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The instanton theory newly implemented by two of the authors (G.V.M. and H.N.) is applied to hydrogen

tunneling transfer in a vinyl radical. The converged instanton trajectory is found on the CCSD(T)/aug-cc-

pVTZ level of an ab initio potential energy surface. The calculated ground-state energy splitting agrees with
the recent high-resolution experimental data within 3% of discrepancy. The semiclassical wave function is
used to estimate the splitting of the principal rotational constants of the radical.

I. Introduction where the aug-cc-pVDZ set is used for oxygen atoms and the
transferred hydrogen atom and the cc-pVDZ set for the other
atoms. It was concluded, however, that the main origin of about
20% discrepancy in comparison with the experiment was due
to the insufficient accuracy of the potential energy surface. By
introducing the CCSD/(aug-)cc-pVTZ correction along the
Mhstanton tunneling path, we could reproduce the experiment
within a few percent of accuracy. Accurate implementation of
the instanton method requires the Hessian of the potential
function to be evaluated. In the case of malonaldehyde, such
potential data are not available at the highest CCSD/aug-cc-
pVTZ level because of too much required CPU time and the
accuracy of the theoretical estimate is not fully guaranteed. On
the contrary, the vinyl radical supplies a good example that the
full-scale semiclassical calculations at such a level can be
accomplished.

This paper is organized as follows. In the next section, we
slightly extend our instanton theory so that we can evaluate other
physical quantities. We derive a simple formula to estimate the
splitting of the expectation value of an arbitrary function of
internal coordinates for the two lowest states. In section IIl, we
apply our theory to the splitting of energy levels and principal
rotational constants in the vinyl radical. Concluding remarks
are presented in section IV.

The vinyl radical is an important intermediate in combustion
chemistry, attracting much interest for many yeettntensive
works on its structure have been carried out by both
theoretician” and experimentalists:*® In particular, Fes-
senden and Schuller observed a pair of doublets ascribed to a
o proton in the CH group and tw protons in the Ckigroup®
They concluded that the absence of centg@alandfa lines is
due to the fast interconversion of the-8& bond between two
minima and estimated the corresponding potential barrier height
to be about 2 kcal/mol. Kanamori et al. reported the results
obtained by the IR diode laser kinetic spectroscEp¥hey
observed the splitting of an absorption band around 900'cm
assigned to the out-of-plane Gkvagging motion. Although
the tunneling splitting in the ground stat@ cannot be directly
estimated from their data, the authors derived the potential
barrier height 1200 crmt from the analysis of rotational
constants. Quite recently, Tanaka et’ahvestigated this radical
by millimeter-wave spectroscopy and reported a set of precise
molecular constants. Among them, the ground-state tunneling
splitting was found to be\o = 16 272 MHz & 0.54 cn1?).
Using a one-dimensional (1D) double minimum model, they
also estimated the barrier height as 1580 tms well as the
tunneling splitting of the rotational constant.

The present work is addressed to a theoretical study of || |nstanton Theory
intramolecular tunneling hydrogen transfer in the vinyl radical.
In addition to the tunneling splitting by the recently developed . 610 ) g
instanton theory®1° we estimate the splitting of rotational  nstanton theory®*We also show that the semiclassical wave
constants with the use of the semiclassical wave function. Our fUnction enables us to estimate the splitting of an arbitrary
method enables us to incorporate high-level ab initio quantum Physical quantity. In particular, we derive a practical formula
chemical calculations into the theory, which provide an effective for the spllttlng of rotational constants. The general Hamiltonian
practical recipe for studying tunneling processes in polyatomic for @ nonrotating { = 0) N, atomic molecule reads
systems. The final accuracy of the theoretical estimate mainly )
depends on the quality of electronic structure calculations. In A= h” o (@ d i) +V(q) (1)

the previous benchmark calculatiqn of _the malonaldehyde B 2«/68_qi o

moleculel® the fully converged semiclassical result has been

obtained at the CCSD/(aug-)cc-pVDZ Computational |e9ét, Whereq = q1' qz, ey qN areN = 3N, — 6 internal coordinates,

di(q) is the Riemannian metric tensor for the internal motion,

TPart of the special issue “John C. Light Festschrift". and G is the determinant of the full metric tensor for both

