
A Nested Molecule-Independent Neural Network Approach for High-Quality Potential Fits†

Sergei Manzhos,‡ Xiaogang Wang,§ Richard Dawes,⊥ and Tucker Carrington Jr.*
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It is shown that neural networks (NNs) are efficient and effective tools for fitting potential energy surfaces.
For H2O, a simple NN approach works very well. To fit surfaces for HOOH and H2CO, we develop a nested
neural network technique in which we first fit an approximate NN potential and then use another NN to fit
the difference of the true potential and the approximate potential. The root-mean-square error (RMSE) of the
H2O surface is 1 cm-1. For the 6-D HOOH and H2CO surfaces, the nested approach does almost as well
attaining a RMSE of 2 cm-1. The quality of the NN surfaces is verified by calculating vibrational spectra.
For all three molecules, most of the low-lying levels are within 1 cm-1 of the exact results. On the basis of
these results, we propose that the nested NN approach be considered a method of choice for both simple
potentials, for which it is relatively easy to guess a good fitting function, and complicated (e.g., double well)
potentials for which it is much harder to deduce an appropriate fitting function. The number of fitting parameters
is only moderately larger for the 6-D than for the 3-D potentials, and for all three molecules, decreasing the
desired RMSE increases only slightly the number of required fitting parameters (nodes). NN methods, and in
particular the nested approach we propose, should be good universal potential fitting tools.

I. Introduction

To understand ro-vibrational spectra, intramolecular relaxation
processes, chemical reactions, etc., theorists use potential energy
surfaces (PESs).1-8 Spectra, cross sections, and rate constants
are computed by solving classical or quantum equations for the
motion of the nuclei on a PES. The PES is a consequence of
the Born-Oppenheimer approximation. To calculate a PES, one
must solve the electronic Schroedinger equation for a large set
of geometries of the molecule or reacting system. A great deal
of effort has been devoted to the development of good (accurate
and efficient) quantum chemistry and dynamics methods, but
to compute a spectrum, a rate constant etc., it is not enough to
be able to compute electronic energies at selected points: one
needs a PES.

The generation of PESs from ab initio data is the middle
ground between quantum chemistry and dynamics. When
classical mechanics is adequate for the purpose of studying the
motion of the nuclei, it is possible to use “direct dynamics”:
the potential is computed at points on a classical trajectory and
no potential function is necessary.9-12 This is wasteful, because
information is thrown away as it is acquired. It seems obvious
that it would be good to retain and exploit potential surface
information as it is obtained. If one uses direct dynamics, the
quality of the results is determined by the quantum chemistry
method used, and it is not possible to use high level methods
due to the number of required calculations. To use quantum
mechanics to compute a spectrum, a cross section etc., one must
know the potential at geometries that correspond to the
quadrature (or discrete variable representation (DVR))13,14points

required to obtain converged results. It is usually not possible
to compute the electronic energy at all of the quadrature points
(optimal points are not known before the surface is obtained),
and it is therefore important to find a function that reproduces
calculated electronic energies well.

PESs are sometimes obtained by choosing the parameters of
a fitting function so that the function very nearly reproduces a
set of ab initio data points.15-17 This works well for many
molecules, but it has several important disadvantages. First, to
develop a good function, one needs much experience and
intuition. The functional form reflects the nature of the most
important interactions.18-21 In practice, most potentials generated
in this way are the work of a few groups that have invested
years of experience. Using a physically motivated function has
the potential advantage of reducing the number of required
parameters, but it also means that each potential is a new project.
The functions one would use for a semirigid molecule such as
H2O or a double-well molecule like H2O2 would be rather
different. Second, systematically improving the potential by
adding more parameters is not always easy. Third, correlation
between the parameters can plague the fitting process.

Black-box potential fitting routines that make no attempt to
exploit knowledge of the important interactions and coupling
terms greatly simplify obtaining potentials. Fitting procedures
that are not physically motivated have the virtue of simplicity.
The most popular procedures of this type are spline,22-25

interpolating moving least squares (IMLS),26,27 reproducing
kernel Hilbert space (RKHS),28,29modified Sheppard interpola-
tion (MSI),30-31 distributed approximating functionals (DAF),34-37

and neural network (NN) algorithms.38-45 These approaches are
systematically improvable, work well even if coupling is large,
and they are easy to use; e.g., most parameter values are com-
pletely determined by the numerical algorithm and do not need
to be estimated on the basis of experimental results or intuition.
However, in all of these methods, there are parameters that must
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be chosen by the user. The popular Taylor-expansion based MSI
method requires potential derivatives and is used almost
exclusively with second-order expansions, as higher derivatives
are difficult to obtain from ab initio calculations. The RKHS
method is easiest to use with tensor product grids28,29,46which
make it difficult to fit surfaces for systems with more than three
atoms.34,36,47-50 With a trajectory-based point selection scheme,
the MSI approach can fit dynamically relevant parts of PESs
of four-atom molecules32,51-54 and some five- and six-atom
systems.55-57 For the cited four-atom systems, the potential
fitting errors of these methods are of the order of 101-102 cm-1.
Similar errors are obtained with physically motivated fitting
functions.18,19,58Recently, permutation invariant polynomials and
interatomic distances have been used to fit several potentials.
See, for example, ref 59. This approach appears very promising.

