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Hyperspherical harmonics in the democratic row-orthonormal hyperspherical coordinates are very appropriate
basis sets for performing reactive scattering calculations for triatomic and tetraatomic systems. The mathematical
conditions for incorporating the geometric phase effect in these harmonics are given. These conditions are
implemented for triatomic systems, and their explicit analytical expressions in terms of Jacobi polynomials,
in both the absence and presence of the geometric phase effect, are given.

1. Introduction

One of the approaches used to perform accurate quantum
reactive scattering calculations forN-atom systems involves
solving the corresponding time-independent Schro¨dinger equa-
tion expressed in democratic coordinates that span the config-
uration space equivalently, without favoring any arrangement
channel region over any other. One such set of coordinates is
the row-orthonormal hyperspherical coordinates (ROHC), based
on the singular-value decomposition of the system’s mass-scaled
Jacobi matrix.1-3 This decomposition leads automatically to a
principal axis of inertia body-fixed frame. In general, the
Hamiltonian of a system is invariant under changes of arrange-
ment channel Jacobi vectors. In addition, however, using these
ROHC for triatomic and tetraatomic systems, each individual
term in the corresponding Hamiltonian is invariant under such
transformations.2-3 It is this property that makes such coordi-
nates democratic, and greatly facilitates scattering calculations
for these systems in the strong interaction region of configuration
space, where all atoms are sufficiently close to each other to
interact strongly. For the weak interaction region, where pairs
of molecules interact weakly, different nondemocratic hyper-
spherical coordinates, which favor those pairs, should be used
instead.4

The approach chosen in such scattering calculations is to
employ local hyperspherical surface functions (LHSF), which
are eigenfunctions of the system’s Hamiltonian at a set of
constant values of the hyperradius. In addition, they are
eigenfunctions of the square of the total angular momentum,
Ĵ2, its space-fixedz component,Ĵz, and the inversion through
the center-of-mass,ÔÎ, operators. These LHSF constitute an
excellent basis set for expanding the system’s partial wave
functions. The hyperangular part of the LHSF kinetic energy
operator is the same as that of the total Hamiltonian and of the
grand-canonical angular momentum operator,Λ̂2, and has poles
at all configurations for which two of the three principal
moments of inertia of the system are equal. It is very important
to use methods to determine the LHSF that ascertain that they
are regular at those poles. One approach that satisfies this
condition involves expanding the LHSF in ROHC hyperspheri-
cal harmonics (HH), which are simultaneous eigenfunctions of

Λ̂2, Ĵ2, Ĵz, and ÔÎ and additional hyperangular momentum
operators that commute with the latter.5-7 These ROHC HH
satisfy that regularity condition and, in the absence of conical
intersections, they have recently been determined analytically
by an efficient computer-algebra approach.5,6 This approach is
based on the fact that the eigenfunctions of the system’s kinetic
energy operator,T̂, with zero eigenvalue are single-valued
homogeneous polynomials of the space-fixed Cartesian coor-
dinates of the system’s mass-scaled Jacobi vectors, and the
properties of these polynomials are central to this method.8

In the presence of conical intersections, however, the wave
function no longer needs to be single-valued and must instead
satisfy a geometric phase (GP) boundary condition upon
pseudorotations of the system around such intersections.9,10 A
consequence of this condition is that the eigenfunctions ofT̂
with zero eigenvalue no longer need to be polynomials of those
Cartesian coordinates, and a different approach is required for
the analytical determination of the corresponding GP HH. In
this paper we describe such an approach for triatomic systems
of the A3 type and tetraatomic systems of the A3B type. In
Section 2 we summarize the definition and properties of the
ROHC, and in Section 3 we give explicit expressions for the
corresponding kinetic energy and grand-canonical angular
momentum operators for triatomic and tetraatomic systems. In
Section 4 we define pseudorotations for A3 and A3B systems.
The ROHC HH for these systems are defined, and their general
properties are given in Section 5. The parities of the grand-
canonical angular momentum quantum number,n, and the
principal moment of inertia internal angular momentum quantum
number, L, for triatomic systems, which are important for
determining the properties of the corresponding HH, are
described in Section 6 in both the absence and presence of the
GP effect. In Section 7 we give explicit analytical expressions
for the HH of triatomic systems in both the absence and presence
of the GP effect. Finally, in Section 8, we give a summary and
some conclusions.

2. Row-Orthonormal Hyperspherical Coordinates for
N-Atom Systems

The ROHC used in this paper and their properties have been
described previously1-3 and will only be summarized here.

Consider a system ofN atoms and an associated set ofN -
1 λ-arrangement mass-scaled Jacobi vectors,r λ

(1), r λ
(2), ..., r λ

(N-1).
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The corresponding space-fixed 3 by (N - 1) Jacobi matrix,Fλ
sf,

is defined by

wherexλ
(j), yλ

(j), andzλ
(j) (j ) 1, 2, ...,N - 1) are the Cartesian

space-fixed coordinates ofr λ
(j). Because of the singular value

decomposition theorem for real matrices,11,12 Fλ
sf can, forN >

3, be put in the form3,4,13

whereøλ is a chirality coordinate that can assume the values 0
or 1, aλ ≡ (aλ, bλ, cλ) are the Euler angles that rotate the space
fixed frameGxyz(G being the system’s center of mass) to the
principal-axes-of-inertia body-fixed frame GxI λyI λzI λ andR̃(aλ)
is the corresponding proper rotation matrix.14 In addition,δλ ≡
(δλ

(1), δλ
(2), ... δλ

(3N-9)) are a set of 3N - 9 hyperspherical
coordinates andQ is a 3 by (N - 1) row-orthonormal matrix
satisfying

N(θ, φ) is the 3× 3 diagonal matrix

whereθ andφ areλ-independent moment-of-inertia hyperangles
whose ranges are

and

They are related to the system’s principal moments of inertia
IxI λ,IyI λ,IzI λ by

which are ordered according to

Finally, F g 0 is the system’sλ-independent hyperradius defined
by

The set of quantitiesøλ, aλ, F, θ, φ, andδλ is called the ROHC
of the system.

