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Assignment and Extraction of Dynamics of a Small Molecule with a Complex Vibrational
Spectrum: Thiophosgené

|. Introduction

Bigwood et alt experimentally determined the dispersed
fluoresence spectrum of SGCOprobing the zero to 15 000 crh
wavenumber vibrational excitation spectral region. About half
of the 200 observed transitions were either assigned or fit, the
great majority of these transitions occurring below 7000€m
Above this energy, and in particular in the energy regime from
7000 to 9000 cm!, the spectrum is quite complex, and
conventional interpretative methddfiled in the sense of
assigning quantum numbers, which are quasiconstants of thet
motion, in the amount needed for the six degrees of freedom
system. Moreover, the vibrational motions underlying the
spectrum were unable to be revealed. A goal that was achieved®
was to use the assigned transitions to fit the spectral data to
functional form representing a parametric potential hypersurface.
Bigwood et al* then used this hypersurface to propagate select
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The dispersed fluoresence spectrum of the ground electronic state of thiophosgene iSS&@llyzed in a

very complex region of vibrational excitation, 7060000 cnt. The final result is that most of the inferred
excited vibrational levels are assigned in terms of approximate constants of the motion. Furthermore, each
level is associated with a rung on a ladder of quantum states on the basis of common reduced dimension
fundamental motions. The resulting ladders cannot be identified by any experimental means, and it is the
interspersing in energy of their rungs that makes the spectrum complex even after the process of level separation
into polyads. Van Vleck perturbation theory is used to create polyad constants of the motion and a spectroscopic
Hamiltonian from a potential fitted to experimental data. The eigenfuntions of this spectroscopic Hamiltonian
are rewritten as semiclassical wave functions and transformed to a representation that allows us to analyze
and assign the spectra with no other work other than to utilize concepts from nonlinear dynamics.

assignment and to not allow any sorting into ladders of states
based on a common dynamics. Even without the generic
complexity the existence of six degrees of freedom belies the
ability of the wave function to be viewed for purposes of
interpretation.

Faced with these complexities, researchers, exploiting the
classical-quantum correspondence principle, have had great
success using classical mechanics to gain novel insights into
the nature of eigenstates in energy regimes that are valid beyond
he normal mode limi#~1° The key idea is that knowledge of
the topology of the underlying classical phase space elucidates
both eigenvalue patterns and eigenstate structures. Periodic
rbits 242 homoclinic oscillationg? and bifurcation*”have
aall proven to be invaluable concepts for interpreting molecular
spectra. In addition, there are often mulitiple constants of motion,
acetylené'14and watet’*°being two excellent examples, that

zero-order states at energies near 9000 %cto aid in the can be utilized to further simplify the analysis of the spectra.

interpretation of the intramolecular vibrational redistribution o

energy.

¢ One advantage of these constants is that the classical dynamics
can be visualized in a reduced dimensional sgace.

Although one can use a potential energy surface in conjunc-  Our work is distinct from those studies. We carry out a

tion with quantum chemistry to supply wave functions or semiclassic_al analysis of the quantum wave fur_lctions in a
propagated wave packets to interpret spectra, the effort to make'€presentation that allows us to use the classical-quantum
such detailed calculations for all but a few states in six degrees correspondence principle to assign our spectra in a manner that
of freedom is prohibitive, especially in light of the high density IS consistent with common phase space structures such as stable
of vibrational levels in the region of interest. Additionally, there ~Periodic orbits and zones of nonlinear resonatfaks such, no

is the certainty that these wave functions would be generically classical trajectory results are needed in our analysis.

so complex as to not show the nodal patterns needed for We take as our starting point the Van Vleck perturbative
method31720 which we use to create an effective Hamiltonian.