In this paper, we present improved NN methods for fitting
potentials. The ease of use of NN fitting methods is independent
of the point distribution: there is no reason to use a tensor
product grid. The NN procedure employs an analytic expression
that depends on parameters.60,61 Parameter values are chosen
so that (1) potential values at a set of fitting points are nearly
reproduced and (2) the NN PES gives reasonable values at other
points (not those used to fit). Due to the fact that parameters
are chosen, it is legitimate to describe the NN procedure as a
fitting algorithm. However, if one uses NNs, it is particularly
easy to vary the number of parameters as the fit is improved.
NNs have all of the advantages of the black-box methods
mentioned in the previous paragraph. To use them, one need
not have a priori knowledge of the potential shape, and it is not
necessary to have potential derivatives. In addition, the NN fitted
potential is inexpensive to evaluate, which could be important,
e.g., if it is used with classical trajectories. NNs are universal
fitting functions.62,63 In the NN literature,60,64,65the process of
finding the best parameter values is called learning. One begins
with a set of coordinate values and their associated energies
and chooses weights and biases (fitting parameters) to get a
good fit. NN have been used for curve fitting66 and, in particular
for PES fitting,38-45 but also for modeling kinetic equations67

and interpolation of solutions of the Schroedinger equation.68-70

The usefulness of NNs is, of course, not limited to fitting.71-74

In section II, we briefly explain the standard NN approach and
discuss some of its advantages.

We use NNs to fit potentials for H2O (3-D), HOOH (6-D),
and H2CO (6-D). The method (see section III) we use for
choosing data points has not yet been applied to potential fitting.
For H2O, a straightforward application of NN fitting software
(we use Matlab) works very well.75 To make good NN fitting
functions for HOOH and H2CO, we develop a hierarchical NN
fitting procedure. This is explained in subsection IIIb. Most
previous applications of NN fitting methods are for systems
with fewer than 4 atoms and achieve only moderate accuracy.
We demonstrate that it is possible to obtain accurate fits. The
root-mean-square error (RMSE) of our H2O fit is 1 cm-1. For
HOOH and H2CO, we achieve a 2 cm-1 RMSE. Some
discussions of NNs give the impression that they work well
only if low accuracy is sufficient.64,65,76Most previous NN fits
have RMSEs larger than 10 cm-1. For example: a RMSE of
15-26 cm-1 for H3

+ potentials;41 a RMSE of 878 cm-1 for an
intermolecular potential of H2O-Al3+-H2O;40 a RMSE of about
8 cm-1 (actually a mean absolute deviation of 7.7 cm-1) for a
3-D slice of a CO/Ni(111) potential;44 a RMSE of 770 cm-1

for a 12-D potential for H2 on Si(100);44 a RMSE of 7.7 cm-1

for regions of a potential surface of vinyl bromide required to
describe dissociation;38 a RMSE of 30 cm-1 for a potential

surface of Si5.;38 a RMSE of 25 cm-1 for a 4-D model of a
(HF)2 potential below 5000 cm-1.43 Our 6-D NN-based poten-
tials reported below have a RMSE of 2 cm-1 and extend up to
more than 11000 cm-1 above the zero point energy (ZPE). Our
RMSEs are also smaller than those typically obtained with
methods such as IMLS, MSI, RKHS.

We test all our fits by computing vibrational spectra. This is
a good way of detecting “holes”sisolated regions of the PES
usually far from the equilibrium geometry or saddle points,
where the surface is very sparsely sampled and where the fitted
potential has large errors. It is somewhat dangerous to look only
at 2-D potential cuts40,41,43or 1-D equilibrium slices.38 In more
than 3-D, we find that the standard NN method often produces
a surface with holes. It is possible that some published NN
potentials had holes or other unphysical regions that were not
detected. Computing spectra also provides an unambiguous test
of the quality of our fitted surfaces. NN fits have been used to
compute a spectrum in only one other paper (for a three-atom
molecule).41 It is important to know how good the RMSE must
be in order to give an accurate spectrum. Because we do fits
for three different molecules with different levels of precision,
we can study how the complexity of the fit (number of
parameters) that yields a potential depends on the number of
coordinates and on the required precision.

II. Neural Networks

A NN consists of nonlinear processing “nodes” organized
into “layers” .60,61,64NNs can be used as fitting functions. The
commonly used38-45 single-hidden-layer NN fitting function can
be written

The components ofx are the coordinates of our fitting points.
Thewp are weights and the bp are called biases. A diagram of
the NN that corresponds to eq 1 is shown in Figure 1. The
neurons are functions of linear combinations of the coordinate
(input) values. The neurons we use are sigmoid functions. The
final output of the NN is a linear combination of the sigmoids.
This is a NN with one layer of neurons. The layer of neurons
is usually called a hidden layer.60,64,65NNs can have an arbitrary
number of hidden layers.60-65,77-79 The weights and biases are
chosen so that the outputs are very close to the correct potential
values. The NN we use is denoted a feed-forward network with
a ridge activation function in the NN literature.78 Other groups
using a NN to fit potentials have also used this kind of NN.38-45

We choose to use NNs for two reasons. First, there are
theorems proving that with the right choice of thew, b, andc
parameters, it is possible to fit any function to arbitrary accuracy
with a sigmoid NN with one hidden layer.62,63We are therefore
certain that as we increase the number of fitting points and
neurons (and therefore weight and bias parameters), the quality
of our fit should improve. To demonstrate that a NN can be
used to fit any function, one uses results from the field of
functional representation theory,77,78and in particular, theorems
of Kolmogorov80 and Sprecher.81,82According to these theorems,
it is always possible to represent a multidimensional continuous
function of x in terms of a nonlinear function of a linear
combination of continuous 1-D functions of new variables
obtained from thex. Using these results and the idea that any
continuous 1-D function can be expanded in terms of sigmoid
functions,83 one can prove that a NN can be used to fit any
function. Second, mathematicians78,84-86 argue that the number

V(x) ) ∑
p)1

n

cp(1 + ewp·x+bp)-1 (1)
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of NN parameters required to obtain a good fit scales well as
dimensionality is increased. There are theoretical estimates of
upper bounds on the number of nodes required to fit particular
classes of functions to a predefined accuracy.78,79,87Although
the upper bounds are large, it seems clear that the number of
required NN parameters does not scale as badly as the number
of parameters of a direct product fit. In practice, modestly sized
NNs have been used to fit diverse potentials.39,44,88An important
advantage of NNs is the fact that although they make use of
1-D functions to fit, they do not fit with sums of products of
functions. They therefore scale less badly with dimension than
many fitting methods.

