
Configuration-Specific Kinetic Theory Applied to the Elastic Collisions of Hard Spherical
Molecules

Floyd L. Wiseman
Senior Scientist, ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940

ReceiVed: August 25, 2005; In Final Form: March 24, 2006

Classical trajectory simulations can be used to glean a wealth of information on the geometric details of
gas-phase molecular collision events for which the standard theoretical treatment lacks the ability to predict.
For instance, the standard treatment gives no information onconfiguration-specificcollision parameters. A
configuration-specific parameter is defined here as the average value for a collision parameter that is exclusive
to either an ensemble of front-end or an ensemble of rear-end molecular collisions. This paper presents statistical
results of simulation “measurements” on several configuration-specific parameters, including the configuration-
specific collision frequencies. The simulations use single-component systems of hard spherical molecules
confined within a spherical boundary. To complement the simulation effort, a systematic mathematical analysis
for the configuration-specific parameters is presented. This analysis uses the Maxwell-Boltzmann distribution
of molecular speeds as usual, but exploits the distinction between front-end and rear-end collision space, and
uses the line-of-centers speed rather than the relative speed. The configuration-specific expressions derived
from this analysis are in very good agreement with the simulation measurements for every molecular collision
parameter studied in this work.

Introduction

Brief Review of the Standard Analysis. The standard
analysis for a single-component ideal gas at thermal equilibrium
leads to the following expressions for the collision frequency
of a single molecule,zAA, the average relative collision speed,
〈Vrel〉, the average relative collision angle,〈Rrel〉, and the mean
free path,λ:1

in which 〈V〉 is the average thermal molecular speed,k is
Boltzmann’s constant (1.3807× 10-23 J/K), and σAA is the
collision cross section. The total collision frequency,ZAA,
depends onzAA and the number of molecules,N, as follows:

in which the factor of1/2 is introduced to avoid counting
molecular collisions twice. The expression for〈V〉 can be derived
from the following integral expression:

in which f(V)δV is the Maxwell-Boltzmann distribution of
speeds given by

andâ ) m/2kT. Evaluating eq 6 yields

It is useful to briefly recap the standard method for deriving
eq 1, which is discussed in detail in ref 2. Initially a system of
gaseous molecules is treated as completely static except for one
single molecule, hereafter called the test molecule. In timet,
the test molecule sweeps out an average cylindrical volume
element given byσAA〈V〉t. The test molecule will collide with
any molecule whose center of mass is located within this volume
element. To account for full molecular motion of the system,
〈V〉 is replaced with〈Vrel〉. The corrected volume element,σAA-
〈Vrel〉t, is then multiplied by the number of molecules per unit
volume, which isP/kT for an ideal gas, to obtain the number
of collisions,PσAA〈Vrel〉t/kT, occurring in timet. This expression
is then divided byt to obtain eq 1.

The Basic Concept of Configuration-Specific Analysis.A
careful examination of the geometric details of molecular
collisions reveals certain dynamic features that are not taken
into account in the standard analysis. One feature is that all
molecular collisions occur either in a front-end or in a rear-end
configuration. In a front-end configuration the component line-
of-centers velocity vectors are oriented “head-to-head” (sche-
matically represented asf r), whereas in a rear-end config-
uration they are oriented “head-to-tail” (f f or r r).
Although most physical chemistry textbook authors recognize
that rear-end collisions do occur, they do not treat the system
as separate ensembles of front-end and rear-end collision events.
Most authors treat the system by simply using the average
molecular speed,〈V〉, in their analyses rather than the more
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rigorous method using the distribution of speeds,f(V)δV. If all
the molecules were actually traveling at the average speed, then
only front-end collisions could occur. Hence, it stands to reason
that configuration-specific analysis requires usingf(V)δV. The
mathematical approach for addressing configuration-specificity
is a bit more detailed than the standard analysis, but has the
distinct benefit of rendering configuration-specific collision
parameters.

One final feature that has not been considered within the
context of kinetic molecular theory is the use of the line-of-
centers speed,Vlc, rather than the relative speed,Vrel, in the
analysis. The chief motivation for this choice is thatVrel does
not contain the geometric information required to derive
configuration-specific parameters. Understanding the distinction
betweenVrel and Vlc is important, and so the next subsection
briefly examines the fundamental relationship betweenVrel and
Vlc.