For tetraatomic systems,Q depends on three internal hyper-
anglesδλ ≡ (δλ

(1), δλ
(2), δλ

(3)) and is chosen to beR̃(δλ) where the
ranges of these angles are given by

and the chirality coordinate isλ-independent and given by

For triatomic systems, eq 2.2 is replaced by

whereN(θ) is given by eq 2.4 withφ ) 0, that is

where

and

with the range ofδλ given by

The ranges of theδλ angles in eqs 2.10 and 2.16 are chosen to
satisfy the requirement that, except for some special geometries
of the systems, there should be a one-to-one correspondence
between the ROHC and the corresponding set of Jacobi vectors,
that is, the systems’ configuration.

3. Kinetic Energy and Grand Canonical Angular
Momentum Operators for Triatomic and Tetraatomic
Systems

For any system of coordinates associated with theλ-arrange-
ment Jacobi vectorsr λ

(j) ( j ) 1, 2, ...,N - 1), which includes
F, the kinetic energy operator,T̂, can be expressed in terms of
the grand-canonical angular momentum operator,Λ̂2, by7

where

3.1. Λ̂2 for Triatomic Systems. For triatomic systems,Λ̂2

is given by2

where

and

Fλ
sf ) (r λ

(1) r λ
(2) ... r λ

(N-1)) ) (xλ
(1) xλ

(2) ... xλ
(N-1)

yλ
(1) yλ

(2) ... yλ
(N-1)

zλ
(1) zλ

(2) ... zλ
(N-1) ) (2.1)

Fλ
sf ) (-1)øλ R̃(aλ) FN(θ, φ) Q(δλ) (2.2)

QQ̃ ) I (2.3)

N(θ,φ) ) (sin θ cosφ 0 0
0 sinθ sinφ 0
0 0 cosθ ) (2.4)

0 e φ e π/4 (2.5)

0 e θ e arc sin[1/(1+ cos2φ)1/2] e arc sin(2/3)1/2 = 54.7°
(2.6)

IxI λ ) µF2(1 - N11
2 ) IyI λ ) µF2(1 - N22

2 )

Iz I λ ) µF2(1 - N33
2 ) (2.7)

IzI λ e IxI λ e IyI λ (2.8)

F2 ) ∑
j-1

N-1

(xλ
(j)2

+ yλ
(j)2

+ zλ
(j)2

) (2.9)

0 e δλ
(1), δλ

(3) < π 0 e δλ
(2) e π (2.10)

(-1)x ) sign detFλ
sf (2.11)

Fλ
sf ) R̃(aλ) FN(θ) Q(δλ) (2.12)

N(θ) ) (sin θ 0 0
0 0 0
0 0 cosθ ) (2.13)

0 e θ e π/4 (2.14)

Q(δλ) ) (cosδλ sin δλ

0 0
-sin δλ cosδλ

) (2.15)

0 e δλ e π (2.16)

T̂ ) T̂F(F) + Λ̂2

2µF2
(3.1)

T̂F(F) ) - p2

2µ
1

F3N-4

∂

∂F
F3N-4 ∂

∂F
(3.2)

Λ̂2 ) 1

cos2 θ
Ĵx

Iλ2 + 1

cos2 2θ
Ĵy

Iλ2 + 1

sin2 θ
Ĵz

Iλ2 + 1

cos2 2θ
L̂2 +

K̂2 - 2
sin 2θ
cos2 2θ

L̂ Ĵy
I - 4ip cot 4θ K̂ (3.3)

L̂ ) p
i

∂

∂δλ
(3.4)
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The Ĵx
I λ, Ĵy

I λ, and Ĵz
I λ operators are the components of the

system’s total angular momentum operator,Ĵ, along the
principal-axes-of-inertia frame GxI λyI λzI λ expressed in terms
of the Euler angles,aλ, as

and act only on those angles. Arrangement channel coordinate
transformations are a particular kind of kinematic rotations,1,15

and those two designations will be used interchangeably in this
paper. The GyI λ axis is invariant under such transformations,
whereas GxI λ and GxI λ are either invariant or both change sense
together. In addition,L̂ and K̂ are also invariant under those
rotations. As a result, not only isΛ̂2 invariant under them but
so is every one of the seven terms in the rhs of eq 3.3. This
justifies the designation of these triatomic ROHC as democratic.
This property makes the ROHC for the strong interaction region
of triatomic systems particularly useful because any arrangement
channel,λ, can be chosen to perform scattering calculations in
this region, and from them the result for any otherλ can be
obtained easily.

