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A modified transition state theory (MTST) has been developed for gas-phase reactions with “negative barriers”.
The theory was applied to the reactions CH3 + HBr(DBr) f CH4(CH3D) + Br (1a, 1b), which exhibit negative
temperature dependences. Accurate ab initio calculations performed with coupled cluster theory extrapolated
to the complete basis set limit revealed a transition state located at-2.3 kJ mol-1 relative to the ground state
of the reactants (in reaction 1a), as well as a shallow bound complex. The negative temperature dependence,
the absolute values of the rate constant, and the isotope substitution effect are reproduced with good accuracy
(10%), without any adjustment or fitting parameters. Analytical expressions are presented for MTST including
angular momentum conservation, centrifugal barriers and tunneling. This analysis uses information about the
possibly loose entrance barrier and the transition state but does not invoke a statistical intermediate complex.

Introduction

Negative temperature dependence (negative apparent activa-
tion energies) in bimolecular reactions is a well-established
phenomenon.1-7 Typically, negative temperature dependence
is exhibited by reactions that proceed via formation of a bound
long-lived statistical complex, separated from the reactants and
the products by transition states. An explanation of the
phenomenon was given on the basis of RRKM theory applied
to the unimolecular dissociation of the statistical complex.
Extended discussion as well as a theory of such reactions was
provided by Mozurkewich and Benson.8 Negative apparent
activation energies are normally expected when the transition
state that leads to the products of the reaction has an energy
below that of the reactants. Benson and Dobis9 reviewed the
mechanism of reactions proceeding via an intermediate complex
and discussed the major features such as possible pressure
dependence, the inverse isotope substitution effect, and possible
inversion of the negative temperature dependence to a positive
one at elevated temperatures. Essentially, the major features of
these reactions are well understood in terms of the multistep
mechanism.10

During the last two decades, negative apparent activation
energies were observed in bimolecular reactions that had been
assumed to be “simple methathesis reactions”. These are
reactions of C- and Si-centered small free radicals with hydrogen
halides (HX, X) I, Br) or halogens (X2).1,2,11-14 These studies
had a significant impact on the derived thermochemistry of small
hydrocarbon free radicals and the strength of the C-H bonds
in hydrocarbons.1,2,11 These new findings were met with
scepticism due to the long-time belief in the nature of these

reactions as “simple metathesis” (ref 15 and references therein).
Tschuikow-Roux and co-workers16,17 attempted to explain the
negative apparent activation energy for the reaction of CH3 with
HBr based on the theory developed by Mozurkewich and
Benson10 and quantum chemical calculations of the potential
energy surface for the reaction. The theoretical calculations
identified a weakly bound van der Waals H3C-H-Br complex
at the entrance of the reactant valley. However, the potential
well obtained in the calculations was very shallow (ca. 1 kJ
mol-1), which makes the notion of a “statistical complex”
somewhat doubtful. Moreover, the energy barrier as well as the
predicted apparent activation energy were still positive, and to
fit the experimental data the barrier in CH3 + HBr was forced
down by 3.3 kJ mol-116 whereas almost no adjustment was
required for CH3+HCl, which was a subject of further criti-
cism.15

In this work, two major advances toward the understanding
of the negative temperature dependence of simple metathesis
reactions are made. First, the discussion is based on (modified)
transition state theory (TST) rather than the RRKM theory, so
that the requirement of astatistical complex is not needed
anymore. However, although the same basic assumptions of TST
are used, a modification, similar to that made in the Improved
Canonical Variational Theory (ICVT) of Garrett and Truhlar,18-20

is required to describe systems properly where the ground state
of the TS lies below the reactants level. A theory that takes
into account a “negative barrier”, conservation of angular
momentum, the centrifugal barrier at the entrance of the reaction
valley, and the quantum effects of tunneling and above-the-
barrier reflection was developed and formulated in terms of
analytical expressions. Second, investigation of the potential
energy surface (PES) computed at a high level resulted in a
negative energy of the TS. Calculations performed using the
modified TST with the PES obtained in the new theoretical
calculations predict the temperature dependence, the absolute
value of the rate constant, as well as the isotope substitution
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effect in reaction 1without any adjustments or fitting param-
eters.

There have been several prior computational investigations of
the PES for reaction 1. Issues arising from these studies include
the possible existence of a bound intermediate, whether the
energy of the TS is above or below that of the reactants, the
correct analysis to derive rate constants, and the role of quantum
mechanical tunneling.

The pioneering studies by Chen et al. were based on
Gaussian-1 theory.21 As noted above, they computed a positive
barrier to reaction which had to be adjusted to a negative value
to match experiment, and they included a simple tunneling
correction. Both corrections were criticized by Benson and
Dobis,22 who argued in favor of smaller CH3 + HBr rate
constants with a positive activation energy. Yu and Nyman23

conducted quantum scattering calculations, which inherently
treat tunneling correctly, based on a PES derived with MP2
second-order perturbation theory that yields a positive barrier.
Guha and Francisco applied quadratically converged configu-
ration interaction.24 Their highest level QCISD(T)/6-311++G-
(3df,3pd) results yielded∆rH0 of -55.6 kJ mol-1, in moderate
accord with the experimental value of-69.4 kJ mol-1.25

Because of uncertainties in their energetics, they regarded the
slightly negative reaction barrier they obtained with caution,
and concluded that there is “essentially no barrier”. Espinosa-
Garcia applied coupled cluster CCSD(T) theory with a triple-ú
basis set.26 He argued that the reaction complex was an artifact
of basis set superposition error, and that the reaction barrier is
positive. The most recent study is that by Sheng et al.,27 who
applied spin-projected MP4 theory at QCISD/6-31+G(d) ge-
ometries to obtain∆rH0 of -59.8 kJ mol-1 and energies below
reactants for the complex and TS. The latter two PESs were
analyzed with improved canonical variational theory.18-20 Good
agreement (within 20%) with the experimental data was
achieved. The new PES calculations here use CCSD(T) theory
for high accuracy, with basis sets extrapolated to the infinite
basis limit. At this limit any BSSE is eliminated. The PES should
be more accurate than previous ones, and in particular enables
definitive identification of a bound complex and a negative TS
energy.