The Relationship betweenWrel and Wlc. The relative speed,
Vrel, between two molecules is3

in which vrel is the relative velocity vector,v1 andv2 are the
velocity vectors for molecules 1 and 2, respectively, and cosR
) v1‚v2/v1v2. Note thatV1 andV2 are positive scalar quantities.
The general integral expression for〈Vrel〉 can be generated as
follows usingVrel(R,V1,V2), the Maxwell-Boltzmann distribution
of speeds represented byf(V1) and f(V2), and the angular
probability distribution function represented byP(R)δR:

The angular probability distribution function, defined as the
probability thatV1 andV2 will be oriented betweenR andR +
δR relative to each other, is given as follows for the angular
range, 0e R e π:4

Evaluating eq 10 yields eq 2.
The line-of-centers speed, which is scalar, is defined as the

negative time rate of change of the distance,r12, between the
centers of mass of two bodies, i.e.:

The line-of-centers speed,Vlc, and the relative velocity,Vrel, are
related via the following dot product expression5

in whichu12 is the unit vector along the axis joining the centers
of mass. The dot products,V1‚u12 andV2‚u12, can be replaced
with their scalar terms to yield

The line-of-centers speed is the scalar projection ofVrel onto
the internuclear axis, andV1 cosR1 andV2 cosR2 are the scalar

projections ofV1 andV2, respectively, onto the internuclear axis.
The angular variables,R1 andR2, not to be confused withR in
the expression forVrel(R,V1,V2), are hereafter called the collision
angles.

Equation 14 is a general expression that is true irrespective
of the shape of the molecules or whether a collision actually
occurs. However, for a collision event eq 14 is sufficiently
informative only if the two bodies are spherical. The details of
a molecular collision involve complicated expressions of
orientation vectors if either or both molecules are structured.
In addition,σAA becomes orientation dependent as well. Hence,
to keep the analysis simple, discussions in this paper are limited
to spherical molecules.

As a side note,Vrel(R,V1,V2) remains constant for any pair of
noninteracting molecules until a collision involving one or both
molecules occurs. On the other hand, even for noninteracting
moleculesVlc(R1,R2,V1,V2) continuously varies becauseR1 and
R2 continuously vary. The only exception is whenV1 and V2

are collinear, in which caseVlc(R1,R2,V1,V2) ) Vrel(R,V1,V2). Of
course, the probability for a collinear orientation is vanishingly
small.

Chapman and Cowling6 have pointed out that analyzing
certain collision parameters requires two internal scalar coor-
dinates. Obviously, sinceVrel(R,V1,V2) depends on only one scalar
coordinate, there are certain parameters that cannot be analyzed
usingVrel(R,V1,V2). Among these include configuration-specific
collision parameters. The use ofVrel(R,V1,V2) in the analysis leads
exclusively to non-configuration-specific (or overall) collision
parameters, such as those given in eqs 1-4.

A collision can occur only ifVlc(R1,R2,V1,V2) > 0. In front-
end collisionsVlc(R1,R2,V1,V2) is always positive irrespective of
the speeds of the colliding molecules. For this reason there are
no speed restrictions in the analyses of front-end configuration-
specific parameters. On the other hand, in the analyses for rear-
end configuration-specific parameters a restriction must be
placed upon the minimum speed of one of the molecules to
ensure thatVlc(R1,R2,V1,V2) > 0. As will be demonstrated shortly,
this distinct feature of rear-end collisions reduces the probability
of rear-end collisions, making front-end collisions more probable
than rear-end collisions.

Fortunately, the theoretical expressions for the various
configuration-specific collision parameters derived in this paper
can easily be “measured” using trajectory simulation methods.
Results from simulation studies on several systems is presented
in the Results and Discussion, and the data compare quite well
with the theoretical predictions.

Theory

Expressions forZAA,front and ZAA,rear. Configuration specific-
ity can be captured in the analysis using thedifferential collision
frequency. The general expression for the differential collision
frequency between two different types of molecules,δZAB, used
by Kauzmann in his derivation ofZAB is7

in which σAB is the collision cross section given byσAB ) π(rA

+ rB)2 (rA andrB are the molecular radii), andδNVi is the number
of i molecules (i is A or B) having speeds betweenVi andVi +
δVi. Equation 15 is not yet complete since it does not contain
the angular probability distribution function. This function will
be added in a moment. Using Kauzmann’s line of thought, the
differential collision frequency between moleculesof the same
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typecan be written as

in which the factor of1/2 ensures that molecular collisions are
counted only once. The general expression forδNVi is given by
the following modified form of eq 7:

The expression forδZAA in eq 16 is not configuration specific
since it does not containVlc(R1,R2,V1,V2). If Vrel(R,V1,V2) is
replaced withVlc(R1,R2,V1,V2), however, the expression forδZAA

becomes configuration specific. For configuration-specific col-
lision space the angular probability distribution function defines
the probability for a collision in which molecule 1 approaches
at an angle betweenR1 and R1 + δR1 and molecule 2 at an
angle betweenR2 and R2 + δR2 (see Figure 1). This angular
probability distribution function is