3.2. Λ̂2 for Tetraatomic Systems.For tetraatomic systems,
Λ̂2 is given by3

where

and

The Nii (i ) 1, 2, 3) in these expressions are the diagonal
elements of theN(θ, φ) matrix of eq 2.4 and the N′θ11

and M′φ
ii

are given, respectively, by

The Ĵx
I λ, Ĵy

I λ, and Ĵz
I λ are defined as for triatomic systems and

are given by eq 3.6. Similarly,L̂λ1, L̂λ2, and L̂λ3 are the
components of an internal angular momentum operator,L̂λ, in
a space-fixed-type mathematical frame and are given by

The axes of GxI λyI λzI λ are either invariant under arrangement
channel coordinate transformations or two of them change sense
together. As a result, a similar property holds for theI λ
components ofĴ. The components ofL̂λ are similarly invariant
or change sign concurrently with the corresponding components
of Ĵ and, therefore, each of the productsĴx

IλL̂λ1, Ĵy
IλL̂λ2, andĴz

IλL̂λ3

are invariant under those transformations as are the six square
operators that appear in the numerators of the rhs of eq 3.12.
As a result, each of the 11 terms that appear in the rhs of eq
3.7 (namely,K̂2, B̂, and the nine terms resulting from eq 3.12)
are invariant under arrangement channel coordinate transforma-
tions, in analogy to the seven terms of the triatomicΛ̂2 of eq
3.3. For this reason, the tetraatomic ROHC are also called
democratic. As for the triatomic case, they are very useful for
performing tetraatomic reactive scattering calculations in the
strong interaction region of configuration space. For the weak
interaction region, different hyperspherical coordinates and HH
should be used.4

4. Effect of Pseudorotations on Triatomic and
Tetraatomic ROHC

The geometric phase (GP) effect is associated with conical
intersections between electronically adiabatic potential energy
surfaces of polyatomic systems.16,17 Loops in nuclear config-
uration space are called pseudorotations. When a system
traverses such a loop, inside of which there is an odd number
of conical intersection geometries, their electronic wave function,
if required to be real and change continuously, undergoes a
discontinuous change of sign at the end of the loop, with respect
to their values at the beginning of the loop, and as a result that
electronic wave function is not single-valued. To preserve the
single-valuedness of the complete electronuclear wave function,
the corresponding nuclear wave function must undergo a
compensating change of sign.9 This results in effects on bound18

and scattering19 states of the system, which have recently been
shown to affect observable state-to-state reactive scattering
differential cross sections20 for the H3 system. If there are no
or an even number of conical intersections inside a pseudoro-
tation loop, both the system’s electronic and nuclear wave
functions do not display a discontinuity at the end of the loop;
that is, they are single valued.

In this paper, we consider special pseudorotations for triatomic
and tetraatomic systems. For triatomic systems, they start with
the configuration whose ROHC areaλ, bλ, cλ, F, θ, δλ ) 0. We

K̂ ) p
i

∂

∂θ
(3.5)

(Ĵx
I λ

Ĵy
I λ

Ĵz
I λ )) p

i ( - cscbλ coscλ sincλ cotbλ coscλ
cscbλsincλ coscλ - cotbλ sincλ

0 0 1 )(∂/∂aλ
∂/∂bλ
∂/∂cλ

)
(3.6)

Λ̂2 ) K̂2(θ, φ) + B̂(θ, φ) + Ĉ2(aλ, δλ; θ, φ) (3.7)

K̂2(θ, φ) ) -p2( 1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ
∂

2

∂φ
2) (3.8)

B̂(θ, φ) ) -2p2(bθ(θ, φ)
∂

∂θ
+ 1

sin θ
bφ(θ, φ)

∂

∂φ) (3.9)

bθ(θ, φ) )
N22N′

θ22
- N11N′

θ11

N22
2 - N11

2
+

N33N′
θ33

- N22N′
θ22

N33
2 - N22

2
+

N11N′
θ11

- N33N′
θ33

N11
2 - N33

2
(3.10)

bφ(θ, φ) )
N22Mφ22

- N11Mφ11

N22
2 - N11

2
-

N22Mφ22

N33
2 - N22

2
+

N11Mφ11

N11
2 - N33

2

(3.11)

Ĉ2(aλ, δλ; θ, φ) )

(N22Ĵz
I λ - N11L̂λ3)

2 + (N11Ĵz
I λ - N22 L̂λ3)

2

(N22
2 - N11

2 )2
+

(N33 Ĵx
Iλ - N22 L̂λ1)

2 + (N22 Ĵx
Iλ - N33 L̂λ1)

2

(N33
2 - N22

2 )2
+

(N11Ĵy
I λ - N33 L̂λ2)

2 + (N33 Ĵy
Iλ - N11 L̂λ2)

2

(N11
2 - N33)

2
(3.12)

N′θ11
) cosθ cosφ N′θ22

) cosθ sinφ N′θ33
) -sin θ

(3.13)

Mφ11
) -sinφ Mφ22

) cosφ (3.14)

(L̂λ1

L̂λ2

L̂λ3

)) p
i (-cosδλ

(1) cot δλ
(2) -sin δλ

(1) cosδλ
(1) cscδλ

(2)

-sin δλ
(1) cot δλ

(2) cosδλ
(1) sin δλ

(1) cscδλ
(2)

1 0 0
)(∂/∂δλ

(1)

∂/∂δλ
(2)

∂/∂δλ
(3))