T Part of the special issue “John C. Light Festschrift”. This block-diagonal, multiresonant spectroscopic Hamiltonian
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can then be diagonalized to determine the eigenstate waveTABLE 1: Calculated Normal Mode Frequencies (cnt?)

functions in the number representation for each of the blocks,  y,04e symmetry o description
the blocks being defined by the polyad quantum numbers. In a 1153.26 oC stretch
contrast to that approach, here we transform the Hamiltonian a 50751 C-Cl stretch
to the corresponding action-angle representation. The beauty 3 a 290.60 CC—Cl bend
of the action-angle representation is that it allows one to reduce 4 by 470.30 out-of-plane
effectively the dimension of the Hamiltonian by transforming 5 b 845.85 C-Cl stretch
6 b, 329.20 C+C—Cl bend

to a new set of angle variables, where the transformed
Hamiltonian only depends on a subset of the new angle
variables. Quantization of this Hamiltonian and its subsequent 1o potential is that of Strickler and Grueb@ehis potential

eigenstate analysis allows us to visualize the wave functions being similar to that of Bigwood et alFollowing Nielsert’
and clarify which of the myriad of possible resonant interactions o expand the Hamiltonian in the form ’

are important. Here all but the simplest of computations cease
to be used, and our semiclassical analysis is employed to assign Ho=HO 4 1HD 4 12H® 4 coo 4 11O )
states. v v v v v
The semiclassical analysis was developed in previous StUdieS\Nherel
of complex vibrations for such molecules as acetyleré,
CHBrCIF2 N,O,22 DCO2 CDBrCIF2* and CRCHFI.25 The
analysis allows inspection of the density and phases of its
eigenfunctions previously calculated in the Hamiltonian deriva-
tion process but now transformed to a reduced dimension
semiclassical action-angle representation. This reveals extremely K = T0...TOTO 3)
simple albeit unfamiliar topologies that give quantum numbers v v
by simply counting nodes and phase advances. .
The topology also allows us to sort most states, even thoughWhereT(n) = exp{i2"[S", ]}. The SV are chosen such that
they have unfamiliar forms, into dynamically different excitation 6
ladders of states. Here these ladders are associated with different K = Z C. - [(a;r)maini] ()
regions of phase space. The rungs of these ladders intersperse v mh
in energy causing the spectral complexity. No experimental
procedure allows such a sorting. To demonstrate the power ofhas the desired form through order'® This transformed
this approach, we will analyze in detail a specific polyad of Hamiltonian is written in terms of raising and lowering operators
states whose energies are approximately 8000'@nd which that obey the same commutation relations, eay.al] = 1, as
seem to form some of the most complex spectral line patternsthose for the harmonic oscillator. Both, and K, have zero-
that we have studied. order contributions that describe uncoupled harmonic oscillators,
Even in classically chaotic regions guiding spinal points, whose descriptions are given in Table 1.
trajectories, or planes that correspond to averages over regional There are many different formk, can takel® Given the
periodic orbits can easily be drawn from these eigenfunctions normal-mode frequencies we have choser8fieuch that each
as the structure about which localization takes place. The guidingof the following operators
dynamic elements when transformed back to the full dimen- N
sional configuration space reveal the internal molecular motions. K=o, +0,+ 75
The spectroscopic model Hamiltonian results are sensitive =2 4545 +3
to model changes in the potential. This coupled with the fact T T T U5 T e
that our analysis is based on second-order perturbation theory, M = oA (5)
should lead one to expect the eigenvectors to be qualitative.
This is correct. Nonetheless, much of the interesting topologies commute with the HamiltoniadK, when off-diagonal terms
found here are robust to modest potential changes and to thegreater than orden are neglected. Heré; = aa is the
order of perturbation theory, even though the details of the hymber operator. Equivalently, ti#9 are chosen such that the
interleaving of the rungs of the ladder will certainly change. matrix representation df, is block-diagonal. These operators
From our perspective, the important issue is to demonstrate thegre found by examining the normal-mode frequencies and
utility of the approach for analyzing wave functions of & determining which sets of states are likely to be resonantly
multiresonant Hamiltonian in a strongly mixed regime where coypled. With this information one finds the above operators
traditional methods fail entirely. The sensitivity presents no ysing an algorithm such as the Kellman vector mééléishould
problem for the purpose of sorting assigning and extracting pe noted that although any three independent combinations of
dynamics. these operators can be used, we found the above choice of
operators to be the most convenient. It should also be noted
that the number of additional constants depends entirely on the
We have chosen the rectilinear normal mode Hamiltonian as Symmetry, the couplings, zero-order normal-mode frequencies,
our starting point for the calculation of the effective Hamiltonian. and the energy range over which one hopes to carry out the

For SCC} this Hamiltonian takes the simple form analysis.
The final Hamiltonian takes the form of harmonic oscillators

plus anharmonic corrections

6 A 1 R AV 1
= goli ) gl g e o

5]

is the perturbation parameter. The potential terms of
ordern are included irH" . This Hamiltonian is reexpressed
in terms of harmonic oscillator raising and lowering operators.

