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The diffusion of molecules through uniform homogeneous materials can readily be described by Brownian
motion or generalizations thereof. The further generalization of these models to describe molecular diffusion
through heterogeneous and nonstationary solvents is much less understood. Phenomenological nonstationary
generalizations of the generalized Langevin equation (GLE) have earlier been developed satisfying the
fluctuation-dissipation relationship in quasi-equilibrium limits while exhibiting somewhat complex behavior
away from equilibrium. This reduced-dimensional representation should be capable of describing the diffusion
of a particle through a colloidal suspension whose average particle size is tuned by an external driving force
such as pH. A simple particle model of such a process involves the motion of a hard-sphere particle in an
explicit environment of swelling hard spheres. The velocity autocorrelation functions observed in a large
number of simulations of the particle model under various swelling rates agree precisely with those of a
single form of the nonstationary phenomenological model. Though this procedure is not an explicit projection
of the mechanical system onto the nonstationary GLE, it does show that the latter correctly describes the
dynamics of the projected coordinatesnamely, diffusion of the solutesunder nonequilibrium conditions. Both
nonequilibrium solvent models lead to behavior reminiscent ofâ-relaxation processes at packing fractions
substantially below that of the glass transition.

I. Introduction

A typical approach for simplifying the complex dynamics in
chemical and biophysical processes involves the identification
of a one- (or reduced-) dimensional reaction path or order
parameter characteristic of the dynamical event. Unfortunately,
such simplifications are often not possible because the projection
of the solvent onto the usual stochastic models presumes that
the solvent response is linear. Reduced-dimensional models can
nonetheless be used to qualitatively capture the nonequilibrium
dynamics exhibited by complex systems, albeit by including
nonlocal and nonstationary terms. Though such reduced-
dimensional models are often phenomenological in construction,
our group has shown that such a formalism can approximately
arise from the projection of a nonconservative Hamiltonian
involving a uniform time-dependent coupling to a harmonic
bath.1,2 A more provocative argument in favor of such repre-
sentations, however, would lie in the construction of a particle
model whose projected dynamics may be surmised by it. Indeed,
this work explicitly constructs the nonstationary memory kernel
for a nonequilibrium hard-sphere model by numerical simulation
under various sets of nonequilibrium conditions and finds precise
agreement with the phenomenological model in which the
dynamics is dissipated by an implicit nonstationary solvent.

An explicit phenomenological model describing nonstationary
processes has been constructed by extending the generalized
Langevin equation (GLE) to include multiplicative noise that
can be controlled in space, in time, and self-consistently to the

dynamics itself.3,4 This model has been called the irreversible
generalized Langevin equation (iGLE) in deference to the
additional irreversibility that arises due to the multiplicative
noise. Although the theoretical and computational analysis of
this class of equations has shown qualitative agreement with a
number of experimental systems,5-8 to date there have been
neither direct experimental nor molecular simulation results
confirming the appropriateness of the iGLE. Nevertheless, in
ref 2, the iGLE has been shown to agree with the numerical
simulations of a chosen coordinate that is uniformly coupled to
all the bath coordinates through the single multiplicative factor,
g(t). The latter is also the term that carries the multiplicative
noise in the iGLE. The Ohmic (or memory-less) limit of the
iGLE would be a Langevin equation with multiplicative noise.
This so-called iLE will be seen here to suffice in describing
the dynamics of the model system.

The coupling term in the iLE tunes the interactions between
the chosen coordinates and the solvent response uniformly. A
real model in which such a mechanism should be operative
would presumably involve a tagged solute solvated by a
uniformly changing solvent. This is precisely what appears to
be happening when one follows the dynamics of a particular
colloid moving through a colloidal suspension which either
swells or shrinks in time. Several groups9-15 are presently
investigating the structural and dynamical properties of solutions
of colloidal and microgel particles which are able to change
their size due to the high response to temperature and pH
alterations. Under such conditions, the particle diameters can
swell by as much as an order of magnitude in a couple of
milliseconds.14,16,17This dynamical process is modeled in this
article as that of a Brownian particle driven by a nonequilibrium
environment. The model provides insight on the observed
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processes while also providing insight on nonstationary (non-
equilibrium) dynamics, in general.

The outline of this article is as follows: In part II, a simple
particle model is described in order to capture the dynamics of
a hard-sphere particle diffusing through a solvent of hard spheres
whose radii are time dependent, for example, swelling. The
numerical considerations for integrating the equation of motion
are also discussed therein. The projective nonstationary equa-
tions of motion, the iGLE and the iLE, are reviewed in section
III in preparation for the connection to be drawn between them
and the nonstationary particle model. (The projection of the
time-dependent Hamiltonian to the iGLE is described in the
Appendix.) In ref 1, the iGLE was derived under the assumption
that the coupling terms with bath modes are proportional to one
and the same function,g(t). But, in real systems, a nonuniform
interaction should be expected when the coupling to theith bath
mode is characterized by a specificgi(t). In section III, we also
show that, in the Ohmic limit, the iLE arises regardless of the
distribution ofgi(t), when the effective coupling term,g(t), is
taken in some sense as an average of all thegi(t) terms.
Numerical analysis of the simulations is presented in part IV.
The fact that the velocity autocorrelation function of the chosen
particle in a nonequilibrium environment can be surmised by
the iLE is the central result of this article.