(3.15)
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then allowδλ to change continuously from 0 toπ, while F * 0
andθ * π/2 are maintained constant and the Euler angles are
made to depend linearly onδλ asaλ + δλ, bλ + (1 - bλ/π)δλ,
cλ + (1 - cλ/π)δλ, so that on completion of the loop the ROHC
of the system areaλ + π, π - bλ, π - cλ, F, θ, δλ ) π. From
eq 2.12 it is straightforward to show that the system’s config-
uration at the beginning and the end of this path are the same,
and that the configurationaλ, F, θ ) π/2 and arbitraryδλ

corresponds to a point inside that path, which is therefore a
loop around that configuration. Furthermore, if the system is
of the type A3, involving three identical atoms, such at H3, that
θ ) π/2 configuration corresponds to an equilateral triangle.
When A3 systems have conical intersections, their configurations
are usually equilateral triangles and in this case the pseudoro-
tation just defined would be a loop around a conical intersection
geometry.

Let us now consider tetraatomic systems of the type A3B,
such as H3O. The corresponding conical intersections, when they
exist, usually have configurations corresponding to regular
pyramid geometries, whose base is an equilateral triangle, A3.
Let us define the arrangement channel coordinatesλ ) 1, as
those for whichr1

(1) is the Jacobi mass-scaled vector between
two of the A atoms,r1

(2) that form their center of mass to the
third A atom, andr1

(3) that from the center of mass of A3 to the
B atom. The corresponding ROHC for regular pyramid con-
figurations areφ ) π/4, δ1

(3) ) 0 and arbitraryø, a1, b1, c1, F,
θ, δ1

(1), δ1
(2) with F * 0 andθ * 0. Let us consider the path in

nuclear configuration space starting at a point whose ROHC
are ø, a1, b1, c1, F, θ, δ1

(1) ) 0, δ1
(2), δ1

(3) with all coordinates
exceptδ1

(1) arbitrary but subject to the conditionsF * 0, θ * 0,
φ * π/4, δ1

(3). We now maintainø, a1, b1, F, θ, φ, δ1
(2), andδ1

(3)

constant while changingδ1
(1) from 0 to π and making the third

external Euler angle depend linearly onδλ as c1 + δλ. Upon
completion of the path the ROHC of the system area1, b1, c1

+ π, F, θ, φ, δ1
(1) ) π, δ1

(2), andδ1
(3). From eqs 2.2, 2.4, and the

choice ofQ mentioned before eq 2.10, one can show that the
configurations corresponding to the initial and final points of
this path are the same and that it encircles the associated regular
pyramid configuration pointa1, b1, c1, θ, φ ) π/4, δ1

(1), δ1
(2),

δ1
(3) ) 0. Therefore, that path is a pseudorotation, which could

enclose a conical intersection configuration. This pseudorotation
differs from the one defined in ref 3, which was in error.

The special pseudorotations just defined for triatomic and
tetraatomic systems will be useful for incorporating the GP effect
in the hyperspherical harmonics for these systems, as shown in
Section 5.

5. ROHC Hyperspherical Harmonics With and Without
the Geometric Phase

We will now define the ROHC hyperspherical harmonics
(HH) without and including the GP for triatomic and tetraatomic
systems.

5.1. Triatomic Systems.For triatomic systems, the five
operatorsΛ̂2, Ĵ2, Ĵz

sf, L̂, andÔÎ commute with each other.Λ̂2

was defined by eq 3.1,Ĵ2, andĴz
sf are, respectively, the square

and the space-fixedzcomponent of the total angular momentum
operatorĴ, Î is the associated operator that inverts the system
through its center of mass, andOÎ is the associated operator
that acts on functions of the system’s coordinates. The corre-
spondingF HH is defined as the simultaneous eigenfunction
of those operators.

which is regular at their poles.Θλ represents the six ROHCaλ,
F, θ, δλ. The quantum numbersnsΠ, J, MJ, LsΠ, and Π are
integers subject to the constraints

and D is a degeneracy number equal to the total number of
linearly independentF functions with the same values ofs, Π,
nsΠ, LsΠ, J, andMJ. d designates which of theseD functions is
being considered. In addition,F satisfies the pseudorotation
condition

wheres ) 0 means NGP (no geometric phase, i.e., no or an
even number of conical intersections encircled by the corre-
sponding pseudorotation defined in Section 4) ands ) 1 means
GP (geometric phase, i.e., and odd number of conical intersec-
tions encircled by that pseudorotation).LsΠ and nsΠ have the
parity of s + Π, as shown in Section 6. For the GP case, theF
HH changes sign under the associated pseudorotation, whereas
for the NGP case it is single valued, that is, has the same value
at the beginning and end of that pseudorotation.

TheD degeneracy stems from the fact that a system of three
free particles in a center-of-mass frame has five angular degrees
of freedom,aλ, bλ, cλ, θ, and δλ, and as a result has five
simultaneously knowable angular constants of the motion, but
F has been required to be an eigenfunction of only four
differential operators in these angular variables. The subscript
d varies from 1 toD and can be considered to be a fifth quantum
number.