The factor of1/2 in the expression forP(R) does not appear in
the expression forP(R1,R2) because, as will be shown momen-
tarily, the angular functions containingR1 and R2 are each
integrated over a range ofπ/2 rather thanπ. Putting the functions
for Vlc(R1,R2,V1,V2), δNV1, δNV2, and P(R1,R2) into eq 16 and
replacingN/V with P/kT yields

The regions of configuration-specific collision space are
defined by the limits of the integrations. For the front-end
configuration,R1 varies between 0 andπ/2, R2 varies between
π/2 andπ, and the molecular speeds vary between 0 and∞ as
usual. Evaluating the integral form of eq 19 using the limits

for a front-end configuration yields:8

The front-end collision frequency,ZAA,front, is smaller thanZAA

by the factor 1/x2.
For rear-end collisions eitherR1 andR2 both vary between 0

andπ/2 (i.e., 1f 2 f), or betweenπ/2 andπ (i.e., r 1 r 2).
To ensure thatVlc(R1,R2,V1,V2) is positive everywhere then for
the case in which 0e R1,R2 e π/2, V1 must vary between (V2

cosR2)/(cosR1) and∞, and for the case in whichπ/2 e R1,R2

e π, V2 must vary between (V1 cos R1)/(cos R2) and ∞. The
expression for the rear-end collision frequency therefore contains
two separate, but numerically identical terms that upon evalu-
ation yield

in which γ1 ) (V2 cosR2)/(cosR1) andγ2 ) (V1 cosR1)/(cos
R2). The rear-end collision frequency,ZAA,rear, is smaller than
ZAA by the factor 1- 1/x2.

The overall collision frequency is simply the sum ofZAA,front

andZAA,rear, i.e.:

As expected, the configuration-specific analysis yields the same
expression forZAA as the standard analysis.

The fraction of front-end collisions,ηfront, is

Note thatηfront is also the probability for a front-end collision.
Equation 23 predicts that about 70.7% of all collisions for hard,
noninteracting spherical molecules at thermal equilibrium are
front-end collisions. This prediction agrees very well with
simulation data.

Expressions for 〈Wlc,front〉 and 〈Wlc,rear〉. The fundamental
expression for the average configuration-specific line-of-centers
speed,〈Vlc,k〉, is

in which the integral is over the configuration-specific region
of collision space represented byk. The configuration-specific
differential term,δZAA(R1,R2,V1,V2)/ZAA,k, is the complementary
term that replacesf(V)δV for analyzing average values for
configuration-specific collision parameters. As such, it can be
shown that

From eq 24, 〈Vlc,front〉 and 〈Vlc,rear〉 can be shown to be,

Figure 1. Representative configuration for a front-end collision
between two spherical molecules. PointsA1 andA2 define the spatial
coordinates for the centers of mass for molecules 1 and 2, respectively,
andr12 is the internuclear distance between the centers of mass when
the molecules are touching. Note that molecule 1 is in the foreground.
The dihedral angle,φ, is the angle between the planes defined byv1

and u12, and v2 and u12. The quantities,V1, V2, R1, and R2, are
independent ofφ and r12 for spherical molecules.
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respectively:

The average configuration-specific line-of-centers speeds,
〈Vlc,front〉 and 〈Vlc,rear〉, are smaller than〈Vrel〉 by the factors,
(2 + π)/(4x2) (∼0.90891) and ((x2 + 1)(π - 2))/(4x2)
(∼0.48721), respectively. Moreover,〈Vlc,front〉 is nearly 87%
larger than〈Vlc,rear〉.

Configuration-Specific Collision Probabilities and Mean
Free Paths.Because there are two types of collisions in a single-
component system, there are four possible patterns ofk-k′
collision sequences, which in turn define four distinct types of
configuration-specificmean free paths. It should be noted,
however, that ak-k′ collision sequencemay not occur in
succession. The difference between sequential and successive
collisions as defined here is there are no intermediate collisions
between successive collisions, whereas there may be intermedi-
ate collisions between a specified collision sequence. For
example, one or more front-end collisions may occur between
two sequential rear-end collisions. Since the probability for any
single type of collision is less than 1, the configuration-specific
mean free paths are all larger than the overall mean free path
given by eq 4.

