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Fluorescence correlation spectroscopy (FCS) has emerged as a powerful technique for measuring low
concentrations of fluorescent molecules and their diffusion constants. In FCS, the experimental data is
conventionally fit using standard local search techniques, for example, the MarglLeavdnberg (ML)
algorithm. A prerequisite for these categories of algorithms is the sound knowledge of the behavior of fit
parameters and in most cases good initial guesses for accurate fitting, otherwise leading to fitting artifacts.
For known fit models and with user experience about the behavior of fit parameters, these local search
algorithms work extremely well. However, for heterogeneous systems or where automated data analysis is a
prerequisite, there is a need to apply a procedure, which treats FCS data fitting as a black box and generates
reliable fit parameters with accuracy for the chosen model in hand. We present a computational approach to
analyze FCS data by means of a stochastic algorithm for global search called PGSL, an acronym for
Probabilistic Global Search Lausanne. This algorithm does not require any initial guesses and does the fitting
in terms of searching for solutions by global sampling. It is flexible as well as computationally faster at the
same time for multiparameter evaluations. We present the performance study of PGSL for two-component
with triplet fits. The statistical study and the goodness of fit criterion for PGSL are also presented. The
robustness of PGSL on noisy experimental data for parameter estimation is also verified. We further extend
the scope of PGSL by a hybrid analysis wherein the output of PGSL is fed as initial guesses to ML. Reliability
studies show that PGSL and the hybrid combination of both perform better than ML for various thresholds
of the mean-squared error (MSE).

I. Introduction tions in data analysi¥! Even if the data can be adequately fit

| lati has b by a small number of diffusing components with minimum
. Fluorescence correlation spectroscopy (FCS) as become anagiqual error, this may lead to an unphysical description of the
important tool for investigating the dynamic properties of single o, system under study.

molecules in solutioA=3 It was introduced in the 1970s as a To overcome these drawbacks, we present a data-fitting
me(;hf?d fo; frlneasunngt mo'?(:llélsg diffusion, reaction kinetics, algorithm for FCS based on a global search method called
and flow of fiuorescent particles. ) Probabilistic Global Search Lausanne (PGSL). The algorithm

FCS is based on the statistical analysis of fluorescence ;ses random sampling with a probability density function to

intensity fluctuations in solution. It has found widespread |ycate the global minimum of a user-defined objective function.
applications in the study of various processes such as d'ﬁus'onStarting with a uniform probability density function over the

in solutions and mergbranésotational diffusiorf, and singlet entire search space (set of all possible solution points), prob-
triplet state kinetic? Recent research has proved the power gpjjiies are updated dynamically such that a more intensive
of FCS as a diagnostic tool in biochemical studies. search is performed in regions where good solutions are found.

The data in FCS is conventionally modeled with a finite  The PGSL algorithm has a distinct advantage over other local
number of dlffusmg components and fit with a nonlinear search algorithms such as Marquarevenberg, conjugate
minimization algorithm like the Marquaret_evenberg methot? gradient, Newtor-Raphson technique, and so forth, in so far
However, it can generate wrong results for bad initial guesses as these require a good initial guess to reach the global
or for large number of components. It identifies a region of minimum. Tests carried out on complex nonlinear objective
good solutions and follows a downward path (gradient) by functions such as the Lennard-Jones cluster optimization
accepting Only better solutions. In multidimensional solution prob|em, indicate that PGSL performs better in terms of
spaces, it is likely to identify only local minima. Since FCS obtaining the success rate and the mean values of the variables
data are by themselves inherently sensitive to changes inestimated as compared with other probabilistic methods such
experimental setup,the fitting algorithms have to be robust  as genetic algorithm and simulated anneafihBecause of its
and accurate in their behavior to avoid unnecessary interpreta-proven robustness in identifying the global optima, PGSL has
been successfully applied to various areas such as structural
*To whom correspondence should be addressed. E-mail: mechanic¥ and phase-shifting interferomet¥yIn our imple-