5.2. Tetraatomic Systems.For the tetraatomic systems, the
six operatorsΛ̂2, Ĵ2, Ĵz

sf, L̂2, L̂λ3

bf, and ÔÎ commute with each
other. The first three and the last one are similar to the ones
defined in Section 5.1,L̂2 is the square of the internal angular
momentum operator,L̂λ, and L̂λ3

bf is a body-fixed type compo-
nent of L̂λ that differs from its space-fixed-type component
displayed in eq 3.15. It is given by

The correspondingF HH is defined as a simultaneous eigen-
function of those six operators that is regular at their poles

Λ̂2FsΠnsΠLsΠ
MJ

J
d
D(Θλ) ) nsΠ(nsΠ + 4)p2FsΠnsΠLsΠ

MJ

J
d
D(Θλ)

(5.1)

Ĵ2FsΠnsΠLsΠ
MJ

J
d
D(Θλ) ) J(J + 1)p2FsΠnsΠLsΠ

MJ

J
d
D(Θλ) (5.2)

Ĵz
sfFsΠnsΠLsΠ

MJ

J
d
D(Θλ) ) MJpFsΠnsΠLsΠ

MJ

J
d
D(Θλ) (5.3)

L̂FsΠnsΠLsΠ
MJ

J
d
D(Θλ) ) LsΠpFsΠnsΠLsΠ

MJ

J
d
D(Θλ) (5.4)

ÔÎ FsΠnsΠLsΠ
MJ

J
d
D(Θλ) ) (-1)ΠFsΠnsΠLsΠ

MJ

J
d
D(Θλ) (5.5)

nsΠ g 0 0 e J e nsΠ -J e MJ e J -nsΠ e LsΠ e nsΠ

Π ) 0, 1 (5.6)

FsΠnsΠLsΠ
MJ

J
d
D(aλ + π, π - bλ, π - cλ, θ, δλ ) π) )

(-1)sFsΠnsΠLsΠ
MJ

J
d
D(aλ, bλ, cλ, θ, δλ ) 0) (5.7)

L̂λ3

bf ) p
i

∂

∂δλ
(3)

(5.8)

Λ̂2FsΠn
MJ

J
MLλ

L
d
D(ø, Θλ) ) n(n + 7)p2FsΠn

MJ

J
MLλ

L
d
D(ø, Θλ)

(5.9)
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Θλ the nine hyperspherical coordinatesaλ, F, θ, φ, δλ. The six
quantum numbersn, J, MJ, L, MLλ, andΠ are integers subject
to the constraints

SymbolsD andd have meanings similar to the ones given for
triatomic systems and appear for similar reasons. In addition,
F satisfies the pseudorotation condition

where, as for triatomic systems,s ) 0 corresponds to the NGP
case and results in a single-valuedF ands ) 1 corresponds to
the GP case and the correspondingF changes sign (discontinu-
ously) between the end and the beginning of the tetraatomic
pseudorotation defined in Section 4. The consequences of eq
5.16 will not be examined in the present paper.

6. Parities of Lsπ and nsπ for Triatomic Systems

The general solution of eqs 5.1 through 5.6 is

where DMJΩJλ

J is Davydov’s21 Wigner rotation function. The
G(θ) functions are called G HH.Π ) 0(1) corresponds to
symmetric (antisymmetric) solutions with respect to inversion
through the system’s center of mass. We wish to prove that
LsΠ and nsΠ have the parity ofs + Π. For LsΠ, this can be
achieved easily using the parity Wigner functions defined by

where

These functions satisfy

and in terms of them theF HH can be written as

The G′ HH are related to theG HH for ΩJλ G 0 by6

whereas theG HH for ΩJλ < 0 are related to those forΩJλ >
0 by

Therefore, the replacement ofDMJ

J ΩJλ(aλ) by DMΩJλ

JΠ (aλ) limits
the sum overΩJλ to nonnegative values only and changes the
normalization constant of theF HH. Replacing eq 6.5 into eq
5.7 and using

results in

which furnishes

The proof thatnsΠ also has the parity ofs + Π is more
elaborate. From eqs 6.1, 3.1, and 3.2 it is easy to prove that the
functionFnF sΠnsΠLsΠ MJ

J
d
D(Θλ) is harmonicfor boths ) 0 ands

) 1, that is, that

where∇2 is the six-dimensional Laplacian of the system. For
the NGP case, it is also ahomogeneous polynomial of degree
nsΠ in the six space-fixed Cartesian coordinates of the Jacobi
vectorsr λ

(1) andr λ
(2).6 Because the operatorÎ changes the signs

of all of these coordinates, that polynomial and therefore
FsΠnsΠLsΠMJ

J
d
D has the parity ofnsΠ in addition to having the

parity of Π. Therefore, fors ) 0 nsΠ has the parity ofs + Π,
QED. For s ) 1 FnF is still harmonic but no longer a
polynomial. To prove that for this casensΠ still has the parity
of s + Π we use the explicit expression forGΠnΠLΠ ΩJλ

JR (θ)
given in Section 7.1. Those functions satisfy a system of coupled
differential equations inθ,7 which depend only on the validity
of eqs 5.1 through 5.6 and whose derivation does not invoke
eq 5.7. Therefore, that explicit expression is valid for boths )
0 ands ) 1. In eqs 7.4 and 7.17, Jacobi polynomials of integer
orderη - J + m + ε appear, whereη is given by eqs 7.9 and
7.22 for nsΠ and J having the same or opposite parities,
respectively. In addition,ε is given by eq 7.11 for both cases.