im; ;g whom correspondence should be addressed. E-mail: nakamura@internal and rotational degrees of freedom. It is assumed that
x'msj{ﬁme for Molecular Science. the potential functiolv(q) has two equivalent symmetric minima
8 Kyoto University. located ag, anddm,. Generally, the tunneling splitting of energy
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In this section, we summarize the main equations of the
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levels in a double well potential can be evaluated by means of splitting by the Herring formula is straightforward. We will show
the Herring formul& as a “flux” ~/ WVW do through the below that the explicit form of the wave function can also be
symmetric dividing surface separating the two potential wells. used to estimate the tunneling splitting of rotational constants.
In the instanton theory, the corresponding wave function is Further details of the theory can be found in refs 16 and 19,

constructed in the semiclassical approximation as

WO
w=ex -2 W,

whereW, and W, are found from the HamiltonJacobi (HJ)

)

and here we just collect the main results.
For the ground-state tunneling splitting, the general formula
reads

Ay=Bexp—2 - S

) ®

and transport equations, respectively. In the present case, the

HJ equation read$

( 8W) 0
q1 aq

whereH(q,p) = (Y2)di(g)pip; — V(q) is the classical Hamilto-
nian with the upside down potential. Equation 3 can generally
be solved by the method of characteristics. This ghig&)) in

the form of the action integral along the classical trajectories
(characteristics) for the Hamiltonias(q,p). In particular, the
family of characteristics originating fromy, or gm gives the
semiclassical wave function localized in the corresponding
potential well. The calculation of the tunneling splitting is very
much simplified due to the symmetry of the problem. It can be
shown that within the limits of semiclassical accuracy the main
contribution to the Herring formula comes from the vicinity of
the so-called instanton trajectoqy(z) which is nothing but the
characteristic connecting the two potential minigaganddm.*®
This trajectory is generally defined up to an arbitrary time shift
and can always be chosen to satisfy the conditionst{ateo)

= gm, go(®) = Gm, andqe(r = 0) is the middle point of the
instanton. Then, for the semiclassical wave function localized
aroundqn, the solution of the HJ equation eq 3 in the vicinity
of qo(7) is given by?®

3)

W(a) = [ Polt)to(®) &’ + 5 AGA()AG + o((Aq?)
@)

Here,Aq = q — qo(7), po(7) is the conjugate momentum along
the instanton trajectory, and the symmetric ma#{x) satisfies
the equatiotf
d - - - -
EA = —Hgyq = HgpA — AHy — AH A (5)
where Hg, Hqp, ..., stand for the matrixes of the corresponding
second derivatives of the classical Hamiltonian taken along
go(r). Equation 5 is supplemented by the initial condition
(d/dr)A(—o) = 0 which completely defined\(z). The timer
in eq 4 is understood as a function of coordinaigg according
to the relatioA®

(6)

The second terriVi(q) in the semiclassical expansion, eq 2,
is easily found from the transport equation. In particular, for
the ground state, it is given By

(d — g(2)py(z) =0

1 T I 1]
Wy(q) = > f,w (Tr(A(T') — Ap)) dr (7)
whereTrA = A: = giA;, the matrixA differs from A by the

curvature termA; = Aj — pad’, and T are the Christoffel

symbols. Equations 2, 4, and 7 completely determine the

semiclassical wave function, and the calculation of the tunneling

whereS is the classical action along the instanton trajectory

s,=[° de[Tr(A — A 9)
and
_ \/m (P39Po)s 10
TG detAy [(oTacto

where indices m and b indicate that the corresponding quantities
are taken at the potential minimugy, and the barrieiq, =
q(0), respectively.

Analysis of the excited state is more complicated, since the
nodal structure of the wave function must be properly taken
into account. It has been shown recently that for low vibrational
excitations the invariant instanton theory can still be con-
structed!® In general, multidimensional systems, one can
separate the excitation of the normal mode along the instanton
trajectory (longitudinal mode) in the region of the potential
minimum from the excitation of all the oth& — 1 transversal
modes. The former is especially simple, since the correction to
the semiclassical solution due to the excitation is shown to be
independent of all the transversal modes. Thus, the problem
becomes essentially 1D, and the tunneling splitting for the first
excited states is given by the simple fornidla

4V(0) F{Zf d( 2Vdv)] (11)

= Ar1 0
wherew is the corresponding longitudinal normal frequency
andV(r) = V(qo(7)).