The Van Vleck transformations are accomplished via a
succession of canonical transformations,

{mn} 1=

Il. Van Vleck Perturbative Results

_1cpe
H, = ZZPK +V(Q) @

where the small inverse moment of inertia terms are neglected.



Dynamics of Thiophosgene J. Phys. Chem. A, Vol. 110, No. 16, 2006319

TABLE 2: Calculated x; (cm™t) from Second-Order
Perturbation Theory

i Xi i Xi

11 —3.149392 25 —4.502738
12 0.248292 35 —1.788787
22 -1.101397 45 —3.165362
13 0.069427 55 —4.848639
23 -1.230195 16 —1.489753
33 —0.160529 26 —0.307362
14 —2.093491 36 0.048541
24 —2.737102 46 —3.861793
34 —2.161802 56 —1.703855
44 2.302492 66 —0.325367
15 —4.464485

TABLE 3: Off-Diagonal Coupling Terms (cm 1) through
Second-Order Perturbation Theory Written in the Form of
Eq 42

coeff Cmn m n

kiss —10037 O O 0O O 1 1 1 0 O O O O
ksss —10.858 0 O 0 0 1 O O 1 O O O 1
Koa1 0044 0 12 2 0 0 0O 1 0 O O O O
Kos1 -0042 0 1 0 0 0 2 1 0 0O O 0 O
Kiz2s 4139 1 1 0 0 0 O O O O O 2 O
Kse -0828 0 0 2 0 0 0O OO O O O 2

aThe couplingWymincludes the hermitian conjugates of these terms.

The x; are given in Table 2 and the off-diagonal contribution
Wymis given in Table 3. The first two contributions of Table 3

appear at first order in perturbation theory. They are Figure 1. Probability distribution plotted as a function of tkg and
Qs coordinates for increasing values Qf going from (a)-(f). This

1) _ t t state is the highest energy state obtained from diagonalizing the
ng k156(ala5a6 +he)+ k526(a5a2a6 +hc) @) Hamiltonian with all off-diagonal coupling set to zero except ki

term. Thek;ss term mixes the zero-order statés— p, 2, 2, 0, O+ p,
The eigenstates are linear combinations of the number basis2 + pCwherep = 0-5.
states. These in turn are eigenstates of the first terms in eq 6
and, of course, are separable.

The goal of this paper is to use semiclassical ideas to 0.6 -
understand the shapes of the eigenfunctions of the above
Hamiltonian. Although the eigenfunctions of the original
Hamiltonian and the effective Hamiltonian will be different, if
in both cases we assume that the raising and lowering operators
are those for harmonic oscillators, the differences are generally 02} —
small. The general shape and nodal structure is always the same.
The work of Zifliga provides a clear exampie The need for

04 -

|p(1)[?

1
such a semiclassical analysis can be seen using a simple 0 0 - o
illustrative example. "
The illustrative example is that which is obtained if all the !
off-diagonal terms are set to zero with the exception ofkifze Figure 2. Semiclassical probability distribution function corresponding

term. The corresponding classical Hamiltonian is trivially O thatof Figure 1 plotted as a function ¢4 defined in eq 16.

integrable yet the resulting eigenstates are strongly mixed in

three degrees of freedom. Thegss terms mixes the six zero-

order number basis statgs— p, 2, 2, 0, 0+ p, 2 + pOwhere

p = 0—5. Figure 1 shows the highest energy eigenstate obtained The transition from the quantum Hamiltonian given in eq 6

from diagonalizing the corresponding>6 6 matrix. in terms of creation and destruction operators to the correspond-
In the next section we will describe our methods for choosing ing classical Hamiltonian is done by first bringing the operators

new semiclassical wave functions for interpreting the dynamics. into symmetric order and then applying the semiclassical

This method removes all the cyclic coordinates in the classical Substitution rule¥

Hamiltonian and thus leads to greatly simplified wave functions. ; )

