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The photoelectron spectrum of F2O pertaining to ionizations to the ground (X˜ 2B1) and low-lying excited
electronic states (A˜ 2B2, B̃2A1, and C̃2A2) of F2O+ is investigated theoretically. The near equilibrium potential
energy surfaces of the ground electronic state (X˜ 2B1) of F2O and the mentioned ground and excited electronic
states of F2O+ reported by Wang et al. (J. Chem. Phys.2001, 114, 10682) for theC2V configuration are
extended for theCs geometry assuming a harmonic vibration along the asymmetric stretching mode. The
vibronic interactions between the A˜ 2B2 and B̃2A1 electronic states of F2O+ are treated within a linear coupling
approach, and the strength of the vibronic coupling parameter is calculated by an ab initio method. The
nuclear dynamics is simulated by both time-independent quantum mechanical and time-dependent wave packet
approaches. Although the first photoelectron band exhibits resolved vibrational progression along the symmetric
stretching mode, the second one is highly overlapping. The latter is attributed to the nonadiabatic interactions
among the energetically close A˜ 2B2, B̃2A1, and C̃2A2 electronic states of F2O+. The theoretical findings are
in good accord with the available experimental results.

I. Introduction

Spectroscopy and dissociation dynamics of halogen oxides
have attracted increasing attention in the literature because of
their relevance in the photochemistry of the stratosphere and
apparently they are involved, directly or indirectly, in the
depletion of ozone layer.1 The molecules of oxygen and chlorine
have been studied extensively both experimentally and theoreti-
cally.2-8 In contrast, the photophysics and photochemistry of
difluorine oxide, F2O, has received only scant attention in the
literature.10-12 The photoelectron spectra of halogen dioxide and
dihalogen oxides are found to be particularly appealing because
they bear signatures of strong nonadiabatic interactions in the
excited electronic states.6-9 The photoelectron spectra usually
have poor energy resolution; however, they are often used to
estimate the extent of nonadiabatic interactions among the
participating electronic states and thereby facilitate the develop-
ment of theoretical models to examine the nuclear dynamics in
the excited electronic states.

F2O is a nonlinear triatomic molecule with aC2V symmetry
at its equilibrium configuration. The ultraviolet photoelectron
spectrum of F2O was first recorded by Conford and co-workers10

and then by Brundle and co-workers.11 The observed bands were
assigned based on the semiempirical electronic structure data.
Both of these experiments assigned the first four electronic states
of F2O+ in the order2B1, 2A1, 2B2, and 2A2. An alternative
assignment was also proposed by Brundle and co-workers11 in
which the overlapping second, third, and fourth photoelectron
bands were assigned to the2A1, 2B2, and2A2 electronic states.
Theoretical calculations of the ionization energies of the low-
lying electronic states of F2O+ appeared thereafter.13 However,
the energetic ordering of the three cationic states (2A1, 2B2, and

2A2) still remained controversial. Recently, Wang et al.12

reported high-level ab initio calculation on the near equilibrium
C2V potential energy surfaces (PESs) of the ground electronic
state of F2O and the ground and the low-lying excited states of
F2O+. The three excited electronic states of the latter are shown
to be 2B2, 2A1, and 2A2 in order of ascending energy. This
energetic ordering was reconfirmed latter by Tomasello et al.14

by symmetry-adapted cluster-configuration-interaction calcula-
tions. Wang et al.12 also reported the harmonic and anharmonic
Franck-Condon (FC) simulation of the photoelectron bands
employing theC2V PESs developed by them and have shown
that the results are generally in good agreement with the
experiment. None of the theoretical studies to date have
considered any nonadiabatic interactions in the excited electronic
states and their impact on the photoelectron spectrum of F2O.

In this paper we revisit the photoelectron bands of F2O and
study them theoretically with the aid of a time-dependent wave
packet (WP) as well as a Lanczos based time-independent
quantum mechanical approach.15-18 We consider the relevant
nonadiabatic interactions in the excited electronic states of F2O+

and modeled them in our theoretical approach. The PESs
reported by Wang et al.12 for theC2V geometry of F2O and F2O+

are extended to theCs configurations in this study, assuming a
harmonic vibration along the asymmetric stretching mode. The
electronic nonadiabatic interactions between the A˜ 2B2 and B̃2A1

excited electronic states of F2O+ are modeled by devising a
diabatic electronic Hamiltonian within a linear vibronic coupling
approach.15 The linear vibronic coupling parameter is calculated
by an ab initio method, and a conical intersection15,19 between
the two electronic states is established. The spin-orbit (SO)
interactions between the near-degenerate B˜ 2A1 and C̃2A2

electronic states of F2O+ are not considered in this study
primarily because of relatively small SO coupling due to the F
atom. We have considered∼10% contribution of the C˜ 2A2 band
to the composite overlapping second and third photoelectron
bands. The importance of the nonadiabatic interactions between
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the Ã2B2 and B̃2A1 electronic states is further examined by
monitoring the nonradiative decay of the electronic population
in the coupled electronic manifold. It is worthwhile to carry
out the femtosecond time-resolved experiment to verify the
above predictions and the validity of the present vibronic
coupling model.