""Tﬁgg%’:g{g-r':‘%%eg’fhcehbio frdicale mentation in the context of FCS, PGSL finds optimal solutions
¥ Laboratoire d’inﬁagerie bioficale. for FCS data. Subsequently, we address the mean-squared error
8 Universitd Basel. (MSE) of the fit using the PGSL algorithm.
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microscope designed for FCS. The epi-illumination setup was
done using a 4R/1.15 Olympus, Uapo/340 (cover slide
corrected), water immersion objective. As a model two-
component system, we take a mixture where there is a presence
of two fractions, that is, free dye and a labeled primer sample,
M13 primer, labeled with rhodamine green at 10 nM concentra-
tion for the two-component fits.

These dye molecules crossing the detection volume were
excited with an Ar laser at 488 nm. Intensity variations of the
fluorescent response were detected across a pinhole of diameter

Figure 1. Schematic illustration of a typical high-NA objective-based 5(_) #m with a single photon COE‘“"”G module and processed
epi-illumination FCS setup. (BS, dichroic beam splitter; SF, spatial filter With @ hardware correlator. Optical power on the sample was
(pinhole); APD, avalanche photodiode). Emitted fluorescence is detectedaround 5Q:W for all measurements during a measurement time
by an APD and then processed by a multiple tau correlator (Corr).  of 30 s. A measurement obtained along with its corresponding
fit using PGSL is seen in Figure 2 for a representation of the
two-component case.
ii. Parameters in FCS Data. The autocorrelatiors(r) of

the solute molecules in a small open volume of a dilute solution
is defined as

G(r)

[t + 7)1 ()0

Gl = 1

1)

wherel[Tldenotes the time average alft is the instantaneous
intensity of the fluorescence present in the detection volume
element. A thorough analysis leading to an analytical expression
for a two-component case with multiple numbers of differently

sl weighted freely and independently moving molecules is given
Figure 2. FCS curve of an M13 primer labeled with RhG at 10 nM by*®

concentration indicating the presence of two components. The dark
lines show the fitted curve to our experimental data (dotted lines). The G) =1+ 1 (1 + p) exr(—r) »
N

Residuals

residuals shown indicate the fit quality. The two-component fit yielded 1-p Tt
the following parametersN = 7.2, pa= 0.34,tpa = 35.20uS, top = a 1 1—pa
201.4us, @ = 5, p = 0.31, andrr = 2.02us. p T p

1
. . . 1+ i+ X 1+ 1y T
In what follows, we first present in section Il a general Tp wr Tpp, w2
framework by presenting the Experimental Methods and the FCS D Db

parameters of a two-component model with triplet transitions (2)
along with the tests carried out on them. Section Ill presents
the PGSL algorithm, explains the approach in determining the
global minimum for the physical model, the salient features of
the classical ML algorithm, and a graphical overview of the
internal arch|t.ectures O,f PGSL and. ML. Sectlpn IV presents 4 jyme elementyp,, diffusion time of faster diffusing species
two case studies wherein the PGSL is applied first to a St".ind‘?rdin microsecondsipy, diffusion time of slower diffusing species
two-component system and second to a parameter estimation, microsecondsp, structure parameter for the three-dimen-

with an essential noise c_ontribution. Section V .pre_s.ents a sional (3-D) Gaussian volume element which is given by the
benchmark test of PGSL with ML and presents a reliability test experimental setup and is generally fixep; fraction of
performed on PGSL, ML, and on a hybrid concept merging mgjecyles in the triplet statess, triplet correlation time in
the PGSL with the ML algorithm.

For a consequent evaluation, we therefore have the following
set of parameters, which need to be estimated for the two-
component caseN, number of molecules in the excitation
volume elementpa, percentage of species 1 in the confocal

microseconds.