We will see that Figure 1 will simplify to probability distribution 8 Ijl 2 exp(-ig,) a;r — Ijl 2 exp(i;) (8)

shown in Figure 2. The coupling leads to a localized wave

function along an appropriately chosen coordinate that describeswherel; and¢; are the classical action and angle variables for

a special phase relation between the three oscillators. We nowthe degree of freedoijn By symmetrization we mean that we

turn to a discussion of the transformations needed to define suchwrite a product of an annihilation operator with a creation

coordinates. operator of the same degree of freedomaal @ a'a)/2 and

Ill. Reduction and Semiclassical Wave Functions
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then the number operator transforms into classical action minusfocus on just the coordinate dependence of the coupling which

1/,. The resulting classical Hamiltonian is

Hcl = HcI,O + Wcl (9)
with
] i=

and
W, = 2K;sd 11/2 |5l/2 |61/2 COS(p; — P5 — ) T

2Ks,d 51/2 |21/2 |61/2 COSlps — ¢, — ) +

2Kyl 2 1,121, cOSQ, — ¢, — 200) +

2,61, 2 1,1 cosep, — ¢, — 2¢) +

2kyel1 1,15 cosgp, + ¢, — 2¢0) +

2Kkggl 5l g COS(23 — 2¢) (11)

where the coefficients of\, are given in Table 3. The first
two terms inWe correspond to those M, of eq 7.

In analogy to the constants of motion given in eq 5 of the
guantum Hamiltonian, the classical Hamiltonian has three
conserved quantities. They are

K=1,+1,+ I (12)
L=2l, +l,+ I+, (13)
M=1, (14)

Be aware that the numerical values of the classical conserve
quantities differ from the corresponding quantum con-

is

Wy = 2kyed; 21572 162 cospy) +
Herd M2 1,Y21 V2 cosp,) +
2Kal 1,205 cospy — v, — 2u3) +
2Koeqly 21,726 COSEpy — ) +
2Ky, 21,5 cos, + ) +
2Kl 3l COS(2p3)

Moreover, by solving fory1, 1y, andys and taking the time
derivative of the result to give the effective frequencigg]),

here just written asy, we observe thap, 9, andys are zero
whenwi = ws + we, w2 = ws — wg andwsz = wg, respectively.
Hence as said above, the transformation is chosen to make the
new variables move slowly and come to a complete stop in the
case of frequency coupling by the most important (see Table
3) resonant interactions. As will be seen, such localizations will
result in semiclassical wave functions being localized in the
same direction. This will allow the recognition that this wave
function is affected by the given resonance. It will also help in
the sorting of such wave functions in classes affected by
particular resonances.

As a result of the form of eq 17 the corresponding conjugate
actionsM, K, L can be treated as if they were parameters, and
thereby the system is reduced to one with three degrees of
freedom. The configuration space of the reduced system is the
torus T2 of the angle variableg1, v», 3. The cyclic angles
conjugate to the constants of the motion have been removed.

The final goal of our whole strategy is to connect individual
guantum states with some particular motion of the atoms
described in the original normal coordinates of the original
Hamiltonian. A necessary first step is to relate quantum states
with the classical reduced configuration spagen other words,
we must use thi32 as the domain on which the quantum wave

gfunctions are constructed and plotted. Taking the eigenstates
as the column vectors coming out of the diagonalization of the

17)

served quantities because of the classical zero points 0feffective Hamiltonian matrix, the conversion into a function on

action. The quantum ground state corresponds to a V#ue

for all the classical actions of the elementary degrees of

freedom.

Next we use the conserved quantities to reduce the syste
to one with three degrees of freedom. We apply a canonica
transformation from the variablésand¢;, j = 1—6 to the new
actionsJ;, Jp, J3, M, K, L and canonically conjugate angles
j = 1—6. To make the interpretation of the new actions easy,
we chooseJ; = |; for j = 1, 2, 3. In addition, we choose the
new anglesys, 2 andys as such combinations of the old angles

that always move slowly and come to a complete stop in the

m

T3 requires two steps. The first one is to construct the wave
function as a function of angle coordinates, and the second is a
reduction of the quantum system to one of three degrees of
freedom in analogy to the classical reduction. We do not have
|any exact method for carrying out the first step. However,
because all our explanations rely heavily on semiclassical
thinking, it is sufficient to construct semiclassical wave func-
tions; this can be done with amazingly little numerical effort.
We represent and replace the number states indexed by
i.e., the basis states in which the Hamiltonian matrix is given
and the eigenfunctions are represented, by the periodic plane

case of frequency coupling by the resonant interactions. OneWaves on the angle torus as

possible choice with these favorable properties is

L=J l,=J, ;=3 ,=M
ls=K—-J,—J, le=L—-K-=J+J3,—-J3; (15)
b1 =+ Y5+ 2 Dy =Y+ YPg D3 = Y3+ Pg
Gs=Yy s = Y5t YPg 6=y  (16)