We also calculated the first photoelectron band of F2O and
find that it compares well with the experimental results at low
energy resolution. The peaks in the spectrum are∼0.13 eV
spaced in energy, which corresponds to a progression along the
symmetric stretching mode of F2O+. The major contribution to
the intensity of the overlapping second photoelectron band
comes from the interacting A˜ 2B2 and B̃2A1 electronic states,
and a minor contribution is considered from the C˜ 2A2 electronic
state. The theoretical results compare well with the experimental
recording.12

The rest of the paper is organized in the following way. In
section II we discuss the ab initio calculations of the vibronic
coupling parameter and describe the theoretical framework to
treat the nuclear dynamics by the time-dependent wave packet
and the time-independent quantum mechanical approaches. The
results are presented and discussed in section III, and the
summarizing remarks are presented in section IV.

II. Theoretical Framework

A. Vibronic Hamiltonian. The first photoelectron band of
F2O pertinent to a transition to the X˜ 2B1 electronic state of F2O+

is essentially described by the nuclear motion on the Born-
Oppenheimer PES of the latter. This is because the ground
electronic state of F2O+ is energetically well separated (∼4.56
eV at the equilibrium configuration) from its first excited
electronic state. The second, third, and fourth photoelectron
bands, however, are highly overlapping and are proposed here
to be due to the nonadiabatic interactions among the three low-
lying near-degenerate excited electronic states (A˜ 2B2, B̃2A1, and
C̃2A2) of F2O+. To describe the associated nonadiabatic interac-
tions, we resort to a diabatic electronic representation20 in which
the coupling between the states is described by smoothly varying
off-diagonal elements of the electronic Hamiltonian. This is to
be contrasted with the corresponding adiabatic electronic
representation in which the coupling between the states is
described by the off-diagonal elements of the nuclear Hamil-
tonian and these elements exhibit a singularity at the seam of
intersections of the electronic states. In absence of any relativistic
effects, the representative Hamiltonian to describe the first four
photoelectron bands of F2O is given by

whereH Nu and H el represent the nuclear and the electronic
part of the Hamiltonian matrix, respectively,TN is the nuclear
kinetic energy operator, andUii describes the potential energies
of the electronic states of F2O+ (i ) 1, 2, 3, and 4 refer to the
X̃2B1, Ã2B2, B̃2A1, and C̃2A2 electronic states, respectively). The
quantity U23 ) U32 represents the nonadiabatic coupling
potential between the A˜ 2B2 and B̃2A1 electronic states.

F2O is a bent molecule and has aC2V minimum in the neutral
ground electronic state and the cationic ground and excited
electronic states. To exploit this symmetry explicitly in the
nuclear dynamical simulations, we express the elements of the

above Hamiltonian matrix in terms of the symmetry-adapted
Jacobi coordinates pertinent to theC2V point group in the body-
fixed frame. In the following, we refer torV as the distance
between the two terminal F atoms,rd as the distance between
the O atom to the center-of-mass of the two F atoms, andγ as
the angle betweenrbV and rbd. Use of such symmetry-adapted
Jacobi coordinates for the present example is advantageous over
hyperspherical coordinates21 because it leads to a block-diagonal
structure of the Hamiltonian based on the vibronic symmetries.
This fact simplifies the numerical computation significantly by
reducing the grid size by a factor of 2, when the A˜ 2B2-B̃2A1

coupled electronic manifold is considered. A hyperspherical
coordinate system, however, is most suitable for a similar
triatomic system belonging to theD3h symmetry point group.
In terms of the symmetry-adapted Jacobi coordinates, the nuclear
kinetic energy operator for the total angular momentumJ ) 0
is given by

The quantitiesmF, mO, andI denote the masses of the fluorine
and oxygen atoms and the three-body moment of inertia,
respectively.

B. Details of the Electronic Potential Energy Surfaces and
the Vibronic Coupling Parameter. The elements of the
electronic Hamiltonian matrix,H el, of eq 1 have been deter-
mined in the following way. For the dependence of potential
energy surfacesU11, U22, U33, andU44 on the symmetric stretch
coordinate,S1 ) (∆r1 + ∆r2)/x2 (∆r1 and ∆r2 are the
displacements in FO bond lengths) and bending coordinates,
S2 ) ∆θ + R∆θ2 + â∆θ3, (∆θ being the displacements in FOF
bond angle;R and â are related by an expression,â ) [1 +
3R(π - θeqm)2]/[-2(π - θeqm], by restricting the energy gradient
in S2 to zero when the molecule is linear,θeqmis the equilibrium
value of the FOF angle), that is, forC2V geometries, the MRCI
potential energy functions derived from the large-scale CASSCF/
RCCSD(T)/cc-pVQZ calculations by Wang et al.12 is used.
These authors have fitted the potential energies to a polynomial
of the form

The above function for the ground electronic state of F2O and
F2O+ is described by 16 coefficients and by 14 coefficients for
the excited electronic states of F2O+. The quantityVeqm is the
potential energy at the equilibrium configuration in the respec-
tive electronic state. The details of the calculations can be found
in ref 12. The dependence of these PESs on the asymmetric
stretch coordinate,S3 ) (∆r1 - ∆r2)/x2, is approximated by a
Harmonic potential,V(S3) ) κuS3

2/2 ) ωuQu
2/2. The quantityκu

is the force constant along the asymmetric stretching vibration
(u symmetry), andωu is the harmonic vibrational frequency.
The quantityQu represents the dimensionless normal coordinate
of the asymmetric stretching vibration (see the details below).