The case of transversal excitations is more difficult. In
addition to eq 5, one has to solve a complementary equation
which describes the interaction between all the transversal modes
and has the form

A

Uy = 0(0)Uy — [d"Ay + 8,9"pol Y,
wheref(z) = ¥;;UUA; and, as before, all the quantities are
taken on the instanton trajectory. The upper and lower indices
indicate the contra- and co-variant vectors related by the metric
tensorg’ in the usual way. The vectdd(r) characterizes the
local direction of the node of semiclassical wave function. At
the potential minimumlJ(—co) coincides with one of the normal
modes whilef(—) is the corresponding normal frequenty.

— 1 possible initial conditions for the transversal normal modes
generate® — 1 independent solutions of eq 12 which describe
the possible types of transversal excitation. For each normal
modey, the tunneling splitting of the first excited state reads

NG 'PI®(PoA )
(PoA 'po)

(12)

A, = Aowy(UT At ) exp—AS)
b

(13)
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wherew, is the normal-mode frequency (excitation energy),
and the extra exponential factor is given by

A, =2 [° (0(0) - 0,) dr (14)

In the rest of this section, we discuss a more general problem
of the semiclassical estimation of the expectation value of the

physical quantity. For simplicity, we restrict our attention to
the ground state with the wave function given explicitly by eqgs
2, 4, and 7. The calculation of the matrix element generally
requires the global wave function, while eq 4 gives only local
behavior in close vicinity of the instanton trajectory. However,

since our aim here is to estimate the difference between the
expectation values of the two states of opposite symmetry in

the tunneling doublet, the instanton theory can be used.
We consider the expectation values

1

+ __
B =2

W*|G|P*0 (15)
whereGK(q) (k| = 1, 2, 3) is the rotational metric tensor, and
Wt(g) and ¥—(q) are the wave functions for symmetric and

antisymmetric states in the ground-state doublet, respectively.| _

We introduce the function#; , = (¥+ + W)/(2)"2localized
in each potential well and rewrite eq 15 in the form

BE=M+m (16)

with
M = % (W, GW, - (W,1GIW,0) (17)

and
_ mpl|(23|lpzm s)

The rotational constants are defined as the eigenvalugs .of

Mil'nikov et al.

is explicitly given by

Wy (@) = [ po(t) (') dr’ + % A (0)(d — dy(D)(df —
(1) + o((AG?)) (21)

whereA'’ satisfies the same as eq 5 but with the initial condition
specified atr = .

Using this semiclassical form and neglecting the exponentially
small contribution away from the instanton trajectory, we can
estimate the matrix element as

| =Ne &S [ /Gdqf(q) exp(— %) 22)

where A = (A + A')/2 andN = (detA/Gnhn)N)12 is the
normalization factor of the semiclassical wave functibn.
Equation 22 can be rewritten as a linear integral along the
instanton path. Inserting the identity=2 /”_ dr 8(r — 7(q))

into the integrand and changing the order of integration, we
obtain

Ne &M [ dr \/G(a() f(as) dsé(g_a S) -
T
e - TP

up to the exponentially small terms. From eq 6, we fimthg
= pol(pggpo), and the integration in eq 23 gives

detAn - G (pogpy)
1=y Faa® T [y f(ao(®)
hG,t f detA /pgAflpo o
24

Although the above derivations are rather straightforward,
one cannot expect high accuracy from eq 24. To see this, let us
takef(q) = fo = const. In this case, the above estimation gives
| = Ofee=&M-S,, while the exact result is definitely= 0 as

By treating the second exponentially small term in eq 16 as a follows from the definition of#; andW>. In other words, the

perturbation, we obtain the tunneling splitting of the rotational
constants in the form
T
ABy = 2X,mX, (29)
whereXy (k = 1, 2, 3) are the eigenvectors bf. Within the
limits of semiclassical accuracy, the latter must be taken in
zeroth-order approximation, that M, = G(qm)/2. The problem
therefore is reduced to calculating the exponentially small term,
eq 18.
Let us consider a matrix element

| = W, |f|W,0] (20)

where f(q) is an arbitrary function of coordinates which is

loss of exact orthogonality introduces the error comparable to
the matrix element itself. The estimation can be, however,
improved by rewriting eq 20 as

| = (W, [f - f(q)|W,0 (25)
whereq, is an arbitrary reference point. This modification does
not affect the exact value of the matrix element, but in the
semiclassical approximation, it corresponds to the chifge
(v)) — f(qo(7)) — f(qy) in the integrand of eq 24. In the present
calculations below, we takg, = qp, the symmetric midpoint
of the instanton trajectory, which seems the only reasonable
choice in the present problem.