III. Using NNs To Fit Spectroscopically Relevant Parts of
Potentials

In this section, we discuss the ideas we have used to obtain
NN potentials for H2O, HOOH, and H2CO. The three potentials
are very different (H2O is quite rigid, HOOH is nonplanar and
has a PES with two accessible minima separated by a tunneling
barrier, and H2CO is planar and has a single-well PES), but the
NN procedures work well in all cases. Of course, the 6-D
problems are harder. Although the real goal of NN potential
fitting methods must be obtaining a potential from a set of ab
initio points, in this paper, we develop and test NN methods by
fitting a reference potential. We use the H2O potential of ref
89, the HOOH potential of ref 18, and the H2CO potential of
ref 90. We do this so as to be able to assess directly the error
introduced by the fitting procedure. Had we used ab initio
energies, both the fitting error and the error of the ab initio
method used would have influenced our results. This is a
common strategy.26,27,35,37,91-96 Because we start from a refer-
ence potential, it is possible to measure the effect of the fitting
error on energy levels.

The first thing to do is to select a scheme for choosing points.
We use the same scheme for all three molecules. We want a
scheme that will put points in regions of the potential that are
important for the purpose of computing low-lying vibrational
energy levels. The lowest levels depend only on the shape of
the bottom of the potential, and higher levels are, in general,
also influenced by the shape of the bottom of the potential. We
choose points from a distribution function proportional to
Ecut - V0(x) + ∆. The minimum value of all our potentials is
zero. The same idea has been used previously for choosing
centers of Gaussian basis functions.97 In practice, we randomly
sample configuration space in the smallest multidimensional box
that encloses points with energies less thanEcut and retain a
point xi if V0(xi) < Ecut, whereEcut is a cutoff energy, and if

wherebi ∈ [0, 1] is a random number. The probability of accep-
ting a point decreases as the energy increases and takes a non-
zero value proportional to∆ , Ecut at Ecut. V0(x) is a zeroth-
order separable potential. ForV0(x), we use a sum of equilibrium
slices. For each coordinate, we generate a set of points by fixing
the other coordinates at their equilibrium values and taking 20
equally spaced values (one of which is the equilibrium value)
for the coordinate in question. For each of the slice potentials,
V1D e Emax. Emax is larger than the largest energy level we wish
to compute and is the energy above which we do not wish to
fit. In general,Emax andEcut are close andEmax g Ecut. We use
Excel to do the 1-D fits. Of course, if a NN were being used to
fit ab initio data, it would be necessary to compute 1-D ab initio

potentials, but for any molecule, this is easy and inexpensive.
Instead of a separableV0, it would also be possible to use any
crude fit (perhaps an NN fit) for a predefined (sparse) grid of
points. We find that the results we obtain do not depend sensi-
tively on our choice ofV0(x). With this point distribution scheme,
the number of points per unit volume of configuration space is
higher at low energies. There are many other ways to choose
points. A widely used alternative is to choose points along
classical trajectories.32,38,96,98-101 We have also experimented
with this idea but find the method of eq 2 simpler and good for
our (spectroscopic) purposes. The points used to build the slice
potentials are added to the points chosen according to eq 2 to
make the fitting set. Outside the smallest multidimensional box
which encloses all points with energy less thanEmax g Ecut, we
set the potential equal to a plateau value much larger than the
energy of the fitting point with the largest energy. Inside this
box, the potential is set equal to the value returned by the NN.

In all cases, we use a NN with one hidden-layer as shown in
Figure 1. The coordinate and energy ranges are scaled to [-1,
1].102 The code is written in MatLab using MatLab’s Neural
Network Toolbox.75 In principle, it is possible to use it to fit a
potential of any dimensionality. The number of nodes, and hence
the number of fitting parameters, is adjustable. In NN parlance,
determining the fitting parameters is called training the network.
We train the network using the Levenberg-Marquardt (LM)
algorithm. After experimentation with different training methods
including “resilient back-propagation”, steepest descent, con-
jugate gradient, and quasi- Newton algorithms (all implemented
in MatLab75) and genetic algorithms103-106 (both hand-written
and from MatLab107), we concluded that LM both converged
most quickly and produced the best fit. The number of nodes
is adjusted to achieve a fit with a predefined precision. If the
number of nodes is too small, it is not possible to obtain a good
fit. If the number of nodes is too large, there is a danger of
“overfitting”, i.e., of obtaining a function that does an excellent
job for the points to which it is fit but, nevertheless, does not
represent well the shape of the true potential (has spurious
oscillations, for example). To prevent overfitting, we use early
stopping. To this end, a second (independent) “validation” set
of points was built using the same point selection scheme
described above. The number of validation points was half the
number of training points. The training algorithm returns the
error on both sets of points. We accept a fit if the RMSE is less
than the predefined limit for the training set and less than twice
the same predefined limit for the validation set. All fits are
initiated with random initial weights and biases. If the validation

Figure 1. Classic single-hidden-layer back-propagation neural network
used to fit the potential surfaces. The connection weights matrixw is
used to form linear combinations of the input variablesx via w x + b.
These are indicated byΣ in the figure and are arguments of the sigmoid
nodes or neurons. A linear combination of the nodes outputs is the
final network output.

