 62 as

Equation 67 implies that to construct orthogonal first and second
order approximate RS-HDMR component functions, the coef-
ficients b and a should be sequentially determined by least
squares regression.

The orthogonality betweenV(x) andr(x) given by eq 61 can
be proved using eqs 63 and 66 as follows:

C. Third-Order Expansion. Now letg(x) represent the third
order approximated RS-HDMR expansion off(x) - f0, i.e.,

with

whereu(x), V(x), and r(x) are the collections of first, second
and third order RS-HDMR component functions approximated
by the orthonormal polynomials{æ} given in eqs 45-47. The
basis {r1, r2, ..., rnr} is all the elements and their possible
products of{æ} with one, two and three variables, and the
elements of{ui}, {Vi}, {ri} are arranged as

(ri(x), ∑
j)1

n1

bjVj(x) + ∑
j)1

nr

ajrj(x)) )

(ri(x), ∑
j)1

n1

bjVj(x)) + (ri(x), ∑
j)1

nr

ajrj(x)) ) di (53)

Bb + Aa ) d (54)

Aij ) (ri(x), rj(x)) (55)

Bij ) (ri(x), Vj(x)) (56)

a ) (a1, a2, ...,anr
)T (57)

b ) (b1, b2, ...,bn1
)T (58)

d ) (d1, d1, ...,dnr
)T (59)

(Vi(x), r(x)) ) (Vi(x), ∑
j)1

nr

ajrj(x)) ) 0 (i ) 1, 2, ...,n1) (60)

BTa ) 0 (61)

[A B

BT 0 ][ab ] ) [d0 ] (62)

BTA-1B ) [In1
|0]B ) B̂ (63)

BTA-1Bb + BTA-1Aa ) BTA-1d

B̂b + BTa ) [In1
|0]d

B̂b ) d̂ (64)

Aa ) d - Bb

) d - BB̂-1d̂ (65)

a ) A-1d - A-1BB̂-1d̂

) A-1d - [In1

0 ]B̂-1d̂

) A-1d - [B̂-1d̂
0 ] (66)

[A B
B̂][ab ] ) [dd̂ ] (67)

BTa ) BTA-1d - BTA-1BB̂-1d̂

) [In1
|0]d - B̂B̂-1d̂

) d̂ - d̂ ) 0 (68)

g(x) ) u(x) + V(x) + r(x) ) f(x) - f0

∀ x ∈(x(1), x(2), ...,x(N)) (69)

u(x) ) ∑
i)1

n1

ciui(x) (70)

V(x) ) ∑
i)1

n2

biVi(x) (71)

r(x) ) ∑
i)1

nr

airi(x) (72)
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Consider the inner products

and substituting eqs 70-72 into eq 73 yields

Equation 74 can be represented in matrix form as

whereA is an (nr × nr) symmetric matrix;B andC are (nr ×
n2) and (nr × n1) rectangular matrixes, respectively; and

The orthogonality of the different order terms is given by the
following equations. Becauser(x) is orthogonal toU and V,
r(x) must be orthogonal to their bases, i.e.,

Similarly, if V(x) is chosen fromU⊥, thenV must be orthogonal
to the basis ofU, i.e.,

The above equations may also be represented in matrix form
as

whereD is an (n2 × n1) rectangular matrix. Note that all the
matrixesB, C, D are submatrixes ofA because they are obtained

from the inner products of the orthonormal polynomial basis
functions which are all contained in{ri}.

Multiplying both sides of eq 75 from the left by CTA-1 and
BTA-1, respectively, and using eqs 83 and 84 yields

Let

By using eq 85, it follows that eqs 86 and 87 reduce to

Then,

which is the least-squares solution for the coefficientsc of the
first order approximated RS-HDMR component functions. Then

This is the solution forb obtained by least squares after
substituting the resultant values ofc from eq 95.