Here, we assume that the fraction of molecules in the triplet
state,p and the triplet correlation time; are the same for both
species as there would be no additional information in terms of

i. Experimental Methods. A FCS configuration is based on  the photophysics while fitting by having additional parameters
a standard confocal setup (Figure 1), the excitation laser light for multiple species. Also, in this study, we set the quantum
is directed by a dichroic mirror into a high-NA objective, which yield to one. This expression assumes a 3-D Gaussian spatial
focuses the light into the sample. The fluorescence emission isdistribution of the probe volume\ is the average number of
collected through the same objective (epi-illumination), filtered molecules present in the detection volume elem¥nt=
by a dichroic beam splitter (BS), and focused onto a pinhole, 732w, 2w, wherewyy is the transversal extent amg} is axial
so that the excited fluorescence light inside the sample is imagedextent at which the laser intensity has dropped &f. 1) is
onto the pinhole aperture acting as a spatial filter (SF), which consequently defined as= w/wyy, while 7p = w«?/4D denotes
efficiently confines the sampling volume to a diffraction limited the diffusion time across the sampling region, whBrés the
size. After the pinhole, the fluorescence signal is collected diffusion coefficient. Thus, the average concentration of the
directly by an avalanche photodiode (APD) and processed by amolecules in the volume element@&= N/V.
multiple tau correlator. Our experimental setup was based on iii. Description of Tests. A Pentium IV 2.4 GHz machine
the ConfoCor from Carl Zeiss which is basically a confocal was used for all tests. The programs were written in C and

Il. Experimental Methods, Parameters in FCS Data, and
Description of Tests
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TABLE 1: Large Bound and Small Bounds Results for Various NFC Parameters in PGSL

NSDC= 40 NSDC= 40
original values [large bounds] NFE 20 NFC= 40 [small bounds] NFG= 20 NFC=40

N=45 [0.01-100] 4.508 4.503 [0450] 4.50 4.49
((AN)/(N) %) (0.2%) (0.08%) @N)/(N) %) (0.1%) (0.06%)

pa=0.35 [0.31] 0.364 0.357 [0.£1] 0.363 0.344
((Apa/pa) %) (4.3%) (2.1%) Hpalpa) %) (3.8%) (1.6%)

Tpa =60 x 10°© [1x10%t0o1x 104 64.13x 10°° 62.06x 10°6 [1x107tolx 1077 63.87x 10°® 58.49x 10°6
((AtpdTa) %) (6.8%) (3.4%) (7o TDa) %) (6.4%) (2.4%)

Top =5 x 107 [1x107to1lx 1079 5.13x 107 5.05x 10 [1x 105to1x 107 5.11x 1074 4.95x 104
((Atop/Ton) %) (2.6%) (1.2%) (@7op/ToN) %) (2.2%) (0.9%)

p=0.15 [0.01-1] 0.1513 0.1513 [041] 0.1511 0.149
((Ap/p) %) (0.9%) (0.4%) (Qp/p) %) (0.7%) (0.3%)

11 =12x 10 [1x10°to1x 1079 1.22x 10°® 1.21x 10°% [1x108to1x 1079 1.22x 10°® 1.19x 108
((Atdty) %) (2.0%) (0.9%) (A7) %) (2.1%) (0.5%)
MSE— 1.26x 107 2.87x 1077 1.06x 1078 1.65x 1077