II. Nonstationary Diffusion in a Swelling-Particle Solvent

The model system consists of a heavy hard-sphere particle
immersed within a solvent of lighter hard-sphere particles. It
differs from Brownian motion because of the presence of
nonequilibrium (time-dependent) solvation by way of the
swelling or contracting of the lighter particles as specified a
priori. The structural change affects the effective volume fraction
and consequently the motion of the chosen Brownian particle.
Such is the only nonstationary condition imposed upon the
solvent particles and through them, on the chosen particle. This
generic model system could, for example, describe the diffusion
of a colloidal particle in a colloidal suspension in which the
latter is subject to shape changes through the pH-induced
addition or depletion of water.

The specific parameters used in the simulations reported
below include the masses,m ) 4 × 10-16 g andM ) 2 ×
10-14 g, of the light and heavy particles, respectively. The entire
system of 300 light particles and one heavy particle is placed
into a cubic reservoir with sides set toL ) 2800 nm. The
imposition of periodic boundary conditions on this system relies
on the fact that the heavy particle finds itself in the infinitely
dilute limit. To ensure that the results are converged with respect
to overall system size, several measures have been compared
to those for a system with 600 solvent particles in a box with
twice the volume. Though not shown here for lack of space,
there is no significant difference between the VACFs of the
Brownian particle in either box dimension, for example. This
confirms both the convergence with system size and the assumed
dilute-solute condition.

The shape changes in the solvent particles are specified by
way of their radii r. For simplicity, the latter are taken as a
linear function in time, that is

wherer0 is the initial radius (typically chosen to equal 30 nm),
andw is the swelling rate (taken to be 0, 0.5,(1, 2, and(3
nm/ms in section IV). The maximal simulation time was chosen
to betmax ) 100 ms forw < 2 nm/ms, 80 ms forw ) 2 nm/ms,

and 60 ms forw ) 3 nm/ms. The maximal radius of swelling
particles atw ) 3 nm/ms isrm ) 210 nm. At this endpoint, the
volume fraction of solvent particles becomes 0.53. The radius
R ) 100 nm of the colloidal particle does not change.

The well-known hard-sphere algorithm was used to integrate
the dynamics of the system.18 It is easy to code and has been
verified using various standard convergence checks. The hard-
sphere algorithm greatly improves the performance of the
integration because the variable time step is maximized so as
to evolve the particles ballistically between collisions in a single
step. The time-dependent changes in the solvent particles,
however, complicate the algorithm in at least two ways. The
first is that the time to collision must be altered to account for
the increased width of the solvent particles. In the linear growth
case, this can still be predicted analytically and the algorithm
was modified accordingly. The second results from the fact that
a swelling particle could in principle induce a mechanical force
on a colliding particle. This force, however, is ignored, and the
energy of a colliding pair of particles is preserved before and
after a collision. This constraint allows the system to maintain
constant energy (as specified through an effective temperature,
T ) 300 K) without introducing additional constraints.

An additional difficulty in numerically integrating this system
arises when the relative velocity of two particles after a collision
becomes smaller than 2w. In such cases, the growth of these
special particles is stopped in order to prevent them from
overlapping until such time when new collisions kick them apart.
Thereafter, the special particles are once again swelled at the
original rate. Note that all other particles continue to swell
throughout this time. Though seemingly bothersome, we found
that, at the chosen swelling rates, the number of such instances
is so small that the deviation of the average value of particle
radius r from that predicted by eq 2.1 never exceeded 0.1%.

III. Nonstationary Diffusion in a Projective Model

A. Irreversible Langevin Equation (iLE). A particle may
experience an inhomogeneous viscous drag as it diffuses through
a system. When this drag is effectively reproducible as a function
of the coordinates, the diffusion of such particles has been
described using stochastic models which are dissipated by a
space-dependent multiplicative noise.19-23 The equation of
motion can be written in the form

where (x,V) are the explicit (possibly multidimensional) position
and velocity variables associated with the reduced-dimensional
space describing the particle, namely, the chosen coordinates.
Here, γth(t) is the friction kernel representing the uniform
delayed response of the solvent in the space-independent case,
and êth(t) is the random force obeying the fluctuation-
dissipation theorem

Equation 3.1 differs from the usual generalized Langevin
equation (GLE) because of the presence of the coupling term,
g(x(t)). This term modulates the noise amplitude and reflects
the inhomogeneity of the space-dependent friction. Equation 3.1
has been derived as the projection of harmonic bath modes
coupled nonlinearly to the chosen coordinate.19-23 Much work
has been dedicated to theoretical investigation of this equation
and its numerical calculation.24-26

r ) r0 + wt (2.1)

V̆(t) ) - ∫0

t
g(x(t))γth(t - t′)g(x(t′))V(t′) dt′ + g(x(t))êth(t)

(3.1)

〈êth(t)êth(t′)〉 ) kBT γth(t - t′) (3.2)
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The coupling of the chosen coordinates to the bath can change
with time if the environment undergoes a temporal alteration.
This can lead to an additional time-dependent response which
contributes to the friction. In the case that there is no spatial
dependence in the random force, the stochastic equationsnamely,
the irreversible GLE (iGLE)sreads1,3

whereg(t) is completely determined by an irreversible process
that is indirectly driving the system. Equation 3.3 has a
multiplicative form similar to (3.1), but the inhomogeneity in
the nonstationarity is in time rather than in space. In fact, the
approach developed in refs 2, 4, and 5 includes the more general
cases in which the multiplicative term,g, can arise from
inhomogeneities in time, in space, and as a result of self-
consistent coupling with other tagged particles. In the special
case of time-dependent friction most relevant to this work, the
dynamics of the chosen coordinates propagated by the iGLE
has been seen to obey the fluctuation-dissipation relation
(FDR).