Xn(#) = exp{ing} (18)

This too is the semiclassical eigenfunction of the Hamiltonian
in eq 10. Here the quantitiesand¢ without any index are 6
component vectors, and in the argument of the exp function
we have the scalar product of these vectors. Note that this
equation corresponds to applying Sainger’'s quantization rule

to the action and angle variables of the system. Of course, this
only holds semiclassically because Sdainger’s rule is only
valid to the lowest two orders it in general canonical

By transforming the classical Hamiltonian of eq 9 to these new coordinates. Now the expansion of an eigenstated ohto
coordinates and momenta one finds that the coupling is not anumber states as it comes out of the numerical diagonalization

function of the anglesps, vs, we. This is readily seen if we

translates into the expansion of the wave function into periodic
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plane waves on the configuration torus. That is it translates into states with even values 0f = s + 7 cannot couple to states
the Fourier decomposition of the wave function on the torus. with odd valuesN. Given our definition of the constant of
Next we reduce the dimensionality of the basis functions and motionL in eq 5, this constraint leads to an effective Hamil-
thereby also all linear combinations of them as for example the tonian where states with even valueszgfcannot couple to
eigenfunctions to functions of the three angle variallesy,, states with odd values ak.
3. First we plug into eq 18 the expression of the old angjes In the classical Hamiltonian this symmetry is observed in
in terms of the new anglag; as given in eq 16. In the argument  the coupling of eq 17, where there is always a factor of 2 in
of the exp function we obtain front of the 3 term. Considering the periodic boundary

_ _ conditions, i.e., return to the same point when the variable
N = Nypy + Nypy + Napy + Ny + Nsps + N = Ny(11 + changes by 2, this causes the discrete symmegry— s +
Y5+ 26) + Ny(Y, + P5) + Ny(Y3 + ) + Ny, +

mr of the Hamiltonian. Accordingly, the eigenfunctions only have
Ns(Ps + Pg) + Ngtps = Y1y + YoM, + Yoy + M + contributions from basis functions wheng is either even or
PsK + el (19)

odd only; i.e., the eigenfunctions can be sorted into symmetric
ones and antisymmetric ones with respect to this discrete
. . . o . symmetry. Further symmetries &f, which, however, are of
Now any eigenfunction only contains contributions from basis e . . .
functions belonging to one polyad, i.e., to one value of all the no special interest in the following are a shift of any angle by
" P o 27 and a simultaneous replacement of all angles by their
conserved quantitigs, L, M (here considered as combinations . X L
of the quantum excitation numbers of the original degrees of negatives. These two symmetries guarantee the periodicity of
freedom). Therefore the dependence on the angless and the system on the toroidal configuration space and the time
. 5 . .
e is @ common phase factor of all basis function and therefore reversal symmetry of the Hamiltonian system.
a phase factor in front of the whole eigenfunction. Such global
phase factors are irrelevant and can be dropped and thereby th
eigenfunctions are reduced to functions of the three angle

V. Numerical Examples for Semiclassical Wave
unctions

variablesy, 12 andys; i.e., they have become functions on
the reduced classical configuration space
In summary, the basis state with excitation numbgrs =

We give numerical examples for the polyld= 7, L = 14,
M = 0. It contains a total of 288 states, and within the polyad
we enumerate the states according to increasing energy.

1, ..., 6 will be denoted by The structure of the eigenfunctions at the energetically upper