H ) H Nu + H el )

TN (1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The harmonic approximation along the asymmetric stretching
motion is employed because the mentioned photoelectron bands
of F2O apparently do not show any noticeable excitation along
this vibration.

We devote some space here to introduce the dimensionless
normal coordinates. These are denoted asQg1, Qg2, andQu for
the symmetric stretching, bending, and asymmetric stretching
vibrational motions of F2O in its ground electronic state pertinent
to theC2V symmetry point group. The vibrational motion in this
state is treated as harmonic. The mass-weighted normal
coordinates of F2O are then calculated by theGF-matrix method
of Wilson et al.22 using the experimentally derived force field
of Pierce et al.23 They are then transformed to the dimensionless
normal coordinates by multiplying by (ωi/p)1/2 (ωi is the
frequency of theith vibrational mode). The frequencies of the
asymmetric stretching vibration of the neutral and cationic
electronic states used to describe the PESs employed in this
study are 0.1137, 0.1670, 0.1678, 0.2246, and 0.0714 eV for
the ground electronic states of F2O and theU11, U22, U33, and
U44 electronic states of F2O+ reported by Wang et al.12 The
diabatic coupling potential betweenU22 andU33 is assumed to
be a linearly varying function ofQu, U23 ) U32 ) λQu, λ being
the linear vibronic coupling parameter. We note that the present
model treats all of the higher order couplings in the Hamiltonian
along the symmetric stretch and bending coordinates, whereas
a linear coupling scheme is applied to the asymmetric stretch
coordinate only.

The interstate linear vibronic coupling parameter,λ, is derived
from the difference of the adiabatic potential energies of the
Ã2B2 and B̃2A1 electronic states, calculated for the variousCs

geometries of F2O+. The two are related via15

whereV1 andV2 are the adiabatic potential energies of the A˜ 2B2

and B̃2A1 electronic states, respectively, for the distorted nuclear
configuration,Qu. The latter is chosen in the vicinity ofQ0

(equilibrium configuration of the ground electronic state of F2O),
Qu ) Q0 ( δ, with δ being the small shift applied to change
the symmetry point group fromC2V at Q0 to Cs at Qu.

To calculateλ, we perform ab initio calculations for adiabatic
potentialsV2 and V1 for different values ofQu around the
equilibrium geometries of the neutral and cationic electronic
states. We have also optimized the equilibrium geometry of the
ground electronic state of F2O employing the correlation
consistent polarized valence triple-ú (cc-pVTZ) Gaussian basis
sets of Dunning.24 The electronic structure calculations are
performed using the GAUSSIAN25 program package. The effect
of electron correlation is treated by the second-order Møller-
Plesset perturbation theory (MP2). This yieldsr (O-F bond
length) ) 1.40 Å andθ (F-O-F angle)) 103.17° for the
optimized ground-state equilibrium geometry of F2O to be
compared to the corresponding values derived from microwave
spectroscopy,r ) 1.4053 Å andθ ) 103.07°.12 We performed
direct calculations of the vertical ionization energies of F2O
using the outer-valence Green’s function (OVGF) method
employing the same cc-pVTZ basis set and equated them to
the adiabatic potential energiesV1 andV2. The Green’s function
calculations are carried out for the following combinations ofr
andφ and for the displacement∆r ) 0.0, 0.01, 0.1, and 0.2 Å:
(i) r ) 1.4001 Å, φ ) 103.17° (MP2/cc-pVTZ equilibrium
geometry of F2O ground state); (ii)r ) 1.4053 Å,φ ) 103.07°

(experimental equilibrium geometry of F2O ground state); (iii)
r ) 1.2715 Å, φ ) 107.99° (MP2/cc-pVTZ equilibrium
geometry of the X˜ 2B1 state of F2O+); (iv) r ) 1.331 Å,φ )
107.3° (IFCA (harmonic) equilibrium geometry of the X˜ 2B1 state
of F2O+); (v) r ) 1.323 Å,φ ) 107.30° (IFCA (anharmonic)
equilibrium geometry of the X˜ 2B1 state of F2O+); (vi) r ) 1.4437
Å, φ ) 82.28° (CCSD(T)/aug-cc-pVTZ equilibrium geometry
of the Ã2B2 state of F2O+); and (vii) r ) 1.3689 Å,φ ) 118.57°
(CCSD(T)/aug-cc-pVTZ equilibrium geometry of the B˜ 2A1 state
of F2O+). The displacements are then transformed into dimen-
sionless normal coordinates, andλ is calculated using the
calculated OVGF data and eq 4. Such an analysis yields 0.05
eV e λ e 0.28 eV, with an average value ofλ ≈ 0.18 eV.