interfaced with MATLAB (The Math Works, Inc.). We choose in the Sampling cycle. Assuming equal probability of finding
to use a simulated data set for the sake of effective comparisongood solution in the entire search space, the residual Eriier
between the two algorithms. The values for the parametersevaluated by substituting all generated solutions in eq 3. This
described as the “original values” in Table 1 &re= 4.5,pa= allows for selecting all points where the residual error is
0.35,7pa = 60 x 10°6s,7p, =5 x 10%s,w = 5,p = 0.15, minimum. Probability-updating and Focusing cycles subse-
7T = 1.2 x 1078 s. Using eq 2, we generate a set of 288 points quently refine the search in the neighborhood of good solutions.
logarithmically spaced in the decades of time. For a data set of Convergence to the optimum solution is achieved by means of
these 288 points as in Case Studies | and Il, a typical fitting the Subdomain cycle. The following are the main terms used
run with an NSDC of 40 and NFC of 40 took less tt3as for for describing the PGSL algorithm.
output, which demonstrates the flexibility as well as the lesser ~ Solution Point. A point consists of a value set for each of
computational cost as well. The number of iterations in PGSL the variablesN, pa, 7pa, 7ob, P, andz:.
for each of the evaluations is computed as NSY2IPUC (1) Search SpaceSearch space is the set of all potential solution
x NFC (40) x NSDC (40) x number of parameters (6F points. It is anM-dimensional space with an axis corresponding
19200. Here, NS&= 2 Corresponds to an internal default value to each variableM denotes the total number of variables. In
to the present version of the PGSL implementation used here.the case presented hek¢ = 6. The user defines the minimum
For a typical run of NFG= 20 and NSDG= 40, the number of ~ @nd maximum values, commonly known as bounds of variables
iterations to reach convergence is around 9000 and for §FC ~ along each axis. A subset of the search space is called a
40 and NSDC= 40 it goes up to 17 000. The only parameters SuPdomain. . _ .
to be determined for PGSL are the values of the Focusing cycles Probability Density Function, PDF. The PDF of a variable
and Subdomain cycles. This fixes the number of iterations IS defined in the form of a histogram. The axis represented by
required and hence the computation time for a particular run. the variable is discretized into a fixed number of intervals.
The sensitivity of the results obtained increases marginally as Uniform probability distribution is assumed within each interval.
the number of iterations is increased. The table in the following 1€ PDF is used to search within a small neighborhood. Since
subsection gives an overview of the quality of the fits obtained PGSL works by global samplmg, there is no_point-to-point
for a synthetic data set for the two-component case. movement z_as compared with _other ra_ndom methods.
The function of each cycle is described below:
1. Algorithms Sampling Cycle. In the sampling cycle, the number of
. ) . ) ) samples evaluated in the sampling cycle (NS) are generated
i. PGSL Algorithm. We describe the algorithms in terms of 5 nqomly by selecting a value for each variable according to
the parameters of the two-component case here, that is, for thes ppF.” This sampling technique resembles the Monte Carlo
accurate determination &, pa, 7pa, 7o, p, andz. Thisis done  echnique. Each point is evaluated, and the point having the
by computing the global minimum of the least-squares error minimum cost, BS (Best Sample), is selected.
objective function[l, defined by Probability-updating Cycle. The sampling cycle is repeated
K NPUC (number of iterations in the probability-updating cycles)
— 2 times, and after each iteration, the PDF of each variable is
n [Gre(i) ~ Coad ] 3) modified using a probability-updating algorithm. This ensures
that the sampling frequencies in regions containing good points
for K number of sample points and time interval giveny are increased. In the probability-updating algorithm, the interval
We then utilize the PGSL algorithm, which is based on the containing the value of the variable in BS is located. The
direct global search technigdi2 This algorithm operates by  evolution of the PDF for a variable after several sampling cycles
organizing optimizations search through four nested cycles, is illustrated in Figure 3.
namely, Sampling, Probability updating, Focusing, and Subdo- Focusing Cycle.The probability-updating cycle is repeated
main. Each cycle has a different role to perform while searching NFC (number of focusing cycles) times, and after each iteration,
for the optimum solution. The user first defines the bounds for the current best point, CBEST, is selected. The PDF is updated
each variable that is used with the objective functidnThe by first locating the interval containing the value of each variable
method then searches for the optimum value of the objective in CBEST. This probability is uniformly divided into its
function defined inI1, which is performed by matching the subintervals. The widths of these subintervals are calculated such
measuredsgai{t) with its predicted counterpart based on the that the PDF decays exponentially away from it. After subdivi-
estimated values of the variablsspa, tp,, b, P, @ndt:. The sions, intervals no longer have the same width and probabilities
algorithm initially generates random values for each variable are heavily concentrated near the current best. The evolution
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Figure 3. lllustration of the development of the probability density function of one optimization variable Xi during four nested loops of PGSL.
This schematic summarizes the overall internal architecture of the PGSL.