Ill. Results

assumed to possess appropriate symmetry. In the semiclassical We numerate the atoms in the vinyl radical as shown in Figure

approximation, the main contribution to the matrix element
comes from the characteristic which is common for the two
families of classical trajectories associated with the functions
W, and W,. This is nothing but the instanton trajectory, and

1. The body-fixed frame (BF) of reference is specified by
imposing six conditions on the 15 BF Cartesian coordinates
=33 xn& (n=1, 2, ..., 5). The first three conditions fix the
origin to the center of mass. The other three conditions specify

the matrix element can be estimated from eqs 2, 4, and 7. Thethe orientation of the BF axeg(e;,e3) in such a way that the

wave function®, = exp(—Wy'/A — Wy') is the semiclassical
wave function localized irfin, and can be constructed in the
same way as before. The principal exponéft, for instance,

“tunneling” Hs lies in the €1,&;) plane andg; is directed along
the line connecting the two hydrogen atoms in the,@kbup.
By the use of these conditions, the metric tensor for the rotation-
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Figure 1. Vinyl radical.
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Figure 2. lterative calculation of the instanton path. The labeled paths

free @ = 0) quantum Hamiltonian is constructed in the same
way as in ref 18.

The instanton trajectory was calculated by the iterative
variational method® which enables one to incorporate the high-
quality quantum chemical ab initio data directly, that is, without

from 1 to 9 show gradual improvement of the instanton trajectory shape
using the MP2/cc-pVDZ ab initio data. After switching to the CCSD-
(T)/(aug-)cc-pVTZ ab initio method, only two more steps are required
to achieve convergence and obtain the final result.

constructing a global potential energy functi§riThe method

finds the instanton path in the analytical form calculated from eq 8. At the ab initio MP2/6-31G(d,p) level,

we obtained\y; = 0.14 cn1! which is about four times smaller
than the experimental value. This disparity is likely to be related
to the insufficient accuracy of the potential data. In particular,
the potential barrier along the instanton path at the MP2/6-31G-
(d,p) level turns out to be as high as 2249@nOur experience
shows that one should not generally expect any accurate results
from the simulations on the MP2 PES. At the same time, this
preliminary step is necessary in order to reduce the numerical
the problem to minimization of the classical actigt{ C}) on efforts at the CCSD(T)/aug-cc-pVTZ level. This is an important
the inverted potential as a function Nfx N, coefficientsC™. feature of our iterative method which enables us to use the
At each step of the iteration, the required ab initio information obtained instanton path as the initial trial guess for the higher
includes the values of the potential and its gradient and Hessianlevel of computations. The choice of the ab initio scheme at
evaluated at some reference points along a trial instanton paththe preliminary stage is not important, and any numerically
In the present calculations, we used 12 reference points at eacitheap method can be used. Due to the similarity of potential
step. The quantum chemical calculations were performed at thetopology, usage of such a trial path reduces the number of
MP2/6-31G(d,p) levéf-?*and CCSD(T)/aug-cc-pVTZ levBI2® iterations at the higher level and the calculation can be
of electronic structure theory. The gradients and Hessians completed within a reasonable time effort. In the present case,
required at each point were calculated analytically at the MP2 only two extra iterations turn out to be enough to obtain three
level and numerically at the CCSD(T) level using the Gaussian stable significant digits in the classical action at the CCSD(T)/
programz® aug-cc-pVTZ level of electronic structure calculations. The