III. Calculation of the Photoelectron Spectrum and
Electronic Populations

The photoionization process is described by Fermi’s Golden
rule. The excitation function is given by

where |Ψ0〉 is the initial state; the vibrational and electronic
ground state of the neutral F2O with energyE0, which is assumed
to be vibronically decoupled from all other states.|Ψv〉 is the
final vibronic state of the radical cation with energyEv. The
operator T̂ is the transition operator, which describes the
interaction of the electron with the external radiation with energy
E. In the present application, the initial and final states can be
expressed as

where|φ〉 and|ø〉 refer to the (diabatic) electronic and vibrational
parts of the wave function, respectively. The superscripts 0 and
n refer to the electronic ground state of F2O and excitednth
electronic state of F2O+, respectively. Using eq 6, the spectral
intensity can be rewritten within the Condon approximation as15

with

being the transition operator matrix elements of the final
electronic staten. In rewriting eq 7, the matrix elements of the
transition operator are considered to be weakly varying functions
of the nuclear coordinates. These elements are not calculated
in the present study and are treated as constants (or adjusted
empirically by examining the experimental data), in accordance
with the applicability of the generalized Condon approximation
in the diabatic electronic basis.26

To calculate the photoelectron spectrum using a time-
dependent formalism, we used the Fourier transform representa-
tion of the Dirac delta function in the Golden rule formula in
eq 7. The resulting expression can then be reduced to the Fourier
transformation of the time autocorrelation function of the
WP.15,27When the interacting electronic states possess different
spatial symmetries, a vibronic symmetry exists and the vibronic
secular matrix becomes block diagonal upon a suitable ordering

λ ) 1
2

Qu
-1 {[V2(Qu) - V1(Qu)]

2 - [V2(Q0) - V1(Q0)]
2}1/2

(4)

P(E) ) ∑
v

|〈Ψv|T̂|Ψ0〉|2 δ(E - Ev + E0) (5)

|Ψ0〉 ) |φ0〉|ø0
0〉 |Ψv〉 ) ∑

n

|φn〉|øv
n〉 (6)

P(E) ) ∑
v

|τn〈øv
n|ø0

0〉| δ(E - Ev + E0) (7)

τn ) 〈φn|T̂|φ0〉 (8)
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of basis states. The Golden rule expression is then rearranged
to

where the indexk goes over to the component (diabatic)
electronic states,C k(t) ) 〈øk(t ) 0)|e-iH t/p|øk(t ) 0)〉. The
integral in eq 9 equals toi () x-1) times the expectation
value of the casual Green’s function in the initial WP repre-
sentation (see, for example, ref 15). Therefore, the imaginary
part of this expectation value finally contributes toP(E). The
autocorrelation function is evaluated by solving the time-
dependent Schro¨dinger equation numerically on a grid. For an
explicitly time-independent Hamiltonian, the solution reads

We solve eq 10 numerically on a grid in therd, rV, and γ
space in order to calculate the wave function at timet from
that at timet ) 0. A 128× 64 spatial grid is used in therd ×
rV plane with 1.0a0 e rd e 4.556a0 and 1.0a0 e rV e 6.985
a0. The grid along the Jacobi angle,γ, is chosen as the nodes
of a 48-point Gauss-Legendre quadrature (GLQ). The action
of the exponential operator on|øk (t ) 0)〉 is carried out by
dividing the total propagation time,t, into N steps of length∆t.
The exponential operator at each∆t is then approximated by a
second-order split-operator method,28 adapted to the present
coupled-state problem as discussed in the literature.29 This is
used in conjunction with the fast Fourier transform method to
evaluate the exponential containing the radial kinetic energy
operator30 and with the discrete variable representation method
to evaluate the exponential containing the rotational kinetic
energy operator (j2/2I) on the wave function.31 The latter is
accomplished by transforming the grid wave function to the
angular momentum basis (finite basis representation), multiply-
ing it by the diagonal value of the operator (e-ij (j+1)∆tp/4I), and
then transforming it back to the grid representation. The WP is
evolved for a total of 1.103 ps with a time step∆t ) 0.1347 fs.
The last 16 points of the grid alongrd and 8 points alongrV
were covered with a damping function32 in order to avoid any
unphysical reflection or wraparound of the high-energy com-
ponents of the WP that reach the finite-sized grid boundaries
at longer time.

The initial vibrational wave function|ø0
0〉 pertinent to the

ground electronic state of F2O is calculated by a Lanczos-based
relaxation method.33 The ab initio potential energy surface for
the ground electronic state of F2O reported by Wang et al.12

for the C2V configurations is extended to theCs geometries,
assuming a harmonic vibration along the asymmetric stretching
mode, and is used for the relaxation calculations. The time
propagation is carried out by the short iterative Lanczos
method34 with variable time steps. This yields a zero point
energy of 0.097 eV for the neutral F2O. The ground vibrational
wave function of the neutral obtained by this method is referred
to as anharmonic in the rest of this paper. This initial wave
function is then subjected to a FC transition and propagated
with the final-state Hamiltonian (as discussed above). At each
time step, the autocorrelation function is recorded and the
spectral intensity is finally calculated using eq 9.

The time-dependence of the diabatic as well as adiabatic
electronic populations are of immense importance in under-
standing the nonradiative decay dynamics of the optically
prepared state mediated by the conical intersections.15,35These

are calculated by defining adiabatic projectors in the diabatic
electronic representation.15,36

In the following, we also report the results obtained by
diagonalizing the vibronic Hamiltonian using the Lanczos
algorithm17 within a time-independent quantum mechanical
framework. A similar grid as stated above is used for this
purpose. In this method, the initial wave function is written as
a direct product harmonic oscillator function along theQg1, Qg2,
andQu vibrational modes of F2O. In this case, the intensity of
the vibronic lines is shown to be the square of the first
component of the Lanczos eigenvectors.37 In case of the
anharmonic initial wave function (discussed above), this formal-
ism cannot be used and a filter diagonalization approach will
be most effective.38 This is beyond the scope of the present
article and will be considered in a future study.

