J. Phys. Chem. R006,110,809-816 809

Incorporating the Geometric Phase Effect in Triatomic and Tetraatomic Hyperspherical
Harmonics'
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Hyperspherical harmonics in the democratic row-orthonormal hyperspherical coordinates are very appropriate
basis sets for performing reactive scattering calculations for triatomic and tetraatomic systems. The mathematical
conditions for incorporating the geometric phase effect in these harmonics are given. These conditions are
implemented for triatomic systems, and their explicit analytical expressions in terms of Jacobi polynomials,
in both the absence and presence of the geometric phase effect, are given.

1. Introduction

One of the approaches used to perform accurate quantu
reactive scattering calculations fof-atom systems involves
solving the corresponding time-independent Sdimger equa-
tion expressed in democratic coordinates that span the config-
uration space equivalently, without favoring any arrangement
channel region over any other. One such set of coordinates is
the row-orthonormal hyperspherical coordinates (ROHC), based
on the singular-value decomposition of the system’s mass-scale
Jacobi matrix—3 This decomposition leads automatically to a
principal axis of inertia body-fixed frame. In general, the
Hamiltonian of a system is invariant under changes of arrange-
ment channel Jacobi vectors. In addition, however, using these
ROHC for triatomic and tetraatomic systems, each individual
term in the corresponding Hamiltonian is invariant under such
transformationg:2 It is this property that makes such coordi-
nates democratic, and greatly facilitates scattering calculations
for these systems in the strong interaction region of configuration
space, where all atoms are sufficiently close to each other to
interact strongly. For the weak interaction region, where pairs
of molecules interact weakly, different nondemocratic hyper-
spherical coordinates, which favor those pairs, should be used
instead

The approach chosen in such scattering calculations is to
employ local hyperspherical surface functions (LHSF), which
are eigenfunctions of the system’s Hamiltonian at a set of
constant values of the hyperradius. In addition, they are
eigenfunctions of the square of the total angular momentum,
J, its space-fixedz component,J,, and the inversion through
the center-of-mas<;, operators. These LHSF constitute an
excellent basis set for expanding the system’s partial wave
functions. The hyperangular part of the LHSF kinetic energy
operator is the same as that of the total Hamiltonian and of the
grand-canonical angular momentum operatd,and has poles
at all configurations for which two of the three principal
moments of inertia of the system are equal. It is very important

m

A2, 2, 3, and & and additional hyperangular momentum
operators that commute with the lattef. These ROHC HH
satisfy that regularity condition and, in the absence of conical
intersections, they have recently been determined analytically
by an efficient computer-algebra appro&éirhis approach is
based on the fact that the eigenfunctions of the system’s kinetic
energy operator], with zero eigenvalue are single-valued
homogeneous polynomials of the space-fixed Cartesian coor-

Odinates of the system’s mass-scaled Jacobi vectors, and the

properties of these polynomials are central to this method.
In the presence of conical intersections, however, the wave

function no longer needs to be single-valued and must instead

satisfy a geometric phase (GP) boundary condition upon
pseudorotations of the system around such intersectitns.
consequence of this condition is that the eigenfunction$ of

with zero eigenvalue no longer need to be polynomials of those

Cartesian coordinates, and a different approach is required for

the analytical determination of the corresponding GP HH. In
this paper we describe such an approach for triatomic systems

of the As type and tetraatomic systems of thgBAtype. In
Section 2 we summarize the definition and properties of the
ROHC, and in Section 3 we give explicit expressions for the
corresponding kinetic energy and grand-canonical angular
momentum operators for triatomic and tetraatomic systems. In
Section 4 we define pseudorotations fof &1d AgB systems.
The ROHC HH for these systems are defined, and their general
properties are given in Section 5. The parities of the grand-
canonical angular momentum quantum numberand the
principal moment of inertia internal angular momentum quantum
number, L, for triatomic systems, which are important for
determining the properties of the corresponding HH, are
described in Section 6 in both the absence and presence of the
GP effect. In Section 7 we give explicit analytical expressions

for the HH of triatomic systems in both the absence and presence

of the GP effect. Finally, in Section 8, we give a summary and
some conclusions.

