
Ab Initio Treatment of the Chemical Reaction Precursor Complex Cl(2P)-HF. 1.
Three-Dimensional Diabatic Potential Energy Surfaces†

Anna V. Fishchuk, Paul E. S. Wormer, and Ad van der Avoird*
Theoretical Chemistry, IMM, Radboud UniVersity Nijmegen, ToernooiVeld 1,
6525 ED Nijmegen, The Netherlands

ReceiVed: October 10, 2005; In Final Form: December 22, 2005

The three adiabatic potential surfaces of the Cl(2P)-HF complex that correlate with the2P ground state of
the Cl atom were calculated with the ab initio RCCSD(T) method (partially spin-restricted coupled cluster
theory including single and double excitations and perturbative correction for the triples). With the aid of a
geometry-dependent diabatic mixing angle, calculated by the complete active space self-consistent field
(CASSCF) and multireference configuration-interaction (MRCI) methods, these adiabatic potential surfaces
were converted to a set of four distinct diabatic potential surfaces required to define the full 3× 3 matrix of
diabatic potentials. Each of these diabatic potential surfaces was expanded in terms of the appropriate spherical
harmonics in the angleθ between the HF bond axisr and the Cl-HF intermolecular axisR. The dependence
of the expansion coefficients on the Cl-HF distanceR and the HF bond lengthrHF was fit to an analytic
form. The strongest binding occurs for the hydrogen-bonded linear Cl-HF geometry, withDe ) 676.5 cm-1

andRe ) 6.217a0 whenrHF ) re ) 1.7328a0. This binding energyDe depends strongly onrHF, with larger
rHF causing stronger binding. An important contribution to the binding energy is provided by the interaction
between the quadrupole moment of the Cl(2P) atom and the dipole of HF. In agreement with this electrostatic
picture, the ground state of linear Cl-HF is a 2-fold degenerate electronicΠ state. For the linear Cl-FH
geometry the states are in opposite order, i.e., theΣ state is lower in energy than theΠ state. The following
paper in this issue describes full three-dimensional computations of the bound states of the Cl-HF complex,
based on the ab initio diabatic potentials of this paper.

1. Introduction

Only recently the importance of the formation of van der
Waals complexes in entrance channels of neutral chemical
reactions has been fully recognized.1-5 One of the early
examples1 of this recognition is the study of van der Waals
forces in the entrance valley of the Cl+ HD reaction, where
the van der Waals complex was shown to play a decisive role
in the reaction dynamics. As other examples we mention the
recent observation of prereactive van der Waals states of the
OH-H2 and OH-CO complexes.2,3 These references emphasize
the importance of studying the shallow van der Waals well
between reactants, which is a relatively neglected region of
reactive potential energy surfaces. See ref 4 for a discussion of
how these open-shell prereactive complexes can be investigated
by modern spectroscopic methods.

Very recently6 entrance channel halogen atom-HF complexes
were studied by high-resolution infrared laser spectroscopy. The
free radical complexes were formed in helium nanodroplets.
The authors of this work point out that the elucidation of the
structures and energetics of these complexes will require
extensive interaction between experiment and theory. Since we
fully endorse this statement, we have performed high-level ab
initio calculations on the Cl-HF complex. We computed the
lowest three adiabatic potential energy surfaces of this complex
that correlate with the chlorine atom in its2P ground state. We
also computed a diabatic angle as a function of the three internal
coordinates. According to the diabatic model presented in refs

7 and 8 that is summarized below, we obtained from this angle
and the three adiabatic surfaces four diabatic potential surfaces
from which the full 3× 3 matrix of diabatic potentials can be
constructed. These ab initio diabatic potential surfaces are used
in the subsequent paper9 in the computation of the rovibrational
spectra and structure of the complex. We will see below that
the linear geometry Cl-HF has aΠ ground state and a first
excitedΣ state, whereas linear Cl-FH has aΣ ground state
and a Π excited state. Deviation from linearity lowers the
symmetry fromC∞V to Cs and gives a splitting of theΠ states
into two states, one of A′ and one of A′′ symmetry. A similar
observation made by Herzberg and Teller in 193310 led Renner
to the very first quantum mechanical description of coupling
between electronic and vibrational motion.11