Modified Transition State Theory for Reactions with
“Negative Barriers”

The transition state theory28,29 and its further developments
are discussed in detail in numerous original publications and
textbooks.28-46 For reactions with “negative barriers”, i.e., when
the ground state in the bottleneck position lies below the ground
state of the reactants, a modification that takes into account
nonavailability of the negative total energies should be intro-
duced, such as was done by Garrett and Truhlar in their
Improved Canonical Variational Theory.18-20 Calculations using
variational transition state theories in general are more elaborate
and require much more information about the potential energy
surface than the original transition state theory where the critical
surface is prescribed and only the properties of the “transition
state” are required. Therefore, the traditional TST approach was
extended to reactions with “negative barriers”. The main
expressions for the modified TST are derived below.

Notations. The discussion is focused on a bimolecular
reaction

In the discussion below, we will deal withJ, K specific rate
constants. To avoid some difficulties associated with the
separation of the partition function for “external rotation” of
the pair of reactant molecules and with the treatment of the
K-rotor as a degree of freedom with conserved energy, an
artificial unbound “complex” between the reactants and the
transition state is introduced. This reduces the problem to
unimolecular reaction from the complex to the products. The
complex could be a nonbonded artificial construct of the reactant
molecules separated by a distance r within a layerδ, so that
the rotational constants of the “complex” are well defined. The
complex is assumed to be in microcanonical equilibrium (not
the steady state) with the reactants. It is easy to show that the
properties (the partition function) of this complex will cancel
out in any derivation based on an equilibrium theory; therefore
the precise specification of the parameters of such complex are
not required (Appendix 1). Though it is not critical, for
simplicity it is assumed that the energy of the ground state of
the “complex” is the same as the ground state energy of the
reactants. In the derivation below, the results will be obtained
under the assumption of vanishing rotational constantB of the
complex,B f 0, and the rotational constantA equal to that of
the transition state (A ) Aq).

The translational motion of the center-of-mass is factored out
in all expressions and derivations below unless stated otherwise.
The notations used for the partition functions, the densities and
the number of states are listed below. All partition functions
that include translational motion are per unit volume, all partition
functions that do not include translational motion are dimen-
sionless, and the units of the partition functions (based on cm3)
are shown.

•QA (cm-3) QB (cm-3), QC(cm-3), Qq
total (cm-3) are the total

(including translational motion of the center of mass) partition
functions of reactants A, B, the complex, and the total partition
function of the transition state.

•QR(cm-3) is the partition function of the reactants with the
center-of-mass motion factored out, so that QR ) QAQB/Q(3)

tr,M,
where Q(3)

tr,M(cm-3) is the 3D partition function for the
translational motion of the center of mass and M) MA+MB is
the total mass of A+B.

•Q, Qq (dimensionless) are the partition functions (including
external rotations) of the “complex” and the transition state with
the translational motion of the center of mass factored out, so
that QC ) Q(3)

tr,M.Q, Qq
total ) Q(3)

tr,M.Qq.
•Qrot, Qq

rot (dimensionless) are the partition functions for
external rotations of the “complex” and the transition state.
Throughout the derivations the notations for the symmetric top
are used, where all external rotations are characterized by three
quantum numbers, J, K and M.

•Qint, Qq
int (dimensionless) are the partition functions (center

of mass factored out) of the “complex” and the transition state
less external rotations, i.e., Q) QintQrot, Qq ) Qq

int Qq
rot. For

the transition state, Qqint includes only internal degrees of
freedom (including internal rotations). For the “complex”, Qint

includes the relative motion of the reactants within a layerδ as
well as these (now internal) rotational degrees of freedom of A
and B that were not counted toward external rotations.

•The notations Qint+A′(J,T), Qq
int+A′(J,T) (dimensionless) are

used for the “internal” partition functions+ external 1D rotation
about thea axis (quantum number K) of the “complex” and
the transition state, respectively. These partition functions
depend on the total angular momentum, J, because the range
of K is J-limited.

CH3 + HBr f CH4 + Br (1a)

CH3 + DBr f CH3D + Br (1b)

A + B f (AB)q f products (E1)
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•QB, Qq
B (dimensionless) are the partition functions of a 2D

rotor associated with the quantum numbers J and M for the
“complex” and the transition state, respectively.

•Similar notations are used for the densities and the numbers
of states.

•The following notations are used for the equilibrium popula-
tions and the partial partition functions related to the external
rotations of a prolate symmetric top with the rotational constants
A > B ) C, A′ ) A - B. The quantum numbers, the energy
spectrum and the degeneracies g are

The equilibrium fraction in a specific J, K energy level is

The partial partition function for the K-rotor is defined as

Then the total partition function for the external rotations and
the equilibrium fractions of J-levels are

Microcanonical Rate Constant.In the initial discussion, to
illustrate the main point, we will ignore the impact of the
conservation of angular momentum, of possible degrees of
freedom with conserved energy, and quantum effects (tunneling
and above-the-barrier reflection). The centrifugal entrance barrier
as well as a possible entrance barrier (such as one caused by
the zero-point vibrational energies) are ignored as well.

For reaction E1, let us consider a specific transition state
(critical surface) at a fixed value of the reaction coordinate, qq,
and focus on a single selected state of the transition state with
the energy E′qi accessible from the current energy of reactants,
E. The energies E and E′qi are measured relative to a common
reference level. The difference is the energy of translational
motion of the transition state along the reaction coordinate, Eq

t,i:

On the basis of either the microcanonical equilibrium of the
reactants with the “transition complex” (the transition state that
is allowed to perform decoupled translational motion in a thin

layer around the dividing surface)28 or the quasi-classical
derivation based on the flux of representing points in the phase
space,30 it is shown that all internal states of the transition state
that are accessible at a given energy (i.e., with energy below
the energy of the reactants) contributeequally to the rate
constant:

The total rate constant is obtained by multiplication of E4a by
the total number of accessible states of the TS:

where Wq(E+) is the total number of states of the transition
state with the energy below E+, counting from the ground state
of the transition state, E+ ) E - E0. Equation E4b is the well-
known result of micro-canonical RRKM theory as applied to
unimolecular reactions.46,47 as well as microcanonical TST
applied to bimolecular reactions.30

Canonical Rate Constant Ignoring Restrictions Associated
with Angular Momentum, Entrance Barriers and Tunneling/
Reflection. Now we incorporate the equilibrium thermal
distribution E5 of the reactants to formulate the canonical
expression for the rate constant.