Whereas configuration-specific mean free paths are defined
in terms of specified sequential collisions, the overall mean free
path is defined in terms of successive collisions. Noting that
the probabilities for front- and rear-end collisions are 1/x2 and
1 - 1/x2, respectively (see eq 23), the expressions for the
probabilities forsuccessiVe k-k′ collisions,pk-k′, are

It can be easily shown that∑k∑k′ pk-k′ ) 1.
Expressions for〈Wfront〉, 〈Wrear,fast〉, and 〈Wrear,slow〉. The average

speed for molecules involved in a configuration-specific colli-
sion of typek is:

Equation 31 differs from the expression for〈Vlc,k〉 in eq 24 in
that eq 31 refers to the average speed of the individual molecules
that undergo collisions, whereas eq 24 refers to the average line-
of-centers speed of two colliding molecules. The expression for
〈Vfront〉 given below can be derived usingi ) 1 or 2 in eq 31.

The reason that〈Vfront〉 is slightly larger than〈V〉 is explained as
follows. The probability of a collision in any given time
increment increases with the speed of a molecule. This effect
is offset by the fact that the fraction of molecules having speeds
higher than the most probable speed decreases as the speed

increases, in accordance with the Maxwell-Boltzmann distribu-
tion. Equation 31 accounts for these two effects, and the net
result is〈Vfront〉 is larger than〈V〉.

On average the speeds of molecules that engage a front-end
collision are the same. However, this is not the case for rear-
end collisions, in which the average speed for the molecules
that are coming from behind in the collisions is somewhat larger
than that of the molecules that are in front. The analysis for
rear-end collisions therefore leads to two average speeds which
can be shown to be

in which “fast” refers to the faster molecule that is behind, and
“slow” to the slower molecule that is in front.

Expressions for〈Rlc,front〉, 〈Rlc,rear,fast〉, and 〈Rlc,rear,slow〉. The
general expression for the average line-of-centers collision angle,
〈Rlc,k〉, is

Expressions for〈Rlc,front〉, 〈Rlc,rear,fast〉, and 〈Rlc,rear,slow〉 derived
from eq 35 are, respectively:

The expression for〈Rlc,front〉 can be derived usingi ) 1 or 2.
The expression for〈Rlc,rear,fast〉 can be derived usingi ) 1 and
integratingR1 andR2 between 0 andπ/2, V1 between 0 and∞,
andV2 betweenγ1 and∞; or it can be derived usingi ) 2 and
integratingR1 andR2 betweenπ/2 andπ, V1 betweenγ2 and∞,
andV2 between 0 and∞. The expression for〈Rlc,rear,slow〉 can be
derived usingi ) 2 and integratingR1 andR2 between 0 and
π/2, V1 between 0 and∞, andV2 betweenγ1 and∞; or it can be
derived usingi ) 1 and integratingR1 andR2 betweenπ/2 and
π, V1 betweenγ2 and∞, andV2 between 0 and∞.

Simulation Methodology.The trajectory simulations in this
work use the classical motion equations that conserve momen-
tum and energy for elastic collisions. The systems consist of
smooth spherical molecules confined inside a spherical container
whose center is at the origin of the coordinate system. The radius
of the container,rcont, is related toT, P, andN, as illustrated in
the following analysis. The volume of the container,Vcont, is

EquatingVcont to the volume of an ideal gas,V ) NkT/P, and
rearranging yields the following expression forrcont:

The molecules are initially placed inside a cubical box that
is inscribed within the spherical container. This method is chosen
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because the algorithm for placing molecules in an ordered array
is much simpler for a cubical geometry than a spherical
geometry. The cross diagonal of the inscribed box is equal to
the diameter of the sphere, and so the length of each edge of
the box,sbox, is 2rcont/x3. The box is subdivided into small
unit cells, each of which contains one molecule at the beginning
of the simulation run. The unit cell length,scell, is

The molecules are randomly offset between∼0 and∼rA in each
coordinate from the centers of the cells to ensure positional and
directional randomization once the molecules are in motion and
begin colliding.

There are two sources of systematic error that arise because
of nonideality in these systems. One source arises from the fact
that the free volume is slightly reduced due to the finite volume
of the molecules. This error can be corrected by using the
effective system pressure,Peff, in the expressions for the collision
frequencies (eqs 20, 21, and 22) and the mean free path (eq 4).
The expression forPeff is given as

The second source of error arises from the fact thatrA is not
negligibly small relative torcont. The correction for this error
will be discussed in a moment.

Once in motion, the molecules are confined to the spherical
container via reverse reflection (reversing the sign of the
component velocity vectors of a molecule when it hits the wall).
Because molecules collide with the wall at random orientations,
they are reflected at random orientations. In principle, therefore,
randomness should not be compromised as a result of reflection.
Simulation studies in which the radial concentration gradients
were closely monitored show that there are no permanent
gradients anywhere in the system once it has equilibrated (there
are, however, local fluctuations.) This overall uniformity in
concentration suggests that there are no directional biases or
systematic deviations from the Maxwell-Boltzmann distribution
resulting from reflection at the wall.

