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The vibrational circular dichroism (VCD) spectra of (S)-(+)-2-butanol have been observed in dilute CS2

solutions. Two strong VCD bands are assigned mainly to the OH bending modes with the aid of quantum
chemical calculations. The calculated VCD spectra corresponding to these bands are shown to depend on the
conformation of the OH group. To understand this feature, we have calculated the contribution of each local
vibrational mode to the rotational strengths and concluded that the coupling of the group vibrations between
the in-plane and out-of-plane modes about the locally assumed symmetry planes play a significant role in
VCD. This finding has provided a new scope of VCD in relation to molecular vibrations.

1. Introduction

Vibrational circular dichroism (VCD)1-3 spectroscopy has
become one of the routine methods for investigating chiral
molecules. The theoretical understanding of VCD was advanced
greatly4 in the mid 1980s by the magnetic field perturbation
theory,5-7 which is one of the completely analytical methods.5-11

The density functional theory (DFT)12 for the calculation of
atomic axial tensors (AATs) using gauge-invariant atomic
orbitals (GIAOs)13,14 is available to predict the VCD spectrum
accurately. These theoretical calculations supply valuable
information about the VCD spectra of chiral molecules, but
understanding of the vibrational spectroscopic aspects of VCD
still seems to be insufficient. The basic concepts of the normal-
mode analysis used in traditional vibrational spectroscopy and
structural chemistry are expected to play a valuable role for
this purpose.

Certain groups of atoms in a molecule often have their own
intrinsic vibrational frequencies. The characteristic frequencies
of these groups are influenced by the coupling of two or more
group vibrations. This phenomenon provides useful pieces of
information about the molecular structure and conformation. One
of the convenient ways to analyze vibrational spectra is to
evaluate the potential energy distribution (PED),15 which
represents the contribution of a specific vibrational mode
expressed in the internal coordinates16-18 to the normal vibration.
The PED is often used to assign the spectrum and analyze the
physical meaning of the vibration. However, the applicability
of PED for an analysis of VCD spectra has never been discussed
to our knowledge.

The VCD bands having large contributions from the OH
bending modes of (S)-(+)-2-butanol show clear dependence on
the conformation. The purpose of the present paper is to
introduce a new scope to the understanding of VCD phenomena
from the viewpoint of vibrational spectroscopy. We have

calculated the contribution of each local vibrational mode to
the rotational strengths and explained the above-metioned
features of the VCD spectra of (S)-(+)-2-butanol in terms of
the couplings of vibrational modes.

2. Theoretical Calculations and Experiments

Figure 1 shows the molecular structure of (S)-(+)-2-butanol.
This molecule has four skeletal single bonds, and there may be
three stable conformations around the C2-C3 and C2-O bonds.
In total, nine rotational isomers are possible. They are named
using the two symbols defined in Figure 2. The first capital
letters denote the dihedral angle between the C2-O and C3-
C4 bonds around the C2-C3 bond. The second small letters
define the dihedral angle between the O-H and C2-C3 bonds
around the C2-O bond. The gauche form is designated as G or
g, and the trans form as T or t. The+ and- signs represent
the anticlockwise and clockwise directions of the dihedral
angles, respectively. After geometry optimizations of all nine
conformers, we calculated their vibrational frequencies, atom
displacements, reduced masses, atomic polar tensors (APTs),
and atomic axial tensors (AATs) by using the Gaussian 98
program package19 at the B3LYP/6-31++G(d,p) level.

The IR and VCD spectra of (S)-(+)-2-butanol in CS2 solution
were measured at room temperature. The concentrations of the
samples were varied from neat to 0.002 M. The IR and VCD
spectra were recorded on a Fourier transform VCD spectrometer,
Chiralir (Bomem-BioTools), with a ZnSe PEM and a BaF2
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Figure 1. Structure of (S)-(+)-2-butanol.