For the canonical rate constant with a positive barrier, E0 > 0,
one derives (using E+ ) E - E0, and k(E+ < 0) ) 0:

Equation E6 as well as some further developments are equivalent
to the results obtained in previous works18,19and are given here
for clarity.

Evaluation of the second integral in E6 by parts, using exp-
(-E+/kT) dE ) -kT d(exp(-E+/kT)) and dWq(E+) ) Fq(E+)
dE+, results in the standard expression of transition state theory
(the second integral in E6,∫0

∞W q(E+) exp(-E+/kT) dE+/kT, is
the partition function of the transition state):

whereQR and Qq are the partition functions of the reactants
and the transition state, respectively, calculated relative to their
ground states.

However, if the lowest energy at the position of the reaction
bottleneck (the ground state of the transition state) lies below
the ground state of the reactants, E0 < 0 (“negative barrier”),
then the integration in E6 must start not from E0 (which is
negative), but from zero:18,19

J ) 0, 1, 2, 3, ...,∞
K ) -J, -J + 1, -J + 2, ...,-1, 0, 1, ...,J - 2, J - 1, J

M ) -J, -J + 1, -J + 2, ...,-1, 0, 1, ...,J - 2, J - 1, J

E(J,K,M) ) BJ(J+1) + A′K2 A′ ) A - B

g(J,K,M) ) 1

g(J,K) ) ∑
M)-J

J

g(J,K,M) ) 2J + 1 (E2a)

x(J,K) )
g(J,K)
Qrot

exp(-
E(J,K)

kT ) )
g(J,K)
Qrot

×

exp(-
BJ(J+1)

kT ) exp(- A′K2

kT ) (E2b)

Qrot,A′(J,T) ) ∑
K)-J

J

g(J,K) exp(-
A′K2

kT ) (E2c)

Qrot(T) ) ∑
J)0

∞

Qrot,A′(J,T) exp(-
BJ(J+1)

kT ) (E2d)

x(J) ) ∑
K)-J

J

x(J,K) )
Qrot,A′(J,T)

Qrot

exp(-
BJ(J+1)

kT ) (E2e)

Eq
t,i ) E - E′qi Et,i > 0 (E3)

ki(E) ) 1
hFR(E)

(E4a)

k(E) )
Wq(E+)

hFR(E)
E+ ) E - E0 (E4b)

dx(E) ) 1
QR

exp(- E
kT)FR(E) dE (E5)

k(T) ) 1
QR

∫E0

∞
exp(-E/kT) FR(E) k(E+) dE )

kT exp(-E0/kT)

hQR
∫0

∞
Wq(E+) exp(-E+/kT)

dE+

kT
(E6)

k(T) ) kT
h

exp(-E0/kT)

QR
∫0

∞
Fq(E+) exp(-E+/kT) dE+ )

kT
h

Qq

QR
exp(-E0/kT)

) kT
h

Qtotal
q

QAQB
exp(-E0/kT) ) kTST (E7)
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Equation E8 is essentially themain point of the modified
transition state theory- replacement of E- E0 results in a
positive lower integration limit, -E0, and the integral cannot be
reduced to the partition function of the transition state anymore:

When the lower limit of integration is zero, the second integral
in E9, ∫-E0

∞ Wq (E+) exp(-E+/kT) (dE+/kt) is simply the
partition function of the transition state. However, for negative
barriers, the lower limit in this integral is positive which reduces
the absolute value of the rate constant compared with the rate
constant obtained by formal substitution of a negative barrier
into the classical TST expression:

Moreover, this has an impact on the temperature dependence,
again, compared with the result obtained by formal substitution
of negative values for the barrier into the classical TST. The
negative temperature dependence predicted by E9 isweakerthan
one obtained by classical TST with negative E0.

It is instructive to analyze the temperature dependence
predicted by equation E9 in an ultimate case of large “negative
barriers”, -E0 . kT. Integrating E8 by parts, and expanding
the density of states of the transition state into the Taylor series
near -E0, one obtains

Neglecting all terms in E11 but the first one results in the
ultimate expression for the rate constant for reactions with large
negative barriers:

It should be stressed that the center-of-mass motion is factored
out in the partition function of the reactants, QR, but not the
relative motion of the reactants. The partition function QR

includes electronic, vibrational, and rotational degrees of
freedom as well as the relative translational motion of the
reactants.

There are several conclusions that can be derived from Eq.
E12:

(i) For similar negative barriers, the more complex the
reactants, the larger is the absolute value of the negative
temperature dependence of the rate constant.

(ii) Because the number of states in the transition state
increases faster than the partition function with the complexity
of the reactants, in a series of similar reactions, reactions of
more complex reactants are expected to be faster.

(iii) All neglected terms in E11 have positive temperature
dependences; therefore the actual negative temperature depen-
dence is weaker than that predicted by Eq. E12.

(iv) All neglected terms in E11 are positive; therefore eq E12
represents a lower limit on the rate constant (within the
assumptions of the theory).

Conclusions i-iii are in good qualitative agreement with the
experimental observations.1,2,11-13 However, for quantitative
calculations, conservation of angular momentum, the role of
the K quantum number, the role of a possible additional barrier
at large separations of the reactants (such as due to zero-point
vibrational energies or an inherent saddle point in the PES),
the entrance centrifugal barrier and tunneling/above-the-barrier
reflection should be taken in consideration.

Taking into Account Conservation of Angular Momentum
(J - Adiabatic), Conservation of Energy of K-Rotor (K-
Rotor Is Nonactive), and Quantum Corrections (Tunneling
+ Above-the-Barrier Reflection). The derivation will be
performed initially ignoring a possible entrance barrier as well
as the centrifugal barriers. These will be taken into account at
a later stage.