Ecut - V0(xi) + ∆
Ecut+∆

> bi (2)
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set error begins to increase, we abort the fit and start again with
a new set of random initial weights and biases. The fitted
potential we obtain is symmetrized so that it is invariant under
permutation (of the hydrogen atoms in H2CO and H2O and of
the OHs in HOOH) Symmetrically equivalent points with
respect to exchange are also added to the training and validation
sets.

A. Water. It was easy to obtain a very good potential for
H2O. This experience leads us to believe that NNs provide an
excellent black-box method for obtaining very good surfaces
for semirigid three-atom molecules. NNs could be considered
a method of first resort for such problems. We used Radau
coordinates,108 but there is no reason to believe that the NN
surface obtained with any other set of coordinates would not
be as good. Radau coordinates were used simply because it is
easier to compute vibrational levels using Radau coordinates
(there is no kinetic cross-term). As the reference potential, we
selected the Jensen potential of ref 89. 1500 points were selected
with Ecut ) 20 000 cm-1 and∆ ) 1000 cm-1. Another 1500
points obtained by exchanging the two H atoms were added to
the fitting set. TheV0 used with eq 2 is a sum of two Morse
oscillators for the two stretches and a fourth order polynomial
for the bend. The Morse parameters and the bend polynomial
coefficients are obtained from simple least-squares fits. We use
20 points for each coordinate andEmax ) 20 000 cm-1; with
about 20 points, theV0 parameters are almost independent of
the actual number of points. The points along the 1-D slices
are also included in the set of points used to fit the NN
parameters. To test the NN algorithm and the cost of reducing
the RMSE, we obtained one surface with a RMSE of 5 cm-1

and another with a RMSE of 1 cm-1. It is important to have
some measure of the cost of reducing the predefined required
accuracy. If the predefined required accuracy is 5 cm-1, only
17 nodes (corresponding to 3× 17 input weights+ 17 hidden
layer biases+ 17 output weights+ 1 output bias) 86 fitting
parameters) are necessary. Decreasing the predefined required
accuracy to 1 cm-1 increases the number of nodes to 23 (116
fitting parameters). The largest errors for the points in the
Validation set are 32 and 8 cm-1, for the 5 and 1 cm-1 RMSE
fits, respectively. The majority of theValidation points are
reproduced to better than 2.5 and 0.5 cm-1 for the two fits. For
the training set, the agreement is, obviously, even better.

In Figure 2, we show, for the 1 cm-1 RMSE fit, the error in
the potential at theValidation points. The corresponding plot
for the 5 cm-1 RMSE fit has the same shape, but the errors are
larger. We note that the bottom of the potential is best
reproduced, and that the error grows consistently with energy;
it only becomes noticeably larger than the target RMSE close
to the highest energies. The NN fitting procedure works

extremely well in this case. It is possible to obtain fits for which
the validation set errors are about the same size as the fitting
set errors. Significantly decreasing the target RMSE causes only
a modest increase in the size of the network.

The ultimate test of a PES is to use it to compute observables
that depend sensitively on its quality. We have computed a
vibrational spectrum. Vibrational energy levels depend sensi-
tively on the PES. It is obvious that a fit with a small RMSE is
better than a fit with a large RMSE, but what really matters is
the shape of the potential. It is not clear how small the RMSE
must be in order to obtain energy levels of a given accuracy.
We used a direct product basis and a Lanczos eigensolver to
compute the spectrum. The stretch basis has 22 equilibrium slice
PODVR109,110functions. The bend basis is 50 Legendre-DVR
functions.13 In Table 1, we present absolute errors for both fits,
and in Figure 3, we plot the absolute energy level error as a
function of energy for the 1 cm-1 RMSE fit. All errors are

Figure 2. Absolute difference between the NN potential for H2O fitted
to 1 cm-1 RMSE and the Jensen potential89 as a function of energy for
the Validation points.

TABLE 1: Properties of Absolute Differences between
Levels Computed on NN Potentials and Levels Computed on
the Jensen Potentiala

error, cm-1

NN
5 cm-1

NN 1
cm-1 Jensen89

mean absolute 0.681 0.113 2.109
median 0.561 0.071 1.377
minimum 0.000 0.004 0.005
maximum 4.212 1.180 9.785
no. of nodes 17 23

aThe errors for the 1 cm-1 RMSE fit are shown in Figure 3 as a
function of energy. Deviations of the levels computed on Jensen’s
surface from their experimental counterparts are in the last column.

Figure 3. Absolute energy level error as a function of energy for the
best H2O NN potential. The origin is at ZPE) 4630.16 cm-1, calculated
on this surface. The largest energy training and validation point energies
are≈15370 cm-1 above the ZPE. The upper panel shows errors within
the energy range covered by the training points. The lower panel shows
level errors for energy levels larger than the energies of the training
points.
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differences between energies computed with the NN potential
and with the original Jensen potential. Before computing
differences, the appropriate ZPEs are subtracted. With one
exception, levels in the figure belowEcut which is≈15370 cm-1

(above the ZPE) have errors of less than 0.5 cm-1 and the
majority of the levels have errors smaller than 0.08 cm-1. Low-
lying levels are more accurate, because we have chosen our
point distribution to make the potential more accurate near the
bottom of the well. The zero-point energy calculated on the
NN potential is 4630.16 cm-1 vs 4630.35 cm-1 on Jensen’s
potential. The potential minimum is situated atr(OH) ) 0.93804
Å, ∠HOH ) 107.726° vs r(OH) ) 0.93808 Å, ∠HOH )
107.706° for the original potential. The errors in the NN levels
are substantially smaller than differences between levels com-
puted on the Jensen potential and experimental energies (given
in refs 89 and 111). See the right-most column of Table 1. In
the lower panel of Figure 3, we have plotted the spectrum up
to ≈27000 cm-1 (above the ZPE) to show that, in this case, the
energy-level error increases smoothly outside the range of data
used for training and validation. Not only does the NN fit do
very well for levels belowEcut but, in this case, it also does
pretty well even for higher levels.