The Ohmic or local limit of the GLE arises when the memory
kernel decays infinitely fast, reducing to

The dynamics of the corresponding Langevin equation (LE) is
well-known to be accurate for the description of the motion of
a heavy particle in liquid.27 In this limit, the iGLE (3.3) turns
into the simpler form

which will be called the “irreversible Langevin equation” (iLE).
Note that the integration in eq 3.3 keeps only “half” of the
δ-function, so that 2γ0 reduces toγ0 in eq 3.5. The iLE has
been used earlier by Hershkovits and Hernandez to describe
the dynamics of a rotating mesogen in a liquid crystal.8

B. Equivalent Mechanical System.The microscopic origin
of the nonstationarity in the iGLE (and iLE) can be illustrated
through a simple infinite-dimensional mechanical system that
was earlier shown to project onto a collective coordinate driven
by the iGLE.1,2 Following ref 1, but generalizing the spectral
coefficientsci to depend on time nonuniformly by way of the
ith coupling termgi(t), the nonstationary Hamiltonian can be
written as

where

is the renormalization of the potential which eliminates the
spectral shift. The correctionδV2 to the memory can be
determined according to eqs 2.7c-2.8 of ref 1, namely

where

and each of the coupling termsgi(t) are now allowed to depend
on theith mode. Without loss of generality, the initial condition
for the latter can be chosen as

which is equivalent to specifying the early-time thermal friction
by way of the initial time-independent coupling constants,ci.

The form of the nonstationary Hamiltonian in eq 3.6 is
perhaps disturbing in that theδV2 term contains nonlocal terms
that refer to some special initial time (called 0 therein) and
therefore are arbitrary for general forms ofg(t). This problem
is partially resolved, however, by ensuring that this reference
time was in the distant past when the system was in equilibrium.
During this domain of times,ğ(t′) is zero and, consequently, so
is a(t,t′) and the contributions toδV2. Nevertheless, the presence
of the nonstationary terms necessarily introduces troubling
questions about time-reversal symmetry and the causality
principle. The former issue is precisely the reason the investiga-
tion of the projective model is of interest, and the connection
to the swelling-sphere model discussed in the next section helps
to shed light on it. The latter issue manifests itself most clearly
in the construction of the projected equation of motion described
in the Appendix.

Subject to the assumptions detailed above and in the
Appendix, the equation of motion for the chosen coordinate
q is

where

with the usual FDR

If all the functionsgi(t) are equal tog(t), then the right-hand
side (RHS) of eq 3.11 can be simplified to

with

V̆(t) ) - ∫0

t
g(t)γth(t - t′)g(t′)V(t′) dt′ + g(t)êth(t) (3.3)

γth(t) ) 2γ0δ(t) (3.4)

V̆(t) ) -g2(t)γ0V(t) + g(t)ê0(t) (3.5)

〈ê0(t)ê0(t′)〉 ) 2kBTγ0δ(t - t′)

H )
pq

2

2
+ 1

2 ∑ (pi
2 + ωi

2xi
2) - ∑ cigi(t)xiq + δV1(q,t) +

δV2(q(‚),t) (3.6)

δV1(q,t) ) 1
2 ∑ (cigi(t)

ωi
)2

q2 (3.7)

δV2(q(‚),t) ) 1
2∫0

t
dt′ a(t,t′)[q(t′) - q(t)]2 -

1
2

q(t)2 ∫0

1
dt′ a(t,t′) (3.8)

a(t,t′) ≡ ∑ gi(t)ği(t′)
ci

2

ωi
2

cosωi(t -t′)

gi(0) ) 1 (3.9)

q̈ ) - ∫0

t
γ(t,t′)q̆(t′) dt′ + ê(t) (3.10)

γ(t,t′) ) ∑
ci

2

ωi
2
gi(t) cosωi(t - t′)gi(t′) (3.11)

ê(t) )

∑
ci

ωi
gi(t) (pi(0) sinωit + (ωixi(0) -

ci

ωi
q(0)) cosωit)

(3.12)

〈ê(t)ê(t′)〉 ) 1
â

γ(t,t′) (3.13)

γ(t,t′) ) g(t)g(t′)γth(t - t′) (3.14)

γth(t - t′) ) ∑
ci

2

ωi
2

cosωi(t - t′) (3.15)
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representing the friction in the static case as well as the early-
time initial condition described above. Thus, the iGLE in eq
3.3 is recovered as obtained earlier in ref 1.