Ĵ 2FsΠn
MJ

J
MLλ

L
d
D(ø, Θλ) ) J(J + 1)p2FsΠn

MJ

J
MLλ

L
d
D(ø, Θλ)

(5.10)

Ĵz
sfFsΠn

MJ

J
MLλ

L
d
D(ø, Θλ) ) MJ pFsΠn

MJ

J
MLλ

L
d
D(ø, Θλ) (5.11)

L̂2FsΠn
MJ

J
MLλ

L
d
D(ø, Θλ) ) L(L + 1)p2FsΠn

MJ

J
MLλ

L
d
D(ø, Θλ)

(5.12)

L̂λ3

bfFsΠn
MJ

J
MLλ

L
d
D(ø, Θλ) ) MLλ

pFsΠn
MJ

J
MLλ

L
d
D(ø, Θλ) (5.13)

ÔÎ
sΠn

MJ

J
MLλ

L
d
D(ø, Θλ) ) (-1)ΠFsΠn

MJ

J
MLλ

L
d
D(ø, Θλ) (5.14)

n g 0 0 e J,L e n -J e MJ e J -L e MLλ
e L

Π ) 0, 1 (5.15)

FsΠn
MJ

J
ML1

L
d
D(ø, a1, b1, c1 + π, F, θ, φ, δ1

(1) ) π, δ1
(2), δ1

(3)) )

(-1)sFsΠn
MJ

J
ML1

L
d
D(ø, a1, b1, c1,F, θ, φ, δ1

(1) ) 0, δ1
(2), δ1

(3))

(5.16)

FsΠnsΠLsΠ
MJ

J
d
D(Θλ) )

NsΠnsΠLsΠ
d
DeiLsΠδλ ∑

ΩJλ)-J

J

DMJΩJλ
(aλ) GsΠnsΠLsΠΩJλ

J
d
D
(θ) (6.1)

DMJΩJλ

JΠ (aλ) ) NJΩJλ[DMJΩJλ

J (aλ) + (-1)J+Π+ΩJλDMJλ
,-ΩJλ

J (aλ)]

(6.2)

NJΩJλ ) [ 2J + 1

16π2(1 + δΩJλ
0)]1/2

(6.3)

ÔÎ DMJΩJλ

JΠ (aλ, bλ, cλ) ) DMJΩJλ

JΠ (aλ + π, π - bλ, π - cλ) )

(-1)ΠDMJΩJλ

JΠ (aλ, bλ, cλ) (6.4)

FsΠnsΠLsΠ
MJ

J
d
D(Θλ) )

N′sΠnsΠLsΠJeiLsΠδλ ∑
ΩJλ)0

J

DMJΩJλ

JΠ (aλ, bλ, cλ)G′sΠnsΠLsΠ
ΩJλ

J
d
D(θ)

(6.5)

G′sΠnsΠLsΠ
ΩJλ

J
d
D(θ) ) (1 + δΩJλ

0)-1/2GsΠnsΠLsΠ
ΩJλ

J
d
D(θ) (6.6)

N'sΠnsΠJLsΠ ) [2J + 1

16π2 ]1/2
NsΠnsΠJLsΠ (6.7)

GsΠnsΠLsΠ
-ΩJλ

J
d
D(θ) ) (-1)(J+s+LsΠ+ΩJλ)GsΠnsΠLsΠ

ΩJλ

J
d
D(θ) (6.8)

DMJΩJλ

J (aλ) ) eiMJaλdMJΩJλ

J (bλ)e
iΩJcλ (6.9)

(-1)Π+LsΠ ) (-1)s (6.10)

(-1)LsΠ ) (-1)s+Π Q.E.D. (6.11)

∇2[FnsΠFsΠnsΠLsΠ
MJ

J
d
D(Θλ)] ) 0 (6.12)
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Finally m equalsm1 plus an integer, wherem1 is given by eq
7.13 also for both cases. The requirement thatη - J + m + ε

be an integer, both fors ) 0 ands ) 1, leads directly to the
requirement thatnsΠ and LsΠ have the same parity. Because
from eq 6.11 the latter has the parity ofs + Π, so does the
former,that is

We conclude that the parities ofLsΠ and nsΠ are equal to
each other both fors ) 0 ands ) 1, and that theonly but
crucial difference between the NGP and GP cases is that that
parity is the parity ofΠ for the former and the opposite of that
parity for the latter. This important conclusion will permit the
explicit expressions forG given in Section 7 to be used for
both the NGP and GP cases.

7. Explicit Determination of the G HH for Triatomic
Systems

7.1. NGP Case.For the NGP case, the theory of harmonic
polynomials can be used to determine theG functions analyti-
cally. This has been done using two different methods: (a) A
recursion relation between a complete set{Gn} of G functions
for a givenn and another complete set{Gn+1} for n + 1 was
derived. This relation was implemented with a Mathematica
program to obtain allG functions up ton ) 40, about 2.3 million
of them.6,22 (b) A sophisticated complex variable harmonic
projection method together with very extensive manual algebra
was used to obtain explicit expressions for theG functions in
terms of Jacobi polynomials for arbitraryn and total angular
momentum quantum numberJ.23

