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It is shown that neural networks (NNs) are efficient and effective tools for fitting potential energy surfaces.
For HO, a simple NN approach works very well. To fit surfaces for HOOH ap@®| we develop a nested
neural network technique in which we first fit an approximate NN potential and then use another NN to fit
the difference of the true potential and the approximate potential. The root-mean-square error (RMSE) of the
H,O surface is 1 cmt. For the 6-D HOOH and KCO surfaces, the nested approach does almost as well
attaining a RMSE of 2 cmt. The quality of the NN surfaces is verified by calculating vibrational spectra.
For all three molecules, most of the low-lying levels are within I €wf the exact results. On the basis of
these results, we propose that the nested NN approach be considered a method of choice for both simple
potentials, for which it is relatively easy to guess a good fitting function, and complicated (e.g., double well)
potentials for which it is much harder to deduce an appropriate fitting function. The number of fitting parameters
is only moderately larger for the 6-D than for the 3-D potentials, and for all three molecules, decreasing the
desired RMSE increases only slightly the number of required fitting parameters (nodes). NN methods, and in
particular the nested approach we propose, should be good universal potential fitting tools.

I. Introduction required to obtain converged results. It is usually not possible
to compute the electronic energy at all of the quadrature points

To understand ro-vibrational spectra, intramolecular relaxation optimal points are not known before the surface is obtained),

rocesses, chemical reactions, etc., theorists use potential ener o . : >

Eurfaces (PESE)® Spectra, cross sections, and r%te constantsg nd it is therefore |mportan_t to find a function that reproduces
: ) T ’ . calculated electronic energies well.

are computed by solving classical or quantum equations for the . . .
motion of the nuclei on a PES. The PES is a consequence of PESS are sometimes obtained by choosing the parameters of
the Born-Oppenheimer approximation. To calculate a PES, one  fitting function so that the fulr710t|o_n very nearly reproduces a
must solve the electronic Schroedinger equation for a large setS€t Of @b initio data point$~17 This works well for many
of geometries of the molecule or reacting system. A great deal molecules, but it has several important disadvantages. First, to

of effort has been devoted to the development of good (accurated®Velop @ good function, one needs much experience and

and efficient) quantum chemistry and dynamics methods, but intuition. The functional form reflects the nature of the most
to compute a spectrum, a rate constant etc., it is not enough toimportant interaction&?2! In practice, most potentials generated

be able to compute electronic energies at selected points: ond" this way are the work of a few groups that have invested
needs a PES. years of experience. Using a physically motivated function has

The generation of PESs from ab initio data is the middle the potential advantage of reducing the number of required

ground between quantum chemistry and dynamics. When Parameters, but it also means that each potential is a new project.

classical mechanics is adequate for the purpose of studying thel e functions one would use for a semirigid molecule such as

motion of the nuclei, it is possible to use “direct dynamics™; 20 Or @ double-well molecule like 4D, would be rather

the potential is computed at points on a classical trajectory andd'ﬁe_rem' Second, systemaﬂcally improving the. potential by
no potential function is necessaty:2 This is wasteful, because ~ 2dding more parameters is not always easy. Third, correlation
information is thrown away as it is acquired. It seems obvious Petween the parameters can plague the fitting process.

that it would be good to retain and exploit potential surface  Black-box potential fitting routines that make no attempt to
information as it is obtained. If one uses direct dynamics, the €xploit knowledge of the important interactions and coupling
quality of the results is determined by the quantum chemistry terms greatly simplify obtaining potentials. Fitting procedures
method used, and it is not possible to use high level methodsthat are not physically motivated have the virtue of simplicity.
due to the number of required calculations. To use quantum The most popular procedures of this type are spiné&
mechanics to compute a spectrum, a cross section etc., one mudhterpolating moving least squares (IMLS)’ reproducing
know the potential at geometries that correspond to the kernel Hilbert space (RKHSf;?° modified Sheppard interpola-