The transition to the pure Markovian (memory-less) cases
eqs 3.4 and 3.5 can be made by an appropriate choice of the
friction kernel. Following the usual procedure,28-30 eq 3.15 can
be rewritten for the continuous spectrum as

whereJ(ω) is the spectral density. A typical choice of the latter,
which is also made here, is

with τ being the characteristic “memory” time. After calculating
the integral in eq 3.16, one obtains the usual form of an
exponential decay in the memory friction

Theτ f 0 limit of this expression results in the iLE of eqs 3.4
and 3.5.

The same strategy can be applied to show that even in the
more general case of nonuniform coupling (see eq 3.11), the
iLE is still retrieved. Introducing the continuous functiong̃(t,ω)
to replace the discrete coefficientsgi(t) into the friction kernel
of eq 3.11 leads to the result

Assuming that g˜(t,ω) ) g̃(t,-ω), the lower limit in the integral
can be extended down to-∞. With the additional insertion of
eq 3.17, the friction kernel further transforms to the integral

By noting the poles in the integrand as well as their limiting
values at large|ω| values, these integrals can readily be
evaluated in the complex plane in terms of their residues

Only those values oft and t′ that differ on the order ofτ
contribute to the memory kernel. In the limit thatτ is small,
the memory kernel, eq 3.21, effectively depends only ont,
namely, it is approximately local in time. However, even in
this limit, the memory kernel remains nonstationary as it
contains at-dependent term not present in eq 3.18.

The nonstationarity in the memory kernel can be simplified
by approximating eq 3.21 as

where

and t* is some arbitrary time betweent and t′. (A judicious
choice oft* could make this exact once again but that would
reintroduce the complexity we are trying to avoid.) In the
memory-lessτ f 0 limit of the iLE, for example, eq 3.22
reduces to

wheret* likewise is simply equal tot. For τ * 0, a connection
between the termG2(t*,τ) and the coupling constants can be
obtained using thet ) t′ ) t* limit after equating eqs 3.11 and
3.21

At early times, the discrete initial condition (gi(t) ≡ 1 for all i)
can be cast into a continuous form for whichg̃(t,ω) ) 1. This
leads to the simple connection

between the discrete coupling coefficients and the integrated
friction and time constant. The term in eq 3.23 is thus the
weighted value of all thegi

2(t*) terms

(This equation is valid for allτ which, although not seen in the
RHS, is defined through the coupling coefficients implicitly.)
Comparison with the iGLE in the uniform coupling case and
noting eq 3.24 suggest that the weighted value of allgi

2(t) can
act as a single uniform coupling term,G2(t), in the iLE.

It is useful to note that the LE is recovered in the limit of a
nonswelling solvent. That is, if the swelling is stopped at time
tstop, the coupling functionsgi(t) ≡ g̃(t,ωi) become constant at
t > tstop. It is reasonable to suppose that they have no
peculiarities atω f ∞ and that there exists a limiting value
gstop ≡ g̃(tstop,ω f ∞), which is a real number. Inserting this
limiting value in eqs 3.23, 3.24, and then in eq 3.5, one
immediately recovers the usual LE.

IV. Results and Discussion

Simulations of the particle model described in section II under
both swelling (w > 0) and contracting (w < 0) conditions have
been performed. In all cases, the velocity autocorrelation
function (VACF) for the Brownian particle has been generated.
The VACFs appear to follow a single universal function upon
reduction of the variables using a form suggested by the solution
of the VACF for a corresponding iLE model. Inversion of this
single universal function, by way of the iLE solution from
section III, yields an exact expression for the time-dependent
coupling termg(t). It scales with the collision frequencyν of
the Brownian particle which, in its turn, is directly connected
to geometrical properties of the system (radii of the particles
and their volume fraction). This universal scalability also

γth(t - t′) ) 2
π ∫0

∞
cosω(t - t′)

J(ω)
ω

dω (3.16)

J(ω) ) γ0
ω

1 + ω2τ2
(3.17)

γth(t - t′) ) 2γ0

exp(-|t - t′|/τ)
2τ

(3.18)

γ(t,t′) ) 2
π ∫0

∞
g̃(t,ω)g̃(t′,ω) cosω(t - t′)

J(ω)
ω

dω (3.19)

γ(t,t′) )
γ0

π ∫-∞

∞
g̃(t,ω)g̃(t′,ω)

cosω(t - t′)
1 + ω2τ2

dω (3.20)

)
γ0

π ∫-∞

∞
g̃(t,ω)g̃(t′,ω)

cosω(t - t′) i
2τ [ 1

ω + iτ-1
- 1

ω - iτ-1] dω

γ(t, t′) ) 2γ0

exp(-|t - t′|/τ)
2τ

R[g̃(t,iτ-1) g̃ (t′,iτ-1)] (3.21)

γ(t,t′) ≈ 2γ0

exp(-|t - t′|/τ)
2τ

G2(t*,τ) (3.22)

G2(t*,τ) ≡ R[g̃2(t*, iτ-1)] (3.23)

γ(t,t′)|τ)0 ) 2γ0δ(t - t′)G2(t*,τ)|τ)0 (3.24)

γ(t*,t*) ) ∑
ci

2

ωi
2

gi
2(t*) )

γ0

τ
R[g̃2(t*, iτ-1)] ≡ γ0

τ
G2(t*,τ)

(3.25)

∑
ci

2

ωi
2

)
γ0

τ
(3.26)

G2(t*, τ) ) ∑ gi
2(t*)ci

2/ωi
2

∑ ci
2/ωi

2
(3.27)
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suggests an interdependence between the kinetic parameters
(VACFs, diffusion coefficientD) and structural properties.