2122 J. Phys. Chem. A2006,110,2122-2129

10.1021/jp0545243 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/20/2006



polarizer. The spectral resolution was fixed to 4 cm-1, and the
measurement region was restricted to 2000-800 cm-1 using
an optical filter transmitting radiations below 2000 cm-1. The
spectrum was accumulated on a narrow band MCT detector
cooled by liquid N2. The accumulation times of the VCD spectra
were 2 h for the neat and 0.1 M samples, and 4.5 h for the 0.01
M sample, with about 50 scans per minute. The path length of
the liquid cell for the VCD measurement was adjusted from 15
µm to 2 mm to obtain a suitable absorbance of about 0.4 to
record good VCD signals. BaF2 was used for the window
material. (S)-(+)-2-Butanol (purity> 99%) and CS2 solvent
(Aldrich Chemical Co.) were used without further purification.

3. Observed and Calculated Spectra of (S)-(+)-2-Butanol

Figure 3a shows the IR spectra of (S)-(+)-2-butanol at various
concentrations. The bottom trace is the calculated spectrum for
all conformers with their relative abundances at room temper-
ature. The frequencies scaled by 0.985 are compared to the
observed spectra. The scaling factor was determined empirically
to make the calculated 1261 cm-1 peak match the observed band
at 1242 cm-1.

As is shown in the figure, the neat spectrum differs from the
calculated one because of intermolecular hydrogen bonding.

Several new peaks appear in the solution spectra; they are
enhanced at lower concentrations and shift closer to the
calculated ones by dilution. Wang et al. measured the IR and
VCD spectra of (R)-(-)-2-butanol in solutions20 and concluded
that intermolecular hydrogen bonding persists in 0.029 M CS2

solution. However, Figure 3a shows that dilute IR spectra, 0.1-
0.002 M, are essentially identical. This implies that the
molecules in solution below 0.1 M are almost free from the
intermolecular hydrogen bonding. This is further supported by
our recent measurement of the IR spectrum of this molecule
isolated in low-temperature Ar-matrix,21 where the spectrum is
very similar to that in solutions below 0.1 M. Because the
spectra below 0.1 M agree with the calculated one, the observed
peaks can be assigned by comparison to the calculated spectrum
composed of nine conformational isomers.

Figure 3b shows the observed VCD spectra of the CS2

solutions of (S)-(+)-2-butanol. The baselines are corrected by
subtracting the averaged spectrum of (R) and (S) enantiomers.
The bottom trace is the calculated VCD spectrum for the (S)
enantiomers corresponding to the calculated IR spectrum in
Figure 3a. Two strong peaks appearing at 1242 and 1072 cm-1

in the dilute solutions can be ascribed to the bands of free
molecules because they disappear in the neat spectrum.

Figure 4 shows the calculated IR and VCD spectra for (S)-
(+)-2-butanol. The top trace is constructed from all nine
conformers with the relative populations estimated from the∆G
values at 300 K, as listed in Table 1. Judging from the overall
agreement between the observed and calculated spectra, the
obtained relative populations seem to be reliable. Our results
on the populations agree essentially with those calculated at
the B3LYP/6-31G(d) level.20 The two strong VCD bands
observed at 1242 and 1072 cm-1 in dilute solutions are assigned
mainly to the OH bending mode by comparison with the
calculated spectrum. This mode is split into two components
by mixing with other group modes. The high- and low-frequency
bands corresponding to this mode, named “band I and II”,
respectively, are shaded in Figure 4.

These OH bending bands are classified into three types
according to the conformation of the OH group; g-, g+, and t.

Figure 2. Rotational isomers of (S)-(+)-2-butanol.

Figure 3. (a) IR and (b) VCD spectra of (S)-(+)-2-butanol at various concentrations. CS2 was used as a solvent. Bottom traces are calculated
spectra, scaled by 0.985.
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The main characteristics, summarized in Table 2, seem to
depend on the conformation of the OH group.

4. Normal-Mode Analyses and Assignments

The normal vibrational modes of 2-butanol are investigated
in detail to explain the above-mentioned features in relation to
the molecular vibrations. The normal-mode analyses are carried
out with the local symmetry coordinates defined in a standard
way.22,23Definitions of the local symmetry coordinates are listed
in Table 3.

According to the results of the PED analyses, band I is
assigned mainly to OH bending, CH deformations, C1H3 and
C4H3 rockings, and C3H2 deformations. The C1H3-CHOH-
part of the molecule is deformed mainly in the g- and G-g+

conformers, whereas the C4H3-C3H2-CHOH- part is de-
formed in the t and other g+ conformers.