to use methods to determine the LHSF that ascertain that theyz Row-Orthonormal Hyperspherica] Coordinates for
are regular at those poles. One approach that satisfies thisy-Atom Systems

condition involves expanding the LHSF in ROHC hyperspheri-
cal harmonics (HH), which are simultaneous eigenfunctions of
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The ROHC used in this paper and their properties have been
described previously® and will only be summarized here.
Consider a system dfl atoms and an associated sef\bf-
1 A-arrangement mass-scaled Jacobi vectdrsr 2, ..., rN"1),
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The corresponding space-fixed 3 by { 1) Jacobi matriijf,
is defined by

XD XD D

— 1 2 N—1)y __ 1 2 N—1
== o | oy

1 2 N—1

A £

Wherexg), z-): andzﬁj) (G = 1., 2, ..,N — 1) are the Cartesian
space-fixed coordinates mﬁ Because of the singular value

decomposition theorem for real matridéd2 o' can, forN >
3, be put in the form*13
pi = (—1)"R(@) pN(8, ¢) Q(5)) (22)

wherey; is a chirality coordinate that can assume the values O
or 1,a, = (a, by, ¢;) are the Euler angles that rotate the space
fixed frameGxyz(G being the system’s center of mass) to the
principal-axes-of-inertia body-fixed framex@y' 7 * andR(ay)

is the corresponding proper rotation matfn addition,d; =
0P, 6P, .. o9 are a set of B — 9 hyperspherical
coordlnates an@ is a 3 by N\ — 1) row-orthonormal matrix
satisfying

QQ =1 (2.3)
N(6, ¢) is the 3x 3 diagonal matrix
sinf cos¢ 0O 0
N(6,0) = |0 sinf sing 0 (2.4)
0 0 cosf

wheref and¢ areA-independent moment-of-inertia hyperangles
whose ranges are

0<¢ <4 (2.5)

and

0 < 6 < arc sin[1/(1+ cos ¢)*] < arc sin(2/3Y* = 54.7
2.6)

They are related to the system'’s principal moments of inertia
|X|/1,|y|/1’|£/1 by

e =up?(L = N3 1, = up’(1—N3)

= up’(1 = N3 (2.7)

Y

which are ordered according to

L=<l <l

A4 — Ixia — yl/l

(2.8)

Finally, p = 0 is the system’d-independent hyperradius defined
by

(2.9)

N-1
=3 o+ )
=

The set of quantitieg;, a;, p, 6, ¢, andd, is called the ROHC
of the system.

For tetraatomic system& depends on three internal hyper-
anglesy; = (0%, 62, ) and is chosen to bR(d,) where the
ranges of these angles are given by

0=0P, 0¥ <z 0<0P<a (2.10)
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and the chirality coordinate i&-independent and given by

(—1)* = sign detoS' (2.11)
For triatomic systems, eq 2.2 is replaced by
pi = R(@;) pN(0) Q) (2.12)
whereN(0) is given by eq 2.4 withp = 0, that is
sing 0 0
N(0) = 00 (2.13)
0 0 cosf
where
0<6=ual4 (2.14)
and
coso, sino,
Qo) =10 0 (2.15)
—sind, coso,
with the range o, given by
0<d,=m (2.16)

The ranges of thé; angles in eqs 2.10 and 2.16 are chosen to
satisfy the requirement that, except for some special geometries
of the systems, there should be a one-to-one correspondence
between the ROHC and the corresponding set of Jacobi vectors,
that is, the systems’ configuration.

3. Kinetic Energy and Grand Canonical Angular
Momentum Operators for Triatomic and Tetraatomic
Systems

For any system of coordinates associated withitiagrange-
ment Jacobi vectors? (j = 1, 2, ...,N — 1), which includes
p, the kinetic energy operatof, can be expressed in terms of
the grand-canonical angular momentum operatdr, by’

PN A2
T= Tp(p) + - (3.1
where
o K19 anad
Tp(p) - 2‘1/{ 03N—4 8P p 8P (32)

3.1. A2 for Triatomic Systems. For triatomic systemsA?2
is given by

N 1 1 s 1 1
A= 52 4 L%+
codf ©  cof20 ' sifO ° cod20

k223 ¢ 5 _ g cot 4R (3.3)
co§29
where
~ h 0
=73 (3.4)

and
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K :ﬁi (3.5) The Ni (i = 1, 2, 3) in these expressions are the diagonal
i 90 : elements of th&\N(60, ¢) matrix of eq 2.4 and the )N and M,
o . are given, respectively, by '
The 3%, J;,’l, and J* operators are the components of the
system’s total angular momentum operatdr, along the
principal-axes-of-inertia frame X5y' 72 * expressed in terms
of the Euler anglesy;, as