A. Scaling VACF for Swelling Solvent Particles.In Figure
1, the kinetic energy of the Brownian particle is presented in
temperature units,TBr ) EK/(3/2kB). With few exceptions, it is
approximately equal to the temperature, 300 K, of the solvent
when the swelling rate is small. At the faster swelling rates,
w ) 2-3 nm/ms,TBr rises dramatically toward the end of the
simulation. Therein, the packing volume fraction of the solvent
spheres reaches values above that of the freezing transition
(0.494) when arrested behavior commences.31,32 At the faster
swelling rates, the glassy solvent particles are trapped in
nonequilibrium solvation structures and hence do not necessarily
respond linearly to the Brownian particle nor dissipate it
appropriately. That is, the quasi-equilibrium condition breaks
down. The concerted phenomenon presumably involves a
response function that contains memory and hence its behavior
cannot be captured by the iLE.

The VACFs

for various swelling ratesw and initial timest0 are shown in
Figure 2. If indeed the VACFs for this system can be described
by the iLE discussed above, then they should behave like

which is the solution of eq 3.5 for the VACF in terms of the
unknown coupling termgw(t). The smooth curves overlaying
the numerical VACFs in Figure 2 are precisely the fits of eq
4.2, and they are generally in good agreement. At a fast swelling
rate,w ) 3 nm/ms, whent - t0 is small (it is ca. 20 ms), the
VACFs displayed in Figure 3 exhibit deviating oscillations with
a small amplitude on the order of 0.001. These deviations are
not unexpected as they occur in the same region in which quasi-

equilibrium was seen to break down in Figure 1, and conse-
quently, neither the iLE nor its solution, eq 4.2, are applicable
therein.

The success in fitting eq 4.2 to the numerical VACFs further
suggests that a more direct solution can be found if onlygw(t)
could be determined. At equilibrium, it is proportional to the
collision frequencyν in accordance with Enskog theory33 (at
least, at small volume fractions), and one may expect that

Figure 4A displaysν as a function oft for variousw in a semilog
plot; the apparent linearity in the regime when the iLE was seen
above to be applicable suggests that logν can indeed be taken
as a linear function in time. Moreover, for fast spatial equilibra-
tion (i.e., in the quasi-equilibrium regime),ν is a function only
of the radiusr becauser defines the volume fraction which fully
describes the thermodynamic state for the hard-sphere fluid.
Thus at quasi-equilibrium, the frequencyν depends onw andt
only through the productwt, which in turn determines the radius
unambiguously. Hence,gw(t) can be written in terms of a
universal function

that depends only on the product,wt. In the simulations
presented here, the swelling ratesw are about an order of

Figure 1. Kinetic energy of the Brownian particle expressed through
temperature units at variousw values.

Cw(t0,t) ≡ 〈V(t0)V(t)〉

〈V2(t0)〉
(4.1)

Cw(t0,t) ) exp[-γ0 ∫t0

t
gw

2(t′) dt′], t0 < t (4.2)

Figure 2. Time dependencies of the functionCw(t0,t) of the Brownian
particle for three different delay timest0 at variousw values (shown in
nm/ms).

Figure 3. Negative dips in the VACFs forw ) 3 nm/ms. The timet0
is shown in ms.

gw
2(t)

gw
2(0)

)
γ0gw

2(t)

γ0gw
2(0)

≈ ν(t)

ν(0)
(4.3)

gw(t) ) g+(wt) (4.4)
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magnitude smaller than the thermal velocity. Consequently, the
system is always in quasi-equilibrium or close to it. Thus,g+
nearly reflects the instantaneous coupling to the solvent at a
given timet. These claims are validated further by Figure 4B,
where all curves taken from Figure 4A are superposed after
stretching the abscissa by a factor ofw/w0, where the reference
w0 was chosen to equal 1 nm/ms (forw ) 0.5 nm/ms, the
temporal coordinate is squeezed twice; forw ) 0, the corre-
sponding line reduces into point). The fact that the universality
of the curve in Figure 4B appears to go beyond linearity suggests
that eq 4.4 may hold well beyond the quasi-equilibrium limit
in which it was obtained.

The iLE-based correlation function of eq 4.2, together with
the conjectured connection of eq 4.4, leads to

wherew0 is the reference swelling rate, as above. In other words,
if Cw(t0,t) is known forw ) w0, then any other VACF can be
obtained through the transformation

This apparent law of corresponding states for the VACF with
respect to the swelling rate is illustrated in Figure 5, where the
VACFs, Cw(0,t), from Figure 2 are scaled by the factorw/w0

and shown as a function ofwt/w0. All the lines coincide, and

the resulting line approaches zero att ≈ 175 ms where the
volume fractionη is near 0.5 and is just below the glass
transition.