This paper has the following outline: first we describe how
we computed the ground and first excited A′ state by means of
the partially spin-restricted coupled-cluster method based on
singly and doubly excited states with inclusion of perturbative,
noniterative, contributions arising from triply excited states [the
RCCSD(T) method].12 We pay some attention to the counter-
poise correction of the interaction energies in these states,
because the procedure is not straightforward for the case of a
spatially degenerate open-shell monomer. The computation of
the energy of the A′′ state is discussed. This computation is
relatively easy because it regards the lowest state of A′′
symmetry. The manner in which the diabatic angleγ is
computed from matrix elements of the electronic angular
momentum operatorLz is described, and it is shown how a
rotation of the two adiabatic A′ states by angleγ leads to two
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diabatic states. The third diabatic state is equal to the adiabatic
A′′ state. The fitting of diabatic potential energy surfaces as a
function of two intermolecular Jacobi coordinates and of the
H-F bond lengthrHF is discussed. Finally, results are given
and illustrated by some representative cuts through the two-
dimensional surfaces.

2. Ab Initio Computations

A Cartesian frame was chosen with as origin the Cl nucleus.
The nuclear center of mass of HF (mH ) 1.0078250321 u,mF

) 18.99840320 u) defines the positivez-axis. It is at a distance
R from the Cl nucleus. The vector pointing from H to F lies in
thexz-plane of the frame and makes an angleθ with the positive
z-axis. The energies were computed on a 14× 12 × 5-dimen-
sional grid. The following 14R values were included:R )
4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 12.5, 15.0, 20.0,
and 25.0a0. Theθ-grid was a 12 point Gauss-Legendre grid,
and the following five H-F distances were taken from ref 13:
rHF ) 1.4827, 1.6027, 1.7328, 1.9180, and 2.1032a0. These
points are close to the equilibrium separation and to the classical
turning points of the ground and first excited vibrational levels
of HF.

All energy calculations were performed by means of the
RCCSD(T) method.12 We used the computer program MOL-
PRO14 in all of the calculations. The atomic orbital basis used
was the augmented correlation-consistent polarized-valence
triple-ú basis (aug-cc-pVTZ basis)15,16with uncontracted bond
functions (exponents sp) 0.9, 0.3, 0.1 and d) 0.6, 0.2) added
halfway between the nuclear center of mass of HF and the Cl-
atom. The 1s electrons on F and the 1s, 2s, and 2p electrons on
Cl were left uncorrelated.

The Cl-HF dimer is ofCs symmetry and possesses three
potential energy surfaces that correlate with the2P ground state
of the free chlorine atom: two of A′ symmetry (correlating with
Px and Pz substates of chlorine) and one of A′′ symmetry
(correlating with Py). The MOLPRO RHF program is capable
of generating a single determinantal state of the one but lowest
energy and the same A′ symmetry as the ground state. This
determinant can serve as the reference state for RCCSD(T).

To explain this, we first note that the high-spin-restricted
Hartree-Fock (RHF) method, as implemented in MOLPRO,
returns highest occupied orbitals of the dimer that are practically
pure chlorine 3p-type AOs. The A′ electron configurations are:
(cc)φ1(A′)φ2(A′)2(py)2, where (cc) stands for the 11 lower lying
doubly occupied orbitals, and