Nj, =cosfcosy N, =cosfsing N = —si(r;@ls)

‘1 M¢n= —sing M¢22=cos¢ (3.14)
3. — c¢sch, cosc, sinc, cotb, cosc, oloay,

3% |="{csch;sinc cosc, — cotb,sinc, ||a/ab S 34 i i -

y i =G A A A A TheJ,”, J,", andJ,” are defined as for triatomic systems and
j'Z/1 0 0 1 a/dc, are given by eq 3.6. Similarlyl;,, L;, and L, are the

(3.6) components of an internal angular momentum operatgrn
’ a space-fixed-type mathematical frame and are given by

and act only on those angles. Arrangement channel coordinate
trags;lormationz are a p_articulglllrlI)(ind ofd k.inem?]tic rotal'[)illL)F?s, y L, —coso® cotd? —sino® coso® csco®? | /605"
and those two designations will be used interchangeably In this I:A L RN ) (1) PN ) 3/86(2)
paper. The @ * axis is invariant under such transformations, 3 2 [T §[ Sino; cotof” cosoit  sinojTcsco; ?3)
whereas & 4 and G¢ *Aare either invariant or both change sense & 1 0 0 3805
together. In addition| andK are also invariant under those (3.15)
rotations. As a result, not only i&? invariant under them but ) ) )
so is every one of the seven terms in the rhs of eq 3.3. This The axes of @ *y!*Z * are either invariant under arrangement
justifies the designation of these triatomic ROHC as democratic. channel coordinate transformations or two of them change sense
This property makes the ROHC for the strong interaction region together. As a result, a similar property holds for the
of triatomic systems particularly useful because any arrangementcomponents of. The components df; are similarly invariant
channel, can be chosen to perform scattering calculations in Of change sign concurrently with the corresponding components

this region, and from them the result for any otliecan be
obtained easily.

3.2. A? for Tetraatomic Systems.For tetraatomic systems,

AZis given by
A?=K¥0,9) +B(0, ¢) + CX(a;, 0,,0,¢) (3.7)
where

RPN YT I S RN R S il
K0, ¢) = h(sin0395|n039+sin203¢>2) 59

1

B0, 9) = ~2(0,(6.9) 3+ 5

b,(6, ) a%) (3.9)

szN'(,zz B NnNI(,11 NssN'@33 - szN',,zz
by(6, ¢) =
Ngz - Nil Ngs - Ngz
NllN 6, - N33N 033
> > (3.10)
N7; — N3
_ N22M¢22 - N11M¢11 szM¢22 NllM¢>11
b,(0, ¢) = N2 — N2 o N2 — N2, N2, — N2
22 11 33 22 11 33
(3.11)
and

CX(a;, 0, 0, 9) =
(Nd,H = Nyyl9)? + Ny bt — Nop L) n
(Ngz B Nil)z
(Nssj!f — Ny, I:ll)z + (szj'ﬁ — Ngg |:/11)2 T
(N33 — N3))*
(Nnj;//l — Ng; I:/12)2 + (N33j;A — Ny, |:/12)2
(Nil o N33)2

(3.12)

of J and, therefore, each of the produdé ;,, f];fli,{z, anddiL,,

are invariant under those transformations as are the six square
operators that appear in the numerators of the rhs of eq 3.12.
As a result, each of the 11 terms that appear in the rhs of eq
3.7 (namely K2, B, and the nine terms resulting from eq 3.12)
are invariant under arrangement channel coordinate transforma-
tions, in analogy to the seven terms of the triatoikof eq

3.3. For this reason, the tetraatomic ROHC are also called
democratic. As for the triatomic case, they are very useful for
performing tetraatomic reactive scattering calculations in the
strong interaction region of configuration space. For the weak
interaction region, different hyperspherical coordinates and HH
should be used.

4, Effect of Pseudorotations on Triatomic and
Tetraatomic ROHC

The geometric phase (GP) effect is associated with conical
intersections between electronically adiabatic potential energy
surfaces of polyatomic systers!” Loops in nuclear config-
uration space are called pseudorotations. When a system
traverses such a loop, inside of which there is an odd number
of conical intersection geometries, their electronic wave function,
if required to be real and change continuously, undergoes a
discontinuous change of sign at the end of the loop, with respect
to their values at the beginning of the loop, and as a result that
electronic wave function is not single-valued. To preserve the
single-valuedness of the complete electronuclear wave function,
the corresponding nuclear wave function must undergo a
compensating change of si§ithis results in effects on boutd
and scatterinty states of the system, which have recently been
shown to affect observable state-to-state reactive scattering
differential cross sectioR%for the H; system. If there are no
or an even number of conical intersections inside a pseudoro-
tation loop, both the system’s electronic and nuclear wave
functions do not display a discontinuity at the end of the loop;
that is, they are single valued.