B. Hydrogen Peroxide.For hydrogen peroxide, we fit the
potential of Kuhn et al.18 As coordinates, we use the O-O bond
lengthr(O1O2); two O-H bond lengthsr(O1H1), r(O2H2); the
angles∠H1O1O2 and∠H2O2O1 (θ1,2), and the angleτ between
the H1-O1-O2 and H2-O2-O1 planes. As was the case for
H2O, there is nothing special about these coordinates. 5000
points with 180° < τ < 360° were selected usingEcut ) 11 000
cm-1 and∆ ) 0. The point set was augmented by adding points
along equilibrium slices up toEmax ) 18 000 cm-1 and by
adding points by exchanging the two OH’s. Previous fits for
HOOH used a similar number of points.18,91We find that a better
fit is obtained by choosingEmax > Ecut because doing so
increases the energy of points that are in theEmax box but not
in the fitting region. IfEcut is notj15000 cm-1 the point density
is too low. TheV0 used with eq 2 is a sum of Morse potentials
for the stretch coordinates, cubic polynomials for the bending
angles, and a fourth-order polynomial for the dihedral angle.
The Morse parameters and the bend and dihedral coefficients
are again determined by least-squares fits. We use 20 points
for each coordinate.

We applied the same NN procedure that was used in the
previous subsection. 36 nodes were required to obtain a surface
with a RMSE of 20 cm-1. Using a product Lanczos method,
we then attempted to compute vibrational levels on the NN
surface. We use PODVR functions for the stretches and spherical
harmonic type functions for the bend coordinates. Several groups
have used this type of angular functions with the Lanczos
algorithm.112,113 On attempting to converge the spectrum (by
increasing the basis size and the quadrature grid size), we
discovered that the NN surface has regions in which the energy
is much less than the energy at the bottom of the HOOH well.
This happens despite the fact that the RMSE for the validation
set is good (less than twice the RMSE for the training set) and
despite the fact that the 1-D cuts through the potential that we
examined did not reveal holes. The holes appear at the outskirts
of the fitted region, where the density of points is extremely
low. In principle, one could find such holes by looking at
potential values for a huge grid of points. Rather than looking
at a huge multidimensional grid of potential values, one can
compute energy levels. Holes in the surface are revealed by
energy levels significantly lower than the expected ground state
energy or levels that fail to converge. Clearly, a multidimen-

sional NN fitted surface determined with a small fit tolerance
and a small validation set error cannot be assumed to be free of
unphysical regions, and merely looking at slice profiles is not
guaranteed to reveal problems. Computing energy levels is a
good way of determining whether there are holes, because the
quadrature (DVR) grid used spans the entire surface.

How can one avoid making surfaces with holes? Of course,
one can always ensure that holes on the outskirts do not affect
energy levels by increasingEcut and Emax and the number of
points, but for a molecule with four atoms, this is a costly
solution to the problem. A better method for preventing holes
involves doing a two-step fit. A two-step fit was also used in
ref 91. The final potential is the sum of a first-step function,
which we call a base potential, and a difference potential. The
difference potential is obtained by fitting the difference of the
full and the base potentials. For HOOH, we used two different
base potentials: one equal toV0 and another that is an
approximate NN fit for the full point set.

The separable base potential has qualitatively the right shape,
which makes it less likely that the two-step NN potential
obtained from it will have holes. The approximate NN base
potential is unlikely to have holes, because it is fit with a small
number of neurons and holes in regions with a low density of
fitting points are caused by overfitting. The number of nodes
used to construct the NN base potential is chosen so that it is
small enough that the associated base potential does not have
holes, but large enough that the difference potential is small in
most regions of configuration space. In practice, we choose the
number of neurons for the base potential so that the number of
NN parameters is at least an order of magnitude less than the
number of points and so that the target RMSE of the first-stage
NN is about an order of magnitude larger than the target RMSE
for the whole PES. To eliminate completely the possibility of
having deep holes or false peaks in the final potential, we replace
all potential values obtained from the network that are larger
than a ceiling value with the ceiling value and all potential values
obtained from the network that are less than a floor value with
the floor value. The floor and ceiling values are the lowest and
highest energies of the fitting points (after subtracting the base
potential values).

With the uncoupled base potential, the difference potential
could be fit to 20 cm-1 RMSE with 62 nodes and to 10 cm-1

RMSE with 100 nodes. The difference potential took values
between(≈7500 cm-1. This large range of values is due to
the very approximate nature of the base potential. Using a base
potential with a smaller range of values would facilitate NN
training at the second stage. It might be possible to choose more
nearly decoupled coordinates to improve the quality of the sum-
of-slices base potential, but we seek a more general solution.
An NN-fitted potential with a fairly large RMSE does a good
job. The final potential is therefore obtained from ahierarchical
NN fit. The “nested” NN procedure is very easy to use. The
base and difference NN potentials are determined using the same
algorithm, the same points, and the same computer program.
We have found that the quality of the final potential does not
depend sensitively on the target RMSE for the base potential.
The total number of fitting parameters is thesumof the number
of parameters for the base potential and the number of
parameters for the difference potential. Increasing the number
of base potential nodes has a fairly small effect on the total
cost of the fitting process. On the other hand, if no base potential
were used and the potential were fitted with a one-step NN
method, increasing the number of nodes would greatly increase
the cost (due to the cubic scaling of the LM algorithm) and the
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danger of holes. Note that there is no reason to use a separable
model as the base potential. Indeed, the best fits presented in
the HOOH and H2CO tables are obtained with NN base
potentials.