Table 1 shows a comparison of the normal-mode frequenciesconvergence of the iterative procedure is illustrated in Figure
by the two methods (third and fourth columns). The instanton 2, which shows the projection of the instanton path onto the
trajectory was first calculated at the ab initio MP2 level, where (XY) plane for the tunneling hydrogen atom. The paths numer-
computations are cheap and analytical second derivatives areated from 1 to 9 correspond to the successive steps of iteration
available. Starting from the straight line connecting the two using the MP2 ab initio calculations. As one can see from Figure
potential minima as the initial trial path, full convergence was 2, the ninth path and the path at the CCSD(T)/aug-cc-pVTZ
achieved after 10 iterations with 5 stable significant digits in level are essentially the same in shape and the main difference
the classical action guaranteed. By the use of this instantonconsists of the shift in the minimum positions. A similar
trajectory, eq 5 was solved by the standard Ruigetta behavior has been previously observed in malonaldefiyohel
method and the tunneling splitting of the ground stagevas formic acid dimer’

A
5 + 5 z| + Co,(2
&

W(z{C}) = (26)

where the parametere [—1:1] plays a role of the coordinate
along the patR® The first term in eq 26 represents the straight
line connecting the two minima ang,(2) is a set of smooth
basis functions under the conditign(41) = 0. This reduces

TABLE 1: Normal Frequencies (in cm™) and Corresponding Tunneling Splittings for the First Excited States

wy CCSD(T)/ wy MP2/ AIAg CCSD(T)/ AlAo MP2/
N type of the motion aug-cc-pVTZ 6-31G(d,p) aug-cc-pVvVTZ 6-31G(d,p)
1 C,H; rocking vibration 711 771. 36.0 41.1
2 wagging (out-of-plane) 813 996 2.20 1.76
3 wagging (out-of-plane) 923 1063 1.28 1.12
4 plane distortion 1062 1129 3.0 2.3
5 H4CsHs bending 1390 1465 1% 10 15
6 C,Csstretching 1632 1863 2107 7x 10
7 HsC;s stretching 3065 3203
8 HiH.H3 assym. bending 3171 3305
9 C;H; stretching 3238 3360



5434 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Mil'nikov et al.

TABLE 2: Tunneling Splitting of the Ground-State Energy Level and Rotational Constants

rotational constants (MHz)

classical barriér  effective barriet Ao B S (average and difference)
methods (cm™) (cm™) (em™)  (cm™) (au) S A B C
MP2/6-31G(d,p) 2233 2249 0.14 2234  10.65-0.98
CCSD(T)/aug-cc-pVTZ 1761 1770 0.53 2023 9.37-1.11 231800 33890 28 500
227 10.2 1.1
experimental 158 0.54 2370698 32480 28438
299 2,74 0.88'

2 The difference between the saddle point and the minima (without zero point energy corréctioa)oarrier height along the instanton path.
¢ Upper and lower are the average and difference of the constant, respectiRefgrence 15 (K. Tanaka et al¥)One-dimensional model is used.

TABLE 3: Barrier Height in the Vinyl Radical for Various 4.98 kcal/mol is very similar to 5.00 kcal/mol for MP2/aug-
ab Initio Methods cc-pVTZ. This tendency suggests that the CCSD(T)/aug-cc-
classical ~ classical barrier  effective pVQZ barrier height is close to the one for CCSD(T)/aug-cc-
ab initio method  barrier (cnt)  (kcal/mol)  barrie (cm™?) pVTZ and this basis is large enough to provide a converged
MP2/6-31G(d,p) 2232.8 6.38 result. The same conclusion follows from the values of the
MP2/aug-cc-pVDZ 2063.1 5.90 effective barrierVy shown in the last column of Table 3.
MP2/aug-cc-pVTZ 1749.2 5.00 AssumingS O (Vo)¥2, we can estimate the accuracy of the
MP2/aug-cc-pvVQZ 1740.2 4.98 . . . .
CCSD/6-31G(d,p) 22242 6.36 classical actiom$, < 0.03 which corresponds:3% error in
CCSD/aug-cc-pVDZ 2086.8 5.97 the tunnel splitting.
ggggﬁl)l/ge-c?’cl-g\(qz) ;ggg-g Z-ég Using the results obtained at the ab initio CCSD(T)/aug-cc-
2 P _ _ : " )
CCSD(T)aug-co-pvDZ 20585 = 89 EV‘Z Ieve:hw(;e estllmatedd t:utahspllttlgg foIhrota'uona:jl_constatrllts
CCSD(T)aug-cc-pvVTZ ~ 1761.3 5.04 1773.2 y the method explained at tne end or the preceding section.
CCSD(T)/cc-pvQz 1784.7 These results are also presented in Table 2. Diagonalization of
CCSD(T)/aug-cc-pvQzZ 1768.1 the rotational metrics at the potential minimum gives the average
aThe energy difference between the middle point of the ccsp(T)y/ Value of three rotational constants and the corresponding
aug-cc-pVTZ instanton path and the minima. eigenvectorsX (see eq 19). Then, the splitting of rotational