In this paper, we consider special pseudorotations for triatomic
and tetraatomic systems. For triatomic systems, they start with
the configuration whose ROHC agg, b, ¢;, p, 6, 6, = 0. We
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then allowd, to change continuously from O tg while p = 0 AZFatan ) D@ ) = ngy(ngg + ARFIt1 ) D©))
andf = n/2 are maintained constant and the Euler angles are ) J
made to depend linearly oy, asa; + 9,, by + (1 — by/n)o;, (5.1)

¢, + (1 — ¢i/m)d,, so that on completion of the loop the ROHC PpsinaLan I 3(@/1) = J(J + DRt ﬂAJ 5(@0 (5.2)

of the system arey + &, w — by, @ — ¢, p, 6, 6, = 7. From My

eq 2.12 it is straightforward to show that the system’s config- .

uration at the beginning and the end of this path are the same, JyF° =" M, a(©;) = MAFN L 0(@)) (5.3)
and that the configuratiomy, p, & = n/2 and arbitraryd;

corresponds to a point inside that path, which is therefore a ﬁFSH“sHLmﬂﬂ 5(@1) = LsnhFSH"SH"“ﬂ,, 5(@1) (5.4)
loop around that configuration. Furthermore, if the system is ’ ’

of the type A, involving three identical atoms, such ag,khat A pslingllg; J D _ (_q\Ipslngilg; J D

60 = x/2 configuration corresponds to an equilateral triangle. o F M; (@) =(-1)F M, a(©)) (5.5)

When Ag systems have conical intersections, their configurations _ )
are usually equilateral triangles and in this case the pseudoro-Which is regular at their pole®; represents the six ROHg;,

tation just defined would be a loop around a conical intersection . ¢, d1. The quantum numbenssy, J, My, Lsn, andIT are
geometry. integers subject to the constraints

Let us now consider tetraatomic systems of the typB,A

. . . . > < < —J < < —_ < <
such as HO. The corresponding conical intersections, when they Npz0 0=sJsng —J=My=J —ng=lg=ng

exist, usually have configurations corresponding to regular M=0,1 (5.6)
pyramid geometries, whose base is an equilateral triangle, A
Let us deﬂne the arrangement Channel COOfdlnﬁteS l, as and D is a degeneracy number equal to the total number Of

those for whichr(ll) is the Jacobi mass-scaled vector between linearly independenf functions with the same values sfI,
two of the A atomsy ) that form their center of mass to the N, La, J, andM;. d designates which of thes functions is
third A atom, and(f) that from the center of mass okAo the being considered. In additior satisfies the pseudorotation
B atom. The corresponding ROHC for regular pyramid con- condition

figurations arep = 7/4, 6% = 0 and arbitraryy, ay, by, c1, p, e ) D
0, 0L, 0@ with p = 0 and6 = 0. Let us consider the pathin F w,a(@ + = by, m—c, 0,0, =7)=
nuclear configuration space starting at a point whose ROHC —1ypsatand Do poc 9§ =0) (5.7
arey, ay, by, ¢, p, 0, 0% = 0, 62, o with all coordinates =D ,3 (@ Bi: 6 0,0, = 0) (57)
@ arpi i it
excepto;” arbitrary but subject to the conditiops= 0, 0 = 0, wheres = 0 means NGP (no geometric phase, i.e., no or an

¢ = /4, 6. We now maintairy, ay, by, p, 6, ¢, 67, andof’ even number of conical intersections encircled by the corre-
constant while changing{” from 0 tor and making the third  sponding pseudorotation defined in Section 4) ardl means
external Euler angle depend linearly 6pasc, + 6;. Upon GP (geometric phase, i.e., and odd number of conical intersec-
completion of the path the ROHC of the system azeb,, ¢ tions encircled by that pseudorotatiof); andng; have the