With the hierarchical NN procedure, it is possible to fit the
HOOH PES to 25/5 cm-1 and to 10/2 cm-1 RMSE with 30/
100 and 57/175 nodes, respectively (first/second NN stage). The
difference potential takes values in the range(≈60 cm-1. The
second and third columns of Table 2 characterize the potential
errors of the 10 and 2 cm-1 RMSE NN potentials. The
corresponding distribution of absolute errors at the validation
points is shown in Figure 4 for the 2 cm-1 RMSE fit. The
majority of theValidation points have errors below 1.2 cm-1

with the maximum at 37 cm-1. The potential energy errors are
smallest at the bottom of the potential and grow gradually with
energy. Compared with the RMSE of other fitting methods, a
2 cm-1 RMSE is good.18,36,51,91-93 Because different fits are
designed for different regions of the surface and use different
numbers of points, it is hard to compare the RMSEs. In any
case, the NN surface error at the validation points is less than
the error due to imperfections in most ab initio methods.114-116

Using this two-step NN potential, we now compute vibra-
tional energy levels. We use diatom-diatom Jacobi coordinates
and enough basis functions and quadrature points to converge
all the levels reported in Table 2 to within 0.01 cm-1. The basis
size is similar to previous studies.112,113Unlike the calculation
with the one-step NN surface, which had holes, the calculations
with the two-step surfaces converged well. There are no holes.
Results are shown in Figure 5. We subtract the appropriate ZPE
from the energy levels computed on both the 2 cm-1 RMSE
two-step NN potential and the original Kuhn et al. potential
and then compute differences. The magnitude of the differences

for the first 352 vibrational levels (both parities) below 5665
cm-1 above the ZPE is plotted. The same level errors are
characterized in the last column of Table 2. The majority of
the levels are reproduced to better than 0.7 cm-1 with a
maximum error of 11.8 cm-1. The tunneling splitting is 11.025
cm-1 which is very close to the original surface’s splitting of
11.031 cm-1 and to the experimental value of 11.44 cm-1.117

Given that we did not empirically adjust the surface nor choose
the point distribution to favor dynamically important geometries
(e.g., the top of the barrier) the agreement is very good. The
stationary points on the NN surface are very close to those found
on the original surface, as listed in Table 3.

The ZPE of our 2 cm-1 RMSE NN surface is 5695.79 cm-1,
whereas it is 5691.66 cm-1 113 for the reference potential. The
ZPE error (and the error in many of the energy levels if the
ZPE is not subtracted before errors are computed) is therefore
larger than the error in levels from which the ZPE has been
subtracted. Energy level differences are more accurate than
absolute energies. Subtracting the ZPE from the levels yields
differences that are less sensitive to the potential than the energy
levels themselves. An error of 0.7 cm-1 (subtracting the ZPE
before computing the error) or 4.1 cm-1 (the ZPE difference)
is small compared to the errors due to the inaccuracy of most
ab initio calculations. For example, with reasonable basis set
sizes, the error in CCSD(T) harmonic frequencies is generally
larger than a few cm-1.118-120 This is probably a good measure
of the extent to which the shape of a potential is distorted by
ab initio error. Of course, one wishes the fitting error to shift
energy levels as little as possible but, if ab initio error shifts
levels by several inverse centimeters, our fitting errors can be
considered small. To decrease further the energy level errors,
it would be necessary to do a better job fitting the surface in
the “corners” of the box, whose size is determined byEmax,
that contains all our fitting points. Outside the box, the potential
is equal to a large plateau value. Where the reference potential
is less thanEcut, the fit is very good. At points for which the
reference potential is larger thanEcut but inside the fitting box
and for which the potential is therefore neither fit nor set equal
to the plateau value, the NN function is sometimes poor. We
have confirmed that these nonfitted regions are responsible for

Figure 4. Absolute difference between the NN potential of HOOH
fitted to 2 cm-1 RMSE and the reference potential by Kuhn et al.18 as
a function of energy for theValidation set of points.

TABLE 2: Error in the NN Fit and NN Eigenvalues for
HOOH a

error, cm-1

NN fit NN eigenvalues

10 cm-1

RMSEb
2 cm-1

RMSEc
10 cm-1

RMSEb
2 cm-1

RMSEc

mean absolute 8.854 1.70 2.044 1.605
median 5.917 1.11 1.220 0.685
minimum 0.003 0.00 0.003 0.000
maximum 209.0 37.0 12.55 11.83

a Properties of the absolute differences of the HOOH NN potentials
and the reference potential at theValidation points are in the second
and third columns. The fourth and fifth columns contain values that
characterize the accuracy of the energy levels computed from the NN
potentials. The ZPE is subtracted from all levels and then differences
of the first 352 NN potential levels and the reference potential levels
are computed.b 100 nodes,V0 base potential.c Hierarchical NN with
57/175 nodes.

Figure 5. Absolute difference between vibrational levels (above the
ZPE) of HOOH calculated on NN-interpolated potential (2 cm-1 RMSE)
and levels computed on the reference potential18 for the first 352
vibrational levels of both parities.