The orbital energies of the energetically higher, nearly degener-
ate, AOsφ2(A′) and py vary as a function ofθ, and so does the
energy of the lower orbitalφ1(A′), with a fairly constant orbital
energy difference betweenφ1(A′) andφ2(A′). Notice that the
high-spin state (cc)φ1(A′)φ2(A′)2(py)2, as computed by MOL-
PRO, does not satisfy the Aufbau principle. Forθ ≈ 0° the
angleγorb belonging to the lowest A′ state is close to zero, so
that φ1 ≈ px, φ2 ≈ pz, and the px orbital is singly occupied,
while for θ ≈ 180° the angleγorb is close to 90°, i.e.,φ1 ≈ pz,
φ2 ≈ px, and the pz orbital is singly occupied. Forθ ≈ 60° the
orbitals φ1(A′) and φ2(A′) are equally weighted mixtures of
px and pz and γorb ≈ 45°. The lowest RCCSD(T) energy of
A′ symmetry is obtained following the standard rules, i.e.,
with the orbitals from the RHF procedure as input to the
RCCSD(T) program. Orbitals for the first excited A′ state are

obtained by swappingφ1(A′) and φ2(A′) in the start input to
the RHF program, followed by iteration until convergence. The
convergent MOs thus obtained enter the RCCSD(T) computation
yielding the first excited A′ state of the dimer. Since the RHF
iterations do not change the order of the MOs, the excited
RCCSD(T) state has a reference configuration in which to a
good approximation forθ ≈ 0° the singly occupied AO equals
pz and px is doubly occupied, whereas forθ close to 180° px is
singly occupied and pz doubly. Forθ ≈ 60° the excited-state
reference configuration is: (cc) (pz + px)(pz - px)2(py)2, i.e., the
orbitals px and pz are mixed with nearly equal weight.

The A′′ reference configuration is (cc)pyφ1(A′)2 φ2(A′)2 for
all θ, with the py orbital singly occupied. The orbitalsφ1(A′)
andφ2(A′) are now nearly degenerate, and still of the form given
in eq 1. They are pure px and pz for linear geometries, i.e.,γorb

≈ 0° for θ ≈ 0° and γorb ≈ 90° for θ ≈ 180°, and they are
mixed with equal weight forθ ≈ 60° (thenγorb ≈ 45°). The py
orbital is lower by approximately the same amount as the
difference in orbital energy ofφ1(A′) andφ2(A′) in the case of
the RHF calculation on the A′ state. Clearly, the A′′ electron
configuration does not obey the Aufbau principle either. For
the linear geometryθ ) 0° (point group C∞V) the lowest
RCCSD(T) A′ state is degenerate with the RCCSD(T) A′′ states
they are partners in aΠ ground stateswhereas forθ ) 180°
the excited RCCSD(T) A′ state is degenerate with the A′′ state;
here theΠ state is an excited state. The degeneracies are
reflected in the orbital energies, which we write briefly as
εR(Γ) with R ) x, y, z and Γ ) 1A′, 2A′, A′′. For θ ) 0°:
εz(A′′) ) εz(1A′), εx(A′′) ) εy(1A′), and εy(A′′) ) εx(1A′).
However, forθ ) 180°: εz(A′′) ) εz(2A′), εx(A′′) ) εy(2A′)
andεy(A′′) ) εx(2A′), so that indeed the A′′ configuration (cc)
py(pz)2(px)2 has the same energy as the A′ configuration (cc)
px(pz)2(py)2 in both cases. As we just saw, the latter configuration
yields the A′ ground state forθ ) 0° and the A′ excited state
for θ ) 180°.

So far we have not discussed the basis set superposition error
(BSSE), which usually is taken care of by the counterpoise
correction (i.e., subtraction of the sum of the two monomer
energies computed in the same dimer AO basis as the dimer
energy). The energy of the HF molecule is unambiguously
defined, as is the energy of the A′′ state of the chlorine atom,
but there is a choice for the A′ energy of the free Cl atom. An
RHF computation of the A′ state of the free chlorine atom in
the dimer basis yields for all anglesθ the electronic configu-
ration (cc) pz(px)2(py)2, where pz is lower in energy than px and
py due to the presence of the hydrogen fluoride basis on the
z-axis. The higher two p-orbitals are degenerate. Swapping pz

and px in the input of the RHF program followed by iteration
changes the total RHF energy by less than 1 cm-1. However,
the RCCSD(T) energy of the free Cl atom (in the dimer basis)
is much affected by the orbital swap, being 151.6 and 115.0
cm-1 lower than the unswapped RCCSD(T) energy forθ ) 0°
and 180°, respectively. In our first attempt to correct for the
BSSE, we applied the procedure recommended by Kłos et al.17