quadrature (or discrete variable representation (D¥Rjpoints ~ tion (MSI) ! distributed approximating functionals (DAF);*”
and neural network (NN) algorithn#:45 These approaches are
T Part of the special issue “John C. Light Festschrift". systematically improvable, work well even if coupling is large,
* Corresponding author. E-mail: Tucker.Carrington@umontreal.ca. and they are easy to use; e.g., most parameter values are com-
Fax:_514-343-7586. pletely determined by the numerical algorithm and do not need
*E-mail: Sergei.Manzhos@umontreal.ca. . . - .
$ E-mail: Xiaogang.Wang@umontreal.ca. to be estimated on the basis of experimental results or intuition.
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be chosen by the user. The popular Taylor-expansion based MSisurface of Si.;3 a RMSE of 25 cm? for a 4-D model of a
method requires potential derivatives and is used almost (HF), potential below 5000 cnt.43 Our 6-D NN-based poten-
exclusively with second-order expansions, as higher derivativestials reported below have a RMSE of 2 chand extend up to
are difficult to obtain from ab initio calculations. The RKHS more than 11000 cnt above the zero point energy (ZPE). Our
method is easiest to use with tensor product gfigfis*which RMSEs are also smaller than those typically obtained with
make it difficult to fit surfaces for systems with more than three methods such as IMLS, MSI, RKHS.
atoms3436.4750 \With a trajectory-based point selection scheme,  We test all our fits by computing vibrational spectra. This is
the MSI approach can fit dynamically relevant parts of PESs a good way of detecting “holes*isolated regions of the PES
of four-atom moleculé5+54 and some five- and six-atom  usually far from the equilibrium geometry or saddle points,
system$>-57 For the cited four-atom systems, the potential where the surface is very sparsely sampled and where the fitted
fitting errors of these methods are of the order of400? cm™. potential has large errors. It is somewhat dangerous to look only
Similar errors are obtained with physically motivated fitting at 2-D potential cut®-4143or 1-D equilibrium slice$® In more
functions!®1958Recently, permutation invariant polynomials and than 3-D, we find that the standard NN method often produces
interatomic distances have been used to fit several potentials.a surface with holes. It is possible that some published NN
See, for example, ref 59. This approach appears very promising.potentials had holes or other unphysical regions that were not
In this paper, we present improved NN methods for fitting detected. C_:omputing_spectra also providgs an unambiguous test
potentials. The ease of use of NN fitting methods is independent ©f the quality of our fitted surfaces. NN fits have been used to
of the point distribution: there is no reason to use a tensor COMPUte a spectrum in only one other paper (for a three-atom
product grid. The NN procedure employs an analytic expression Molecule)! Itis important to know how good the RMSE must
that depends on paramet&?§? Parameter values are chosen D€ in Order to give an accurate spectrum. Because we do fits
so that (1) potential values at a set of fitting points are nearly for three different molecules with dllfferent Ieve_ls of precision,
reproduced and (2) the NN PES gives reasonable values at othe/® can study how the complexity of the fit (number of
points (not those used to fit). Due to the fact that parameters Parameters) that yields a potential depends on the number of
are chosen, it is legitimate to describe the NN procedure as ac00rdinates and on the required precision.
fitting algorithm. However, if one uses NNs, it is particularly
easy to vary the number of parameters as the fit is improved.
NNs have all of the advantages of the black-box methods A NN consists of nonlinear processing “nodes” organized
mentioned in the previous paragraph. To use them, one neednto “layers” 8961.64NNs can be used as fitting functions. The
not have a priori knowledge of the potential shape, and it is not commonly use®~“° single-hidden-layer NN fitting function can
necessary to have potential derivatives. In addition, the NN fitted be written
potential is inexpensive to evaluate, which could be important,
e.g., if it is used with classical trajectories. NNs are universal Wb —1
fitting functions®263 In the NN literature?®6465the process of V() = ZCp(l +erm) 1)
finding the best parameter values is called learning. One begins =
with a set of coordinate values and their associated energies
and chooses weights and biases (fitting parameters) to get ar
good fit. NN have been used for curve fittiignd, in particular
for PES fitting284° but also for modeling kinetic equatidiis
and interpolation of solutions of the Schroedinger equdfiof?.
The usefulness of NNs is, of course, not limited to fittfidg’*

Il. Neural Networks

n

The components of are the coordinates of our fitting points.
hew, are weights and theylare called biases. A diagram of
the NN that corresponds to eq 1 is shown in Figure 1. The
neurons are functions of linear combinations of the coordinate
(input) values. The neurons we use are sigmoid functions. The
: ; ) final output of the NN is a linear combination of the sigmoids.
In section 1, we briefly explain the standard NN approach and s js a NN with one layer of neurons. The layer of neurons
discuss some of its advantages. is usually called a hidden lay&465NNs can have an arbitrary
We use NN to fit potentials for 40 (3-D), HOOH (6-D), number of hidden layer®-6577-7° The weights and biases are
and HCO (6-D). The method (see section Ill) we use for chosen so that the outputs are very close to the correct potential
choosing data points has not yet been applied to potential fitting. values. The NN we use is denoted a feed-forward network with
For HO, a straightforward application of NN fitting software  a ridge activation function in the NN literatuf&@Other groups
(we use Matlab) works very welf. To make good NN fitting  using a NN to fit potentials have also used this kind of RN
functions for HOOH and KCO, we develop a hierarchical NN We choose to use NNs for two reasons. First, there are
fitting procedure. This is explained in subsection Illb. Most theorems proving that with the right choice of tiveb, andc
previous applications of NN fitting methods are for systems parameters, it is possible to fit any function to arbitrary accuracy
with fewer than 4 atoms and achieve only moderate accuracy.with a sigmoid NN with one hidden lay&#53We are therefore
We demonstrate that it is possible to obtain accurate fits. The certain that as we increase the number of fitting points and
root-mean-square error (RMSE) of oup@®ifit is 1 cniL. For neurons (and therefore weight and bias parameters), the quality
HOOH and HCO, we achiee a 2 cm! RMSE. Some of our fit should improve. To demonstrate that a NN can be
discussions of NNs give the impression that they work well used to fit any function, one uses results from the field of
only if low accuracy is sufficient*6576Most previous NN fits functional representation theof{78and in particular, theorems
have RMSEs larger than 10 ct For example: a RMSE of  of Kolmogorow? and Sprechet#2According to these theorems,

15-26 cnt! for H3™ potentials’' a RMSE of 878 cm! for an it is always possible to represent a multidimensional continuous
intermolecular potential of $0—AI3"—H,0;* a RMSE of about function of x in terms of a nonlinear function of a linear

8 cm ! (actually a mean absolute deviation of 7.7 ¢jrfor a combination of continuous 1-D functions of new variables