constants is estimated from eqs-1® and 24. One can see

At the CCSD(T)/aug-cc-pVTZ level, our theory gives the from Table 2 that the semiclassical estimate reproduces the
ground-state splitting a&o = 0.53 cnt! which almost perfectly rotational constants and their splittings qualitatively but the
reproduces the experimental valtyge = 0.54 cnt? (see Table absolute values are not very good comparefidoas expected.
2). In Table 2, we also show separately the three fadofS, Finally, we applied the instanton theory of low excited states
andS;in eq 8. As one can see, the differenceinbetween the to nine possible normal-mode excitations. The results for the
two methods comes totally from the principal expong&nand CCSD(T)/aug-cc-pVTZ and MP2/6-31G(d,p) methods are shown
the other two factors are fairly close to each other. This also in the fifth and sixth columns of Table 1. In the present case,
confirms the above surmise about the similarity in the potential the longitudinal normal mode is the lowest one which corre-
topology for different ab initio methods. On the other hand, sponds to the rocking vibration of the tunneling hydrogen atom.
the principal exponent is mainly affected by the height of the This has also been checked numerically by calculating the
potential barrier which in the case of CCSD(T)/aug-cc-pVTZ projection (djo/dr)n ~ 0.99(dge/d7)||n| at the potential mini-
reduces to 1770 cnt. Note that there is almost 200 cn mum wheren is the corresponding direction for the first normal
difference from the estimate made by Tanaka é? athich is mode. For this rocking mode excitation, the instanton theory
probably due to the drawback of their 1D model. predicts about 40 times growth of the tunneling splitting and

It should be mentioned that from the theoretical viewpoint both of the ab initio methods give similar results. The situation
the accuracy of the instanton method is not very clear, since it changes in the case of transversal mode excitation. For low-
is generally affected by both semiclassical approximation and energy modes, one observes a moderate growth of the tunnel
the quality of the ab initio potential data. The accuracy of the splitting but the result is more sensitive to the details of the
instanton theory has been previously checked for simple 1- andpotential energy surface compared to the rocking mode. For
2D model systems. Recently, we have also calculated the tunnelthe fifth and sixth vibrational mode, one can expect a strong
splitting in spectrum of the realistic nonrotating € 0) HO; promotion effect and accurate evaluation of the potential energy
complex and found the agreement with the exact quantum datasurface is required. A similar effect has been found before in
within a few percent® On the other hand, inaccuracy in the other systems, and this is explained by different behaviors of
potential energy surface can erroneously change the order ofthe solution of eq 12 for low and high excitations. In Figure 3,
magnitude of the tunneling rate and the ab initio level is expected we depict the effective frequendyin eq 12 as a function of
to be a more crucial factor. The full ab initio convergence test the parametez. The pointz= —1 corresponds to = —oo, that
would imply a direct comparison with the results obtained for is, the potential minimum. For all the transversal modes, the
a larger basis for which the CCSD(T) scheme is prohibitively effective frequency monotonically decreases, which leads to the
time-consuming. To provide an additional accuracy check, we negative exponential fact@S, in eq 14. For higher frequency
have calculated the transition state energies for different, lessmodes, the curve d is steeper, indicating a strong interaction
refined schemes as well as the effected barrier height along thewith the lower frequency vibrations. In this region, the
instanton path for CCSD(T)/cc-pVQZ and CCSD(T)/aug-cc- exponential factor in eq 13 becomes dominant but more sensitive
pVQZ ab initio levels. Table 3 shows that the CCSD(T) barrier to the ab initio method. Finally, for the last three modis<
heights are almost the same as the corresponding MP2 one§—9 in Table 2),AS; becomes comparable with the principal
with 6-31G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets. exponential factorS which indicates a breakdown of the
One can further see that the MP2/aug-cc-pVQZ barrier height semiclassical approximation. This is not surprising since the
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