according to which the free chlorine px and pz orbitals should
be rotated by angles equal to those of the dimer. The results of
this procedure were inconsistent, however, in the sense that the
degeneracy of the A′′ state with one of the A′ states that should
occur both forθ ) 0° andθ ) 180° was lifted by the BSSE
correction. The failure of this method may be related to the
fact that for linear Cl-HF (θ ) 0°) the lowest A′ state is
degenerate with A′′, whereas for linear Cl-FH (θ ) 180°) the
highest A′ state is degenerate with A′′. In Cl-HCl, the system
where Kłos et al.17 tested their method, such a swap does not

(φ1(A′), φ2(A′)) ) (px, pz)(cosγorb sin γorb

-sin γorb cosγorb
) (1)
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occur. After some experimentation we decided that subtraction
of the lowest RCCSD(T) energy of the free chlorine from
both A′ dimer energies gives the most consistent results. After
this counterpoise correction A′ and A′′ remain degenerateΠ
states for both linear geometries. We reiterate that the lowest
RCCSD(T) energy of the free chlorine is obtained by swapping
px and pz, obtained from a ground-state RHF calculation, in the
input of an RHF plus RCCSD(T) computation. The counterpoise
correction for the A′′ dimer energy did not pose any problems,
we simply subtracted the A′′ energy of the Cl-atom [and also
the RCCSD(T) energy of the HF molecule, of course].

3. Diabatic Potentials and Analytic Fits

As just discussed, we obtain three adiabatic statesΨ1(A′),
Ψ2(A′), andΨ(A′′) from the RCCSD(T) computations. They
each have as a reference a closed-shell Slater determinant in
which a hole is created in the 3p-shell of the chlorine atom. As
we saw in section 2 that the hole remains fairly well localized
on the Cl atom for all geometries of the complex considered, it
is reasonable to assume that the RCCSD(T) states are linear
combinations of diabatic states|Px〉, |Py〉, and |Pz〉 correlating
to the corresponding states of Cl. According to the theory
described in refs 7,8 we introduce the diabatic angleγ by writing

with

Recalling the expression used by Alexander7 for the matrix of
Lz (thez-component of the chlorine electronic angular momen-
tum operator) in the diabatic basis, we note that the matrix of
Lz in the adiabatic basis is (in atomic unitsp ) 1)

In the same AO basis as used for the energy computations, we
computedLz by means of the multireference configuration
interaction method (MRCI). This computation was preceded by
a complete active space self-consistent field (CASSCF) calcula-
tion to generate the natural orbitals that enter the MRCI
computations. All configurations obtained by single and double
excitations out of the CASSCF wave function were included in
the MRCI treatment with internal contraction, giving a total
number of about 800 000 configuration state functions. In
CASSCF, as well as in MRCI, the 1s orbitals on Cl and F were
frozen, as were the 2s and 2p orbitals on the chlorine atom.
Initially we froze only the 1s AO on Cl, but then the 2pz orbital
on Cl sometimes appeared among the valence orbitals, giving
rise to jumps in matrix elements ofLz as a function of geometry.
From the MRCI matrix ofLz and eq 3, the angleγ can be
obtained. Knowingγ, we compute the diabatic states from the
inverse of eq 2.

The BSSE corrected RCCSD(T) adiabatic potentials
V1(A′), V2(A′), and V(A′′), and the MRCI values for
〈Ψ(A′′)|Lz|Ψ2(A′)〉, 〈Ψ(A′′)|Lz|Ψ1(A′)〉, were obtained on the
grid of R, θ, and rHF mentioned above. The mixing angleγ
was determined according to eq 3 from

This is the same expression as used earlier in studies of the
nonadiabatic coupling in H2O18 and in the Cl-HCl system.17

The angleγ is used to transform the adiabatic to diabatic
energies with the transformation matrix defined in eq 2. A
similarity transformation of the diagonal adiabatic matrix gives