TABLE 3: Stationary Point Geometries and Torsional
Barrier Heights for the NN-Fitted PES of HOOH and the
PCPSDE Surface of Kuhn et al.18 (in Brackets)

property minimum trans saddle cis saddle

r(OH), a0 1.818 [1.818] 1.817 [1.816] 1.818 [1.818]
r(OO),a0 2.745 [2.745] 2.761 [2.761] 2.753 [2.754]
θ1 (deg) 99.76 [99.8] 98.27 [98.3] 104.9 [104.9]
τ (deg) 114.4 [114.3] 180.0 [180.0] 0 [0]
E, cm-1 0.21 [0] 359.6 [361] 2649 [2645]
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a significant part of the error in the HOOH ZPE and absolute
(no subtraction of the ZPE) levels. The shifts introduced by the
NN fit are also smaller than differences between experimental
levels and those computed on high-quality PESs.112,117,121-126

The HOOH NN surface can be improved by decreasing the
RMSE from 10 to 2 cm-1 without drastically increasing the
number of neurons (parameters). However, we find that to obtain
an even better NN surface, we would need to increase the
number of points. If we do not increase the number of points,
we find that although we can improve the RMSE for the fitting
points, we cannot find a surface for which the RMSE for the
validation points is only a factor of 2 larger than the RMSE for
the fitting points. A surface, for which the RMSE for the fitting
points is very good but the RMSE for the validation points is
not good, is “overfit”.

C. Formaldehyde. To test the generality of the two-stage
NN fitting procedure we developed to obtain a HOOH potential,
we have also applied it to formaldehyde. We use as a reference
potential a potential of Carter and Handy.90 The HOOH and
H2CO potentials are both 6-D, but they are very different and
fit to very different functional forms. In this subsection, we
demonstrate that the nested NN approach that works well for
HOOH also works well for H2CO. This implies that the NN
fitting procedure we used for HOOH is probably useful for a
large class of molecules.

We select points according to eq 2 withEcut ) 17 000 cm-1

and∆ ) 500 cm-1 and makeV0 from 1-D Morse functions for
all stretch coordinates,r(CO), r(CH1,2); second-order poly-
nomials in the bend angles,∠H1,2CO; and a fourth-order
polynomial in the dihedral angleτ between the HCO planes.
As for H2O and HOOH, theV0 parameters are determined by
doing simple 1-D least-squares fits; for H2CO, Emax ) Ecut )
17 000 cm-1. At the equilibrium geometry,τ ) 180°. Because
V(180° + δ) ) V(180° - δ), it is in principle possible to fit
only half the potential. Instead, we choose a set of 2500 fitting
points with τ < 180° and then add the corresponding points
with τ > 180°. For H2CO, this improves the quality of the fit
at the bottom of the well, but for HOOH, it is unnecessary owing
to its out-of-plane equilibrium geometry. We also add points
obtained by exchanging the two H atoms. Note that if we were
fitting ab initio points, adding points obtained by exchanging
the two hydrogen atoms and points withτ > 180° to the set of
fitting points would not require extra ab initio calculations. The
points along the 1-D slices up toEmax are also included in the
set of points used to fit the NN parameters. Fits with a RMSE
of 5 cm-1 and a RMSE of 2 cm-1 are obtained with 51/94 and
50/119 nodes (first/second stage).

In Figure 6, we show the potential error for the points in the
Validation set as a function of energy for the 2 cm-1 RMSE fit.
The second and third columns of Table 4 characterize the error
for the two fits. For the 2 cm-1 RMSE fit, most points are
reproduced to better than 0.8 cm-1. There are no low-energy
points with significantly larger errors. Some points with large
energies have much larger errors; the largest error is 32.9 cm-1.
Note that these errors give a realistic impression of the quality
of the fit, because they are errors for points in the validation
set and not in the fitting set. The minimum on the NN-fitted
surfacer(CH) ) 1.10069 Å,r(CO) ) 1.20298 Å,∠HCO )
121.645°, andτ ) 180° compares well with the reference surface
minimum atr(CH) ) 1.10064 Å,r(CO) ) 1.20296 Å,∠HCO
) 121.648°, andτ ) 180°.90

As we did for the previous two molecules, we have computed
vibrational energy levels to test for holes and to assess the effect
of the RMSE of the surface on observables. The eigenvalues

were calculated with a product basis Lanczos method using
Radau vectors for the CH2 group and a Jacobi vector for the O
atom.127 In Figure 7, we give the magnitude of the difference
between the levels (from which we have subtracted the ZPE)
computed on the NN and the reference potentials as a function
of energy up to≈ 8000 cm-1 above the ZPE for the first 260
vibrational levels of both parities. These errors are characterized
in the last column of Table 4. The majority of the levels are
reproduced to better than 0.5 cm-1 with a maximum error of
8.3 cm-1. Our ZPE is 5775.46 vs 5775.28 cm-1 for the reference
potential.90 Both the RMSE (2 cm-1) and the level errors are
small compared with typical fitting and ab initio errors.120,128-130

Of course, there is still room for improvement, but the fitting

Figure 6. Absolute difference between the NN potential of H2CO fitted
to 2 cm-1 RMSE and the reference potential90 as a function of energy
for the Validation set of points.