The orthogonality betweenu(x) andV(x) given by eq 85 can
be proved by using eq 96

The coefficient vectora is obtained by

{u1, u2, ...,un1
}

{u1, u2, ...,un1
, Vn1+1, Vn1+2, ...,Vn2

}

{u1, u2, ...,un1
, Vn1+1, Vn1+2, ...,Vn2

, rn2+1, rn2+2, ..., rnr
}

(ri(x), g(x)) ) (ri(x), f(x) - f0) ) di (i ) 1, 2, ...,nr) (73)

(ri(x), f(x) - f0) ) (ri(x), ∑
j)1

n1

cjuj(x) + ∑
i)1

n2

bjVj(x) + ∑
j)1

nr

ajrj(x))

) (ri(x), ∑
j)1

n1

cjuj(x)) + (ri(x), ∑
j)1

n2

bjVj(x)) +

(ri(x), ∑
j)1

nr

ajrj(x)) ) di (74)

Cc + Bb + Aa ) d (75)

a ) (a1, a2, ...,anr
)T (76)

b ) (b1, b2, ...,bn2
)T (77)

c ) (c1, c2, ...,cn1
)T (78)

d ) (d1, d1, ...,dnr
)T (79)

(ui(x), r(x)) ) (ui(x), ∑
j)1

nr

ajrj(x)) ) 0 (i ) 1, 2, ...,n1) (80)

(Vi(x), r(x)) ) (Vi(x), ∑
j)1

nr

ajrj(x)) ) 0 (i ) 1, 2, ...,n2) (81)

(ui(x), V(x)) ) (ui(x), ∑
j)1

n2

bjVj(x)) ) 0 (i ) 1, 2, ...,n1) (82)

CTa ) 0 (83)

BTa ) 0 (84)

DTb ) 0 (85)

CTA-1Cc + CTA-1Bb ) CTA-1d (86)

BTA-1Cc + BTA-1Bb ) BTA-1d (87)

B̂ ) BTA-1B ) [A11 ‚‚‚ A1n2

l .‚. l
An21 ‚‚‚ An2n2 ] (88)

Ĉ ) CTA-1C ) [A11 ‚‚‚ A1n1

l .‚. l
An11 ‚‚‚ An1n1 ] (89)

D ) BTA-1C ) [A11 ‚‚‚ A1n1

l .‚. l
An21 ‚‚‚ An2n1 ] (90)

d̂n1
) CTA-1d ) [In1

|0]d ) (d1, ...,dn1
)T (91)

d̂n2
) BTA-1d ) [In2

|0]d ) (d1, ...,dn2
)T (92)

Ĉc ) d̂n1
(93)

DTc + B̂b ) d̂n2
(94)

c ) Ĉ-1d̂n1
(95)

b ) B̂-1d̂n2
- B̂-1DĈ-1d̂n1

) B̂-1d̂n2
- [In1

0 ]Ĉ-1d̂n1

) B̂-1d̂n2
- [Ĉ-1d̂n1

0 ] (96)

DTb ) DTB̂-1d̂n2
- DTB̂-1DĈ-1d̂n1

) [In1
|0]d̂n2

- ĈĈ-1d̂n1

) d̂n1
- d̂n1

) 0 (97)

a ) A-1(d - Bb - Cc) (98)
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which is also the solution ofa obtained by least squares after
substituting in the resultant values ofb and c. Thus, eqs 75,
86, and 87 can be written in matrix form as

Equation 99 implies that to construct mutually orthogonal first,
second and third order approximated RS-HDMR component
functions, the coefficientsc, b anda should be determined step-
by-step through least squares regression. The orthogonality
betweenr(x) andu(x), V(x) given in eqs 83 and 84 can be proved
as follows:

The above results show that using the bases given in eqs 45-
47 and stepwise least squares regression to determine the
coefficients {R, â, γ, ...}, the resultant different order ap-
proximated RS-HDMR component functions are mutually
orthogonal for a given set of data.
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[A B C
B̂ D

Ĉ ][abc ] ) [ddn2

dn1
] (99)

CTa ) CTA-1(d - Bb - Cc)

) [In1
|0](d - Bb - Cc)

) dn1
- DTb - Ĉc

) dn1
- dn1

) 0 (100)

BTa ) BTA-1(d - Bb - Cc)

) [In2
|0](d - Bb - Cc)

) dn2
- B̂b - DTc

) dn2
- dn2

) 0 (101)
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