3-D slice of a CO/Ni(111) potentidt a RMSE of 770 cm?* obtained from thex. Using these results and the idea that any

for a 12-D potential for Hon Si(100)# a RMSE of 7.7 cmt continuous 1-D function can be expanded in terms of sigmoid

for regions of a potential surface of vinyl bromide required to functions8® one can prove that a NN can be used to fit any
describe dissociatiof?, a RMSE of 30 cm? for a potential function. Second, mathematicid®8* 8¢ argue that the number
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of NN parameters required to obtain a good fit scales well as Input  Layer of Neurons
dimensionality is increased. There are theoretical estimates of
upper bounds on the number of nodes required to fit particular
classes of functions to a predefined accurédey:8” Although

the upper bounds are large, it seems clear that the number of
required NN parameters does not scale as badly as the number
of parameters of a direct product fit. In practice, modestly sized
NNs have been used to fit diverse potent?&t&:88An important
advantage of NNs is the fact that although they make use of
1-D functions to fit, they do not fit with sums of products of
functions. They therefore scale less badly with dimension than
many fitting methods.

output

r—

Ill. Using NNs To Fit Spectroscopically Relevant Parts of Figure 1. Classic single-hidden-layer back-propagation neural network
Potentials used to fit the potential surfaces. The connection weights matiix
) ) ) ) _ used to form linear combinations of the input variabtega w x + b.
In this section, we discuss the ideas we have used to obtainThese are indicated Byin the figure and are arguments of the sigmoid

NN potentials for HO, HOOH, and HCO. The three potentials  nodes or neurons. A linear combination of the nodes outputs is the
are very different (HO is quite rigid, HOOH is nonplanar and  final network output.

has a PES with two accessible minima separated by a tunneling
barrier, and HCO is planar and has a single-well PES), but the
NN procedures work well in all cases. Of course, the 6-D
problems are harder. Although the real goal of NN potential
fitting methods must be obtaining a potential from a set of ab
initio points, in this paper, we develop and test NN methods by
fitting a reference potential. We use the®potential of ref
89, the HOOH potential of ref 18, and the®O potential of

ref 90. We do this so as to be able to assess directly the error
introduced by the fitting procedure. Had we used ab initio
energies, both the fitting error and the error of the ab initio
method used would have influenced our results. This is a
common strateg¥827.3537.949% Because we start from a refer-
ence potential, it is possible to measure the effect of the fitting
error on energy levels.

The first thing to do is to select a scheme for choosing points.
We use the same scheme for all three molecules. We want
scheme that will put points in regions of the potential that are
important for the purpose of computing low-lying vibrational
energy levels. The lowest levels depend only on the shape of
the bottom of the potential, and higher levels are, in general,
also influenced by the shape of the bottom of the potential. We
choose points from a distribution function proportional to
Ecut — VO(X) + A. The minimum value of all our potentials is

zero. The same idea has been used previously for choosing\Ne train the network using the Levenberifarquardt (LM)

centers of Gaussian basis functiéifiin practice, we randomly algorithm. After experimentation with different training methods
sample configuration space in the smallest multidimensional box . 9 ) P 9

that encloses points with energies less than and retain a including “resilient back-propagation”, steepest descent, con-

o ) : . jugate gradient, and quasi- Newton algorithms (all implemented
pointx; if V(x) < Beu, whereBeu is a cutoff energy, and if MatlLalys) and genetic algorithmi&-19 (both hand-written

and from MatLaB%?), we concluded that LM both converged
; @) most quickly and produced the best fit. The number of nodes
et A ! is adjusted to achieve a fit with a predefined precision. If the
number of nodes is too small, it is not possible to obtain a good
whereb; € [0, 1] is a random number. The probability of accep- fit. If the number of nodes is too large, there is a danger of
ting a point decreases as the energy increases and takes a notieverfitting”, i.e., of obtaining a function that does an excellent
zero value proportional td << Eqy at Eqy. VO(X) is a zeroth- job for the points to which it is fit but, nevertheless, does not
order separable potential. Pdi(x), we use a sum of equilibrium  represent well the shape of the true potential (has spurious
slices. For each coordinate, we generate a set of points by fixingoscillations, for example). To prevent overfitting, we use early
the other coordinates at their equilibrium values and taking 20 stopping. To this end, a second (independent) “validation” set
equally spaced values (one of which is the equilibrium value) of points was built using the same point selection scheme
for the coordinate in question. For each of the slice potentials, described above. The number of validation points was half the
V1pb < Emax Emaxis larger than the largest energy level we wish number of training points. The training algorithm returns the
to compute and is the energy above which we do not wish to error on both sets of points. We accept a fit if the RMSE is less
fit. In general Eqnax andEg; are close annyax = Ecqy We use than the predefined limit for the training set and less than twice
Excel to do the 1-D fits. Of course, if a NN were being used to the same predefined limit for the validation set. All fits are
fit ab initio data, it would be necessary to compute 1-D ab initio initiated with random initial weights and biases. If the validation

potentials, but for any molecule, this is easy and inexpensive.
Instead of a separab\, it would also be possible to use any
crude fit (perhaps an NN fit) for a predefined (sparse) grid of
points. We find that the results we obtain do not depend sensi-
tively on our choice of#/(x). With this point distribution scheme,
the number of points per unit volume of configuration space is
higher at low energies. There are many other ways to choose
points. A widely used alternative is to choose points along
classical trajectorie®:38.96.98101 \We have also experimented
with this idea but find the method of eq 2 simpler and good for
our (spectroscopic) purposes. The points used to build the slice
potentials are added to the points chosen according to eq 2 to
make the fitting set. Outside the smallest multidimensional box
which encloses all points with energy less tl&py > Ecu, we
set the potential equal to a plateau value much larger than the
energy of the fitting point with the largest energy. Inside this
abox, the potential is set equal to the value returned by the NN.
In all cases, we use a NN with one hidden-layer as shown in
Figure 1. The coordinate and energy ranges are scaled to [-1,
1].192 The code is written in MatLab using MatLab’s Neural
Network Toolbox’® In principle, it is possible to use it to fit a
potential of any dimensionality. The number of nodes, and hence
the number of fitting parameters, is adjustable. In NN parlance,
determining the fitting parameters is called training the network.