TABLE 4: Error in NN Fit and NN Eigenvalues for H 2COa

error, cm-1

NN fit NN eigenvalues

5 cm-1

RMSE
2 cm-1

RMSE
5 cm-1

RMSE
2 cm-1

RMSE

mean absolute 3.01 1.05 0.915 0.728
median 2.12 0.72 0.715 0.440
minimum 0.00 0.00 0.000 0.000
maximum 80.1 32.9 7.947 8.338

a Properties of the absolute differences of the H2CO NN potentials
and the reference potential at theValidation points are in the second
and third columns. The fourth and fifth columns contain values that
characterize the accuracy of the energy levels computed from the NN
potentials. The ZPE is subtracted from all levels and then differences
of the NN potential levels and the reference potential levels are
computed

Figure 7. Absolute difference between vibrational levels (above the
ZPE) of H2CO calculated on NN-interpolated potential (2 cm-1 RMSE)
and levels computed on the reference potential90 for the first 260
vibrational levels of both parities.
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error we have achieved is good. To get an even better fit, it
would probably be necessary to increase the number of points.
Without increasing the number of points, the level errors are
improved only modestly by reducing the RMSE from 5 to 2
cm-1 (Table 4).

IV. Conclusion

As computer power increases and new theoretical methods
are developed, it becomes increasingly easy to do both ab initio
electronic structure calculations at preselected geometries131-133

and quantum dynamics calculations on potential energy surfaces
in 3 to 9 dimensions.113,134-139 However, it is not possible to
do quantum dynamics without a potential: it is not enough to
know the potential at a large set of points. Methods for obtaining
surfaces from points are therefore of paramount importance. If
we can find general tools for making surfaces, it will be possible
to do much interesting chemistry. Quantum dynamics techniques
are at the point where they can be used to produce results of
real interest to many chemists, but, of course, this is possible
only if PES’s are available. In this paper, we argue that NN’s,
if used cleverly, can be used to fit potentials for many small
molecules. NN’s are black-box, universal fitting methods that
seem very promising. There are good pre-programmed NN tools
readily available, and it is not hard to use them.75 To use the
NN procedure, there is no need for physical insight or
experimental data (dipole moments, polarizabilities etc.). All
of the parameters are determined solely by the NN algorithm.
The structure of the algorithm does not depend on how
coordinates are chosen. Of course, this universality is an
advantage and a disadvantage. A disadvantage of NNs is that
there is no simple way to build the correct asymptotic behavior
or symmetry into the potential.

For H2O, the NN fit was easy to obtain and accurate. For
HOOH and H2CO, we have developed a nested NN approach.
The key elements of the nested NN fitting procedure are: (1)
points are chosen so that the density of points is larger in low-
lying regions of the potential; (2) an NN base potential is fitted;
(3) the difference between the base potential and the true
potential is fit using another NN; (4) a validation set is used to
prevent overfitting; (5) we include symmetrically equivalent
points in the fitting set and symmetrize the network output. We
have shown that good fits can be obtained in this fashion. If
the nesting idea is used, the size of the networks required to
achieve a predefined accuracy increases only slowly as the
dimensionality of the problem increases or the predefined RMSE
decreases. Of course, the idea is readily generalized to more
than two levels of NN fit.

Some authors have found that when using NNs, it is hard to
avoid local minima.140 We found that this was not a serious
problem. If, during the course of the fit, the validation error
begins to increase, we abort the fit and start again with a new
set of random initial weights. The local minimum problem was
slightly worse (i.e., it was necessary to restart more often) with
fewer coordinates and small networks (<20-30 nodes). For
the potential surfaces discussed in section III, it was virtually
inexistent- if the number of nodes was large enough to reach
the desired precision, the fit converged within two or three
attempts. Of course, we have no way of knowing whether a
slightly better fit might be obtained by restarting with another
set of random initial weights, but any fit that satisfies the error
target is good enough.

To obtain good fits, we need to use as many as 100 or more
nodes. For a four-atom molecule, 100 nodes correspond to≈800
fitting parameters (weights and biases). This may seem exces-

sive, but it is the price we pay for generality. Note in comparison
that for a 3-D spline PES, it is necessary to use orders of
magnitude more parameters.24,141,142 Other black-box fitting
methods such as IMLS, MSI, DAF, or RKHS also require a
large number of parameters. Using a functional form designed
for a particular molecule, it is possible to obtain a good fit with
fewer parameters, but having many parameters is not a
significant disadvantage. Of course, the larger the number of
parameters the more costly are the matrix manipulations that
must be done to determine the best parameter values. For our
calculations, we used the LM algorithm, but other options
exist.39,44,60,88 143Even using the LM algorithm, it took only hours
using a MatLab program on a Windows PC at 3 GHz to
converge the fits.

We were able to decrease the fit RMSE to reasonable limits
without drastically increasing the network sizes. For HOOH and
H2CO, with about 104 fitting points in the energy ranges within
which we fit, it was not possible to reduce the RMSE below 2
cm-1 without increasing the error for the validation points.
Getting even better surfaces would necessitate more points. In
molecules with four atoms or more, this would require sequential
training of the NN lest the training process become too slow.
Such algorithms exist.44,88,143

Perhaps the greatest strength of an NN-based approach is its
adaptability. It is common to fit a potential by choosing a
functional form and varying parameters to achieve a good fit.
NN methods are more flexible because the actual functional
form is varied during the fitting process (as neurons are added
to the network). It is this feature that makes them good universal
fitting tools. In the language of the NN community, this is the
ability of the NN to “learn”. We have exploited this advantage
of NN methods to develop a nested NN potential fitting
approach. A key component of the approach is the use of a set
of validation points to ensure that the NN function we obtain
not only accurately reproduces the potential at the fitting points
but also gives the correct shape. It is encouraging that by using
NNs in a hierarchical fashion the total number of parameters
required to fit a 6-D surface is quite small. Using the NN
procedures we describe, or methods derived from them, it should
be possible to develop black-box, general potential fitting tools.
These would make it possible to bridge the gap between single
point quantum chemistry and quantum dynamics calculations
and to compute spectra and maybe cross sections, rate constants
etc. in a routine fashion.
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