For the purpose of obtaining GP functions, it is more
convenient to use the results of method b. Those results were
obtained using different hyperspherical coordinates and principal
axes of inertia than the ROHC used in method a. The method
b coordinates and axes were the same as those designated as
LPK in ref 2. It’s z axis is perpendicular to the triatom plane,
whereas thez axis of method a and of the present paper lies in
that plane. In addition, the Wigner rotation functions used in
method b are those of Rose,24 whereas the ones used in method
a and in eq 6.1 are those of Davydov.21 The present principal
axes of inertia are more convenient for performing reactive
scattering calculations than the ones of method b because, asF
f ∞, the presentz axis approaches the Jacobi body-fixed axis,
which is the vector from the center of mass of the product
diatom to the product atom, which is the helicity axis for
quantizing the component of that diatom’s angular momentum.
For this reason, we converted the results of ref 23 to the present
axes, ROHC, and Wigner rotation functions. In the resulting
expressions, degeneracy indicesD andd were replaced by the
single indexR that, for a givenJ, and all allowed values ofnΠ

andLΠ is expressed explicitly by eqs 7.12 and 7.25. It should
be noted thatD is equal to the number of values thatR can
have for givenJ, nΠ, andLΠ and the analytical expression for
D in terms of these three variables is known25,26 and is not
repeated in the present paper.

In this NGP case (s ) 0) L andn have the same parity asΠ
and will be designated simply asLΠ andnΠ respectively, with
the subscriptsomitted. TheG functions of eq 6.1 are then given
by

where the values ofΩ′JλΠ in the summation include only those
that have the same parity asΠ27 and theG function depends
on the parity ofJ andΠ, as indicated below:

(1) For J andΠ having the same parity, it is given by

where

and

The several parameters in these two equations are defined by

For a givenJ, and all allowed values ofnΠ and LΠ, R is
given by

In addition,

(-1)nsΠ ) (-1)LsΠ ) (-1)s+Π (6.13)

GΠnΠLΠ
ΩJλ

JR (θ) )

(-1)LΠ/2iΩJλ ∑
Ω′

JλΠ
)-J

J

(-1)Ω′JλΠdΩJλΩ′JλΠ

J (π/2)G ΠnΠLΠ
Ω′JλΠ

JR (θ)

(7.1)

G ΠnΠLΠ
ΩJλΠ

JR (θ) ) [(J + ΩJλΠ)!(J - ΩJλΠ)!]-1/2 ∑
µ)-J/2

J/2

×

æΩJλΠµ
J (θ)WΠnΠLΠ

µ
JR(θ) (7.2)

æΩJλΠµ
J (θ) ) (-1)(1/2)(J-ΩJλΠ)(J/2 + µ)!(J/2 - µ)! ×

∑k1k2u1u2
(k1!k2!u1!u2!)

-1[cos(π/4 - θ)]k1+u2 ×
[sin(π/4 - θ)]k2+u1 (7.3)

WΠnΠLΠ
µ
JR(θ) ) (-1)η(cos 2θ)|LΠ/2-µ| ×

∑
m)m1

m2

(m + (1/2)(R + µ + ε)
J/2 + R ) × (m - (1/2)(R + µ - ε)

J/2 - R ) ×

m!Γ(m + ε + 1/2)

(ê + m - J)!
∑
i)0

m (-1)i(ê + i)!

(m - i)!i!Γ(i + ε + 1/2)
×

(-1)η-J+m+ε Pη - J + m + ε
(J - m + i,|LΠ/2 - µ|)(cos 4θ) (7.4)

k1 + u1 ) J/2 + µ (7.5)

k2 + u2 ) J/2 - µ (7.6)

k1 + k2 ) (1/2)(J + ΩJλΠ) (7.7)

u1 + u2 ) (1/2)(J - ΩJλΠ) (7.8)

η ) (1/4)(n + J) - (1/2)(|LΠ/2-µ| + ε) (7.9)

ê ) (1/4)(n + J) + (1/2)(|LΠ/2-µ| + ε) (7.10)

ε ) {0 for R + µ even
1 for R + µ odd

(7.11)

2R ) -J, -J + 2, ... ,J - 2, J (7.12)

m1 ) (1/2)(|R + µ| - ε) (7.13)

m2 ) (1/2)(J - |R - µ| - ε) (7.14)
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In eq 7.4 and in eq 7.17 below,Pγ
(R,â) is the Jacobi polynomial

of non-negative integer degreeγ.28

Quantitiesk1, k2, u1, and u2 in eqs 7.5 through 7.8 are
restricted to be nonnegative integers. In addition, three of these
four relations are linearly independent and, as a result, the 4-fold
sum in eq 7.4 reduces to a single sum.

(2) For J andΠ having opposite parity, it is given by

where

and

with the associated parameters defined by

Quantitiesε and m1 are still given by eqs 7.11 and 7.13,
respectively. However, 2R is now expressed, for a givenJ, and
all allowed values ofnΠ andLΠ, by

andm2 is given by

The remarks made in the paragraph after eq 7.14 are also
applicable to this case in whichJ andnΠ have opposite parities.

As a particular case, we get from these expressions, forJ )
0 (and except for a constant phase), the following previously
known simple result6

with nΠ and LΠ even, and (1/4)(nΠ - |LΠ|) equal to a non-
negative integer.