Eou = V) + A o
E
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TABLE 1: Properties of Absolute Differences between
Levels Computed on NN Potentials and Levels Computed on
the Jensen Potenticd
error, cnT?!
NN NN 1
5cm? cmt JensefP
mean absolute 0.681 0.113 2.109
median 0.561 0.071 1.377
minimum 0.000 0.004 0.005
- @ @ 0 > ~ © 0 maximum 4.212 1.180 9.785
-~ w© o™ ot ot <t [
T 8 8 57z & 3 8 no. of nodes 17 23
viem') aThe errors for the 1 cmt RMSE fit are shown in Figure 3 as a
Figure 2. Absolute difference between the NN potential faCHitted function of energy. Deviations of the levels computed on Jensen’s

to 1 cnT! RMSE and the Jensen potenffads a function of energy for ~ Surface from their experimental counterparts are in the last column.
the validation points.
extremely well in this case. It is possible to obtain fits for which

set error begins to increase, we abort the fit and start again withthe validation set errors are about the same size as the fitting
a new set of random initial weights and biases. The fitted Seterrors. Significantly decreasing the target RMSE causes only
potential we obtain is symmetrized so that it is invariant under & modest increase in the size of the network.
permutation (of the hydrogen atoms in®0D and HO and of The ultimate test of a PES is to use it to compute observables
the OHs in HOOH) Symmetrically equivalent points with that depend sensitively on its quality. We have computed a
respect to exchange are also added to the training and validatiorvibrational spectrum. Vibrational energy levels depend sensi-
sets. tively on the PES. It is obvious that a fit with a small RMSE is

A. Water. It was easy to obtain a very good potential for better than a fit with a large RMSE, but what really matters is
H,0. This experience leads us to believe that NNs provide an the shape of the potential. It is not clear how small the RMSE
excellent black-box method for obtaining very good surfaces must be in order to obtain energy levels of a given accuracy.
for semirigid three-atom molecules. NNs could be considered We used a direct product basis and a Lanczos eigensolver to
a method of first resort for such problems. We used Radau compute the spectrum. The stretch basis has 22 equilibrium slice
coordinates® but there is no reason to believe that the NN PODVR!%®!0functions. The bend basis is 50 Legendre-DVR
surface obtained with any other set of coordinates would not functions!®In Table 1, we present absolute errors for both fits,
be as good. Radau coordinates were used simply because it i@nd in Figure 3, we plot the absolute energy level error as a
easier to compute vibrational levels using Radau coordinatesfunction of energy for the 1 cmt RMSE fit. All errors are
(there is no kinetic cross-term). As the reference potential, we
selected the Jensen potential of ref 89. 1500 points were selected 1.2
with Egyt = 20 000 cnit and A = 1000 cnt?!. Another 1500 11
points obtained by exchanging the two H atoms were added to
the fitting set. TheV® used with eq 2 is a sum of two Morse
oscillators for the two stretches and a fourth order polynomial
for the bend. The Morse parameters and the bend polynomial
coefficients are obtained from simple least-squares fits. We use
20 points for each coordinate affithax = 20 000 cnT?; with
about 20 points, th&° parameters are almost independent of |||,||,,| Al |,||| Lt lliLaht ,|| ||||,I|||||,,|||| |,||| Ll
the actual number of points. The points along the 1-D slices
are also included in the set of points used to fit the NN
parameters. To test the NN algorithm and the cost of reducing
the RMSE, we obtained one surface with a RMSE of 5tm energy aboveZPE (em')
and another with a RMSE of 1 crh It is important to have 40
some measure of the cost of reducing the predefined required
accuracy. If the predefined required accuracy is 5%monly
17 nodes (corresponding tox317 input weightst 17 hidden
layer biasest 17 output weightst 1 output bias= 86 fitting
parameters) are necessary. Decreasing the predefined required
accuracy to 1 cmt increases the number of nodes to 23 (116

abs level error{cm ")

o o o o
o N B o ®
P

0
6873
9002

11034
12408
13793
14630

abs level error {em ")
n
S
!

fitting parameters). The largest errors for the points in the 10

validation set are 32 and 8 cm, for the 5 and 1 cm! RMSE

fits, respectively. The majority of thealidation points are O e o 6 N ® - o~ o

reproduced to better than 2.5 and 0.5 érfor the two fits. For 2 ® 8 8 & & & 2 B
- - - [y} o~ ~N N N o~

the training set, the agreement is, obviously, even better. )
In Figure 2, we show, for the 1 crh RMSE fit, the error in _ eneray spovezpElemy
the potential at thesalidation points. The corresponding plot ~ Figure 3. Absolute energy level error as a function of energy for the

for the § cn RMSE ft has the same shape, but the errors are [0e I3 L RCEE, e ot B ot 480t e
larger. We note that the bottom of the_ pme”“‘"!' 1S best. arex~15370 cm* above the ZPE. The upper panel shows errors within
reproduced, and that the error grows consistently with energy; ie energy range covered by the training points. The lower panel shows
it only becomes noticeably larger than the target RMSE close |evel errors for energy levels larger than the energies of the training
to the highest energies. The NN fitting procedure works points.
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differences between energies computed with the NN potential sional NN fitted surface determined with a small fit tolerance
and with the original Jensen potential. Before computing and a small validation set error cannot be assumed to be free of
differences, the appropriate ZPEs are subtracted. With oneunphysical regions, and merely looking at slice profiles is not

exception, levels in the figure belok, which is~15370 cn1! guaranteed to reveal problems. Computing energy levels is a
(above the ZPE) have errors of less than 0.5 kmnd the good way of determining whether there are holes, because the
majority of the levels have errors smaller than 0.08 &rhow- guadrature (DVR) grid used spans the entire surface.