IV. Results and Discussion

In this section we show the photoelectron bands of F2O
calculated with the Hamiltonian of eq 1 and compare the
theoretical results to the available experimental data.10-12 The
structure of the Hamiltonian matrix in eq 1 reveals that the
nuclear dynamics can be treated independently on theU11,
coupledU22-U33, andU44 electronic states. To reveal explicitly
the impact of the nonadiabatic coupling on the nuclear dynamics
in the U22-U33 electronic states, we perform companion
calculations for the photoelectron transitions to the uncoupled
U22 andU33 electronic states also and the results are compared
to those obtained in the coupled-state simulations.

Because we start from an initial bound-state wave function,
we calculate,C(t) ) 〈øk(t/2)|øk(t/2)〉, which halves the total
propagation time,T, needed to achieve the energy resolution,
∆E ) 2πp/T, in the photoelectron spectrum.39 To reproduce
the broadening of the spectrum due to limited energy resolution
in the experiment and also due to three-body rotation, we damp
the autocorrelation function with an exponential function,f(t)
) exp(-t/τ), before Fourier transformation. This is equivalent
to convoluting a stick energy spectrum with a Lorentzian
function with full width at the half-maximum (fwhm)Γ ) 2p/
τ; τ being the relaxation time. In the following, this width is
chosen to best match the observed broadening of the experi-
mental band.

A. First Photoelectron Band.The potential energy surface
of the X̃2B1 electronic state of F2O+ in therd-rV plane is shown
as a contour line diagram in Figure 1a. Superimposed on it is
the anharmonic initial wave function of the ground vibrational
level of the ground electronic state of F2O. It can be seen that
the FC transition promotes the latter very near to the equilibrium
geometry of the final state.

The theoretical results on the first photoelectron band is
shown in Figure 1c along with the experimental results in panel
b. The WP is time evolved for a total of 1.1 ps. The variation
of the absolute value of the time autocorrelation function is
shown as an insert in panel c. The autocorrelation function revels
strong quasiperiodic recurrences in time; the average spacing
between the successive recurrences is∼32 fs, which results into
a spacing of∼0.13 eV in the energy domain. The latter can be
observed by inspecting the energy spectrum in Figure 1c. The
average splitting between the dominant peaks is∼0.13 eV
(∼1048 cm-1) to be compared to the experimental value of the
symmetric stretch frequency (∼1030 cm-1) of F2O+ in the X̃2B1

electronic state.12 This band does not reveal any progression
along the bending mode at the resolution of the experiment.
This fact is considered in the FC simulation of this band by
Wang et al.,12 and their anharmonic model yielded results in

P(E) ≈ ∑
k)1

n

|τk|2Re∫0

∞
ei(E+E0)t/p Ck(t) dt (9)

øk(t) ) exp[-iH t/p]øk (t ) 0) (10)
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good accord with the experiment. The present time-dependent
WP results are also in very good agreement at low energy
resolution. The time autocorrelation function in Figure 1c is
damped with aτ value of∼263 fs (Γ ) 5 meV) to generate the
spectral envelope. The Fourier transformation of the autocor-
relation function without damping is also included in the figure.
It can be seen that each peak in the broad envelope splits under
high resolution, and we find even quantum progression along
the bending vibrational mode corresponding to a frequency value
of ∼0.07 eV. The experimental value of the adiabatic ionization
energy of the above band is∼13.11 eV; this is reproduced well
in the theoretical results.

B. Overlapping Second, Third, and Fourth Photoelectron
Bands and the Nonadiabatic Effects.The Ã2B2 electronic state
of F2O+ is energetically lower than the B˜ 2A1 state at the
equilibrium configuration. The latter is in turn energetically
lower than the C˜ 2A2 state at the equilibrium geometry. The
minimum of the Ã2B2 state is∼0.036 eV lower than that of the
B̃2A1 state, which is∼0.05 eV lower than the C˜ 2A2 state.
Therefore, it is clear that these states are very close in energy
and the photoelectron bands arising from these three ionic states

will be highly overlapping. In addition, the A˜ 2B2 and B̃2A1 ionic
states can couple via the asymmetric stretching vibrational mode
at sufficiently low energy.

The contour line diagram of the A˜ 2B2, B̃2A1, and C̃2A2 ionic
states are shown in Figure 2a and b and plotted in the (r-θ)
plane to illustrate their topography for theC2V geometrical
arrangements of the nuclei. The potential energies are obtained
from the ab initio potential energy function of Wang et al.12

The energies are measured relative to the minimum of the A˜ 2B2

electronic state. The A˜ 2B2 and B̃2A1 electronic states can cross
each other at theC2V geometrical arrangements in the space of
the totally symmetric vibrational modes and from conical
intersections. The seam of conical intersections of these states
is shown by the solid line in Figure 2a, and the cross on it
indicates its energetic minimum occurring at∼0.83 eV. The
center of the FC zone in this coupled electronic manifold is

Figure 1. Contour line diagram of the potential energy surface of the
X̃2B1 electronic state of F2O+ in therd-rV plane (panel a). The potential
energies are obtained from ref 12. The energy is measured relative to
the minimum of the ground electronic state of F2O. The minimum
contour occurs at 0.5 eV and the spacing between the successive contour
lines is 0.1 eV. The theoretical results on the first photoelectron band
obtained by propagating the initial anharmonic wave function of the
F2O ground vibrational level of the ground electronic state (shown as
dark solid contour lines in panel a) on the above electronic state is
shown in panel c along with the available experimental results12 in
panel b. The variation of the absolute value of the time autocorrelation
function is shown as an insert in panel c. Intensity in arbitrary units is
plotted as a function of the ionization energy.