of PDF after several probability-updating cycles is illustrated for IT. Figure 4 shows a plot fdf in eq 3 from the experimental
in Figure 3. Assume that the value of the variable in the best measure of Figure 2 obtained with an M13 labeled with RhG
solution found in the first probability-updating cycle is Xb1l. at 10 nM concentration on a cover glass. This plot is generated
The interval containing this value is subdivided into four parts with two sensitive variables, namel,andzp, where the values
and is assigned 50% probability. The remaining probability is of N are varied from 0 to 10 anth, from 1 x 10 °to 1 x 105,
distributed to the other intervals according to an exponentially This log plot shows the presence of many local minimas and
decaying function. Due to this probability distribution, 50% of only one global minimum. There would be many minima for
variables in subsequent samples lie within their respective bestthe entire multiparameter space df when one considers all
intervals. This results in exploration of alternative values of some the five variables simultaneously. The figure presented here
variables keeping the values of other variables in the best considers only two of the sensitive variables for the sake of
regions. Assume that the value of the variable in the best solutiondisplay. With traditional analysis, the FCS experimenter often
found in the second updating cycle is Xb2. The interval encounters this situation while fitting experimental data when
containing this value is further subdivided (for clarity, intervals multiple solution sets are obtained for repetitive fitting on the
are not shown to scale in the figure). Probability densities same data set. The choice is then to obtain multiple data sets
increase enormously due to fine division of intervals after many from many measurements and to do the cumulative analysis of
probability-updating cycles. the data therein or have multiple fitting sessions on the same
Subdomain Cycle.In the subdomain cycle, the focusing cycle data set with varying good initial guesses.
is repeated NSDC (number of subdomain cycles) times, and at The proposed PGSL algorithm is ideal for the error function
the end of each iteration, the current space search is modified.IT, since no initial guesses are required, and although the bounds
In the beginning, the entire space is searched, but in subsequenteed to be defined, the bounds do not require a difficult
iterations, a subdomain of a smaller width is selected for search.constraint selection.
The size of the subdomain decreases gradually, and the solution For instance, for the variables in eq 3 is defined as follows
converges to a point. The scale factor is dynamically chosen
such that there is no premature convergence. This is, however0 < N 100, 0.1< pa<1,1x 10 ° < 7, <
not the case in ML (see section ||) . 1x10% 1x10°8< Top < 1 x 107 4 0.01< p<1
Each cycle therefore serves a different purpose in the search
for a global optimum. The sampling cycle permits a more znqg
uniform and exhaustive search over the entire search space than

the other cycles. The probability-updating and focusing cycles 1x 10 8< T, <1x 10°° (4)
refine the search in the neighborhood of good solutions.
Convergence is achieved by the subdomain cycle. where the maximum and minimum values above represent the

The parameter study revealed that only the values of the theoretical ranges of values possible for a particular dye
focusing cycles and subdomain cycles need to be adjusted tomolecule under consideration.
fix the total number of evaluations of the objective function in Boundary Sensitivity. Boundary sensitivity is the dependence
hand. This underlines the ease and simplicity of fixing PGSL of the parameter estimates for the range of values given to the
parameters. PGSL algorithm. They are highly flexible and need to be
a. Approaches for Determining Global Minimum. The modified appropriately with the system in hand. We can also
selection of an appropriate methodology is the key for successful set the lower bounds gfa andp to zero and get similar results
data analysis. Before narrowing down to a particular method, for the two-component fit with the triplet model here. In case
it is imperative to study the topology of the parameter space these parameters are not desired for evaluation, then one could
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Figure 4. Magnitude of error for objective functiofl defined in eq 3. The log plot shows the presence of several minima close to one global
minimum for the choice of two parameters only for our two-component model.

choose the no triplet or the one-component model accordingly.
The structure parameter is fixed in the analysis.

b. Mean Squared Error (MSE) of Fitin PGSL. It is desired
for a fitting algorithm that it take into account the error of
individual points?° We utilize the simple definition of MSE to
evaluate the quality of fit in PGSL here.