lying levels are more accurate, because we have chosen our How can one avoid making surfaces with holes? Of course,
point distribution to make the potential more accurate near the one can always ensure that holes on the outskirts do not affect
bottom of the well. The zero-point energy calculated on the energy levels by increasinBc,: and Emax and the number of
NN potential is 4630.16 cmt vs 4630.35 cm' on Jensen's  points, but for a molecule with four atoms, this is a costly
potential. The potential minimum is situated @@H) = 0.93804  solution to the problem. A better method for preventing holes
A, OHOH = 107.728 vs r(OH) = 0.93808 A, JHOH = involves doing a two-step fit. A two-step fit was also used in
107.708 for the original potential. The errors in the NN levels  ref 91. The final potential is the sum of a first-step function,
are substantially smaller than differences between levels com-which we call a base potential, and a difference potential. The
puted on the Jensen potential and experimental energies (givertifference potential is obtained by fitting the difference of the
in refs 89 and 111). See the right-most column of Table 1. In full and the base potentials. For HOOH, we used two different
the lower panel of Figure 3, we have plotted the spectrum up base potentials: one equal %° and another that is an
to ~27000 cn1! (above the ZPE) to show that, in this case, the approximate NN fit for the full point set.
energy-level error increases smoothly outside the range of data ¢ separable base potential has qualitatively the right shape,
used for training and validation. Not only does the NN fit do \yhich makes it less likely that the two-step NN potential
very well for levels belowEc, but, in this case, it also does  gptained from it will have holes. The approximate NN base
pretty well even for higher levels. potential is unlikely to have holes, because it is fit with a smalll

B. Hydrogen Peroxide.For hydrogen peroxide, we fit the  number of neurons and holes in regions with a low density of
potential of Kuhn et at® As coordinates, we use the-@ bond fitting points are caused by overfitting. The number of nodes
lengthr(010,); two O—H bond lengths (O;H3), r(Oz2Hy); the used to construct the NN base potential is chosen so that it is
anglesdH10,0, andOH0,04 (01,9, and the angle between small enough that the associated base potential does not have
the H—0;—0, and H—0,—0; planes. As was the case for holes, but large enough that the difference potential is small in
H20, there is nothing special about these coordinates. 5000most regions of configuration space. In practice, we choose the
points with 180 < 7 < 360° were selected usingq,= 11 000 number of neurons for the base potential so that the number of
cm tandA = 0. The point set was augmented by adding points NN parameters is at least an order of magnitude less than the
along equilibrium slices up té&max = 18 000 cn* and by number of points and so that the target RMSE of the first-stage
adding points by exchanging the two OH's. Previous fits for NN is about an order of magnitude larger than the target RMSE
HOOH used a similar number of poirt®'We find that a better  for the whole PES. To eliminate completely the possibility of
fit is obtained by choosing=max > Ecut because doing so  having deep holes or false peaks in the final potential, we replace
increases the energy of points that are in Eigy box but not all potential values obtained from the network that are larger
in the fitting region. IfEcis not<15000 cnt? the pointdensity  than a ceiling value with the ceiling value and all potential values
is too low. TheV? used with eq 2 is a sum of Morse potentials obtained from the network that are less than a floor value with
for the stretch coordinates, cubic polynomials for the bending the floor value. The floor and ceiling values are the lowest and
angles, and a fourth-order polynomial for the dihedral angle. highest energies of the fitting points (after subtracting the base
The Morse parameters and the bend and dihedral coefficientspotential values).
are again determined by least-squares fits. We use 20 points \yith the uncoupled base potential, the difference potential
for each coordinate. could be fit to 20 cm® RMSE with 62 nodes and to 10 cth