Both types of collision events, molecule-with-molecule (m-
m) and molecule-with-wall (m-w), are elastic. Energy and
momentum are conserved in the m-m collisions, and energy
and the magnitudes of the momentum vectors are conserved in
the m-w collisions.

The component velocity vectors for each molecule are chosen
so that each molecule has an initial speed equal to the root-
mean-square speed. This ensures the system has the correct
kinetic energy, which is 3NkT/2. The magnitudes of the vectors
are all equivalent, but the signs are randomized to ensure the
net momentum in each coordinate is close to zero. The total
system energy and the sum of momenta in each coordinate are
monitored to ensure numerical integrity and motion randomness.

The user-input standard time step,∆tstand, is on the order of
10-14 s. The standard average positional advancement per time
step, given by〈∆rstand〉 ) 〈V〉∆tstand, is on the order of 0.01 nm.
Because∆tstand is finite, some degree of overlap occurs with
each detected collision event. An m-m overlap between

moleculesi and j occurs if the following condition is encoun-
tered:

Analogously, an m-w overlap for moleculei occurs if the
following condition is encountered

in which τ is the adjustment factor that compensates for
nonideality arising fromrA being nonnegligible relative torcont.
For a physically realistic m-w collision, represented byτ ) 1,
the molecules are reflected at the point they hit the wall.
However, the simulation values forZAA are as much as∼3%
high and those forλ as much as∼3% low whenτ ) 1. The
agreement can be brought within a fraction of a percent using
the adjustment technique forτ that will be discussed in a
moment.

The algorithm described as follows calculates the time of
overlap, which is defined as the amount of time during which
the condition described by either eq 43 or 44 holds true. All
possible collision events are tested for overlap for each molecule
at each time step. For each detected collision event, the time of
overlap is determined by the degree of motion reversal required
to ensure one of the following two conditions is met, whichever
applies:

The entire system of molecules is then motion reversed
according to the collision event having themaximum oVerlap
time, ∆tmax. The actual time step,∆tact, then becomes

After the time step is adjusted via eq 47, the only molecule(s)
that is(are) still in contact is(are) the one(s) with the maximum
overlap time. The appropriate recoil equations are applied to
this (these) molecule(s) before the next time step.

It is duly noted here that a small fraction of glancing m-m
collisions can be missed using this approach. This fraction
should become smaller as the value of∆tstand is reduced.
Simulation studies using a range of values for∆tstand indicate
that the number of collisions that might be missed is negligibly
small for the range used in this work.

The adjustment forτ is described as follows. The ratio of
the simulation collision frequency,ZAA,sim, to the theoretical
collision frequency,ZAA,theory, is a function ofτ, i.e.

Studies show thatf(0) < 1 andf(1) > 1. Hence, there is a value
of τ, hereafter calledτideal, in which 0< τideal < 1 andf(τideal)
) 1 within random error. Noting that the collision frequency is
inversely proportional to the volume, which is (4π(rcont - τrA)3)/
(3), the ratio off(1) to f(τideal) can be shown to be
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3
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3 - NrA
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2 + zi
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2 + (zj - zi)
2 ) 2rA (m-m collision)
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2 ) rcont - τrA (m-w collision) (46)
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) f(1) ) (rcont - τidealrA
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)3

(49)
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Rearranging eq 49 yields the following expression forτideal:

The simulation runs always begin withτ ) 1. When the
system becomes well equilibrated, the value forf(1) is used to
calculateτideal via eq 50. Whenτ ) 1 is replaced withτ ) τideal

in eqs 44 and 46, the values forZAA,sim andλsim readjust to their
new values after about 5N collisions. The errors for the adjusted
values forZAA,sim and λsim were within the random errors for
every system studied in this work. However, none of the
configuration-specific parameters that were monitored were
noticeably affected by the value ofτ for any of the systems
studied.

The simulation program begins monitoring the various
collision parameters after a user-specified number of m-m
collisions. The total number of m-m collisions in the runs
ranged from∼7 × 105 for the smaller systems to∼4 × 106 for
the larger systems.

Each molecule has a distance tracker that uses the following
expression to track the distance,di, traveled between successive
collisions:

in which nsc is the number of time steps between successive
collisions. The value forVi is constant between successive
collisions, whereas∆tact,j may or may not be the same for each
new time step. The values fordi are not affected by m-w
collisions since molecular speeds are unchanged by reflective
collisions. Once the second collision in the succession occurs,
the current value ofdi is used to update the average value for
λ, anddi is then reset to 0. A separate algorithm trackspk-k′ for
each pair of successive collisions.