7.2. GP Case.As stated in the last paragraph of Section 6,
the central difference between the NGP and GP cases is: (a)
For NGP: s ) 0 andLsΠ andnsΠ have the same parity asΠ.
(b) For GP: s ) 1 andLsΠ andnsΠ have the opposite parity of
Π. As a result, all of the explicit NGP expressions for theG
HH of Section 7.1 areequally valid for the GP case, but with
LΠ andnΠ replaced byLsΠ andnsΠ, respectively, and required
to have the opposite parity ofΠ (i.e., s ) 1 in eq 6.12). In
addition,L G J. The powers of cos(π/4 - θ) and sin(π/4 - θ)
in eqs 7.3 and 7.16 are still nonnegative integers in the GP case.
For example, forJ ) 0, (eq 7.26) is still valid with this
replacement. However, because for this case the only allowed
parity is Π ) 0 (because theDMJΩJλ

JΠ of eq 6.4 is now
independent ofaλ, bλ, andcλ), the only allowed values ofLsΠ
andnsΠ are odd. As a result, the multiplicative factor for the
Jacobi polynomial in that expression is a half-odd-integer power
of cos 2θ, resulting in aG HH that is no longer a homogeneous
polynomial of degreen in the two variablesx ) cosθ andy )
sin θ and anF HH that is no longer that kind of a polynomial
in the space-fixed Cartesian coordinatesxλ

(1), yλ
(1), zλ

(1), xλ
(2), yλ

(2),
zλ

(2) of the two Jacobi vectorsr λ
(1) andr λ

(2) as stated, for arbitrary
J, after eq 6.12.

8. Summary and Conclusions

Hyperspherical harmonics (HH) in democratic row-orthonor-
mal hyperspherical coordinates (ROHC) are eigenfunctions of
the grand-canonical angular momentum operator,Λ̂2, and
therefore of the hyperangular part of the kinetic energy operator
for N atom systems, and behave regularly at the poles of that
kinetic energy operator. In addition, they are independent of
the system’s hyperradius. As such, they are excellent basis
functions for expanding the time-independent scattering wave
functions, once they are known. We have shown how to
incorporate the geometric phase (GP) effect into these functions
for triatomic and tetraatomic systems and have given explicit
analytical expressions for the HH for triatomic systems for
arbitrary values of the total angular momentum quantum
number. These triatomic HH expressions are somewhat com-
plicated but easily programmable, and the associated compu-
tational effort is negligible compared to the computation time
required for propagation of the scattering equations. They are
expressed in terms of powers of sinθ, cosθ, and cos 2θ and of
Jacobi polynomials of cos 4θ, whereθ is the principal moment
of inertia hyperangle, which is invariant under arrangement
channel coordinate transformations. The difference between the
triatomic NGP and GP HH expressions is minor (but very
important). In both cases, the quantum numbersn of Λ̂2 andL
of the principal moment of inertia internal angular momentum
operatorL̂ have the same parity. For the NGP case that parity
is the parity ofΠ, whereas for the GP case it is the opposite
one. The coupling in the scattering equations using ROHC HH
is entirely because of the system’s potential energy function,
V, because all Coriolis-coupling effects are incorporated into
those HH. Use of their analytical expressions, both with and
without inclusion of the geometric phase, should significantly
simplify and accelerate reactive scattering calculations, both for
triatomic and tetraatomic systems.

G ΠnΠLΠ
ΩJλΠ

JR (θ) ) [(J + ΩJλΠ)! (J - ΩJλΠ)!]-1/2 ×

∑
µ)-(J-1)/2

(J-1)/2

x2sin 2θæΩJλΠµ
J-1 (θ)WΠnΠLΠ

µ
JR(θ) (7.15)

æΩJλΠµ
J-1 (θ) ) (-1)(1/2)(J-1-ΩJλΠ)[(J - 1)/2 + µ]![( J - 1)/2 -

µ]! ∑k1k2u1u2
(k1!k2!u1!u2!)

-1[cos(π/4 - θ)]k1+u2 ×
[sin (π/4 - θ)]k2+u1 (7.16)

WΠnΠLΠ
µ
JR(θ) ) (-1)η(cos 2θ)|LΠ/2-µ| ×

∑
m)m1

m2

(m + (1/2)(R + µ + ε)
(J - 1)/2 + R ) (m - (1/2)(R + µ - ε)

(J - 1)/2 - R )
m!Γ(m + ε + 1/2)

(ê + m - J)!
×

∑
i)0

m (-1)i(ê + i)!

(m - i)!i!Γ(i + ε + 1/2)
×

(-1)η-J+m+ε Pη - J + m + ε
(J - m + i, |LΠ/2 - µ|)(cos 4θ) (7.17)

k1 + u1 ) (J - 1)/2 + µ (7.18)

k2 + u2 ) (J - 1)/2 - µ (7.19)

k1 + k2 ) (1/2)(J - 1 + ΩJλ) (7.20)

u1 + u2 ) (1/2)(J - 1 - ΩJλ) (7.21)

η ) (1/4)(n + J + 1) - (1/2)(|LΠ/2 - µ| + ε)
(7.22)

ê ) (1/4)(n + J + 1) + (1/2)(|LΠ/2 - µ| + ε)
(7.23)

2R ) -(J - 1), -(J - 3), ..., (J - 1) (7.24)

m2 ) (1/2)(J - 1 - |R - µ| - ε) (7.25)

GΠ)0nΠLΠ
ΩJλ

) 0
J ) 0 R ) 0(θ) )

(cos 2θ)|LΠ/2|P (1/4)(nΠ-|LΠ|)
(0, |LΠ|/2) (cos 4θ) (7.26)
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