We applied the same NN procedure that was used in the RMSE with 100 nodes. The difference potential took values
previous subsection. 36 nodes were required to obtain a surfaceoetween+~7500 cntl. This large range of values is due to
with a RMSE of 20 cm?. Using a product Lanczos method, the very approximate nature of the base potential. Using a base
we then attempted to compute vibrational levels on the NN potential with a smaller range of values would facilitate NN
surface. We use PODVR functions for the stretches and sphericaltraining at the second stage. It might be possible to choose more
harmonic type functions for the bend coordinates. Several groupsnearly decoupled coordinates to improve the quality of the sum-
have used this type of angular functions with the Lanczos of-slices base potential, but we seek a more general solution.
algorithm?121130n attempting to converge the spectrum (by An NN-fitted potential with a fairly large RMSE does a good
increasing the basis size and the quadrature grid size), wejob. The final potential is therefore obtained frorhiararchical
discovered that the NN surface has regions in which the energyNN fit. The “nested” NN procedure is very easy to use. The
is much less than the energy at the bottom of the HOOH well. base and difference NN potentials are determined using the same
This happens despite the fact that the RMSE for the validation algorithm, the same points, and the same computer program.
set is good (less than twice the RMSE for the training set) and We have found that the quality of the final potential does not
despite the fact that the 1-D cuts through the potential that we depend sensitively on the target RMSE for the base potential.
examined did not reveal holes. The holes appear at the outskirtsThe total number of fitting parameters is themof the number
of the fitted region, where the density of points is extremely of parameters for the base potential and the number of
low. In principle, one could find such holes by looking at parameters for the difference potential. Increasing the number
potential values for a huge grid of points. Rather than looking of base potential nodes has a fairly small effect on the total
at a huge multidimensional grid of potential values, one can cost of the fitting process. On the other hand, if no base potential
compute energy levels. Holes in the surface are revealed bywere used and the potential were fitted with a one-step NN
energy levels significantly lower than the expected ground state method, increasing the number of nodes would greatly increase
energy or levels that fail to converge. Clearly, a multidimen- the cost (due to the cubic scaling of the LM algorithm) and the
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Figure 4. Absolute difference between the NN potential of HOOH energy above ZPE fom')
fitted to 2 cnT! RMSE and the reference potential by Kuhn etas Figure 5. Absolute difference between vibrational levels (above the
a function of energy for thealidation set of points. ZPE) of HOOH calculated on NN-interpolated potential (2 ¢RMSE)
and levels computed on the reference potefititdr the first 352
TABLE 2: Error in the NN Fit and NN Eigenvalues for vibrational levels of both parities.
HOOH?2
n TABLE 3: Stationary Point Geometries and Torsional
error, cnm Barrier Heights for the NN-Fitted PES of HOOH and the
NN fit NN eigenvalues PCPSDE Surface of Kuhn et al'® (in Brackets)
10 cnrt 2cmt 10 cnt? 2cntt property minimum trans saddle cis saddle
RMSEE  RMSEE  RMSE?  RMSE r(OH),a  1.818[1.818]  1.817[1.816]  1.818[1.818]
mean absolute 8.854 1.70 2.044 1.605 r(00),ap  2.745[2.745] 2.761[2.761] 2.753[2.754]
median 5.917 1.11 1.220 0.685 01 (deg) 99.76 [99.8] 98.27[98.3] 104.9 [104.9]
minimum 0.003 0.00 0.003 0.000 7 (deg) 114.4[114.3] 180.0[180.0] 0[0]
maximum 209.0 37.0 12.55 11.83 E, cm? 0.21[0] 359.6 [361] 2649 [2645]

2 Properties of the absolute differences of the HOOH NN potentials for the first 352 vibrational levels (both parities) below 5665
and the reference potential at thalidation points are in the second -1 apove the ZPE is plotted. The same level errors are

and third columns. The fourth and fifth columns contain values that . : L
characterize the accuracy of the energy levels computed from the NNcharaCterlzed in the last column of Table 2. The majority of

potentials. The ZPE is subtracted from all levels and then differences the levels are reproduced to better than 0.7 tmwith a
of the first 352 NN potential levels and the reference potential levels maximum error of 11.8 cmt. The tunneling splitting is 11.025
are computed? 100 nodes)\® base potential Hierarchical NN with cm~1 which is very close to the original surface’s splitting of
57/175 nodes. 11.031 cntt and to the experimental value of 11.44 Tml?
Given that we did not empirically adjust the surface nor choose
danger of holes. Note that there is no reason to use a separabléne point distribution to favor dynamically important geometries
model as the base potential. Indeed, the best fits presented ine.g., the top of the barrier) the agreement is very good. The
the HOOH and HCO tables are obtained with NN base stationary points on the NN surface are very close to those found
potentials. on the original surface, as listed in Table 3.

With the hierarchical NN procedure, it is possible to fit the The ZPE of our 2 cm! RMSE NN surface is 5695.79 crh
HOOH PES to 25/5 cmt and to 10/2 cm! RMSE with 30/ whereas it is 5691.66 cm 113for the reference potential. The
100 and 57/175 nodes, respectively (first/second NN stage). TheZPE error (and the error in many of the energy levels if the
difference potential takes values in the range60 cn . The ZPE is not subtracted before errors are computed) is therefore
second and third columns of Table 2 characterize the potentiallarger than the error in levels from which the ZPE has been
errors of the 10 and 2 cmd RMSE NN potentials. The  subtracted. Energy level differences are more accurate than
corresponding distribution of absolute errors at the validation absolute energies. Subtracting the ZPE from the levels yields
points is shown in Figure 4 for the 2 cthRMSE fit. The differences that are less sensitive to the potential than the energy
majority of the validation points have errors below 1.2 crh levels themselves. An error of 0.7 cin(subtracting the ZPE
with the maximum at 37 crt. The potential energy errors are  before computing the error) or 4.1 ci(the ZPE difference)
smallest at the bottom of the potential and grow gradually with is small compared to the errors due to the inaccuracy of most
energy. Compared with the RMSE of other fitting methods, a ab initio calculations. For example, with reasonable basis set
2 cmi! RMSE is good®3651.9%93 Because different fits are  sizes, the error in CCSD(T) harmonic frequencies is generally
designed for different regions of the surface and use different larger than a few cm.118-120 This is probably a good measure
numbers of points, it is hard to compare the RMSEs. In any of the extent to which the shape of a potential is distorted by
case, the NN surface error at the validation points is less thanab initio error. Of course, one wishes the fitting error to shift
the error due to imperfections in most ab initio methds!16 energy levels as little as possible but, if ab initio error shifts