After about 20N m-m collisions the molecules become
evenly distributed throughout the spherical container, the
distribution of speeds very closely follows the Maxwell-
Boltzmann distribution (eq 7), and the average molecular speed
for the system converges to〈V〉 within a small fraction of a
percent (〈V〉 is slightly smaller than the root-mean square speed
used to initialize the speeds of the molecules.) Afterτ ) 1 is
replaced withτ ) τideal, the system executes a user-specified
number of time steps before beginning the statistical analysis.
Between 20 and 40 sets of simulation data points were used in
the statistical analysis for each run conducted in this work.

Results and Discussion

Table 1 shows simulation data and theoretical predictions for
systems in whichτ is fixed at 1,rA ) 0.265 nm, and the ratio,
rA/rcont, ranges from 0.00653 to 0.0248. The purpose for
conducting these runs was to assess the trend in the random
and systematic errors forλ andZAA asrA/rcont and 1/N become
smaller. The random errors are the percent errors determined
from the 95% confidence levels, and the systematic errors are
the percent errors determined from the differences between the
theoretical and simulation values. Unfortunately, the size of the
systems that can be feasibly studied is limited by computer
runtime, so that only a limited range forrA/rcont is practical.
Fortunately, the range forrA/rcont in this work is large enough
to show that, after a threshold system size is reached, both the
random and systematic errors decrease asrA/rcont and 1/N
decrease. Figure 2 shows graphs for (|Errorλ| + ErrorZAA)/2 vs
rA/rcont for the random and systematic errors. An empirical
function was fitted to the two data sets. From this function the
values for the random and systematic errors extrapolated torA/
rcont ) 0 are∼0.06% and∼0.7%, respectively. The value for
the extrapolated systematic error may be high because the
systematic error for the largest system shows a distinct

TABLE 1: Results of Classical Trajectory Simulations and Theoretical Predictions for a Series of Systems Having Various
Values for rcont and Na

results errorsrcont/nm
N theoretical simulationb random systematic

10.68 ZAA/s-1 5.452× 1011 5.614((0.029)× 1011 0.52 3.0
125 λ/nm 32.69 31.74((0.16) 0.50 -2.9
14.96 ZAA/s-1 1.4961× 1012 1.5436((0.0072)× 1012 0.47 3.2
343 λ/nm 32.69 31.69((0.15) 0.47 -3.1
21.37 ZAA/s-1 4.362× 1012 4.448((0.012)× 1012 0.27 2.0
1000 λ/nm 32.693 32.056((0.084) 0.26 -1.9
29.92 ZAA/s-1 1.1968× 1013 1.2149((0.0018)× 1013 0.15 1.5
2744 λ/nm 32.693 32.198((0.050) 0.16 -1.5
40.60 ZAA/s-1 2.9917× 1013 3.0264((0.0035)× 1013 0.12 1.2
6859 λ/nm 32.693 32.299((0.039) 0.12 -1.2

aAll of the systems have the following specifications:T ) 300 K, P ) 1.00 atm,M ) 78.1 g‚mol-1 (C6H6), rA ) 0.265 nm,〈∆rstand〉 ≈ 6.27
× 10-3 nm, 〈V〉 ≈ 285 m‚s-1, andτ ) 1 (fixed). b The 95% confidence levels are given in parentheses.

Figure 2. Graphs of (|Errorλ| + ErrorZAA)/2 vs rA/rcont for the random
and systematic errors in Table 1 (excluding the first data set.) The two
sets of data points were each fitted to the empirical function, (|Errorλ|
+ ErrorZAA)/2 ) a exp(brA/rcont). The best-fit values for the random
and systematic errors are, respectively, as follows:a ) 0.0569/0.665,
andb ) 120/87.8.

τideal ) f1/3(1) -
rcont[f

1/3(1) - 1]

rA
(50)

di ) Vi∑
j)1

nsc

∆tact,j (51)
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downward curvature. Hence, it is quite possible that the
extrapolated values for the random and systematic errors
converge more closely with each other than implied by the
extrapolation method used here. In any case, the trend certainly
shows that the system is very close to ideal in the limit that
rA/rcont approaches zero. Adjustingτ compensates for the
nonideality of the system due to its finite size. As such,τideal

approaches∼1 asrA/rcont approaches zero.
Tables 2-6 show simulation measurements and theoretical

predictions for several systems in which the following collision
parameters were monitored:ZAA (eq 22),ηfront (eq 23),〈Vlc,front〉
(eq 26),〈Vlc,rear〉 (eq 27),pfront-front (eq 28),pfront-rear andprear-front

(eq 29),prear-rear (eq 30),λ (eq 4),〈Vfront〉 (eq 32),〈Vrear,fast〉 (eq
33), 〈Vrear,slow〉 (eq 34),〈Rlc,front〉 (eq 36),〈Rlc,rear,fast〉 (eq 37), and
〈Rlc,rear,slow〉 (eq 38). About 75% of the simulation measurements
are in exact agreement with the theoretical predictions within
the 95% confidence levels.