end of the polyad is most simple. Therefore we start with a
discussion of the uppermost state, i.e., state number 288 of the
polyadK = 7, L = 14,M = 0. Its energy is 8217 cm. The
six parts of Figure 3 show density (magnitude squared) and
phase of the semiclassical wave function in the three plages
= 0, v = w andy, = 7, respectively. We see immediately
that the density is concentrated along the 1-dimensional
organization centety; = . = m. There are no nodal lines;
therefore both transversal excitation numbers are zero. In
addition, the phase advance along this fiber is zero; therefore
the longitudinal excitation number is also zero. In this sense
of basis functions, then the corresponding semiclassical wavethe highest state, i.e., state 288, is the ground state of the
function onT? is given as organizational fiberps = vy, = x.
We use the word fiber above as the idealized central element
Z of the dynamics. The organization element is a periodic orbit
nepolyad (22) and its surrounding. This surrounding might be a bundle of
concentric tori in the case of a stable central periodic orbit or
We imagine representing the tortisas a cube with identified ~ some bundle of chaotic trajectories that run parallel to the central
opposite boundary points. A point on any of the cubes periodic orbit on average in the case of an unstable central
boundaries corresponds to one in a similar position on the periodic orbit.
opposite boundary. This is just the 3-dimensional generalization Now we discuss the type of motion that is represented by
of a point on a rolling circle being able to be represented on a this organization center and the interpretation of the excitation
graph with angle varying from 0 tos2 but with enforced numbers relative to it. Along this fiber the angje moves
periodic boundary conditions. A 3-dimensional toiTisis a freely, whereas the two anglgs andy, are locked at the values
Cartesian product of three rings, thereby implying a cube with 7. Looking at eq 16 of the canonical transformations, we see
identified opposite boundary conditions. In the numerical that locking ofy; to a constant value means that the original
examples in the next section we plot density (magnitude mode 6 is coupled to the beat between modes 1 and 5 or
squared) and phase of some eigenfunctions on 2-dimensionaklternatively and equivalently mode 5 is coupled to the beat
sections of this cube. Also on such 2-dimensional sections between modes 1 and 6. Along the same line of reasoning the
opposite boundary points have to be identified such that the locking of 1, to a constant value means that the original mode
topology of the sections becomes the one of a 2-dimensional 6 is coupled to the beat motion between modes 2 and 5 or
torus. Unfortunately, 3-dimensional perspective plots are too alternatively the coupling of mode 2 to the beat between modes
confusing to be useful. 5 and 6. The simultaneous lockings »f and, to constant
The states of the quantum Hamiltonian hae and B, values also imply a 2:1 frequency coupling of mode 6 to the
symmetries. In the interaction part of the quantum Hamiltonian beat between modes 1 and 2. Mode 3 always runs freely, and
this is evident in that there is an additional symmetry constraint the longitudinal excitation number, the phase advance divided
(cf. Table 3) thatms + mg — ns — ng must be even. Equivalently, by 2z, is the excitation number of mode 3. The transverse

Iy, n,, N0 (20)
where we suppress tie L, andM quantum numbers to simplify
notation. Note that it is not necessary to specify the values of
N4, Ns, N, they can be reconstructed from the knowledge of the
conserved quantitids, L, M. If an eigenfunction comes out of
the diagonalization of thél matrix as a linear combination
L= CynlND]
nepolyad

(21)

W12 ps) = Cen €XP{I[Ny1; + Nytp, + Nyl
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Figure 3. Semiclassical wave function of state 288 with energy 8217 Figure 4. Slices of density (left) and phases (right) of the semiclassical
cm L. Left panels show the density (magnitude squared) and right panelswave function of state 96 with energy 7650 cmOtherwise the same
show the phase as functions of two coordinates indicated for a fixed as Figure 3.

value of the third coordinate. In density plots, density decreases from

pink, blue, green, to red. In the phase plots, the colors change from 5 gsipjlity into the scheme discussed so far adds approximately

white, light blue, yellow to gray as the phase increases in increment of . ’ - N
7/2 from O to 2. In all the plots opposite boundary points of the square 30 further states clearly organized into fibers runningyin

have to be identified to convert the square into a 2-dimensional torus. direction.

At the lower end of the polyad many states are organized
excitation numbers indicate to which degree the couplings are around a different organizational element, namely, around the
out of phase or to which degree the motion fluctuates around Planey, = 0. As a representative example we show in Figure
the coupling point. 5 plots of the semiclassical wave function for state 10 at energy