Using this two-step NN potential, we now compute vibra- levels by several inverse centimeters, our fitting errors can be
tional energy levels. We use diaterdiatom Jacobi coordinates  considered small. To decrease further the energy level errors,
and enough basis functions and quadrature points to converget would be necessary to do a better job fitting the surface in
all the levels reported in Table 2 to within 0.01 tThe basis the “corners” of the box, whose size is determined Hyay,
size is similar to previous studié¥13Unlike the calculation that contains all our fitting points. Outside the box, the potential
with the one-step NN surface, which had holes, the calculationsis equal to a large plateau value. Where the reference potential
with the two-step surfaces converged well. There are no holes.is less thark., the fit is very good. At points for which the
Results are shown in Figure 5. We subtract the appropriate ZPEreference potential is larger th&g,; but inside the fitting box
from the energy levels computed on both the 2-érRMSE and for which the potential is therefore neither fit nor set equal
two-step NN potential and the original Kuhn et al. potential to the plateau value, the NN function is sometimes poor. We
and then compute differences. The magnitude of the differenceshave confirmed that these nonfitted regions are responsible for
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a significant part of the error in the HOOH ZPE and absolute
(no subtraction of the ZPE) levels. The shifts introduced by the
NN fit are also smaller than differences between experimental
levels and those computed on high-quality PES417.12+126

The HOOH NN surface can be improved by decreasing the
RMSE from 10 to 2 cm! without drastically increasing the
number of neurons (parameters). However, we find that to obtain
an even better NN surface, we would need to increase the
number of points. If we do not increase the number of points,
we find that although we can improve the RMSE for the fitting
points, we cannot find a surface for which the RMSE for the
validation points is only a factor of 2 larger than the RMSE for
the fitting points. A surface, for which the RMSE for the fitting
points is very good but the RMSE for the validation points is
not good, is “overfit”.

C. Formaldehyde. To test the generality of the two-stage
NN fitting procedure we developed to obtain a HOOH potential
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Figure 6. Absolute difference between the NN potential o2 fitted
to 2 cnt!* RMSE and the reference potenifads a function of energy

we have also applied it to formaldehyde. We use as a referenceror the yalidation set of points.

potential a potential of Carter and HanyThe HOOH and
H,CO potentials are both 6-D, but they are very different and
fit to very different functional forms. In this subsection, we
demonstrate that the nested NN approach that works well for
HOOH also works well for HCO. This implies that the NN
fitting procedure we used for HOOH is probably useful for a
large class of molecules.

We select points according to eq 2 wh,; = 17 000 cnt?
andA = 500 cnt! and makev® from 1-D Morse functions for
all stretch coordinates;(CO), r(CHs 2); second-order poly-
nomials in the bend anglesJH;CO; and a fourth-order
polynomial in the dihedral angle between the HCO planes.
As for H,O and HOOH, the/°® parameters are determined by
doing simple 1-D least-squares fits; fob®O, Emax = Ecut =
17 000 cntl. At the equilibrium geometry; = 180°. Because
V(180 + J) = V(180 — 9), it is in principle possible to fit
only half the potential. Instead, we choose a set of 2500 fitting
points witht < 180 and then add the corresponding points
with 7 > 18C°. For H,CO, this improves the quality of the fit
at the bottom of the well, but for HOOH, it is unnecessary owing
to its out-of-plane equilibrium geometry. We also add points
obtained by exchanging the two H atoms. Note that if we were
fitting ab initio points, adding points obtained by exchanging
the two hydrogen atoms and points witkr 180 to the set of
fitting points would not require extra ab initio calculations. The
points along the 1-D slices up fmax are also included in the
set of points used to fit the NN parameters. Fits with a RMSE
of 5 cn! and a RMSE of 2 cmt are obtained with 51/94 and
50/119 nodes (first/second stage).

In Figure 6, we show the potential error for the points in the
validation set as a function of energy for the 2 thRMSE fit.
The second and third columns of Table 4 characterize the error
for the two fits. For the 2 cmt RMSE fit, most points are
reproduced to better than 0.8 chn There are no low-energy
points with significantly larger errors. Some points with large
energies have much larger errors; the largest error is 32:9.cm
Note that these errors give a realistic impression of the quality
of the fit, because they are errors for points in the validation
set and not in the fitting set. The minimum on the NN-fitted
surfacer(CH) = 1.10069 A,r(CO) = 1.20298 A,[JHCO =
121.648, andr = 180° compares well with the reference surface
minimum atr(CH) = 1.10064 A r(CO) = 1.20296 A,JHCO
= 121.648, andt = 180°.%°

As we did for the previous two molecules, we have computed

TABLE 4: Error in NN Fit and NN Eigenvalues for H ,CO2

error, cnT?t
NN fit NN eigenvalues

5cnrt 2cnrt 5cnrt 2cnmrt

RMSE RMSE RMSE RMSE
mean absolute 3.01 1.05 0.915 0.728
median 2.12 0.72 0.715 0.440
minimum 0.00 0.00 0.000 0.000
maximum 80.1 32.9 7.947 8.338

a Properties of the absolute differences of th&£B NN potentials
and the reference potential at thalidation points are in the second
and third columns. The fourth and fifth columns contain values that
characterize the accuracy of the energy levels computed from the NN
potentials. The ZPE is subtracted from all levels and then differences
of the NN potential levels and the reference potential levels are
computed

were calculated with a product basis Lanczos method using
Radau vectors for the GHyroup and a Jacobi vector for the O
atom??” In Figure 7, we give the magnitude of the difference
between the levels (from which we have subtracted the ZPE)
computed on the NN and the reference potentials as a function
of energy up to~ 8000 cnt! above the ZPE for the first 260
vibrational levels of both parities. These errors are characterized
in the last column of Table 4. The majority of the levels are
reproduced to better than 0.5 chwith a maximum error of