Band II is assigned mainly to OH bending, skeletal stretch-
ings, and C1H3 and C4H3 rockings. This band of the g+

conformers has a large contribution from the CO stretching
mode, whereas that of other conformers have larger contribution
from CC stretchings rather than CO stretching. No other specific
features related to the conformers can be found about band II.

5. Rotational Strengths in Local Symmetry Coordinates

The rotational strengths are described in terms of the local
symmetry coordinates to investigate the relations between the
VCD spectra and the above-mentioned features of the vibrational
modes.

The vibrational rotational strength of thekth normal mode is
expressed as

whereµ and m are the electric and magnetic dipole moment
vectors, respectively,Qk is the normal coordinate of modek,
and Pk is the conjugate momentum ofQk. It is convenient to

Figure 4. Calculated spectra for the isomers of (S)-(+)-2-butanol at the B3LYP/6-31++G(d,p) level: (a) IR, (b) VCD. Shaded peaks correspond
to the OH bending mode.

TABLE 1: Gibbs Free Energy Difference (∆G) and
Populations of (S)-(+)-2-Butanol Conformersa

∆Gb

(kJ/mol)
relative population

(%)

G+t 0.0 24.9
G+g- 0.3 22.0
G+g+ 1.0 16.3
Tg- 2.1 10.8
Tt 2.2 10.1
Tg+ 3.0 7.5
G-g- 5.1 3.3
G-t 5.1 3.2
G-g+ 6.6 1.8

a Obtained from B3LYP/6-31++G(d,p) calculations.b Difference
from G+t.

TABLE 2: Classification of the OH Bending Bands of
(S)-(+)-2-Butanol

band I band II

IR VCD IR VCD

g- strong negative, strong weak almost inactive
g+ weak positive, medium strong negative, strong
t medium almost inactive medium positive, weak

TABLE 3: Definitions of Local Symmetry Coordinatesa

S1: C1H3 s-str. S15: C1H3 s-def. S30: C4H3 s-def.
S2: C1H3 d′-str. S16: C1H3 d′-def. S31: C4H3 d′-def.
S3: C1H3 d′′-str. S17: C1H3 d′′-def. S32: C4H3 d′′-def.
S4: CH str. S18: C1H3 d′-rock. S33: C4H3 d′-rock
S5: C3H2 s-str. S19: C1H3 d′′-rock. S34: C4H3 d′′-rock.
S6: C3H2 a-str. S20: CH def. S35: OH bend.
S7: C4H3 s-str. S21: CH def. S36: C1C2 tor.
S8: C4H3 d′-str. S22: C2C1C3O def. S37: C2C3 tor.
S9: C4H3 d′′-str. S23: C2C1C3O def. S38: C3C4 tor.
S10: OH str. S24: C2C1C3O def. S39: CO tor.
S11: C1C2 str. S25: C3H2 rock.
S12: C2C3 str. S26: C3H2 wag.
S13: C3C4 str. S27: C3H2 twist.
S14: CO str. S28: C3H2 sci.

S29: C2C3C4 bend.

a Combinations of the internal coordinates follow standard defini-
tions.22,23

Rk ) p
2( ∂µ

∂Qk
)‚(∂m

∂Pk
) (1)
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use the local symmetry coordinates in the analysis of molecular
vibrations. The normal coordinate,Q, is a linear combination
of the local symmetry coordinate,S, andS is represented in a
matrix form as

whereLs is the transformation matrix,22,23 and then

Substituting eqs 3 and 4 into eq 1, we obtain the rotational
strength of thekth normal mode

Now we define

whereδji is Kronecker’s delta. In eq 7,Rk(Si, Sj) expresses the
contribution of the coupling ofSi andSj to the rotational strength
of the kth normal mode. TheRk(Si, Sj) values are origin-
independent (see Appendix), although∂m/∂Ṡi and ∂m/∂Ṡj are
origin-dependent.