Figure 1 illustrates the energy diagram and the notations used
in the derivation. We assume that K-rotation (the rotation about
the a-axis) is a degree of freedom with conserved energy. It
can be argued16 that for the reaction CH3 + HBr the K-rotor
should be treated as a degree of freedom with fixed energy (i.e.,
nonactive degree of freedom). This is based on the fact that Aq

. Bq, and that A does not change appreciably in the course of
reaction. For the reaction CH3 + HBr, the rotational constant
Aq is much larger than the rotational constant Bq (ca. 37 times).
In addition, this rotational constant changes negligibly when
going from the reactants (A ) 142.5 GHz) to the transition state
(Aq )145.3 GHz). Therefore, Bq could be neglected in the
energy term associated with quantum number K. Because K is
a good quantum number for a symmetric top, the K-contribution
of the rotational energy is conserved with good accuracy.

Because the distribution function for translational motion
along the reaction coordinate of the transition states that are in
internal states which lie below the ground state of the reactants
is not Maxwell’s distribution, but a truncated Maxwell’s

k(T) ) 1
QR

∫0

∞
exp(-E/kT) FR(E) k(E+) dE )

1
hQR

∫0

∞
Wq(E-E0) exp(-E/kT) dE (E8)

k(T) ) 1
hQR

∫0

∞
Wq(E-E0) exp(-E/kT) dE )

kT exp(-E0/kT)

hQR
∫-E0

∞
Wq(E+) exp(-E+/kT)

dE+

kT
(E9)

∫-E0

∞
Wq(E+) exp(-E+/kT)

dE+

kT
< Qq -E0 > 0 (E10)

∫0

∞
Wq(E-E0) exp(-E/kT)

dE
kT

)

Wq(-E0) + kTFq(-E0) + (kT)2 dFq

dE|(-E0)
+ ... (E11)

k(T) ) kT
h

Wq(-E0)

QR
(E12)

Figure 1. Sketch of the energy diagram. Curve 1: adiabatic energy
+ Ez (the ground state energy of the system). Curve 2: theJ-
contribution of the external rotation is added (adiabatic degree of
freedom). Curve 3: theK-contribution of the external rotation is added
(assumed to be conserved).
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distribution, the usual expressions for the canonical transmission
probability are not applicable. To incorporate quantum mechan-
ical tunneling and above-the-barrier reflection, the microca-
nonical transmission probability should be used. We use the
one-dimensional transmission probability function given in ref
46:

whereEt
q is the translational energy of the TS for the motion

along the reaction coordinate, andν* is the absolute value of
the imaginary frequency of the TS. The transmission function
p(Et

q) replaces the Heaviside stepwise transmission function
which is used in the classical description. The characteristic
energy width of the transmission function E13 is(hν*/2π. This
is ca. 80 cm-1, or 1 kJ mol-1, for the H3C-H-Br transition
state.

In the derivation below the notion of an artificial complex C
is invoked (see Appendix 1). The contribution of a specific
internal level i of the transition state to theJ,K-specific
microcanonical rate constant of the complex transformation into
the products is (where E) E′ + EA(K) is the total energy of
the reactants less the energy of the center of mass motion):

and the differenceE - E0 - Ei
q - EB

q (J) - EA
q (K) ) Et

q is the
energy of translational motion along the reaction coordinate.
The transmission probability function p(Et

q) has nonzero val-
ues for negative translational energies (tunneling) and it is not
equal to one at positive energies (above-the-barrier reflection).
To obtain the canonicali,J,K-specific rate constant, E14 is
averaged with the equilibrium distribution function of the
reactants, usingE′ ) E - EA(K), and the assumption that the
K energy is conserved,EA

q (K) ) EA(K):

WhenE′ - E0 - Ei
q - EB

q (J) is replaced with the translational
energy, E15 becomes

where

For the internal states with large positive energies, e.g.,Ei
q(J)

> 3hν*/2π, the lower integration limit can be replaced by-∞,

and a universal canonical transmission coefficient appears as a
common factor:45,48

The total canonical rate constant is obtained by summation of
E16 over the distribution function of the reactants and the
internal states of the transition state:

Note thatEi
q(J) were calculated relative to the ground state of

the reactants, whereasEi
q are the energies of the internal state

of the transition state relative to its ground state. For large
positive barriers the lower integration limit in the integral E19
can be replaced by-∞, the integral becomes the canonical
transmission coefficientø(T) (E18), and the whole expression
E19 is the expression for the rate constant of the classical
transition state theory corrected for quantum effects. HereAq

) A and conversion of the “complex” reaction rate constant to
the bimolecular rate constant (Appendix 1) are used:

Therefore, it is convenient to complete the integral in E19 by
extending the lower limit of integration to-∞, and to express
the difference as a correction:

p(Et
q) ) 1

1 + exp(-2πEt
q/hν*)

(E13)

kC,J,K,i(E) )
p(E-E0-Ei

q-EB
q (J)-EA

q (K))

hFint(E-EA(K))
(E14)

kC,J,K,i(T) )

∫0

∞ p(E′-E0-Ei
q-EB

q (J))

hFint(E′)
Fint(E′) dE′

Qint
exp(-E′/kT)

) 1
hQint

∫0

∞
p(E′-E0-Ei

q-EB
q (J)) exp(-E′/kT) dE′

(E15)

kC,J,K,i(T) )
kT

hQint
exp(-Ei

q(J)/kT)∫-Ei
q(J)

∞
exp(-Et

q/kT) p(Et
q) dEt

q/kT

(E16)

Ei
q(J) ) E0 + Ei

q + EB
q (J) (E17)

ø(T) ) ∫-∞

∞
exp(-Et/kT) p(Et) dEt/kT ) hν*/2kT

sin(hν*/2kT)
for hν*/2kT < π (E18)

kC(T) )
kT

hQint

exp(-
E0

kT
) ×

∑
i)0

∞

exp(-
Ei

q

kT
)∑

J)0

∞

∑
K)-J

J 1

Qrot

g(J,K) exp(-
BqJ(J+1)

kT
) ×

exp(-
A′K2

kT
)∫-E0-Ei

q-BqJ(J+1)