8.3 cnm. Our ZPE is 5775.46 vs 5775.28 chfor the reference
potential®® Both the RMSE (2 cm?) and the level errors are
small compared with typical fitting and ab initio errde8:128-130

Of course, there is still room for improvement, but the fitting

5 -
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Figure 7. Absolute difference between vibrational levels (above the
ZPE) of HCO calculated on NN-interpolated potential (2 ¢rRMSE)

vibrational energy levels to test for holes and to assess the effectand levels computed on the reference potefitifdr the first 260

of the RMSE of the surface on observables. The eigenvalues

vibrational levels of both parities.
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error we have achieved is good. To get an even better fit, it sive, but it is the price we pay for generality. Note in comparison
would probably be necessary to increase the number of points.that for a 3-D spline PES, it is necessary to use orders of
Without increasing the number of points, the level errors are magnitude more parametersi41.142Qther black-box fitting

improved only modestly by reducing the RMSE from 5 to 2 methods such as IMLS, MSI, DAF, or RKHS also require a

cmt (Table 4). large number of parameters. Using a functional form designed
for a particular molecule, it is possible to obtain a good fit with
IV. Conclusion fewer parameters, but having many parameters is not a

significant disadvantage. Of course, the larger the number of
parameters the more costly are the matrix manipulations that
must be done to determine the best parameter values. For our
calculations, we used the LM algorithm, but other options
Sexist39.44.60.88 14Eyen using the LM algorithm, it took only hours
using a MatLab program on a Windows PC at 3 GHz to
converge the fits.

As computer power increases and new theoretical methods
are developed, it becomes increasingly easy to do both ab initio
electronic structure calculations at preselected geomt&ie®
and quantum dynamics calculations on potential energy surface
in 3 to 9 dimensions!3134139 However, it is not possible to
do quantum dynamics without a potential: it is not enough to

know the potential at a large set of points. Methods for obtaining  \y/a were able to decrease the fit RMSE to reasonable limits

surfaces from points are therefore of paramount importance. If ot drastically increasing the network sizes. For HOOH and

we can find _genera_l tools for_making surfaces, it Wi.” be poss_ible H,CO, with about 16fitting points in the energy ranges within
to do much interesting chemistry. Quantum dynamics techniques,, hich we fit, it was not possible to reduce the RMSE below 2

are at the point where they can be used to produce results ofg -1 \ithout increasing the error for the validation points.

real interest to many chemists, but, of course, this is possible Geing even better surfaces would necessitate more points. In
_onIy if PES’s are available. In thls_paper, we argue that NN'S, oy 1ecules with four atoms or more, this would require sequential
if used cleverly, can be used to f|t_ F’Ote”“‘?".s for many small training of the NN lest the training process become too slow.
molecules. NN’§ are black-box, universal fitting methods that g, algorithms exig 88143

Seem very promising. T_h(_ere are good pre-programmed NN tools Perhaps the greatest strength of an NN-based approach is its
readily available, and it is not hard to use thénTo use the o apility. It is common to fit a potential by choosing a

NN procedure, the“? s no need for physp_a_l insight or functional form and varying parameters to achieve a good fit.
experimental data (dipole moments, polarizabilities etc.): Al NN methods are more flexible because the actual functional
%the parameterfs ar:e delterm;]neddsolely by tge NNdaIgonLhm. form is varied during the fitting process (as neurons are added

e structure of the algorithm does not depend on NOW i, he nework). It is this feature that makes them good universal

cc(;ordinates a(;e cahos(;an. Of Coxrz‘?' (tjhis univer?e;\llilt\)l/ i_s ?]n fitting tools. In the language of the NN community, this is the
advantage and a disadvantage. Isadvantage o sist a%lbility of the NN to “learn”. We have exploited this advantage

there is no simple way to build the correct asymptotic behavior of NN methods to develop a nested NN potential fitting

or symmetry into the potential. . approach. A key component of the approach is the use of a set
For H,0, the NN fit was easy to obtain and accurate. For qf yajidation points to ensure that the NN function we obtain
HOOH and HCO, we have developed a nested NN approach. ot only accurately reproduces the potential at the fitting points
The key elements of the nested NN fitting procedure are: (1) ¢ ais0 gives the correct shape. It is encouraging that by using
points are chosen so that the density of points is larger in low- NNs jn a hierarchical fashion the total number of parameters
lying regions of the potential; (2) an NN base potential is fitted; required to fit a 6-D surface is quite small. Using the NN
(3) the difference between the base potential and the truerocedures we describe, or methods derived from them, it should
potential is fit using another NN; (4) a validation setis used 10 e pogsible to develop black-box, general potential fitting tools.
prevent overfitting; (5) we include symmetrically equivalent Thase would make it possible to bridge the gap between single
points in the fitting set and symmetrize the network output. We point quantum chemistry and quantum dynamics calculations

have shown that good fits can be obtained in this fashion. If 51t compute spectra and maybe cross sections, rate constants
the nesting idea is used, the size of the networks required t0gi: in a routine fashion.

achieve a predefined accuracy increases only slowly as the

dimensionality of the problem increases or the predefined RMSE  acknowledgment. This work has been supported by the
decreases. Of course, the idea is readily generalized to morenatural Sciences and Engineering Research Council of Canada.
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Some authors have found that when using NN, it is hard to quebecois de calcul de haute performance (RQCHP).
avoid local minima*® We found that this was not a serious
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