K

1
MSE="3 [Gu(r) - Guardm)]? (5)

&
This value measures the difference between the fitted function

Giit(r) and the experimental daGya{7) at every time interval

7, weighted by length of data poinks In Table 1, we see the

performance of PGSL under various Focusing cycles (NFC) for

the six parameters of the two-component case. The fitted values

and also the relative percentage errors with respect to the initial
original values are presented here. The values presented are
statistical value obtained after running the algorithm for 100

times. The choice of appropriate bounds also influences the MSE
as seen in Table 1.

ii. Marquardt —Levenberg Algorithm. The ML algo-
rithm!221is briefly described in this section and is explained
with regard to the two-component equation in eq 2 written in
terms of the parameter

) y

+ u5) F{
expg—
.

Ug

G —1+1 !
(U!T)_ U1 1

U, 1 n 1-uy, 1 ©6)
T T
1+— 1+— 14
Ys w’u Uy »’u
3 4,

where,us, Uy, Us, Ug, Us, andug the elements ofi, represent,
pa, 7pa, Tob, P, andty, respectively. To obtain any of the elements
in u, we must calculate the residual efoE(u)

K

E(u) = Z (G(u,r) —d)? ©)

for K number of sample points and the corresponding time
interval given byr; and whered; is the measured value at

If (u)' is the initial guess for the parameter sgtthe ML
iteration step is given by

[3((W))I((W)) + AW = () = =I(WHE()) (8)

whereJ(u) is the Jacobian matrix, which is defined as

|
9E,(u) 9E,(u) 9E,(u) OB, (U) BE,(u) OE,(u)
oN opa  ITtpy  ITpy ap a7y
IE,(U) JE,(u) IEx(U) OBy (U) JE,(u) IEH(U)
J(u) = oN dpa 0tp,  dTp,  Op aty
OE(u) dE(u) 9E(u) IE(U) JE,(u) 0E«(U)
a oN opa  Itpy  ITpy p o7y
)

The parametef is dynamically adjusted during the course
of minimization wherd is the current iteration anidt 1 is the
next iteration.T is the transpose operator ahds the identity
matrix. The iteration process continues until some pre-specified
termination criterion has been met, such as a given change in
the value of the parametar or a limit on the number of
iterations.

Used in this way, the ML algorithm allows for computing of
the optimal parameteu. We use the ML implementation
available in the “Optimization Toolbox” in MATLAB with no
changes in the default values for the various internal parameters
described therein.

iii. lllustration of the Internal Architectures of PGSL and
ML. PGSL has several interesting features not similar to other
algorithms. First, it works by global sampling, thereby avoiding
point-to-point improvement in a region around a current point.
Second, it uses histograms for the PBEd discontinuous
function with multiple peaks. This allows fine control over
probabilities in small regions by subdividing intervals. Third,
the shape and form of the PDF can be changed by subdividing
intervals as well as by directly increasing the probabilities of
intervals. This is different from the normal practice of changing
the standard deviation in other methods.
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Figure 5. lllustration of basic differences between PGSL and ML. Points are randomly generated using a PDF in PGSL. Probabilities are increased
in regions where good solutions are found: (a) a funct{gnin a single variable, (b) a uniform PDF, (c) a PDF with higher probabilities in regions
containing good solutions, (d) evolution of the PDF into regions with better solutions and the subsequent exponential decay of the PDF, and (e)
search space progressively narrowed by converging to points in a subdomain of smaller size centered on the best point. The ML operates on the
premise of intense searching in (f) initial guesses for two cases here considered by the seeking the minimum of the function, (g) the step size (s)
is chosen in the direction of steepest descent, (h) chosen in the direction of steepest descent iteration continues towards the minimum, (i) point
updated in the direction of the slope until minimum is reached, and (j) “stop” when the function hits the minimum value possible.