The universal coupling functiong+(wt) can be extracted from
the simulations through a fit of the VACFs to eq 4.5. The error
of this fit is smaller than the thickness of the fitted curve. The
time dependence of logg+(w0t) is shown in Figure 6. At early
times, the curve is clearly linear suggesting initial quasi-
Markovian behavior but then there is a dramatic increase above
140 ms. Meanwhile,g+

2(w0t) is plotted vs the normalized
collision frequency in Figure 7. Again, at early times there is
apparent linearitysin fact, equalitysbefore the deviation at later
times. Nevertheless, eq 4.3 clearly holds at early times when
the quasi-equilibrium condition is satisfied. But even when it
does not strictly hold, it once again appears that the cor-
respondence in eq 4.6 is universal.

B. Scaling VACF for Contracting Solvent Particles.
Although the results of the previous section are encouraging,
one might critique the fact that all of the cases started and ended

Figure 4. (A) Time dependence of the collision frequency between
the Brownian and solvent particles at differentw values (in units of
nm/ms). (B) The same curves are rescaled horizontally: the temporal
coordinate is extended by the factor ofw/w0 for each line (see
explanation in the text).

ln Cw0
(t0,t) ) -γ0 ∫t0

t
g+

2(w0t′) dt′ (4.5)

) - w
w0

γ0 ∫w0t0/w

w0t/w g+
2(ws) ds

) w
w0

ln Cw(w0

w
t0,

w0

w
t) (4.6)

ln Cw(t0,t) )
w0

w
ln Cw0( w

w0
t0,

w
w0

t) (4.7)

Figure 5. VACF, Cw(0,t), taken from Figure 2, for variousw values
(in nm/ms), rescaled both vertically and horizontally in accordance with
eq 4.7 (see explanation in the text).

Figure 6. Coupling termg+(w0t) at w0 ) 1 nm/ms as a function of
time.

Figure 7. Coupling termg+(w0t) at w0 ) 1 nm/ms as a function of
the collision frequencyν. The dashed line represents relation 4.3.
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at the same limits while the only change was an increase in the
swelling rate. To test this, the model was simulated in the reverse
direction: The simulations are begun with an equilibrated
solvent consisting of bath particles with a large radius () 210
nm) and is subsequently contracted linearly to a small radius
() 30 nm) at a specified rate. As these are contracting, the
swelling rate is now negative. Two different cases,w ) -1
and-3 nm/ms, are discussed here explicitly because they are
representative of all of the observed behavior. If, indeed, the
coupling function depends only on the instantaneous configu-
ration of the solvent, and because the initial conditions have
merely been reflected across the time interval, then it would be
expected that the VACFs would still be described by the
reference VACF as before. Note, however, that the time
argument of the VACFs must now be adjusted to (tmax - t)
wheretmax is the total time over which the solvent particles swell
(or contract). The universal coupling functiong-(‚) in the
contracting case can be written in terms ofg+(‚) as

The numerical VACFs are shown in Figure 8 and agree with
the iLE-based correlation functions remarkably well. The only
exception to this agreement appears at early times when
simulation data exhibits a negative dip for the VACF att0 ) 0.
It is significantly more pronounced than that observed in Figure
3 above. This fact can be easily understood if we recall that at
the initial conditions for the contracting solvent system, the
solvent is dense with a packing fraction near 0.53. As it is
equilibrated before the simulations begin, this solvent is
sufficiently dense so as to cage the Brownian particle (and itself)
leading to correlated collisions.34,35 Such correlations give rise
to memory in the solvent response, but they are clearly not
present in the local friction used in the iLE. Hence, the
contracting solvent (when not too dense) exhibits iLE behavior
and is characterized by the same universal function that was
seen for the swelling solvent.

C. Diffusion under Nonlinear Swelling Protocols.Consider
the situation when the swelling comes to a stop after a period
t1. We choose this instant of time so that the volume fraction
η ) 0.4 att ) t1. Thus,t1 ) 160 ms forw ) 1, t1 ) 80 ms for

w ) 2, and so on. As there is no irreversible process aftert1,
gw(t) does not change att > t1, and the derivative

becomes constant after the solvent stops growing. The VACFs
can be constructed by stitching together the equilibrium solution

if t > t1, and the nonequilibrium solution, eq 4.2, fort e t1,
derived above.

The diffusional behavior of a Brownian particle can be
analyzed with the help of the mean-squared displacement

and the associated exponent

The exponent takes on the value 1 for ordinary diffusion
(stochastic trajectories). As is also well-known,R takes on the
value 2 if the trajectories are ballistic. Thus, the exponentR is
characteristic of the type of dynamics exhibited by a particle.