6. Rotational Strengths Distributed to the Local Modes of
(S)-(+)-2-Butanol

TheRk(Si, Sj) values of bands I and II of each conformer of
(S)-(+)-2-butanol have been calculated, and those with absolute
values exceeding 5.0 are listed in Table 4. Some of the major
PED values are also listed. The local symmetry planes are
defined for individual conformers, as exemplified in Figure 5,
to provide the best separations of PEDs. TheRk(Si, Sj) value of
bands I and II are denoted asRI(Si, Sj) and RII(Si, Sj),
respectively.

The rotational strengths of band I of the g- conformers are
assigned mainly toRI(S19, S35), RI(S27, S35), RI(S19, S20), and
RI(S25, S35). These are consistent with the results of the PED
analyses. As for band II of the g- conformers, it is assigned
mainly to RII(S33, S35), RII(S25, S35), andRII(S19, S35). The CC
stretching modes (S11, S12, S13), which have large PED values,
scarcely contribute to the rotational strengths. One of the reasons
for this may be the small charge redistributions caused by these
modes.

Judging from the above-mentioned analyses of bands I and
II of the g- conformers, the couplings between OH bending
(S35) and CH3 rockings (S18, S19; S33, S34) appear to have
substantial effects on the rotational strengths. However, the
contributuions of the OH bending (S35) and C1H3 rocking (S18,
S19) coupling to the rotational strength of band II are much
smaller than those to the rotational strength of band I. This can
be explained as follows: Figure 6 shows the sums of the
absolute values ofRk(Si, Sj) and PEDs related to the C1H3 and
OH deformation modes of the g- conformers with the local
symmetry plane including the C1H8 bond, as defined in Figure
8a. A part of the numerical data are shown in Table 5, and the
detailed ones are deposited in Supporting Information Table S1.
The symmetric (S14, S18, S35) and antisymmetric (S19, S39) modes
have nonzero PED values in band I of the g- conformers (see
Figure 8a). The couplings between these locally symmetric and
antisymmetric modes, such asS35 andS19, S18 andS39, andS35

and S39, contribute largely to the rotational strengths. This is
consistent with the symmetric characters of∂µ/∂Si and∂m/∂Ṡj

under theCs point group. Band II of the g- conformers,
however, has major PED values of C1H3 d′-deformation (S18)
but has only a negligible contribution from C1H3 d′′-deformation
(S19). This causes smallRII(S18, S35) and RII(S19, S35) values
because bothS18 andS35 are symmetric.

Figure 5. Local symmetry planes defined for band I of the G+t
conformer.

Figure 6. Sums of the absolute values ofRk(Si, Sj) and PEDs related
to the C1H3 and OH deformation modes of the g- conformers. The
local symmetry plane is defined in Figure 8a. The symbols denote as
follows. (a) Sum of the absolute values ofRk(Si, Sj) of 0: symmetric-
symmetric or antisymmetric-antisymmetric and9: symmetric-
antisymmetric couplings of band I. (b) Sum of the PED values of0:
symmetric and9: antisymmetric modes of band I, (c) Sum of the
absolute values ofRk(Si, Sj) of 0: symmetric-symmetric or antisym-
metric-antisymmetric and9: symmetric-antisymmetric couplings of
band II, (d) Sum of the PED values of0: symmetric and9:
antisymmetric modes of band II.
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∂Ṡj

Lsj,k
(4)

Rk )
p

2
∑

i
∑

j
(∂µ

∂Si

Lsi,k)‚(∂m

∂Ṡj
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The rotational strengths of band I of the t conformers are
assigned mainly toRI(S25, S35), RI(S27, S35), RI(S34, S35), RI(S20,
S35), and so forth, as shown in Table 4. These are consistent
with the results of the PED analyses as a whole. However, the
Rk(Si, Sj) values of band II for the t conformers are, in general,
small, and only the couplings between OH bending (S35) and
CH3 rocking (S18, S19; S33, S34) and between OH bending and
C2C1C3O deformation (S24) have major values. The CC stretch-
ing modes (S11, S12, S13), which have large PED values, hardly
contribute to the rotational strengths, as is the case with the g-

conformers.
The discussion about the locally symmetric and antisymmetric

mode couplings made for the g- conformers is also applicable
for the Tt conformer. Figure 7 shows the sums of the absolute
values ofRk(Si, Sj) and PEDs related to the C4H3, C3H2, and
OH group deformation modes of the Tt conformer with the local

symmetry plane including the C4H12 bond as defined in Figure
8b. Detailed numerical data are deposited in Supporting
Information Table S2. Band I of the Tt conformer is assigned
to both the symmetric and antisymmetric modes (see Figure
8b), whereas band II is assigned almost entirely to the symmetric
modes. This gives rise to the largeRI(Si, Sj) values of locally
symmetric and antisymmetric mode couplings, such asRI(S35,
S25), RI(S35, S27), RI(S35, S34), and smallRII(Si, Sj) values.