∞
exp(-

Et
q

kT
) p(Et

q)
dEt

q

kT
(E19)

kC ) ø(T)
kT

hQintQrot

exp(-
E0

kT
) ×

∑
i)1

∞

exp(-
Ei

q

kT
)∑

J)0

∞

∑
K)-J

J

g(J,K) exp(-
BqJ(J+1)

kT
) exp(-

AqK2

kT
)

) ø(T)
kTQint

q Qrot
q

hQintQrot
exp(-

E0

kT) ) ø(T)
kTQq

hQ
exp(-

E0

kT) )

ø(T)
kTQtotal

q

hQC
exp(-

E0

kT) (E20a)

k )
QC

QAQB
kC )

QC

QAQB
ø(T)

kTQtotal
q

hQC
exp(-

E0

kT) )

ø(T)
kTQtotal

q

hQAQB
exp(-

E0

kT) ) kTST (E20b)

k(T) ) kTST(1-δ) (E21)

δ ) ∑
i)0

∞

δi (E22)
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Because the rotational constantBq is quite small (ca. 0.1 cm-1

, kT ≈ 200 cm-1), the summations in E23 are replaced with
integrations.

Although the total energy is factorized inJ andK, there is
still coupling between these two degrees of freedom due to
the limit on the possible values ofK imposed byJ, |K| < J.
This is the reason the partition function of theK-rotor is
J-dependent. For rotors with the rotational constantA much
larger than the rotational constantB (which is the case for the
transition state of the CH3 + HBr reaction) a useful approxima-
tion is to extend the summation range in the definition of
QA

q(J,T) to infinity:

Under this approximation E23 simplifies as

Expression E25 can be evaluated by changing the order of
integration:

Therefore, (E25) becomes

BecauseQB
q ) kT/Bq, these two entries cancel out in (E27).

When a dimensionless energyyi ) (-E0 - Ei
q)/kT is

introduced, (E27) can be rewritten as

where the functionp̃(x) ) 1/(1 + exp(-x)), and a ) 2πkT/
hν*. When the partial transmission coefficient,ø(y,a),

is introduced, (E28) becomes

Taking into Account a Possible Entrance Barrier and the
Centrifugal Barriers. Because centrifugal energy decays as 1/r2

with the separation of the reactants, and the “potential energy”
asymptotically decays much faster, as about 1/r6, a centrifugal
barrier appears at large separations of the reactants. The heights
(V1(J)) and the positions of the centrifugal barriers depend on
J. Because these centrifugal barriers are quite wide (the
corresponding imaginary frequencies are small), the quantum
effects (tunneling and above-the-barrier reflection) are negli-
gible.46 It should be stressed that these barriers do not represent
another transition state but serve just as energy cutoff barries;
that is, no reflection of the trajectories with energies above the
barriers at the barrier positions is assumed. To take the entrance
barrier into account, the lower integration limit in E15 now
should be replaced byV1(J):

A series of transformations similar to those presented in the
previous section leads to the correctionsδi:

δi )
1

Qint
q Qrot

q ø(T)
exp(-

Ei
q

kT
) ×

∑
J)0

∞

exp(-
BqJ(J+1)

kT
)∫-∞

-E0-Ei
q-BqJ(J+1)

exp(-
Et

q

kT
) ×

p(Et
q)

dEt
q

kT
∑

K)-J

J

g(J,K) exp(-
A′qK2

kT
)

)
1

Qint
q Qrot

q ø(T)
exp(-

Ei
q

kT
)∑

J)0

∞

QA
q (J,T) ×

exp(-
BqJ(J+1)

kT
) ×

∫-∞
-E0-Ei

q-BqJ(J+1)
exp(-

Et
q

kT
) p(Et

q)
dEt

q

kT
(E23)

Qrot,A(J,T) ) ∑
K)-J

J

g(J,K) exp(-
A′K2

kT ) ≈ ∑
K)-∞

∞

g(J,K) ×

exp(-
A′K2

kT ) ≈ ∫-∞

∞
g(J,K) exp(-

A′K2

kT )
) (2J + 1)xπxkT

A′ ) (2J + 1)Qrot
(1) (E24)

δi ) 1

Qint
q QB

q ø(T)
exp(-

Ei
q

kT) ×

∫0

∞
exp(-

EB
q

kT) dEB
q

Bq ∫-∞
-E0-Ei

q-EB
q

exp(-
Et

q

kT) p(Et
q)

dEt
q

kT
(E25)

∫0

∞
dEB

q∫-∞
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q-EB
q

dEt
q f ∫-∞

-E0-Ei
q

dEt
q∫0
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q

dEB
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δi ) 1
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q QB

q ø(T)
exp(-

Ei
q

kT) ×

∫-∞
-E0-Ei

q

exp(-
Et

q

kT) p(Et
q)

dEt
q

kT ∫0

-E0-Ei
q-Et

q

exp(-
EB

q

kT) dEB
q
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Qint
q QB

q ø(T)
exp(-
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q

exp(-
Et

q

kT) p(Et
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kT (1 - exp(E0 + Ei
q + Et
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δi ) 1

Qint
q ø(T)

exp(-
Ei

q

kT) ×

∫-∞

yi exp(-ê) p̃(aê) dê(1-exp(-(yi-ê))) (E28)

ø(y,a) ) ∫-∞

y
exp(-ê) p̃(aê) dê ) ∫-∞

y exp(-ê)

1 + exp(-aê)
dê

(E29)

δi ) 1

Qint
q ø(T)

×

exp(-
Ei

q

kT){ø(yi,a) - exp(-yi)
1
a
ln(1 + exp(ayi))} (E30)

kC,J,K,i(T) ) ∫V1(J)