The ratio,λ/rcont, was allowed to vary over a large enough
range (from∼0.63 in Table 6 to∼6.5 in Table 4) to determine
whether systematic errors occur for systems in whichλ > rcont.
The results clearly show that the behavior of the systems is not
discernibly altered ifλ > rcont.

Outside of pedagogic pursuits and classroom discussions,
configuration specificity in gas-phase dynamics has several other
potential applications. For one, adding configuration specificity
as a higher level of analytical detail may shed some insight
into certain gas-phase dynamic processes. Also, configuration

TABLE 2: Results of Classical Trajectory Simulations and
Theoretical Predictions for Several Collision Parameters for
a System Having the Following Specifications:T ) 300 K, P
) 1.00 atm,M ) 28.0 g‚mol-1 (N2), rA ) 0.185 nm,N ) 729,
〈∆rstand〉 ≈ 5.23× 10-3 nm, 〈W〉 ≈ 476 m‚s-1, rcont ≈ 19.2 nm,
and τideal ≈ 0.470

parametera theoretical value simulation value

ZAA/s-1 2.585× 1012 2.583((0.008)× 1012

ηf 0.7071 0.7078((0.0014)
〈Vlc,f〉/m‚s-1 612.2 612.2((0.9)
〈Vlc,r〉/m‚s-1 328.2 328.0((1.0)
λ/nm 67.17 67.27((0.22)
pf-f 0.5000 0.5009((0.0026)
pr-r 0.085 79 0.08610((8.1× 10-4)
pf-r 0.2071 0.2057((0.0069)
pr-f 0.2071 0.2057((0.0069)
〈Vf〉/m‚s-1 518.7 518.7((0.5)
〈Vr,f〉/m‚s-1 615.7 615.5((1.2)
〈Vr,s〉/m‚s-1 410.8 411.3((1.0)
〈Rlc,f〉/deg 51.15 51.15((0.01)
〈Rlc,r,f〉/deg 39.48 39.45((0.01)
〈Rlc,r,s〉/deg 69.16 69.18((0.01)

a The subscripts are abbreviated here as follows:f ) front; r )
rear; r,f ) rear,fast; r,s ) rear,slow.

TABLE 3: System Specifications: T ) 300 K, P ) 1.00 atm,
M ) 28.0 g‚mol-1 (N2), rA ) 0.185 nm,N ) 2,197,〈∆rstand〉 ≈
5.23× 10-3 nm, 〈W〉 ≈ 476 m‚s-1, rcont ≈ 27.8 nm, andτideal≈ 0.582

parameter theoretical value simulation value

ZAA/s-1 7.790× 1012 7.808((0.020)× 1012

ηf 0.7071 0.7076((0.0010)
〈Vlc,f〉/m‚s-1 612.2 612.1((0.7)
〈Vlc,r〉/m‚s-1 328.2 328.2((0.7)
λ/nm 67.17 67.00((0.17)
pf-f 0.5000 0.5028((0.0015)
pr-r 0.085 79 0.08652((6.1× 10-4)
pf-r 0.2071 0.2066((8 × 10-4)
pr-f 0.2071 0.2066((8 × 10-4)
〈Vf〉/m‚s-1 518.7 518.6((0.4)
〈Vr,f〉/m‚s-1 615.7 615.6((0.7)
〈Vr,s〉/m‚s-1 410.9 410.3((0.7)
〈Rlc,f〉/deg 51.15 51.14((0.01)
〈Rlc,r,f〉/deg 39.48 39.53((0.01)
〈Rlc,r,s〉/deg 69.16 69.21((0.01)

TABLE 4: System Specifications: T ) 300 K, P ) 1.00 atm,
M ) 4.00 g‚mol-1 (He), rA ) 0.129 nm,N ) 1,000,〈∆rstand〉≈ 5.32× 10-3 nm, 〈W〉 ≈ 1260 m‚s-1, rcont ≈ 21.4 nm, and
τideal ≈ 0.490

parameter theoretical value simulation value

ZAA/s-1 4.559× 1012 4.542((0.019)× 1012

ηf 0.7071 0.7071((0.0013)
〈Vlc,f〉/m‚s-1 1620 1621((3)
〈Vlc,r〉/m‚s-1 868.3 869.8((2.8)
λ/nm 138.2 138.7((0.5)
pf-f 0.5000 0.4988((0.0025)
pr-r 0.085 79 0.08574((9.0× 10-4)
pf-r 0.2071 0.2060((0.0011)
pr-f 0.2071 0.2060((0.0011)
〈Vf〉/m‚s-1 1372 1372((2)
〈Vr,f〉/m‚s-1 1629 1632((3)
〈Vr,s〉/m‚s-1 1087 1085((3)
〈Rlc,f〉/deg 51.15 51.12((0.01)
〈Rlc,r,f〉/deg 39.48 39.51((0.02)
〈Rlc,r,s〉/deg 69.16 69.15((0.01)