The observed mean-squared displacements for the Brownian
particle in the simulations are shown in Figure 9. The corre-
sponding iLE-based results obtained by numerically integrating
eq 4.9 are in near perfect agreement. This is yet another
confirmation that the iLE surmises the behavior of the particle
model. Equally important, the diffusional behavior is also
instructive. The equilibrium limit (w ) 0) exhibits the usual
behavior in which the Brownian particle moves ballistically until
its initial collisions and then crosses over to the diffusion regime.
The remaining four curves, corresponding to nonzero swelling
rates, exhibit more complicated behavior. For largerw, the
volume fraction reaches its maximal value (0.4) sooner; the
chosen particle interacts with its neighbors sooner, and its
average displacement is smaller. But at larget values, the
diffusion coefficient, which depends on the final system state
only, becomes equal for all four curves and they tend to
approach one and the same line with the same slope, namely,
the diffusion constant. Figure 9 also shows thatR changes
nonmonotonically ifw * 0. In fact, this crossover behavior is
reminiscent of that seen in glassy dynamics although the solvent

Figure 8. VACF, Cw(t0, t), atw ) -1 nm/ms (A) andw ) -3 nm/ms
(B). The circles and curves present the simulation results and the iLE-
based eq 4.2, respectively. The initial timet0 is shown in ms.

g-(wt) ) g+(w(tmax - t))

Figure 9. Time dependence of the mean-squared displacement of a
Brownian particle in the swelling hard-sphere fluid (theoretical result
obtained from eq 4.9). The swelling ratew is shown in nm/ms.

∂
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conditions here are always well below the glassy transition. We
return to this issue below.

D. Dissipative Dynamics in Swelling Colloidal Suspensions.
Colloidal suspensions of noninteracting particles have routinely
been modeled using hard-sphere solvents. Because of the
simplicity of the latter, it has also been open to a large number
of analytic and computer treatments.18,36,37Similarly, the swell-
ing-sphere model should be realizable as a colloidal suspension
whose average particle diameter changes with time as a
consequence of some macroscopic perturbation such as pH or
the addition of solutes that bind to (and enlarge) the colloids.
The fact that the iLE surmises the VACF of the swelling-sphere
model further suggests that the iLE can also surmise the
corresponding dynamics of a chosen colloid in a swelling/
contracting colloidal suspension. The results above suggest that
in the swelling-sphere case, the diffusion of the colloid will be
slowed due to the increasing coupling to the swelling solvent.
Moreover, the effective diffusion exponentR varies throughout
the nonequilibrium solvation.

In refs 38 and 39, colloidal particles in polymer solution
exhibit subdiffusive plateaus analogous to those in Figure 9
which are related to yet another process accompanying the
particle’s motion: the increase of the elastic compliance that
leads to a concomitant increase in the shear viscosity at
intermediate times. In the glassy regime,37,39,40such a plateau
has been described as the escape of a particle out of an effective
cage where the latter is comprised by the solvent shell for some
persistence time. At short times, the cage persists not as a literal
physical barrier but rather by slowing down the particle through
increased friction as the particle tries to escape through so-called
â-relaxation processes.41,42Once the particle escapes, it traverses
a sufficiently large distance so as to exhibit an increase in the
apparent diffusion coefficient. At times much larger than the
inverse escape rate, the loss of correlation between consecutive
escapes leads to an averaged motion with a smaller diffusion
coefficient. A slowing in the diffusion rate has also been seen
in ref 43, though they described it using an effective free energy
which causes a displacement-dependent caging force that favors
localization at certain values of coordinates.

However, the swelling-sphere model system under a swelling
profile terminating well below the glass transition volume
fraction neither is in the high elasticity regime nor does it exhibit
a pronounced caging effect. Nonetheless, it exhibits a plateau
in R. This is due to the fact that the particle is being driven by
a nonequilibrium (time-dependent) solvent. As in the glassy
mechanism, the Brownian particle does feel an effective increase
in the friction which slows down its escape from effective cages.
The origin of this increasing friction is not theâ-relaxation
process operative above the freezing temperature. Instead, it is
due to the fact that the solvent particles are increasing in size
and hence interacting with the Brownian particle sooner than
expected. Thus the nonequilibrium solvation gives rise to a
glasslike diffusion of the Brownian particle at packing fractions
well below the freezing temperature.

As an aside, it should be mentioned that the iLE has also
been used to model an alternative nonequilibrium heterogeneous
system. In ref 8, the dynamics of a Brownian particle coupled
to time-dependent-driven anisotropic heavy particles (mesogens)
in a uniform bath (solvent) has been investigated. The rotational
motion of the mesogens was assumed to follow the motion of
an external driving field in the linear response limit. The
periodicity with which the particle’s motion is affected by

collisions with mesogens results in the oscillatory-type friction
and gives rise to successive segments in the time dependence
of 〈R2〉.

V. Conclusion

In this paper, a simple explicit particle model, in which the
hard-sphere solvent particles swell or contract with time, has
been used to represent the role of nonequilibrium solvation in
the diffusion of nonideal systems. This model serves two
purposes: First, as a demonstration that the irreversiblesnamely,
nonstationarysLangevin equation can indeed surmise the
projected dynamics of a complex particle model. Second, to
explore the diffusion behavior that emerges from the nonequi-
librium solvent using either equivalent representation.