∞ p(E′-E0-Ei
q-EB

q (J))

hFint(E′)
Fint(E′) dE′

Qint
×

exp(-E′/kT) (E31)
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Now, another useful approximation can be made if there is an
additional barrier in the entrance of the reactant valley,V10, such
as one caused by the zero-point vibrational energy. The position
of this barrier will approximately fix the positions of the
centrifugal barriers, so that an approximatelyJ-independent
rotational constant that corresponds to the barrier geometry,B1,
can be introduced. Then

BecauseEB
q ) BqJ(J+1), the entrance barrierV10 is combined

with the negative barrierE0, and the entrance centrifugal energy
is combined with the centrifugal energy of the transition state:

where

Introducing dimensionless variables (EB
q /kT ) x, Et

q/kT ) ê)
and changing the order of integration, the integral in E32 is
reduced to

The integral in the last term can be defined as a “generalized
transmission function”, Tr(a,b,x), and evaluated via a hyper-
geometric function2F1 (see Appendix 2):

Evaluation of the generalized transmission function is discussed
in Appendix 2.

Summary. Modified TST for Reactions with “Negative
Barriers”. Taking into Account Conservation of Angular
Momentum, the Entrance Barrier, the Entrance Centrifugal
Barriers and Tunneling + Reflection. Rotation K Treated
as a “Fixed Energy” Degree of Freedom.Under the assump-
tions stated in the title, the expressions of the modified transition
theory for reactions with negative barriers are as follows.

•The reaction bottleneck has a negative energy relative to
the ground state of the reactants,E0 ) -|E0| < 0. For high
enough positive barriers (>5 kJ mol-1), the correctionδ
vanishes, and the rate constant is given by the transition state
theory.

(the partition functionsQA, QB andQtotal
q are the total partition

functions including translational motions of the center of mass).

(the rate constant of the Modified Transition State Theory)

(formally the summation is extended to infinity; in practice, the
series can be truncated for the internal states of the TS exceeding
|E0| by severalhν*/2π, i.e., by ca. 400 cm-1 ≈ 5 kJ mol-1 for
the title reaction).

The set of equations E39 includes all the expressions required
for the evaluation of the rate constantkMTST. Evaluation of the
hypergeometric function2F1 is outlined in Appendix 2.

Results and Discussion

Theoretical Calculations of the Potential Energy Surface.
Stationary points and the reaction path for reaction 1 were
investigated using spin-unrestricted QCISD theory with the all-
electron 6-311G(d,p) atomic basis set. The reactants, a loosely
bound complex and a transition state (TS) between this species

δi ) 1

Qint
q QB

q ø(T)
exp(-

Ei
q

kT) ×

∫0

∞
exp(-

EB
q

kT) dEB
q

Bq ∫-∞
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q-EB
q (J)

exp(-
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q

kT) p(Et
q)

dEt
q

kT
(E32)

V1(J) ) V10 + B1J(J+1) (E33)

E′0 ) E0 - V10 (E34)
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q (J)/(1 + b) (E35)

b )
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Bq - B1

(E36)
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∞
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q
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) QB
q∫0

∞
exp(-x) dx∫-∞
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exp(-ê) p(aê) dê )

QB
q∫-∞

y′i exp(-ê) p(aê) dê∫0

(b+1)(yi-ê)
exp(-x) dx

) QB
q∫-∞

yi exp(-ê) p(aê) dê (1 - exp(-(b + 1)yi) ×
exp((b + 1)ê))

) QB
q {ø(yi,a) - exp(-(b + 1)yi)∫-∞

yi exp(bê) p(aê) dê}
(E37)

Tr(a,b,x) ) ∫-∞

x exp(bê)

1 + exp(-aê)
dú )

exp(bx)(1 + exp(ax))

(a + b)(1 + exp(-ax))2F1(1,(1+b/a),(2+b/a),(-eax))

(E38)

kTST ) ø(T)
kT
h

Qtotal
q

QAQB
exp(-

E0

kT) (E39a)

• k ) kMTST ) kTST(1 - δ) (E39b)

• δ ) δ0 + δ1 + δ2 + ... + δi + ... (E39c)

• δi ) 1

Qint
q ø(T)

exp(-Ei
q/kT) H(a,b,yi) (E39d)

yi )
V01 - E0 - Ei

q

kT
(E39e)

a ) 2πkT
hν*

(E39f)

b )
B1

Bq - B1

(E39g)

• H(a,b,yi) ) Tr(a,-1,yi) - exp(-(1 + b)yi) Tr(a,b,yi)
(E39h)

• Tr(a,b,x) ) ∫-∞

x exp(bê)

1 + exp(-aê)
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exp(bx)(1 + exp(ax))
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ø(T) ) Tr(a,-1,∞) )
(π/a)
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and the final products CH4 + Br were characterized, and their
geometries and frequencies are summarized in Figure 2 and
Table 1. These calculations were carried out with the Gaussian
98 and 03 program suites.49,50On the basis of comparison with
measured vibrational frequencies for the reactants and products,
the ab initio frequencies have been scaled by a factor of 0.9597,
to account for anharmonicity. This factor is close to the value
of 0.955 derived for a variety of halomethanes and halocarbon
radicals.51,52 The intrinsic reaction coordinate was explored in
the neighborhood of the TS, and in the neighborhood of the
complex and reactants the reaction coordinate was defined
directly in terms of the length of the newly forming C-H bond,
r(C-H), held constant in relaxed scans of the PES. The QCISD/
6-311G(d,p) energy relative to reactants is displayed as a
function of r(C-H) in Figure 3.

Next, more refined energies were obtained at points along
the QCISD/6-311G(d,p) reaction coordinate by means of
coupled cluster calculations. The Molpro 2002.6 program53 was
used to compute spin-restricted CCSD(T) energies with cor-
relation consistent basis sets. The cc-pVnZ-PP basis sets of
Peterson et al. withn ) 2-4 were employed.54 These basis

sets treat the inner 1s, 2s, and 2p electrons of bromine as a
pseudopotential, which partly accounts for relativistic effects.
The 4s and 4p orbitals in bromine, and the 1s hydrogen orbitals
and the 2s and 2p orbitals in carbon, and all the virtual orbitals,
were included in the correlation treatment. Results for the
stationary points are included in Table 1. These data were
employed in an extrapolation of energy as a function of n in
the form

to obtain the energy at the infiniten or complete basis set limit,
ECBS. These results are plotted in Figure 2.