The general features of the g- and t conformers are such that
band I is contributed from locally symmetric and antisymmetric
modes, whereas band II is contributed almost exclusively from
symmetric modes. As a result, band I of the g- and t conformers
may have largeRk(Si, Sj) values, whereas band II of these
conformers must have smallRk(Si, Sj) values. The weak VCD
intensities of band I of the t conformers are caused by
cancellation of theRI(Si, Sj) values.

TABLE 4: Major Rk(Si, Sj) and PED Values for Bands I and IIa

band I band II

G-g- (-35.3)b G+g- (-43.7)b Tg- (-21.5)b G-g- (0.7)b G+g- (7.5)b Tg- (-1.7)b

RI(S19, S35) ) -17.9 RI(S19, S35) ) -17.7 RI(S27, S35) ) -20.6 RII(S33, S35) ) 10.6 RII(S19, S35) ) 6.9 RII(S25, S35) ) -9.0
RI(S27, S35) ) -9.1 RI(S19, S20) ) -7.2 RI(S19, S35) ) -11.3 RII(S33, S35) ) 5.9
RI(S23, S35) ) 7.0 RI(S33, S35) ) -6.5 RI(S25, S35) ) 10.8
RI(S34, S35) ) -6.3 RI(S19, S39) ) 5.8 RI(S35, S37) ) 7.9
RI(S19, S39) ) 6.3 RI(S27, S35) ) -5.3 RI(S35, S38) ) 6.6

RI(S23, S35) ) 5.2 RI(S19, S20) ) -5.8
RI(S17, S35) ) -5.2

PED PED

S35: 42.1 S35: 47.1 S35: 42.8 S35: 28.6 S13: 24.2 S35: 26.7
S20: 12.2 S20: 18.8 S20: 14.5 S12: 16.8 S35: 17.7 S12: 14.7
S27: 10.0 S19: 9.8 S27: 12.4 S11: 9.2 S33: 11.4 S18: 12.9
S19: 9.6 S12: 10.7 S34: 10.6

G-g+ (14.3)b G+g+ (15.5)b Tg+ (11.4)b G-g+ (-36.7)b G+g+ (-46.6)b Tg+ (-20.6)b

RI(S19, S35) ) 15.3 RI(S27, S35) ) 11.5 RI(S25, S35) ) -19.0 RII(S14, S33) ) -12.7 RII(S33, S35) ) -12.1 RII(S19, S35) ) -9.4
RI(S24, S35) ) 10.1 RI(S34, S35) ) 6.5 RI(S27, S35) ) 16.4 RII(S18, S35) ) -12.5 RII(S19, S35) ) -10.3 RII(S25, S35) ) 8.6
RI(S22, S35) ) -7.4 RI(S19, S35) ) 6.3 RI(S33, S35) ) 7.9 RII(S33, S35) ) -12.4 RII(S14, S19) ) -7.1 RII(S14, S19) ) -7.5

RI(S19, S35) ) 6.6 RII(S14, S18) ) -8.0 RII(S14, S33) ) -6.5 RII(S34, S35) ) -6.0
RI(S22, S25) ) 6.6 RII(S18, S22) ) -5.3 RII(S27, S35) ) 5.6 RII(S27, S35) ) 5.8
RI(S35, S37) ) -5.9 RII(S22, S33) ) -5.2 RII(S24, S35) ) -5.4
RI(S22, S27) ) -5.5 RII(S14, S22) ) 5.1

PED PED

S35: 37.5 S35: 21.3 S35: 25.9 S35: 28.0 S35: 36.7 S35: 34.7
S20: 17.2 S27: 18.1 S21: 14.6 S33: 24.0 S19: 15.7 S14: 17.7
S19: 10.7 S34: 17.3 S33: 14.2 S18: 12.4 S14: 12.4 S19: 16.2