Figure 2. Contour line drawing of the A˜ 2B2-B̃2A1 and C̃2A2 (panel a
and b, respectively) potential energy surfaces forC2V geometries of
F2O+. The spacing between the successive contour lines in 0.5 eV and
the lowest energy contour occurs at 0.5 eV, 1.0 eV and∼0.83 eV for
the Ã2B2, B̃2A1, and C̃2A2 ionic states, respectively. The zero of the
energy scale corresponds to the minimum of the A˜ 2B2 state of F2O+.
The seam of conical intersections between the A˜ 2B2 and B̃2A1 electronic
states is shown by the solid line in panel a, and the cross on it indicates
the energetic minimum of this seam. The heavy dots in panels a and b
indicate the center of the FC zone in the photoionization to the
respective state. One-dimensional cuts of the A˜ 2B2, B̃2A1, and C̃2A2

electronic states through the minimum of the intersection seam of panel
a are plotted along the O-F bond distance and shown in panel c. The
arrow in the panel points to the minimum of the seam of conical
intersection between the A˜ 2B2 and B̃2A1 electronic states.
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shown by the dot in Figure 2a and also in Figure 2b. It can be
seen that the photoionization process prepares the WP almost
on the intersection seam. Therefore, the latter is expected to be
immediately perturbed by the associated nonadiabatic coupling
effects. One-dimensional cuts of the above electronic states
through the minimum of the seam of the intersections of Figure
2a are plotted along the O-F distance in Figure 2c. The
minimum of the seam of intersections occurs atr ≈ 2.67 a0

andθ ≈ 102.69°, and this minimum is relatively closer to the
minimum of the B̃2A1 state occurring atr ≈ 2.62 a0 andθ ≈
119.5°.12 Therefore, the effect of the nonadiabatic coupling on
the nuclear dynamics of the latter state is expected to be stronger.
The near degeneracy of the C˜ 2A2 state and A˜ 2B2-B̃2A1

electronic states is also revealed in the figure.
In Figure 3a-c we show the photoelectron bands for the

uncoupled Ã2B2, B̃2A1, and C̃2A2 electronic states of F2O+,
respectively. The spectra are obtained by propagating the
anharmonic initial wave function of the F2O ground state on
the above cationic states. The time autocorrelation function in
each case is damped withτ ≈ 8.5 fs to generate the broad band
envelopes in Figure 3a-c. We note that we also carried out the
time-independent matrix diagonalization calculations in order
to unambiguously identify the progressions in the above three
spectra. In this case, however, a harmonic initial wave function
is used. The theoretical data reveal an average spacing of∼0.062
eV (∼500 cm-1) between the intense lines in the A˜ 2B2 band.
This can be attributed to the progression along the bending

vibrational mode of F2O+. We also note that the time-dependent
results in Figure 3a may also have finite background contribu-
tions arising from the direct dissociative component of the WP.
A similar average energy spacing of∼0.063 eV corresponding
to a progression along the bending vibrational mode is also
found in the B̃2A1 band (cf. Figure 3b). Similar extended
progression along the bending vibrational mode is observed in
the corresponding photoelectron bands of Cl2O.8 The dominant
lines in the C̃2A2 band in Figure 3c, however, are∼0.13 eV
(∼1048 cm-1) spaced in energy, which corresponds to the
frequency of the symmetric stretching mode.

The final theoretical results (panel b and c) along with the
experimental results (panel a)12 are shown in Figure 4. First of
all, the experimental band is highly diffuse and ionization to
all three cationic electronic states contributes to the intensity
of this band. Our theoretical results represent the full contribu-
tion from the Ã2B2-B̃2A1 electronic manifold and∼10%
contribution from the C˜ 2A2 electronic state to the overall spectral
intensity. The composite photoelectron bands are shown by the
thick solid lines in panels b and c. They are obtained by adding
three spectra pertinent to the transitions to the above three

Figure 3. Photoelectron spectrum for the uncoupled (a) A˜ 2B2, (b) B̃2A1,
and (c) C̃2A2 electronic states of F2O+. The spectral intensity (in
arbitrary units) is plotted as a function of the energy of the final
electronic state. The spectra are obtained with the anharmonic initial
wave function (cf. Figure 1a) of F2O. The zero of the energy scale
corresponds to the minimum of the A˜ 2B2 electronic state.