It is useful to apply a further transformation, to obtain a spherical
basis

This gives the four diabatic surfaces

To obtain analytic expressions of the diabatic potentials, we
made expansions in terms of spherical harmonicsCµ

L(θ,φ),
which are normalized such thatCµ

L(0, 0) ) δµ,0. Recalling that
θ is the angle of the HF diatom axis with thez-axis, we write

The expansion coefficients were derived using a Gauss-Legendre
quadrature on the 12-point ab initio angular gridθi with weight
wi:

The coefficientsVµ′,µ
L (R, rHF) thus obtained were subsequently

fitted as functions ofRandrHF by the reproducing kernel Hilbert
space (RKHS) method with a two-dimensional kernel for
distancelike variables in both dimensions.19 The R-dependent
kernel requires the specification of a parametermRKHS that
describes the large-Rbehavior of the fitted function. The large-R
behavior of the interaction energy in the present system can be
described as a series inR-n that starts withn ) 4. The first two
terms of the series contain only spherical harmonics of orderL
) 1 andL ) 2, respectively. This is because the system consists
of an atom in a P state and a heteronuclear diatom in aΣ state.
The quadrupole-dipole interaction (lA ) 2, L ) lB ) 1) is the
only term contributing toR-4. Likewise, the quadrupole-
quadrupole interaction (lA ) 2, L ) lB ) 2) is the only long-

(Ψ1(A′), Ψ(A′′), Ψ2(A′)) ) (|Px〉, |Py〉, |Pz〉) Ry(γ), (2)

Ry(γ) ≡ (cosγ 0 sinγ
0 1 0
-sin γ 0 cosγ )

Lz ) Ry(γ)T(0 -i 0
i 0 0
0 0 0) Ry(γ) ) (0 -i cosγ 0

i cosγ 0 i sin γ
0 -i sin γ 0 )

(3)

γ(R,θ, rHF) ) arctan[〈Ψ(A′′)|Lz|Ψ2(A′)〉
〈Ψ(A′′)|Lz|Ψ1(A′)〉] (4)

Vxx ) V1(A′) cos2γ + V2(A′) sin2γ

Vzz) V1(A′) sin2γ + V2(A′) cos2γ (5)

Vxz ) [V2(A′) - V1(A′)]sinγcosγ

Vyy ) V(A′′)

(|Px〉, |Py〉, |Pz〉) ) 1
x2

(|P-1〉, |P0〉, |P1〉)(1 i 0
0 0 x2
-1 i 0

) (6)

V0,0 ) Vzz

V1,1 ) V-1,-1 ) 1
2
(Vyy + Vxx) (7)

V1,-1 ) 1
2
(Vyy - Vxx)

V0,1 ) - V0,-1 ) -x2
2

Vxz

Vµ′,µ(R,θ, rHF) ) ∑
L)|µ′-µ|

Lmax

Cµ-µ′
L (θ, 0)Vµ′,µ

L (R, rHF) (8)

Vµ′,µ
L (R, rHF) ≈ 2L + 1

2
∑
i)1

12

Cµ-µ′
L (θi, 0)Vµ′,µ(R,θi, rHF)wi (9)
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range term that has anR-5 dependence. ThelA ) 2, lB ) 1
term was fitted with the RKHS parametermRKHS ) 3 and the
lA ) 2, lB ) 2 term was fitted withmRKHS ) 4. The association
of n with a unique value ofL stops atn ) 6. For instance, the
Vµ′,µ

0 andVµ′,µ
2 coefficients both drop off asR-6 since they arise

from dispersion (a second-order effect), but alsoVµ′,µ
3, arising

from the quadrupole-octupole (lB ) 3) interaction, goes
asymptotically asR-6. Therefore, only theL ) 1 andL ) 2
coefficients were assumed to have a well-definedR-n behavior
and all other coefficients in eq 8 were assumed to have anR-6

asymptotic dependence and were fitted accordingly with the
RKHS parametermRKHS ) 5. For therHF dependent kernel we
chosemRKHS ) 2. Since the dependence of the coefficients
Vµ′,µ

L (R, rHF) on rHF is not known analytically, these coefficients
were extrapolated linearly inrHF outside the range of the ab
initio points. The RKHS parameternRKHS that defines the
smoothness of the RKHS functions19 was chosen to be 2 in all
cases.