+ 7, 0, 0, ¢, 0D = 7, 6P, ando®). From egs 2.2, 2.4, and the  parity of s + I1, as shown in Section 6. For the GP case Rhe
choice ofQ mentioned before eq 2.10, one can show that the HH changes sign under the associated pseudorotation, whereas
configurations corresponding to the initial and final points of for the NGP case it is single valued, that is, has the same value
this path are the same and that it encircles the associated regulaat the beginning and end of that pseudorotation.

pyramid configuration poingy, by, ¢, 6, ¢ = w4, 6, 6%, The D degeneracy stems from the fact that a system of three
6% = 0. Therefore, that path is a pseudorotation, which could free particles in a center-of-mass frame has five angular degrees

enclose a conical intersection configuration. This pseudorotation ©f freedom, a;, bz, ¢;, 6, and 9;, and as a result has five
differs from the one defined in ref 3. which was in error. simultaneously knowable angular constants of the motion, but

The special pseudorotations just defined for triatomic and F has been required to be an eigenfunction of only four

tetraatomic systems will be useful for incorporating the GP effect dlﬁe(entlal operators in these angqlar variables. The subscript
. . - . dvaries from 1 tdD and can be considered to be a fifth quantum
in the hyperspherical harmonics for these systems, as shown N umber

Section 5. 5.2. Tetraatomic SystemsFor the tetraatomic systems, the

_ o _ six operatorsA2, 2, 3, (2, [ and ©; commute with each
5. ROHC Hyperspherical Harmonics With and Without other. The first three and the last one are similar to the ones
the Geometric Phase defined in Section 5.12 is the square of the internal angular

momentum operatof,;, andL}' is a body-fixed type compo-
nent of L, that differs from its space-fixed-type component
displayed in eq 3.15. It is given by

We will now define the ROHC hyperspherical harmonics
(HH) without and including the GP for triatomic and tetraatomic

systems.
5.1. Triatomic Systems.For triatomic systems, the five o R 9
operatorsA?, 2, 3, [, andO;, commute with each otheA2 T @ (5.8)

R 4 BYE)
was defined by eq 3.1, andJif are, respectively, the square 90;

and the space-fixelcomponent of the total angular momentum ) ) ) ) )
operator], .7is the associated operator that inverts the system 1€ corresponding HH is defined as a simultaneous eigen-
through its center of mass, an@, is the associated operator function of those six operators that is regular at their poles
that acts on functions of the system’s coordinates. The corre- fo qing L D o sy L D

spondingF HH is defined as the simultaneous eigenfunction ~ AF™ "y 'y q(r, ©;) =n(n+ AF o ©7)

of those operators. ' (5.9)
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IFFE W, a0 ©) = I3+ DRFIS T G, ©))
(5.10)

J L

Asf
N Fetn M M, dD(Xv 0, = MJthnn R]AJ Il:/ILA E(Xa 6, (5.11)

LR, b, 00 ©,) = L(L + DT, 5 4(r. ©))

(5.12)
I:ZFSH” #/IJ I'\_ALz S(X’ 0)= MLthan iAJ :\—Au g(x, 0, (5.13)
O?/sl‘ln i/lj I’\_AL/1 5(}@ 0, = (_1)11':811” ﬂAJ k/lu (?(X, 0, (5.14)

©, the nine hyperspherical coordina&s p, 0, ¢, 9. The six
quantum numbers, J, M;, L, M_,, andIT are integers subject
to the constraints
n=0 0<JL=n -J=M;=<J —-L= MLASL
I1=0,1 (5.15)

SymbolsD andd have meanings similar to the ones given for

triatomic systems and appear for similar reasons. In addition,

F satisfies the pseudorotation condition

F N, 40 @y, by € + 7, 0, 6, ¢, 08 =, 0, oY) =
(_1)SFSHn ‘;AJ k/lL (?(Xr al! blv Cllp7 0’ ¢! 65_1) = O' 6?].2)' 65.3))
1
(5.16)

where, as for triatomic systems= 0 corresponds to the NGP
case and results in a single-valueé&nds = 1 corresponds to
the GP case and the correspondihghanges sign (discontinu-

ously) between the end and the beginning of the tetraatomic
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é,?/Derl}QJl(az' by, ¢1) = DiAHJQJA(aa taa—b,r—c)=

1~ JI1
(-1 DMJQJA(aAv by, ;) (6.4)
and in terms of them thE HH can be written as

[ngiley J D —
Py, 0 () =
J

an STl I D
on DMJQJA(ab by, C;) G Q, d (0)
9=

N,SHnsannJeiLsnaj

(6.5)
The G' HH are related to th& HH for Qj, > 0 by?