S25: 11.6 S27: 13.4 S14: 10.0 S34: 13.0
S20: 10.0

G-t (-19.2)b G+t (-2.0)b Tt (2.5)b G-t (16.9)b G+t (4.0)b Tt (6.0)b

RI(S25, S35) ) -9.3 RI(S25, S35) ) 13.5 RI(S25, S35) ) 16.1 RII(S18, S35) ) 9.4 RII(S24, S35) ) 8.4 RII(S19, S35) ) 5.4
RI(S20, S25) ) 6.3 RI(S34, S35) ) -11.6 RI(S27, S35) ) -12.6 RII(S34, S35) ) 6.3 RII(S25, S35) ) -6.0
RI(S35, S36) ) -6.0 RI(S20, S35) ) 10.3 RI(S33, S35) ) -8.6 RII(S12, S35) ) -5.5

RI(S20, S25) ) 9.1 RI(S20, S35) ) 7.8
RI(S25, S39) ) -7.6 RI(S35, S37) ) 6.1
RI(S20, S34) ) -6.1
RI(S27, S35) ) -5.5

PED PED

S35: 42.6 S35: 28.7 S20: 30.0 S35: 27.3 S35: 30.0 S35: 33.3
S20: 22.7 S20: 21.5 S35: 28.8 S13: 23.1 S11: 16.0 S12: 22.6
S33: 7.8 S34: 13.5 S33: 10.8 S12: 15.1 S12: 14.8 S11: 11.9

S18: 10.1

a Rk(Si, Sj) values with absolute values exceeding 5.0 are listed.Rk(Si, Sj) values are in units of 10-44 esu2 cm2. The local symmetry planes are
defined for individual conformers to provide the best separations of PEDs of symmetric and antisymmetric modes. Note thatRk(Si, Sj) and
Rk(Sj, Si) are identical.b Numbers in parentheses represent the rotational strengths in units of 10-44 esu2 cm2.
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The rotational strengths of bands I and II of the g+ conformers
have large contributions from the couplings between OH
bending (S35) and other local modes, such as C1H3 rockings
(S18, S19), C4H3 rockings (S33, S34), and CH2 rocking (S25) and
twisting (S27), as shown in Table 4. The contribution of CO
stretching (S14) and CH3 rocking (S18, S19; S33, S34) coupling is
unique to band II of the g+ conformers, and this is consistent
with the results of the PED analyses. Unlike the g- and t
conformers, the rotational strengths of bands I and II of the g+

conformers are hardly interpretable by the local symmetry. The
C1C2 and C2C3 bonds are out of the C2OH plane, and the
combinations of such as OH bending and CH3 rockings, and
CO stretching and CH3 rockings deviate further from orthogo-
nality about their vibrational displacements. Both bands I and
II of the g+ conformers can thus have largeRk(Si, Sj) values,
and the small VCD intensities of band I are due to the
cancellations among theRI(Si, Sj) values.

In summary of the foregoing discussions, the coupling of CH3

rocking and OH bending modes commonly plays a significant
role in the rotational strengths of bands I and II of the g-, g+,
and t conformers. The local symmetry of the CH3 group
vibrations is broken easily by an asymmetric structural environ-
ment. This eventually results in the locally symmetric and
antisymmetric couplings between the CH3 and other groups.

The contributions of CH2 rockings (S25) and twistings (S27)
are also notable. The couplings between CH2 rocking or twisting
and other local vibrational modes often have largeRk(Si, Sj)
values. The large contribution of the CH2 rocking mode to VCD
was also emphasized by Nafie, Freedman et al.24,25 They
reported that the local circulatory electron current density about
the centers of carbon and oxygen atoms had been observed for
the CH2 rocking and some other modes of formaldehyde and
ethylene. They described that these circulatory motions of
electron current density contribute to giving rise to magnetic
dipole moments. Our way of presentation of the local mode
contribution to the VCD activity is independent of their scheme.
However, there must be some connection between these two
schemes, because both have clarified the essential role of the
CH2 rocking mode in different molecules. A more comprehen-
sive investigation of the coherent physical meanings contained
in the above-mentioned two schemes may reveal the origins of
∂µ/∂Si and∂m/∂Ṡj, and thereby the detailed mechanism of VCD.