PGSL therefore works directly on the solution search space IV. Case Studies
and does not seek any gradients for approaching the global
minima. This key feature enables PGSL to generate an optimal
solution set for any noise level by avoiding getting trapped into
local minima irrespective of the complexity of the error objective
function (see parts-ae of Figure 5).

i. Case Study 1: PGSL Applied to a Two-Component
System of Interacting Fluorophores.On the left-hand side of
Table 1, the bounds are varied to the maximum extent as
permissible by the parameters of interest for the case of large
bounds. This clearly shows the strength of PGSL in generating

Whereas a local search technique like the ML method finds acceptable solutions with no initial guesses for arbitrarily large
good solutions using an exhaustive search over a constrainechounds.
space provided, they are given good initial guesses. Itis therefore  On the right-hand side of Table 1, we see the performance
a nontrivial task to compare two different categories of of PGSL under various focusing cycles (NFC) with small
algorithms wherein their individual internal architectures differ bounds as compared with the previous case. The differences
as markedly as those seen here (see paijteff Figure 5). are mainly for the bounds in the various diffusion times for the
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12 " Expt Data TABLE 2: Comparison of PGSL and ML for a Noisy
S e PGSL Experimental Data Set
1.15 — M

N pa wpa(us) tob(us) p 7 (us) MSE

30s PGSL 7.2 0.34 3520 2014 031 202 4:320°
(ref)

3s PGSL 556 040 206 1519 05 16 *%30*
3s ML 552 054 1923 112 0.28 133 44104

G(v)

2 o0 averaging noise (for the long lag times during the finite
5 0% ‘ ‘ i — measurement interval).
« OMVWM«V\N We clearly see in Table 2 that the values obtained for ML

are not satisfactory forpas 7pn, andz; for this particular fit

102 here, although the residuals look satisfactory. It is evident that
the ML has converged to a wrong minimum in the six-parameter
space here. This is an illustration, where the experimenter has

Marquardt-Levenberg algorithm: (a) the experimental data with the to refit the data with varying initial guesses and bounds until a

fits in ML and PGSL with eq 2, (b) the residuals using PGSL, and (c) good fit is obtained. For th_is_ simple case, it i_s pqssible to obtain
the residuals using the ML algorithm. better results for ML by fixing the faster diffusing parameter

(tps) for the standard dye label attached by undertaking
model under consideration here. We see an increase in thecalibration measurements on the setup used. Therefore, with
sensitivity of the obtained parameters. good initial guesses and prior knowledge of system behavior,

The MSE is different for the various cases and gives the ML does perform very well. However, in cases for measure-
quality of fit for every particular choice of NFC and NSDC. ments in, for gxample, living ceII§ where additional noise terms
We have good solutions for both high and low required 2'€ a.l.so an issue to be considefedhe very chqlge and