Figure 4. Composite photoelectron spectrum of F2O corresponding
to a transition to the three excited electronic states, A˜ 2B2, B̃2A1, and
C̃2A2, of F2O+. The relative intensity in arbitrary units is plotted as a
function of the energy of the final vibronic state. The experimental
spectrum reproduced from ref 12 is shown in panel a. The composite
theoretical photoelectron spectrum obtained by the Lanczos diagonal-
ization method and using a harmonic initial wave function of the F2O
ground state is shown in panel b as dark solid lines. Similarly, in panel
c, the composite theoretical band obtained by propagating the anhar-
monic initial wave function is shown. The two spectra due to the A˜ 2B2

(thick solid lines) and B˜ 2A1 (thin solid lines) electronic states obtained
in the coupled-state situation are included in panels b and c under the
theoretical composite band. The stick energy spectra obtained by the
Lanczos diagonalization method are also included in panel b.
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cationic states. The results in panel b are obtained by the
Lanczos diagonalization method using a harmonic initial wave
function of the F2O ground electronic state constructed in terms
of dimensionless normal coordinates. The results in panel c,
however, are obtained by propagating the anharmonic initial
WP on the final electronic states. The two spectra due to the
Ã2B2 (thick solid lines) and B˜ 2A1 (thin solid lines) electronic
states obtained in the coupled-state situation are included in each
panel under the theoretical composite band. In addition, the stick
energy spectra obtained by the Lanczos diagonalization method
are included in panel b. The composite theoretical envelopes
are obtained by introducing a broadening by convoluting with
a Lorentzian function withΓ ) 40 meV. It can be seen clearly
that the Ã2B2 state contributes to the low-energy maximum and
the B̃2A1 and C̃2A2 states contribute to the high-energy
maximum of the observed bimodal intensity distribution in the
experimental recording. The peaks in the coupled-state spectra
of the Ã2B2 and B̃2A1 electronic states are somewhat broader
than those obtained in the uncoupled-state situation (cf. Figure
3a and b, respectively). The band origin in the coupled-state
situation shifts by∼0.05 eV and∼0.001 eV to the higher energy
compared to those in the uncoupled-state situation for A˜ 2B2 and
B̃2A1 electronic states, respectively. The broadening of the
spectral peaks in the coupled-state situation (in comparison to
the uncoupled-state results in Figure 3a and b) results from the
nonadiabatic interactions between the two states.

The composite theoretical photoelectron bands in panels b
and c contained∼10% contribution from the C˜ 2A2 state
spectrum (cf. Figure 3c). We note that the heights of the two
maxima in the theoretical band is adjusted empirically to fit
with the experimental results. Such an adjustment was necessary
as constant values of the transition dipole moment are assumed
in the theoretical study. It is worth mentioning here that the
nonadiabatic coupling strength in F2O+ is approximately two
times larger than that found in Cl2O+.8 This is the reason that
the experimental photoelectron band of Cl2O has more resolved
structures than F2O. The increased value of the nonadiabatic
coupling definitely contributes to the broadening of the bands;
however, the resolution in the experimental recording also has
to be taken into account for the observed broadening.

The adiabatic ionization positions cannot be identified
unambiguously in the experimental recording because of the
highly overlapping nature of the composite band. Wang et al.12

have predicted an adiabatic ionization energy of∼15.71 eV for
this composite band. In our calculation, the first peak in the
Ã2B2 spectrum observed at∼15.79 eV in the coupled-state
situation, when energy is measured relative to the minimum of
this state. The minimum of the A˜ 2B2 state of F2O+ is ∼17.70
eV above that of the ground electronic state of F2O.12 Therefore,
the present theoretical results overestimate the adiabatic ioniza-
tion position of the band and can be further improved by refining
the energy at the global minimum of these electronic states. To
this end, we note that the agreement between the theoretical
and experimental results are satisfactory within the mentioned
approximations made in the theoretical treatment. The theoretical
results may be further improved by carrying out full dimensional
calculations of the potential energy surfaces, the electronic and
relativistic spin-orbit coupling surfaces, and the relevant
transition dipole moment surfaces. This is beyond the scope of
the present investigations and may be considered in a future
study.

To this end, we note that a referee suggested that we comment
on the importance of the present full quantum dynamical
treatment versus a similar approximate treatment within har-

monic picture. Our observations reveal that the anharmonicity
of the initial state does not alter the results significantly because
we start from its ground vibrational and rotational level.
However, the anharmonicity of the final electronic state
(particularly in the coupled-state situation) is definitely more
crucial for the observed asymmetry of the photoelectron band.
Also, the broad and diffuse nature of the observed band implies
a portion of the WP samples the dissociative region of the final
electronic states (cf. Figure 6). The latter cannot be described
properly by a harmonic model. Therefore, it is very important
to consider realistic model of the final electronic states and
perform a full quantum dynamical treatment of the nuclear
dynamics.

C. Time-Dependent Dynamics in the A˜ 2B2-B̃2A1 Elec-
tronic States of F2O+. To enunciate the impact of nonadiabatic
coupling on the WP dynamics, we now report on the time
dependence of the adiabatic and diabatic electronic populations
in the Ã2B2-B̃2A1 coupled electronic states of F2O+. These
populations are calculated by defining adiabatic projectors in
the diabatic electronic representation.15,36The minimum of the
B̃2A1 electronic state is closer to the seam of conical intersec-
tions (cf. Figure 2a), and therefore the dynamics of the initially
prepared WP on this state is more strongly influenced by the
nonadiabatic coupling compared to that on the A˜ 2B2 state. An
initial location of the WP on the latter diabatic state corresponds
to 63%: 37% population of the component adiabatic states att
) 0. In this case, only∼6% of the population moves to the
B̃2A1 diabatic state and the population dynamics does not reveal
any characteristic feature and, therefore, we do not show it here.