On the whole the fits were of good quality. For instance, for
R ) 5 a0 andr ) re the root-mean-square (RMS) error inV0,0

computed on the 12 angular ab initio points is 2.8× 10-6Eh.
On this interval the value ofV0,0 varies between 1.8× 10-2

and-7.3 × 10-5 Eh. For the sameR andr the largest relative
error inV1,1 is 0.005%. The RMS error inV1,-1 ) 6.7 × 10-6

Eh with V1,-1 varying around-5.0 × 10-4 Eh as a function of
θ. The errors inV0,1 at the sameR andr are somewhat larger,
they vary from 1.61% forθ ≈ 11° through 0.09% (θ≈83°) to
5.2% forθ ≈ 169°. For R ) 7 a0 and r ) re the largest error
(2.3%) occurs inV1,-1 for θ ≈ 169°. For R ) 12.5a0, r ) re,
all errors, except two, are less than 0.1%. The two errors larger
than 0.1% are inV1,-1: 0.5% (for θ≈11°) and 3.2% (for
θ≈169°).

The fit errors discussed so far pertain to points on the ab
initio grid. To check the degeneracies of the A′ and A′′ states
for the linear geometries, we performed in the course of this
work a number of independent RCCSD(T) calculations very
near the linear geometries and yet ofCs symmetry. The
expansion errors related to these independent points are given
in Table 1. In this table, we find that almost all errors are much
less than a percent, so that we may conclude that our fits in
terms of associated Legendre functions, cf. eq 8, are very
satisfactory.

4. Results and Discussion
In Figure 1, we show one-dimensional cuts through the three

adiabatic and diagonal diabatic potentials. The angleθ ) 0°
corresponds to the linear hydrogen-bonded structure Cl-HF and
θ ) 180° corresponds to linear Cl-FH. TheΠ state is lowest
in energy forθ ) 0°, while theΣ state is lowest forθ ) 180°,

in the entire range of distancesR that we considered. For both
linear geometries the diabatic energiesVxx andVzzcoincide with
adiabatic energies [withV1(A′) andV2(A′), respectively, forθ
) 0°; with V2(A′) andV1(A′), respectively, for 180°]. The curve
for the adiabatV(A′′), which coincides with the diabatVyy,
connects theΠ-energies on either side of the plot.

Since upon bending of Cl-HF (θg0°) the two adiabats show
a parabolic behavior, we have here a typical example of the
situation studied by Renner11 7 decades ago. Pople and Longuet-
Higgins20 refer to this splitting as case 1a and point out that the
very first observation of the Renner effect (in the lowest
electronic transition of the NH2 radical21) must be explained
by a different splitting pattern. The adiabatic potentials do not
cross, of course, because the corresponding states diagonalize
the electronic Hamiltonian, but the diabatsVxx andVzzdo cross
(at θ ≈ 60°). We discussed in section 2 that the Cl 3px and 3pz
orbitals mix as a function ofθ and it is no coincidence that
around the same angle (θ≈60°) the orbitals are mixed with equal
weight. Had we taken the diabatic angle to be the orbital mixing
angleγorb, we would have found the crossing of the diabats at
about the sameθ.

For the angleθ ) 180° the Σ state lies lower than theΠ
state,Vzz < Vxx, while for θ ) 0°: Vzz > Vxx. This flipping in
the state order follows from the fact that the 3px and 3pz orbital
have swapped places in going from linear Cl-HF to linear Cl-
FH, as we discussed above. The relative positions of the orbital
and total binding energies can be understood by considering
the dipole of HF. It points from Fδ- to Hδ+. The chlorine atom
has a hole in an argon-like 3p shell and we remember that a
hole can be thought of as a positively charged particle. The
hole is attracted by the negative charge on the F atom and
therefore will prefer to be in 3pz (a σ-orbital pointing toward
the F atom), when this atom is closest to Cl. This implies that
in Cl-FH the state ofΣ symmetry has the lowest energy. On
the other hand, in Cl-HF the chlorine hole tries to avoid the
positively charged hydrogen atom and will be in aπ orbital,
leading to a lowerΠ state forθ ) 0°.