Gshatan 3 . 3(6) = (1 + 0 0) oGt ézdl a(0) (6.6)

N KA

167°

whereas th&s HH for Qj < 0 are related to those fa&g;, >
0 by

GMntand . D(g) = (— 1) s tLart @GNt o : 2(6) (6.8)

Therefore, the replacement B, Qy,(a;) by Dy, (ay) limits

the sum overQ2;, to nonnegative values only and changes the
normalization constant of the HH. Replacing eq 6.5 into eq
5.7 and using

pseudorotation defined in Section 4. The consequences of €Ay hich furnishes

5.16 will not be examined in the present paper.

6. Parities of Lg, and ng, for Triatomic Systems

The general solution of eqgs 5.1 through 5.6 is
FSHnsann \lz/lj 3(@1) —

J
N 0 5 Dy, (&) GT5(0) (6.1)

Q_]/-L:—‘]

where DﬁAJQJ is Davydov'$! Wigner rotation function. The

. VL
G(0) functions are called G HHIT = 0(1) corresponds to
symmetric (antisymmetric) solutions with respect to inversion

Do, (@) = €"%d, o (b)e* (6.9)
3249 NauN7Y
results in
(-1 = (-1 (6.10)
(-1)~1 = (—1)*"" Q.E.D. (6.11)

The proof thatngy also has the parity o + IT is more
elaborate. From egs 6.1, 3.1, and 3.2 it is easy to prove that the
function p"F ks, (@) is harmonicfor boths = 0 ands
=1, that is, that

2r ngslingillqy J D —

V™ M, a(©)] =0 (6.12)
where V2 is the six-dimensional Laplacian of the system. For
the NGP case, it is alsolmmogeneous polynomial of degree
ngr in the six space-fixed Cartesian coordinates of the Jacobi
vectorsr (Y andr{?.6 Because the operatorchanges the signs

through the system’s center of mass. We wish to prove that of all of these coordinates, that polynomial and therefore

Lgr and ngy have the parity ofs + II. For Ly, this can be
achieved easily using the parity Wigner functions defined by

D’J\Alj%(ai) = N [D}, JQ%(al) + (1)), JA’_de(aﬁ)]
(6.2)
where

2+1

1/2 (6 3)
16741 + aQJAO)\ '

NJQJA = \

These functions satisfy

Fslinailay, I 2 has the parity ofgr in addition to having the
parity of I. Therefore, fors = 0 ngy has the parity o6 + I1,
QED. Fors = 1 p"F is still harmonic butno longer a
polynomial. To prove that for this casgy still has the parity

of s + II we use the explicit expression f@!"tn 22‘3(0)
given in Section 7.1. Those functions satisfy a system of coupled
differential equations i,” which depend only on the validity

of egs 5.1 through 5.6 and whose derivation does not invoke
eq 5.7. Therefore, that explicit expression is valid for beth
Oands=1.Inegs 7.4 and 7.17, Jacobi polynomials of integer
ordery — J+ m+ € appear, wherg is given by egs 7.9 and
7.22 for ngm and J having the same or opposite parities,
respectively. In additiorg is given by eq 7.11 for both cases.
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Finally m equalsmy plus an integer, wherey, is given by eq
7.13 also for both cases. The requirement that J + m+ ¢

be an integer, both fos = 0 ands = 1, leads directly to the
requirement thahg; and Lgy have the same parity. Because
from eq 6.11 the latter has the parity ®f I, so does the
former,that is

(1™ = (1) = (=1*" (6.13)

We conclude that the parities af and ngg are equal to
each other both fos = 0 ands = 1, and that theonly but

crucial difference between the NGP and GP cases is that thatrg)nnnl-n

parity is the parity oflI for the former and the opposite of that
parity for the latter. This important conclusion will permit the
explicit expressions fofs given in Section 7 to be used for
both the NGP and GP cases.