If we consider states at lower energy, then we encounter 7414 cnrl. The various parts of the figure show density and

approximately 130 further states having various longitudinal and \F/)cgssi:en im?ngﬁgﬁf/ ?O?A’Il/t’ﬁe: d%r?sr:?ywils T:(?r,u:rgr?tezfetl(\j/e;)r/(.)un g

transversal excitation numbers organized around the same fiber,, . . . U

One of the lowest ones in energy of this group is state 96 at .thls Qrganlzatonal plane and_that t_he _p_hase fu_ncuon IS s!mple

enerav 7650 cmi. In Eiqure 4 we show density and phase of M this plane only and has discontinuities outside. The singu-
1ergy 76 : 9 y P larities of the phase function become most evident in piane

this state in the planegs = 0, ¥, = — 1 andy, = Y1 + /2,

. . : = 0; see part f of the figure. The transverse quantum number is
respectively. From these plots it is evident that the transversalt = 0; the two longitudinal quantum numbers &re= 0 andls
quantum number in the diagonal direction tis = 0, the P
transversal excitation number perpendicular to the diagonal is
t, = 1, and the longitudinal quantum numberlis= 9. With
such a high longitudinal excitation the fibers lead to some
wiggles iny; and iny, directions and the density is no longer
almost constant along the fibers. Nonetheless, fibers rotating

around inys directions stay clean. Note how the nodal plane is organized around the same organizational element. In Figure 6

a plane of discontinuities of the phase. we present plots for state 132, which is one of the highest ones
If both transversal excitation numbers are large, then it in this scheme at energy 7708 chThe various parts of the
becomes difficult to see a clean transverse structure becauseigure show density and phase in the plages= 0, 1, = /5
most of the density is pushed to the opposite sides of the torus,and v, = 77/4, respectively. In this state there is a transverse
i.e., close tap; = 0 and/or toy, = 0. In particular, the fiberin  excitation, and the plang, = 0 itself is a nodal plane; therefore
the y3 direction throughy; = 0 andy, = s seems to be the  we show the plot in the parallel plang, = 7/5, which is a
natural central fiber for a whole group of states in the middle plane of high density. Note that the phase function in this plane
of the polyad. In such cases it becomes more natural to countof high density is a continuous deformation of a periodic plane
nodal lines from such opposite points. Incorporating this wave whereas the phase function has singularities outside; see

In the motion represented by this organization element the
anglesy, andys move freely, whereas angle; is locked to a
constant value. As before, the lockingip$ implies that in the
original modes mode 6 is coupled to the beat between modes 2
and 5. Going up in energy, we find approximately 70 states
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plane 3 =0 plane i3 =0
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Figure 5. Slices of density (left) and phases (right) of the semiclassical Figure 6. Slices of density (left) and phases (right) of the semiclassical
wave function of state 10 with energy 7414 cmOtherwise the same  wave function of state 132 with energy 7708 ¢nDtherwise the same
as Figure 3. as Figure 3.

parts d and f of the figure. From the plots we read off the zlitflf:r-fiﬂg(;%%;dgﬂFﬁi):%t?g\?vggr tt;lirsnzv\th:ng;}eapgj
quantum numbers= 1, I = 1 andl; = 0. . means for the original degrees of freedom a coupling of the
Going up in energy, the states show more and more variation degree of freedom 6 to half of the beat frequency between the
of density inside of the plang, = constant of high density.  degrees of freedom 1 and 2. There is also a small sequence of
More and more fibers i3 direction appear, and accordingly,  states with a clean and simple phase function in planes 0.
the other scheme discussed before becomes the more natural Finally, there are states that look completely irregular. As a
one to apply. Note that the energy of the state shown in Figure ygpresentative example we show state 98 at energy 7652 cm
6 is higher than the energy of the state shown in Figure 4. This jn Figure 8. The various parts show density and phase in the
demonstrates that the two ladders of states, discussed so fafpjanesy; = 0, y, = 27/5, andy, = 0, respectively. In the
interlace and make the total spectrum appear irregular anddensity we do not recognize any clean nodal pattern and the
difficult to analyze even though most states belong to one of phase function is not simple in any plane that could serve as a
two rather simple and regular progressions of states. reasonable organizational center. Note that the phase has
In addition to these two long regular ladders of states, there singularities also in the plang, = 27/5, which is the plane of
are states that do not fall into these two schemes, this furtherhighest density and which normally would be a natural candidate
increasing the complexity of the spectra. First there are statesfor an organizational structure. The phase is simple along some
that show a regular, clean and simple structure of completely fibers in three directions but it is not evident what the transverse
different type. To each one of such other organizational schemes structure of these fibers is. This function seems to be a mixture
we could only find very few states. A good example is state of various patterns caused by state mixing because of near
100 at energy 7654 cm shown in Figure 7. The various parts  accidental degeneracy. There are many more similar cases, and
of the figure show density and phase of the semiclassical wavesome of such mixed states can be interpreted after demixing

function in the planegz = 0, ¥, = — y1 andyz = Y1 + 7, with the appropriate neighboring states.