In Figures 2-4, the adiabatic potentialsV1(A′), V2(A′), and
V(A′′) are shown as a function ofR andθ for fixed rHF. The
absolute minimum in the lowest adiabatV1(A′) for rHF ) re )
1.7328a0 occurs forR ) 6.217a0, θ ) 0°. The well depth is
De ) 676.5 cm-1. This minimum, being 2-fold degenerate,
coincides with the global minimum inV(A′′).

TABLE 1: Fit Errors for Near-Linear Geometries, rHF ) re

θ ) 0.5° θ ) 179.5°
R (a0) V1(A′) (cm-1) error (%) V1(A′) (cm-1) error (%)

4.5 8083.8 -2.63 1549.1 3.06
5.0 1872.3 0.38 215.7 0.69
5.5 -146.0 0.74 -168.3 -0.15
6.0 -644.5 0.14 -236.5 -0.38
6.5 -642.7 -0.02 -211.9 0.02
7.0 -513.7 0.02 -168.4 -0.06
7.5 -381.1 -0.01 -128.9 -0.04
8.0 -276.4 -0.02 -98.2 0.00
9.0 -147.4 0.04 -58.4 0.03

10.0 -83.5 0.02 -35.5 -0.03
12.5 -26.9 0.02 -13.6 -0.05
15.0 -11.5 0.01 -9.11 0.05
20.0 -3.13 -0.03 -3.53 0.16
25.0 -1.17 0.05 -1.54 -0.80

Figure 1. Three adiabatic (full) and diabatic (dashed) curves are shown
as a function ofθ. rHF ) re ) 1.7328a0, R ) 7 a0. The diabatic curve
Vyy coincides with the adiabatic curveV(A′′), cf. eq 5.
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Figures 5-8 show the diabatic potentialsV0,0, V1,1, V1,-1, and
V0,1, respectively, as a function ofR andθ for fixed rHF ) re.
The absolute minimum withDe ) 676.5 cm-1 in the adiabatic
potentialsV1(A′) andV(A′′) for the linear Cl-HF geometry is
due to a similar minimum in the diabatic potentialV1,1 ) V-1,-1

that corresponds to theΠ state. The diabatic potentialV0,0 for
the Σ state shows a much shallower minimum of depth 295.3
cm-1 for θ ) 120° and R ) 5.8 a0. The latter minimum is
reflected in the lowest adiabatic potentialV1(A′) in Figure 2 as
a shallow local minimum. The off-diagonal diabatic potential
V1,-1 is relatively small, which indicates according to eq (7)
that the diabatic surfacesVxx and Vyy are nearly equal. These
surfacesVxx andVyy correspond to the electron hole on the Cl
atom being in a px or py orbital, respectively. The fact that they
are so similar even forθ ≈ 90°, i.e., when the HF axis is nearly
perpendicular to the intermolecular Cl-HF axis, is somewhat

surprising. The potentialV1,-1 is always negative, which implies
thatVxx is larger thanVyy; cf. Figure 1. The off-diagonal diabatic
potentialV0,1 is larger in absolute value and changes sign for a
θ value of about 120° for small R. The value ofθ where this
sign change occurs increases withR; for R > 7 a0, V0,1 is
negative for all values ofθ.