7. Explicit Determination of the G HH for Triatomic
Systems

7.1. NGP CaseFor the NGP case, the theory of harmonic
polynomials can be used to determine éunctions analyti-
cally. This has been done using two different methods: (a) A
recursion relation between a complete {88t} of G functions
for a givenn and another complete sg&""1} for n + 1 was
derived. This relation was implemented with a Mathematica
program to obtain alG functions up tan = 40, about 2.3 million
of them%22 (b) A sophisticated complex variable harmonic

projection method together with very extensive manual algebra

was used to obtain explicit expressions for thdéunctions in
terms of Jacobi polynomials for arbitraryand total angular
momentum quantum numb@r3

For the purpose of obtaining GP functions, it is more

convenient to use the results of method b. Those results were
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GHnnLn 220;(9) =

J
(—1)-'% > (—1)*dg o (@2)sTME (6)
Q== -

yn

(7.1)

where the values d) ; in the summation include only those
that have the same parity &7 and the.¢’ function depends
on the parity ofJ andIl, as indicated below:

(1) ForJ andII having the same parity, it is given by

J/i2
Ja. _ . —1/2
5,0 =10+ Q=21 ™ 5

Doy, LOIWTT 246) (7.2)

X

where
P, mu(0) = (~1)FPTRDY2 + 1)1(II2 — )t x

Y ki, (Kalklu,tu,!) eose/4 - )] x
[sin(/4 — 0)]™ (7.3)

and

WML 5(g) = (—1)"(cos D)2 x

m
z (%Z-F+(](jZ)(a+ ﬂ+e)) X (‘31{12—_(1(.)}2)((1-0—#—6)) X
m=my
mI(m+ e+ 1/2) m (—1)(E +i)!
X
E+m=J! S m-i)il{+e+1/2)

(=17 R cos ) (7.4)

obtained using different hyperspherical coordinates and principal ) ) ]
axes of inertia than the ROHC used in method a. The method The several parameters in these two equations are defined by

b coordinates and axes were the same as those designated as

LPK in ref 2. It's z axis is perpendicular to the triatom plane, kot = JV2 (7:5)
whereas the axis of method a_and of the_ present paper lies ?n K, + U= J2 — (7.6)
that plane. In addition, the Wigner rotation functions used in

method b are those of Ro¥bwhereas the ones used in method _

a and in eq 6.1 are those of Davyd®The present principal ke =(12)0+ Q) (7.7)
axes of inertia are more convenient for performing reactive

scattering calculations than the ones of method b becauge, as U+ U, = (1/2)0 — Q) (7.8)
— oo, the present axis approaches the Jacobi body-fixed axis,

which is the vector from the center of mass of the product n=U4n+J) — (L2)(Ly/2—ul +¢) (7.9)
diatom to the product atom, which is the helicity axis for

guantizing the component of that diatom’s angular momentum. E=MA)N+ I+ (L/2)(Ly/2—ul +€)  (7.10)
For this reason, we converted the results of ref 23 to the present

axes, ROHC, and Wigner rotation functions. In the resulting _ {0 fora. + u even (7.11)
expressions, degeneracy indid@gndd were replaced by the 1 fora + u odd '

single indexa that, for a givenJ, and all allowed values afy

andLp is expressed explicitly by egs 7.12 and 7.25. It should
be noted thaD is equal to the number of values thatcan
have for givenJ, n, andL; and the analytical expression for
D in terms of these three variables is kndw#f and is not
repeated in the present paper.

In this NGP caseq= 0) L andn have the same parity 4%
and will be designated simply &s; andng respectively, with
the subscrips omitted. TheG functions of eq 6.1 are then given
by

For a givenJ, and all allowed values ofi; and Ly, o is
given by

20=-3,-J+2,..,3-2, (7.12)

In addition,
m, = (1/2)(a + u| — €) (7.13)
m, = (1/2)J — loe — | — €) (7.14)
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In eq 7.4 and in eq 7.17 below™*” is the Jacobi polynomial
of non-negative integer degree’®
Quantitiesky, kp, u;, and up in eqs 7.5 through 7.8 are

restricted to be nonnegative integers. In addition, three of these
four relations are linearly independent and, as a result, the 4-fold i1, no and L even, and (L4 —

sum in eq 7.4 reduces to a single sum.
(2) ForJ andIT having opposite parity, it is given by

G G O = A+ Q) (3= Q)] x
3-1)/2

Z Vasin Bk, (W (0) (7.15)
=1

where

Phpi8) = (~1FO (3 — 2724 (I~ 1)/2 -

4 o, (Kalkolustup) oos(r/d — 6)]2 x
[sin (/4 — 6)]*<™ (7.16)

and

WML () = (=1)"(cos D) x

m miT(m+ e + 1/2)
z (gl (11)53;(:1(1 wt s)) (Eer - (11)//5)@(1 - e)) X
oS : . (E+m=—J)
mo(CL(E )

S (Mm— )G + e+ 1/2) )