TABLE 5: System Specifications: T ) 300 K, P ) 1.00 atm,
M ) 78.1 g‚mol-1 (C6H6), rA ) 0.265 nm,N ) 1,728,〈∆rstand〉≈ 0.0106 nm,〈v〉 ≈ 285 m‚s-1, rcont ≈ 25.6 nm, andτideal ≈
0.421

parameter theoretical value simulation value

ZAA/s-1 7.537× 1012 7.548((0.014)× 1012

ηf 0.7071 0.7075((0.0007)
〈Vlc,f〉/m‚s-1 366.6 366.6((0.3)
〈Vlc,r〉/m‚s-1 196.5 196.7((0.3)
λ/nm 32.69 32.64((0.06)
pf-f 0.5000 0.5018( 0.0012)
pr-r 0.085 79 0.08639((4.8× 10-4)
pf-r 0.2071 0.2066((4 × 10-4)
pr-f 0.2071 0.2066((4 × 10-4)
〈Vf〉/m‚s-1 310.6 310.6((0.2)
〈Vr,f〉/m‚s-1 368.6 368.6((0.3)
〈Vr,s〉/m‚s-1 246.0 246.1((0.4)
〈Rlc,f〉/deg 51.15 51.15((0.01)
〈Rlc,r,f〉/deg 39.48 39.47((0.01)
〈Rlc,r,s〉/deg 69.16 69.22((0.01)

TABLE 6: System Specifications: T ) 300 K, P ) 1.00 atm,
M ) 720.7 g‚mol-1 (C60), rA ) 0.375 nm,N ) 1,728,〈∆rstand〉≈ 0.0150 nm,〈v〉 ≈ 93.9 m‚s-1, rcont ≈ 25.6 nm, andτideal ≈
0.365

parameter theoretical value simulation value

ZAA/s-1 4.986× 1012 4.996((0.010)× 1012

ηf 0.7071 0.7078((0.0005)
〈Vlc,f〉/m‚s-1 120.7 120.7((0.1)
〈Vlc,r〉/m‚s-1 64.68 64.65((0.08)
λ/nm 16.27 16.24((0.03)
pf-f 0.5000 0.5023((0.0011)
pr-r 0.085 79 0.08627((4.1× 10-4)
pf-r 0.2071 0.2068((5 × 10-4)
pr-f 0.2071 0.2068((5 × 10-4)
〈Vf〉/m‚s-1 102.2 102.3((0.1)
〈Vr,f〉/m‚s-1 121.3 121.4((0.1)
〈Vr,s〉/m‚s-1 80.98 80.99((0.07)
〈Rlc,f〉/deg 51.15 51.14((0.01)
〈Rlc,r,f〉/deg 39.48 39.50((0.01)
〈Rlc,r,s〉/deg 69.16 69.14((0.01)
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specificity may shed some light in interpreting the results of
certain gas-phase experiments such as molecular beam studies.

It should be emphasized here that even though configuration
specificity does add deeper understanding of gas-phase collision
processes, the analysis is limited in its application due to the
restrictions that the molecules are spherical and noninteracting.
The general results presented in this paper become less
applicable for molecules that are structured or exhibit intermo-
lecular interactions. For one, an accurate assessment of the
collision cross section becomes somewhat tenuous for structured
molecules. Second, intermolecular potentials will affect the
center-of-mass trajectories as well as the internal motion of
structured molecules when the molecules are close enough for
the force fields to interact. Of course, some of the behavioral
trends for the non-configuration-specific parameters in nonideal
systems can be predicted with some level of confidence. For
instance, the collision frequencies will likely be larger and the
mean free paths smaller for molecules that exhibit attractive
interactions. On the other hand, even guessing the trends for
many of the configuration-specific parameters is difficult without
resorting to some level of analysis.

A follow-on paper in this series will be devoted to deriving
the configuration-specific collision parameters for a binary
system. It will be demonstrated that the following equation is
obtained using the configuration-specific analysis:9

in which µ is the reduced mass andXA is the mole fraction for
componentA.
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