The population dynamics of the WP initially prepared on the
B̃2A1 diabatic electronic state, however, reveals interesting
features and is shown in Figure 5. The adiabatic and diabatic
electronic populations are shown by the solid and dashed lines,
respectively. Because the WP is initially located on the B˜ 2A1

diabatic electronic state, the population of this state is 1.0 att
) 0. This initial location also corresponds to 63%: 37%
population of the component adiabatic states such as in the A˜ 2B2

case above. It can be seen that the B˜ 2A1 diabatic electronic
population starting from 1.0 att ) 0 decays to∼0.2 at longer
times. The initial decay of the population relates to a decay
time of ∼30 fs for this state. The population decays to∼0.63
at ∼25 fs; therefore, within this time about 37% of the
population moves to the A˜ 2B2 diabatic state; population of this
state starts from zero att ) 0. The population of both of these
states does not vary noticeably afterward until∼70 fs, when a
second sharp drop in the B˜ 2A1 diabatic population takes place.
Within about∼100 fs,∼73% of the population reaches to the
Ã2B2 diabatic state. The population of the two component

Figure 5. Time dependence of the adiabatic (solid lines) and diabatic
(dashed lines) electronic populations in the coupled-state dynamics of
the Ã2B2-B̃2A1 electronic states corresponding to an initial FC transition
to the B̃2A1 electronic state of F2O+.
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adiabatic states reaches∼100%: 0.0% at longer times. The weak
recurrences seen in the adiabatic electronic populations are
damped in the diabatic ones.

To better understand the above population dynamics, we show
snapshots of the wave packet evolving on the coupled A˜ 2B2-
B̃2A1 diabatic electronic states at different times in Figure 6.
The contours of the probability density (|øk|2) of the WP
averaged over the angular coordinate is superimposed on the
potential energy contours forγ ) π/2 in therd-rV plane. It can
be seen that the WP att ) 0 is located very near to the
equilibrium geometry of the B˜ 2A1 electronic state. The latter is
found to be closer to the seam of A˜ 2B2-B̃2A1 conical intersec-
tions (cf. Figure 2a). Because of this, the internal conversion to
the Ã2B2 state takes place within a very short time. It can be
seen that∼37% of the WP moves to this state within∼25 fs.
The portion of the WP in the A˜ 2B2 state approaches toward the
energetic minimum of this state (cf. snapshots at∼50 fs) after
arrival and mostly remain there at longer times. It appears that
once the WP reaches the A˜ 2B2 state most of it does not recross
the intersection seam and move to the B˜ 2A1 electronic state
again. This is also indicated by the absence of quasiperiodic
recurrences in the time dependence of the electronic populations
(cf. Figure 5). At longer time (∼200 fs),∼79% of the WP moves
to the Ã2B2 electronic state.

V. Summary and Outlook

We have presented a theoretical account on the photoelectron
spectroscopy of F2O and compared our findings to the available
experimental results. Particularly, the effects due to possible
nonadiabatic interactions between the A˜ 2B2 and B̃2A1 electronic
states of F2O+ on the photoelectron bands are examined in detail.
The theoretical approach is based on the relevant ab initio
potential energy surfaces of the system and time-independent
and time-dependent quantum dynamical methods.

In this study, the near equilibriumC2V PESs reported by Wang
et al.12 for the F2O ground and the low-lying excited electronic
states of F2O+ are extended to the Cs geometries, assuming a
harmonic contribution from the asymmetric stretching vibra-
tional mode. This is motivated by the fact that the excitation
along this vibrational mode is not observed in the experimental
data.12

Analysis of the first photoelectron band revealed dominant
progression along the symmetric stretch vibration. Weak excita-
tions of the even quantum of bending vibration are also observed
under high energy resolution. The broad-band spectral envelope
compares well with the experimental results. The second, third,
and fourth photoelectron bands are highly overlapping and are
due to ionizations to the near-degenerate A˜ 2B2, B̃2A1, and C̃2A2

electronic states of F2O+, respectively. The nonadiabatic interac-
tions between the A˜ 2B2 and B̃2A1 ionic states are modeled here
within a linear coupling scheme. These two ionic states can be
coupled via the asymmetric stretching vibration. Conical
intersections between these two states are established. The
strength of the coupling parameter is derived from the electronic
structure results. This resulted in the estimate 0.05 eVe λ e
0.28 eV, with 0.18 eV as an average value of this quantity.
The photoelectron bands due to A˜ 2B2 and B̃2A1 ionic states
reveal extended progression along the bending vibrational mode.
The nonadiabatic interactions between these states contribute
largely to the observed diffuse structure of the experimental
band. The photoelectron band due to the C˜ 2A2 ionic state reveals
dominant progression along the symmetric stretching vibration.
The relativistic spin-orbit interactions of this state with the B˜ 2A1

ionic state is not considered in this study. We assumed∼10%
contribution due to this state in the overall composite theoretical
results presented here. The theoretical results are in good accord
with the observed experimental results. Experimental results at
higher energy resolutions are desirable to further refine the
present theoretical model.
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