(_ 1)7]*J+I’T'H'E P;J:Jm++nil’+l,l_?/2 - /,{D(COS 49) (7 ) 17)

with the associated parameters defined by

k,+u =0 -12+u (7.18)
K +u,=@—1)/2—u (7.19)
k, + k= (1/2)0 - 1+ Q) (7.20)
U+ u,=(1/2)0 - 1- Q) (7.21)
= (W + I+ 1) — (L2)(Ly/2 —
n=14)n+JI+1)— (1/2)(Ly #|+€)(7'22)

=l 12 12—
E=WANn+I+ 1)+ 12)(Ly/2 — ul + ) (7.23)

Quantitiese and my are still given by eqs 7.11 and 7.13,
respectively. However,®is now expressed, for a givelnand
all allowed values ohy andLy, by

20=—J—-1),-0—3),...,0—12) (7.24)
andm, is given by
m,=(1/2)J—1— |a—u|l —¢€) (7.25)
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M=0nLp J=0 aa=0 _
G N nQleg (0)_

(cos D)“"2|P 507, (cos #) (7.26)

ILn|) equal to a non-
negative integer.

7.2. GP CaseAs stated in the last paragraph of Section 6,
the central difference between the NGP and GP cases is: (a)
For NGP: s = 0 andLgy andngy have the same parity d3.

(b) For GP: s= 1 andLgy andngy have the opposite parity of

I1. As a result, all of the explicit NGP expressions for tBe

HH of Section 7.1 arequally valid for the GP case, but with

L andnp replaced byLgy andng, respectively, and required

to have the opposite parity dil (i.e.,s= 1 in eq 6.12). In
addition,L = J. The powers of cos(/4 — 6) and sin{t/4 — 6)

in egs 7.3 and 7.16 are still nonnegative integers in the GP case.
For example, forJ = 0, (eq 7.26) is still valid with this
replacement. However, because for this case the only allowed
parity is I1 = 0 (because theDy, of eq 6.4 is now
independent o&y, b;, andc;), the only ‘allowed values df o
andngy are odd. As a result, the multiplicative factor for the
Jacobi polynomial in that expression is a half-odd-integer power
of cos @, resulting in aG HH that is no longer a homogeneous
polynomial of degree in the two variablex = cosf andy =

sin # and anF HH that is no longer that kind of a polynomial

in the space-fixed Cartesian coordinatgy y'?, 29, X2, )

Z? of the two Jacobi vectons” andr?) as stated, for arbitrary

J, after eq 6.12.

8. Summary and Conclusions

Hyperspherical harmonics (HH) in democratic row-orthonor-
mal hyperspherical coordinates (ROHC) are eigenfunctions of
the grand-canonical angular momentum operatt?, and
therefore of the hyperangular part of the kinetic energy operator
for N atom systems, and behave regularly at the poles of that
kinetic energy operator. In addition, they are independent of
the system’s hyperradius. As such, they are excellent basis
functions for expanding the time-independent scattering wave
functions, once they are known. We have shown how to
incorporate the geometric phase (GP) effect into these functions
for triatomic and tetraatomic systems and have given explicit
analytical expressions for the HH for triatomic systems for
arbitrary values of the total angular momentum quantum
number. These triatomic HH expressions are somewhat com-
plicated but easily programmable, and the associated compu-
tational effort is negligible compared to the computation time
required for propagation of the scattering equations. They are
expressed in terms of powers of gincos#, and cos 2 and of
Jacobi polynomials of cost¥ wheref is the principal moment
of inertia hyperangle, which is invariant under arrangement
channel coordinate transformations. The difference between the
triatomic NGP and GP HH expressions is minor (but very
important). In both cases, the quantum numireo$ A2 andL
of the principal moment of inertia internal angular momentum
operatorl have the same parity. For the NGP case that parity
is the parity ofI1, whereas for the GP case it is the opposite
one. The coupling in the scattering equations using ROHC HH
is entirely because of the system’s potential energy function,

The remarks made in the paragraph after eq 7.14 are alsoV, because all Coriolis-coupling effects are incorporated into

applicable to this case in whichandnr have opposite parities.
As a particular case, we get from these expressions] for

those HH. Use of their analytical expressions, both with and
without inclusion of the geometric phase, should significantly

0 (and except for a constant phase), the following previously simplify and accelerate reactive scattering calculations, both for

known simple resuft

triatomic and tetraatomic systems.
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