7. Conclusions

The rotational strengths of the two OH bending bands of (S)-
(+)-2-butanol are contributed mainly from the couplings of OH
bending with CH3 rockings and CH2 rocking and twisting. The
characteristic features can be explained by the direction of
displacement of each local group. Bands I of the g- and t
conformers have contributions from locally symmetric and
antisymmetric vibrational modes, which provide significant
Rk(Si, Sj) values. Small VCD intensities of the t conformers arise
from cancellations ofRk(Si, Sj) values with opposite signs. Bands
II of the g- and t conformers are assigned almost exclusively
to the symmetric modes, which lead to smallRk(Si, Sj) values,
and hence, small VCD intensities. However, the rotational
strengths of bands I and II of the g+ conformers are hardly
explicable by local symmetry; these bands are likely to have

Figure 7. Sums of the absolute values ofRk(Si, Sj) and PEDs related
to the C4H3, C3H2 and OH group deformation modes of the Tt
conformer. The local symmetry plane is defined in Figure 8b. The
symbols denote as follows. (a) Sum of the absolute values ofRk(Si, Sj)
of 0: symmetric-symmetric or antisymmetric-antisymmetric and9:
symmetric-antisymmetric couplings. (b) Sum of the PED values of
0: symmetric and9: antisymmetric modes.

Figure 8. Locally symmetric and antisymmetric mode couplings of
(a) g- conformers and (b) Tt conformer.

TABLE 5: Rk(Si, Sj) and PED Values of Band I Related to
the C1H3 and OH Group Deformation Modes of the G-g-

Conformera

band I (-35.3)b

Rk(Si, Sj) PED

RI(S18, S35) ) -2.7 S14: 3.6
RI(S18, S14) ) -1.2 S18: 6.7
RI(S35, S14) ) 1.0 S35: 42.1
RI(S19, S39) ) 0.2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RI(S35, S19) ) -16.3 S19: 3.0
RI(S18, S39) ) 5.9 S39: 0.1
RI(S14, S19) ) -4.0
RI(S14, S39) ) 3.4
RI(S35, S39) ) -4.6

a Rk(Si, Sj) values are in units of 10-44 esu2 cm2. The local symmetry
plane is defined in Figure 8a. The horizontal line separates the
Rk(Si, Sj) entries into the symmetric-symmetric or antisymmetric-
antisymmetric couplings (upper) and symmetric-antisymmetric cou-
plings (lower), and the PED entires into symmetric (upper) and
antisymmetric (lower) modes.Rk(Si, Sj) andRk(Sj, Si) are identical.b The
number in parentheses represents the rotational strength in units of 10-44

esu2 cm2.
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largeRk(Si, Sj) values, although cancellations ofRk(Si, Sj) values
with opposite signs cause the small VCD intensities of band I.

In summary, the couplings of locally symmetric and anti-
symmetric modes play essential roles in producing large
rotational strengths. A further study along this line will afford
novel insight into the relationship between VCD and molecular
vibrations.
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Appendix

The origin independence ofRk(Si, Sj) is proved as follows.
Assume that we move the origin fromO to W. Then the
following relations are obtained5

whereXA is the Cartesian coordinate of atomA, R, â, γ, andø
are the Cartesian coordinate elements,Y is the vector fromO
to W, and∈Râγ is the alternating tensor. Using these equations,
we obtain the following relations:

The vector expressions of eqs A3 and A4 are

and

respectively. By using eqs A5 and A6, the origin independence
of Rk(Si, Sj) is examined as follows: wheni * j

and wheni ) j

In eqs A7.1 and A7.2, the relation of scalar triple multiplica-
tion, A‚(B × C) ) B‚(C × A) ) C‚(A × B), is used. Equations
A7.1 and A7.2 show the origin independence ofRk(Si, Sj).
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∂Ṡi

)O
- 1

2(Y × (∂µ
∂Si

)O)} Lsi,k

) p
2[{((∂µ

∂Si
)O

Lsi,k)‚((∂m
∂Ṡj
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∂ẊAø
)W ∂ẊAø
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