The overall computed reaction enthalpy, combined with an
empirical spin-orbit correction for atomic Br, is-71.9 kJ
mol-1, which is in excellent accord with the JANAF value of
-69.4 kJ mol-1.25 Any errors in the computed bond strengths
are therefore well-balanced and should largely cancel along the
reaction coordinate. An indication that errors in individual bond
strengths are likely to be small comes from the work of Feller
et al.55 Methods similar to those applied here yielded errors in
the atomization enthalpies for HBr and CH3Br of 0.5 and 2.5
kJ mol-1, respectively, an average of 0.6 kJ mol-1 per bond.

Figure 3 shows that the TS is located accurately by QCISD
theory with a medium sized basis set, although its energy is
too positive compared to the results obtained from inclusion of
the triples contributions to the correlation energy at the infinite
basis set limit. The position of the minimum shifts to shorter
r(C-H) with the higher level calculations. When zero-point
vibrational energies are included, the complex remains bound,
by about 4 kJ mol-1 at 0 K, and the TS lies below the reactants,
by 2.3 kJ mol-1.

Calculations of the Rate Constants for Reaction 1a and
1b Using the Modified Transition State Theory.The structural
and other parameters of the transition states for reaction 1 listed
in Table 2 were used to calculate the rate constant based on the
modified transition state theory using the set of expressions E39.
The entrance parts of the PESs including zero-point vibrational
energy were carefully investigated. No entrance barrier for
reaction 1a was found within the digital noise of the calculations
(about 0.1 kJ mol-1). The following procedure was then used
to evaluate the effective rotational constant for the centrifugal
barriers,B1,eff(H). Estimates show that only quantum numbers
J < 40 play roles in the corrections. Therefore, the potential+
centrifugal energy was calculated for discreteJ (5, 10, 20, 30,
40, and 50). The centrifugal barrier height was plotted vsJ(J+1).
A slightly curved plot was fitted with a linear dependence, which
yields the effective rotational constant used in the subsequent
calculations. The deviation of the fit from the actual energies
was small, less than 0.1 kJ mol-1. In the case of the D-analogue,
reaction 1b, a small entrance “barrier” was recognized in the
entrance valley, with the top almost exactly at the reactants level.
Application of the procedure outlined above led to location of

TABLE 1: Structures, Frequencies and Energies of Stationary Points on the CH3 + HBr Potential Energy Surface

species R(C-H)a R(C-H′)a ∠HCH′a R(H′-Br)a frequenciesa CCSD(T)/DZb CCSD(T)/TZb CCSD(T)/QZb CCSD(T)/CBSb

CH3 1.083 ∞ 90.0 415, 1378(2), 3002, 3176(2) -39.716038 -39.760920 -39.772372 -39.776295
HBr 1.416 2581 -416.217280 -416.293052 -416.313836 -416.321692
complex 1.084 2.529 92.7 1.420 63, 92(2), 219(2), 519, 1379(2),

2531, 2996, 3171(2)
-455.935933 -456.056743 -456.089190 -456.101105

TS 1.086 1.613 99.2 1.509 497i, 287(2), 683, 687(2), 1236,
1385(2), 2984, 3146(2)

-455.933589 -456.055584 -456.088519 -456.100698

CH4 1.093 1.093 109.5 ∞ 1312(3), 1510(2), 2923, 3038(3) -40.387346 -40.438054 -40.450817 -40.455109
Br -415.581088 -415.649270 -415.667168 -415.673538

a QCISD/6-311G(d,p) data. Bond lengths in 10-10 m, angles in degrees and scaled vibrational frequencies in cm-1. b Single-point coupled cluster
calculations using cc-pVnZ-PP basis sets withn ) 2-4, and extrapolation to the complete basis set limit, in au (1 au≈ 2625.5 kJ mol-1).

Figure 2. Sketch of the CH3 + HBr orientation along theC3V reaction
coordinate. See Table 1 for geometry parameters.

Figure 3. Energy profile for reaction 1a (no zero-point vibrational
energy included) along the QCISD/6-311G(d,p) reaction coordinate,
shown as a function of the length of the forming C-H bond, for two
levels of theory. The upper curve is QCISD/6-311G(d,p), and the lower
is CCSD(T)/CBS.

En ) ECBS + A exp(-Bn) (E40)
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all centrifugal barriers at the same reaction coordinate; therefore
the plot of the barrier energy vsJ(J+1) was perfectly linear.
The values of the effective rate constants for the entrance
centrifugal barriers obtained in this way are listed in Table 2.

The results of the calculations are shown in Figure 4. The
negative temperature dependences of the rate constants for both
(1a) and (1b), as well as the absolute value of the rate constant
for reaction 1b, are reproduced almost perfectly. The deviation
of the calculated and experimental rate constants for reaction
1a is on average 10%, within the likely accuracy of the
experiments. The isotope substitution effectkH/kD is reproduced
with an accuracy of 10%. It should be stressed that, as no
adjustments of any parameters has been made in these calcula-
tions, the result is 100% ab initio. The agreement between the
theory and the experiment is considered very good, and might
be somewhat fortuitous. An arbitrary adjustment of the barrier
position from-2.3 to -1.9 kJ mol-1 brings the calculations
into perfect agreement for reaction 1a, with a necessary deviation
of the calculations from the experiment for reaction 1b by about

10%. However, variations of the barrier position within a
reasonable range do not change either the isotope substitution
effect or the negative temperature dependence. The scale of the
quantum effects (tunneling+ reflection) is ca. 18% at 150 K
and 7% at 500 K for reaction 1a.