respectively. The only plane in which we could find a rather Note how close in energy the states of Figures 4, 7, and 8
clean and regular phase function is the plgne= y1 + x. In are. This demonstrates the interlacing of sequences belonging
this plane we read off the longitudinal excitation numders to different organizational patterns. Without a careful inspection

I =7 andi3 = 8. Note that because of mixing of basis functions of the wave functions a separation of the subsequences belong-
only the combinatiori; + |2 in the organization plane has a ing to the various organizational structures is impossible, and

well-defined value whereas the excitation numblgrand |, we only recognize the irregular complete spectrum.
themselves do not have specific values. Seen from the plane )
Y2 = Y1 + a the transverse excitation numbertis= 0. This V. Conclusions

state does not fit well into any of the two schemes discussed The complex eigenstate structure of S&i@s been analyzed.
above. There are a few more states with a similar density patternStarting from the fitted potential of Strickler and Grueb®e,
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Figure 7. Slices of density (left) and phases (right) of the semiclassical Figure 8. Slices of density (left) and phases (right) of the semiclassical
wave function of state 100 at energy 7654 ¢nDtherwise the same wave function of state 98 at energy 7652 ¢nOtherwise the same as
as Figure 3. Figure 3.

the Van Vleck perturbation method was used to create a accidentally degenerate. The result are states with nearby
spectroscopic Hamiltonian and three polyad constants of the energies that combine the original states linearly. As such,
motion. Taking the classical limit and employing a canonical different linear combinations of these states can be made to show
transformation, the number of the degrees of freedom was typical ladder type motions corresponding to missing rungs.
reduced to three, a number that allows for visual inspection of Classical mixing is created when the flow seems to jump back
wave functions. In our chosen reduced configuration space angleand forth between two motions corresponding to two different
variables we can infer whether particular classical motions resonant regions of phase space, i.e., between that of two ladders.
become phase locked and hence semiclassical eigenfunction§Ve made no attempt here to carry out such steps in the analysis.
to localize when the motion occupied a region of phase spaceThere will also be some states so mixed up that it will be
where a particular resonance was active. This localization fruitless to do so.
enabled the visual Sorting of the eigenstates into ladders of states The success of the ana|ysis stems from five characteristics:
based on identified causal resonances. Assignment was carrieql) The qualitative insight of nonlinear dynamics. (2) The said
out by counting nodes and phase advances associated with thgonversion of the quantum problem in full dimension to a
density and phase of the eigenstate, respectively. For a largesemiclassical one in reduced dimension by use of a canonical
majority of states for which this was possible the three new {ransform that takes advantage of the polyad and other constants
values of nodal and angle quantum numbers plus the threeof motion to remove cyclic angle coordinates. (3) The choice
polyad quantum numbers made up an assignment based on sixf the reduced angle variables to be sums of the full dimension
approximate constants of the motion. angles configured to ensure that the former have zero velocity
Two important long and several other short ladders of states when the rational ratio resonance frequency condition is met.
were recognized and assigned. A generic drawing of the spinal This leads to a predictable localization of those of the quantized,
organizing center (a torus of lower dimension, here a line and now semiclassical wave functions, which are affected by the
a plane) in each ladder about which the states of the ladderparticular resonance. In reverse, the localized appearance of the
localize, was itself the most fundamental reduced dimension reduced dimension wave function reveals which resonances
dynamic motion that the ladder states quantize. An approximategovern it and makes sorting simple. (4) The revealing use of
transformation can be made on this organization center to showmots of phase advances as well as the usual density. (5) The
it in the full six dimensions. Such a task is not rewarding as fact that the spectroscopic as opposed to the initial Hamiltonian
viewing anything in six dimensions presents problems. contains only the most important interactions, leaving out those
A significant number of states, about 25%, did not fall on that are small, albeit trajectory and wave function disfiguring
any ladders. Our experience is that many of these could beones. This allows for the identification of the good, here polyad,
shown to be due to a quantum and/or classical mixing. The constants of the motion, a problem unsolved for the initial
former occurs when several states on the same ladder areHamiltonian.
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