accuracies. The overall setting of the NSDC being 40 and an reliability of good initial guesses would be a nontrivial task.
NFC of 20 or 40 provides optimal fits here. These results were
also confirmed by testing them on several different models as
well. In this section, we benchmark and evaluate the performance
ii. Case Study 2: PGSL Applied to Parameter Estimation of PGSL and ML for the objective function defined in eq 3.
with Noisy Data. FCS is susceptible to various noise sources This is done by obtaining the best MSE for three different
such as intrinsic photon shot noise dependent on the averagehreshold values in both the situations.
count rate, excitation power instabilities, Raman scattering, and i. Description of Tests and Results in PGSL vs ML. PGSL
background fluorescenéé:?* Also, depending on the type of  Algorithm. It is run for two different cases for large and small
individual setups or application (two-photon or intracellular bounds (as in Table 1) for the given simulated data. The initial
systems) at hand, the contribution of various noise sourcesseed values for starting the solution search are randomly varied
leading to improper fitting is another source of systematic error for each iteration for a fixed NSDC of 40 and an NFC of 40.
leading to erroneous interpretation of the obtained data. This ensures that a new random number starts the global search
In our context of addressing fitting artifacts especially in noisy process in the solution space for every iteration.
data, we present the main influence of averaging noise here. ML Algorithm. The initial guesses for the two sensitive
The following measurement (Figure 6) was dome @ 3 S parametersN and 7p, are automatically generated by the
measurement time interval on the MABRhG sample as before  correlogram itself. The initial guess fdy follows from the
at 10 nM concentration. The data mainly contains the overall simple relationG(z — 0) = 1/N, while for 7p, the time value
effect of shot noise (governed by Poisson statistics) and corresponding t&(zps) = />G(0) is chosen. For 100 runs, the

1[s]
Figure 6. Fitting of experimental FCS data with PGSL and the

V. Benchmark Tests between PGSL and ML

Large bounds Small bounds
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Figure 7. Mean-squared error plots for the data evaluated comparing the performances of PGSL (dark lines) and ML (dotted lines) for (a) large
bounds and (b) small bounds.
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Figure 8. Reliability study of obtaining the best mean-squared error for the data is seen in the bar plots comparing the performances of PGSL, ML,
and their hybrid: (a) large bounds and (b) small bounds. PGSL outperforms ML and results in a better MSE value, indicating better fit quality.

initial values are randomly varied around the above chosen meanalways generate acceptable solutions for the chosen model
value so that we have a different start value at each iteration without the need for a priori user knowledge of the physical

for 7pa. FOr 7pp, the value chosen is twice that of thg, The system.
triplet fractionp is chosen at 10% while for; a typical value
of 1 us is given as the initial guess value. VI. Conclusions

Hybrid Algorithm.  We further explore the possibility of To conclude, we have described a novel stochastic data

combining the mutual abilities of PGSL and ML and call it a  4n51ysis concept applicable to the determination of fitting

hybrid. Here, the output of PGSL is fed as an initial guess 10 harameters in FCS experiments. For the two-component case,

ML, and the resultant hybrid performance is evaluated here asiho Fcs parameters are determined with high precision by the

well. ) ) application of this algorithm. The fitting values are given the
After performing 100 runs for varying guesses for ML and  |ower and upper bounds with no initial guesses thereby giving

by varying the initial random value for PGSL, we obtain the the experimentalist the confidence in data validation when

varying MSE for large and small bounds can be seen again in experiments are to be planned requiring the application of

Figure 7. various models. It is therefore useful in experimental situations
We see that PGSL outperforms ML consistently in terms of wherein accurate determination of parameters with no fitting

the MSE throughout. This is further summarized in terms of artifacts from various physical models is also a prime criterion.

the success ratio in Figure 8. We also determine the quality of the fit from the MSE analysis.
The success ratio is defined as the percentage of iterationStatistical studies further demonstrate the capability of the

steps which gives the MSE below the predefined threshold. method to estimate the fit parameters with greater confidence
In the bar graphs, we have fixed three threshold values for along with existing standard gradient-based methods. The

the MSE. For each iteration, in all the three cases, the fit robustness of PGSL on noisy experimental data for parameter

generates a particular value of the MSE. The sensitivity of our estimation is also shown. Therefore, PGSL appears to be a viable

iterations was evaluated by checking on the various MSE tool for unbiased parameter retrieval of FCS data.

thresholds. For a MSE threshold value such as10~7, which

corresponds to a better quality of the fit obtained, we see that Acknowledgment. We would like to thank Benny Raphael
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search technique that performs well in spaces with multiple local
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