The potential surfaces for other values ofrHF are qualitatively
similar, but the depth of the well inV1(A′) andV(A′′), which
corresponds to the well inV1,1, increases strongly with increasing
rHF; see Table 2. As we show in ref 9, this plays an important
role in the explanation of the large red shift of the HF stretch
vibration induced by the interaction with the Cl atom that was
observed experimentally.6

Our results may be compared with the results of the ab initio
calculations by Merritt et al.6 for the linear geometries Cl-HF
and Cl-FH. They find the strongest binding for Cl-HF, as we

Figure 2. Adiabatic surfaceV1(A′) as a function ofR andθ, for rHF

) re ) 1.7328a0.

Figure 3. Adiabatic surfaceV2(A′) as a function ofR andθ, for rHF

) re ) 1.7328a0.

Figure 4. Adiabatic surfaceV(A′′) as a function ofR andθ, for rHF )
re ) 1.7328a0.

Figure 5. Diabatic surfaceV0,0 as a function ofR andθ, for rHF ) re

) 1.7328a0.
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do, withDe ) 672 and 676 cm-1 at the UMP2 and UCCSD(T)
levels, respectively. This agrees very well with our value ofDe

) 676.5 cm-1 from RCCSD(T) calculations. For linear Cl-
FH they find a binding energy of only 20 cm-1, whereas we
obtain a much larger value: 237.4 cm-1. Our value corresponds
to the lowest state of A′ symmetry, however, and their value
corresponds to the state of A′′ symmetry22 (which gives the
strongest binding for linear Cl-HF, where it is degenerate with
the lowest A′ state). Our value for the well depth of linear Cl-
FH in the A′′ state is 14.3 cm-1, in fairly good agreement with
their value of 20 cm-1.

We may also compare our potential surfaces for Cl-HF with
the ab initio potentials of Kłos et al. for the analogous systems
Cl-HCl,17,23F-HF, and Br-HBr24 and with the semiempirical
F-HF and Br-HF potentials of Meuwly and Hutson.25,26 The
minimum in the lowest adiabatic potentialV1(A′) at the linear

hydrogen bonded X-HX structure is about equally deep for
Br-HF as for Cl-HF, but considerably shallower for the other
systems. The local minimum inV1(A′) at the T-shaped geometry
is only very shallow for Cl-HF. For Cl-HCl, it is the global
minimum, and also for Br-HF, F-HF, and Br-HBr, it is a
more pronounced local minimum than for Cl-HF. The observa-
tion that theΠ state is lower than theΣ state at the linear X-HX
structure while theΣ state is lower at the linear X-XH structure,
see Figure 1, holds also for the semiempirical potentials of
F-HF and Br-HF, but not for the ab initio potential of Cl-
HCl, for example.

5. Conclusion

We described the ab initio calculation of the adiabatic
potential surfaces of the Cl(2P)-HF complex that correlate with
the (in the absence of spin-orbit coupling) 3-fold degenerate
2P ground state of the Cl atom. These potential surfaces are
converted with the aid of a geometry-dependent diabatic mixing
angle, also calculated ab initio, to a set of four distinct diabatic
potential surfaces required to define the full 3× 3 matrix of
diabatic potentials. Each of these diabatic surfaces was expanded
in terms of the appropriate spherical harmonics in the atom-
diatom Jacobi angleθ. The dependence of the expansion
coefficients on the Cl-HF distanceR and the HF bond length
rHF was fit to an analytic form. The resulting potentials were
discussed and are used in ref 9 in full three-dimensional
computations of the bound states of the Cl-HF complex.
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stimulating discussions.

Figure 6. Diabatic surfaceV1,1 as a function ofR andθ, for rHF ) re

) 1.7328a0.

Figure 7. Diabatic surfaceV1,-1 as a function ofR andθ, for rHF )
re ) 1.7328a0.

Figure 8. Diabatic surfaceV0,1 as a function ofR andθ, for rHF ) re

) 1.7328a0.

TABLE 2: Dependence of the Well DepthDe in V1,1 and the
Equilibrium Distance Re on rHF

rHF (a0) Re (a0) De (cm-1)

1.4827 6.2356 -513.95
1.6027 6.2350 -579.52
1.7328 6.2166 -676.50
1.9180 6.1558 -861.14
2.1032 6.0665 -1129.79
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