In addition to the results of the modified transition state
theory, the predictions of standard TST with the same tunneling
correction, where the negative barrier is formally used as the
activation barrier, are shown as dotted lines in Figure 4. As
was stated before, the modified TST predicts smaller rate
constants and lesser negative temperature dependence than the
classical TST with formal negative barriers. This comparison
is of interest from another point of viewsthat of possible
pressure dependence of reactions with negative barriers. If a
surrounding medium is provided that ensures fast energy
relaxation on the time scale of passing from the entrance barrier
to the transition state, then the classical TST should become
applicable. Such a surrounding could be a high pressure bath
gas, a supercritical fluid, or a liquid solvent. Therefore, the
difference between the dashed lines and solid lines represents
the predicted pressure effect on the rate of reaction 1. As can
be seen in Figure 4, only a relatively minor pressure effect is
expected at room temperature (ca. 30%). It is interesting to note
that a similarly sized increase in the rate constant of reaction
1a in He over the pressure range 1-100 bar was observed but
was not reliably identified due to large experimental errors at
elevated pressures.56 Large pressure effects are expected at lower
temperatures. For example, at 200 K the expected increase of
the rate constant in conditions of fast energy relaxation is about
a factor of 2.3 for reaction 1a.

In view of the results of the theoretical treatment of reactions
with negative barriers outlined above, it is necessary to comment
on the widespread application of canonical variational transition
state theory33-44 and some of its variants to the so-called
“barrierless” reactions. These theories are based on the concept
of flux minimization, which (in the canonical form) can be
reformulated as a requirement of maximum free energy.
However, this can be justified only when the energy of the
system in the bottleneck position is positive.18,19 In the case of
barrierless reactions, the position of the bottleneck is expected
at negative energies. Although the free energy when formally
calculated could still exhibit an extremum (maximum) at the
bottleneck position above the free energy of the reactants due
to the entropic contribution, the very concept of the free energy
is not applicable. As was shown in the preceding sections, for
negative barriers the rates cannot be expressed via the partition
function of the transition state. Therefore, the formal application
of the classical canonical TST or any of its variants (except for
the Improved Canonical Variational Theory18,19) to reactions

TABLE 2: Parameters of the Reactants, Transition States and the Entrance Structures Used in the Calculations

species frequencies/cm-1 B/GHz A/GHz

energy relative
to reactantsa/

kJ mol-1
entrance barrier,b

V10/kJ mol-1

effective rotational
constant,b

B1,eff/GHz

H79Br 2581 253.17
D79Br 1837 128.3
CH3 3176 (2), 3002, 1378 (2), 415 285.0 142.5
transition state

H3C‚‚‚H‚‚‚Brq
3146 (2), 2984, 1385 (2), 1236, 687 (2),

683, 287 (2), 497i
3.931 145.3 -2.30

transition state
H3C‚‚‚D‚‚‚Brq

3146 (2), 2984, 1386 (2), 1042, 630, 574 (2),
245 (2), 455i

3.901 145.3 -1.17

entrance structure
H3C‚‚‚H-Br

0 1.008

entrance structure
H3C‚‚‚D-Br

0 0.903

a Including vibrational zero point energy.b See text for definition.

Figure 4. Rate constants for reactions CH3 + HBr (1a) and CH3 +
DBr (1b). Points: experiment. Open circles and diamonds: reaction
1a, refs 1 and 2, respectively. Filled diamonds: reaction 1b, ref 2. Solid
lines: calculations using the modified transition state theory (expres-
sions E39b-E39j) using the theoretical ab initio data without adjust-
ments or fitting parameters. Dashed lines represent the results of the
TST theory (with tunneling) with formally substituted negative barrier
heights (E39a).
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where the bottleneck has energy below the ground state energy
is not justified. For such reactions, either the Improved
Canonical Variational Theory18,19or modified Transition State
Theory (in cases when the bottleneck position is well described
by a local maximum on the potential energy curve) should be
used.

Conclusions

The simplest reaction of the type R+ HX, reaction of CH3

radical with HBr, that exhibits a negative temperature depen-
dence was successfully treated on the basis of the modified
transition state theory and accurate ab initio calculations. The
negative temperature dependence, the absolute values of the rate
constant, as well as the isotope substitution effect are reproduced
with a good accuracy without any adjustment or fitting
parameters. The developed modified transition state theory is
based on the general assumptions of the classical TST and does
not require a long-lived statistical complex to explain the
experimental observations. The theory has a wider range of
applications than the reactions of free radicals with halogens
and hydrogen halides, and can be used for other barrierless
reactions (such as free radical recombination, etc.). One of the
important conclusions is that application of traditional canonical
variational TST to reactions in which the bottleneck has a
negative energy with respect to the reactants, in the gas phase
at moderate pressures, should be reconsidered.
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Appendix 1

Derivation for Bimolecular Reaction Using an Artificial
Nonbonded Complex. For bimolecular reaction E1 let us
introduce an artificial “complex” of molecules A and B at
arbitrary separation but before the entrance to the reaction valley:

The complex is assumed to be in microcanonical equilibrium
(not the steady state) with the reactants at any available energy,
the reactants being in the canonical equilibrium state. This is
consistent with the general assumptions of the transition state
theory.30 The total concentration of the complexes is then

The reaction rate is the rate constant of unimolecular transfor-
mation of “complexes” into the products,kC, multiplied by the
concentration of the complexes:

Therefore, the rate constant of reaction E1 is obtained from the
rate constant of the unimolecular transformation of the complex
by multiplication by the ratio of the partition functions:

Because statistical theories lead tokC inversely proportional to

QC, the partition functions of the artificial “complex” cancels
out in (E44), so that the specific parameters of the complex are
not required.

Appendix 2

Evaluation of the Generalized Transmission Function, Tr-
(a,b,x). The generalized transmission function, defined as below,
can be expressed through the hypergeometric function2F1:57

The hypergeometric function2F1 can be represented as a series.58

For |z| < 1,

SubstitutingR ) 1, â ) 1 + b/a, γ ) 2 + b/a, z ) -exp(ax)
as in (E45), the series is simplified:

Expression E47 is valid for|z| < 1 (i.e.,x <0). For positivex,
a transformationz f 1/z, is used:

Applying the series E46 to the hypergeometric functions in
(E48), after some transformations, forx > 0, the following
expression is obtained:
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