The validity of the iLE has been confirmed using MD
simulations of the swelling-sphere model under various non-
equilibrium swelling and contracting protocols. The iLE has
been seen to describe the dynamics of a Brownian particle in
this medium even when the volume fraction changes as quickly
as in a rise from 0.002 to 0.5 in less than 100 ms. (Note that
even this fast drop has been realized in some of the experiments
cited above.) Although the particle model is not explicitly
projected onto the iLE, the iLE is fully realized by specifying
a coupling functiong(t) which fits the results of the numerically
generated VACFs over many parameter sets. It has been shown
that in the quasi-equilibrium case, at every instant,g(t) can be
determined by an instantaneous state of the system. Alterna-
tively, it has also been established that the coupling termg(t),
that describes the solvent response in the iLE (a limiting form
of the iGLE), naturally stems from the Hamiltonian formalism
and appears to be an average coupling amplitude with all the
bath modes.

The nonstationarity in the apparent friction of the iLE arises
from the macroscopic swelling of the hard-sphere solvent
because of two mechanisms: (i) The time to collision between
two particles is decreased by the fact that the solute sphere has
grown and hence its surface reaches the solute sooner. Moreover,
this effect depends on the collision time because the amount of
growth is larger at longer collision times. (ii) Near collisions,
that would have been avoided under the fixed particle case, can
lead to collisions as the collision cross-section increases because
of the swelling of the sphere. Both of these mechanisms lead
to an increase in the collisions between the solute and the solvent
and hence lead to a smaller coherence time (connected to a faster
response time) which changes with absolute time.

Typically, the packing fractions explored in this work have
been well below the freezing point, and hence, one might not
expect that the dynamics would exhibit surprising diffusional
behavior. However, the nature of the nonequilibrium coupling
between the Brownian particle and the solvent (using the
language of the iLE) drives the particle to feel nonequilibrium
dissipative forces. The net result is that the diffusion exhibits a
subdiffusive plateau at volume fractions characteristic of a liquid.
In effect, this suggests that dynamics of particles could be
arrested at lower solvent densities if only one subjects them to
nonequilibrium driving conditions.

The models described here can, in principle, be realized using
colloidal suspensions in which the colloid size is controlled
though an external agent. References to experiments and
corresponding experimental conditions that have nearly ad-
dressed this regime were cited in the Introduction. We hope
that the possibility that such nonequilibrium driving forces may
give rise to unusual diffusion effects will help motivate a new
round of more direct experiments on this issue.
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Appendix: Projection of the Mechanical System

The classical equations of motion, as deduced from Hamil-
tonian (3.6), can be obtained using the Hamilton-Jacobi
equations

Except for the nonlocalδV2 term in the last of these equations,
the terms are all stationary and the Hamilton-Jacobi equation
readily emerges from the variational principle. It turns out that
this nonlocal term also emerges from the variational principle,
though now one has to use a functional derivative.

Following ref 2, the action corresponding toδV2, which enters
into the Lagrangian in the Euler-Lagrange variational principle,
is

Equating the differential in the action with variations in the
function q(t) to zero provides a result

for the contribution ofδV2 to the momentumq̈. The second
term is troubling because it (i) depends on the arbitrary timeT
and (ii) adds contributions to the force from the future trajectory
(seemingly violating causality). The first issue leads to different
dynamics depending on the choice ofT. But if T is neart, this
term vanishes. This suggests that an additional approximation
ignoring the second term, and thereby eliminating the transient
effects, is warranted. Note, that this is consistent with earlier
derivations,21,44for the special case of space-dependent friction,
in that the transient terms also had to be removed therein but
here has the added benefit of restoring causality. That is, while
the second issue is not resolved exactly, operationally we ensure
causality by ignoring the second term in eq A.5.

Thus, the nonlocal force is approximately given by

and this equality is useful in obtaining the result in eq A.13b
below.

Returning to the equations of motion, the substitution of eq
A.2 into A.1 gives

Performing the Laplace transform (f̃(s) ) ∫0
∞ exp(-st)f(t) dt)

of this equation, yields

where G̃i(s)≡ ∫0
∞ exp(-st)gi(t)q(t) dt. Solving the algebraic

equations ins-space leads to

(here, of course,pi(0) ) x̆i(0)). Since the last term in eq A.9
can be rearranged as

the inverse Laplace transform of eq A.9 gives

To obtain this result, the initial condition in eq 3.9 is used
together with the ruleḟ̃(s) ) sf̃(s) - f(0). Using eq A.11 in
eq A.4, we can write

Thus, the iGLE originating from Hamiltonian (3.6), reads

whereγ(t,t′) andê(t) are defined in eqs 3.11 and 3.12, and the
second equality follows from eq A.6.

x̆i ) pi (A.1)

p̆i ) -ωi
2xi + cigi(t)q(t) (A.2)

q̆ ) pq (A.3)

p̆q ) ∑ cigi(t)xi - ∑ (cigi(t)

ωi
)2

q(t) - ∂

∂q(t)
δV2 (A.4)

S2 ) -∫0

T
δV2(q(‚),t) dt )

-∫0

T
dt ∫0

t
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t
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- ∂
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xi ) xi(0) cos(ωit) + pi(0)
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(A.13a)

) - ∫0

t
γ(t,t′)q̆(t′) dt′ + ê(t) (A.13b)
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If the initial distribution is Boltzmann as per

with 1/â ) kBT, then

and one can write

This means that the FDR (3.13) is satisfied.
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