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Precise measurement of the potential of mean force is necessary for a fundamental understanding of the
dynamics and chemical reactivity of a biological macromolecule. The unique advantage provided by the
recently developed constant-information approach to analyzing time-dependent single-molecule fluorescence
measurements was used with maximum entropy deconvolution to create a procedure for the accurate
determination of molecular conformational distributions, and analytical expressions for the errors in these
distributions were derived. This new method was applied to a derivatized poly(L-proline) series, PnCG3K-
(biotin) (n ) 8, 12, 15, 18, and 24), using a modular, server-based single-molecule spectrometer that is capable
of registering photon arrival times with a continuous-wave excitation source. To account for potential influence
from the microscopic environment, factors that were calibrated and corrected molecule by molecule include
background, cross-talk, and detection efficiency. For each single poly(L-proline) molecule, sharply peaked
Förster type resonance energy transfer (FRET) efficiency and distance distributions were recovered, indicating
a static end-to-end distance on the time scale of measurement. The experimental distances were compared
with models of varying rigidity. The results suggest that the 23 Å persistence length wormlike chain model
derived from experiments with high molecular weight poly(L-proline) is applicable to short chains as well.

Introduction

Knowledge of the free energy surface on which a biological
macromolecule resides allows a quantitative understanding of
phenomena ranging from folding to catalysis. Its features give
important clues to the dynamic structure-function relationship.
In addition, accurate experimental characterizations of the free
energy surface under physiological conditions provide stringent
constraints for tests of theoretical models. These include the
identification of conformational species, the determination of
their relative population and the heights of the barriers that
separate them, and the characterization of their structural
flexibility, as indicated by the width of the distribution. The
distribution of molecular conformations, an experimentally
coarse-grained manifestation of the free energy surface, can in
principle be directly measured using single-molecule fluores-
cence spectroscopy.1-3

In determining biomolecular conformational distributions
from single-molecule measurements, the experimentalist is faced
with the statistical uncertainties associated with low-light
detection as well as with other measurement errors.4,5 This is
exacerbated in time-dependent measurements where one relies
on only a few photons to determine a molecular parameter. To
illustrate the challenges in this area, Figure 1 compares
histograms constructed using a commonly adopted approach
with the true probability density function (PDF) from a simulated
single-molecule Fo¨rster resonance energy transfer (FRET)
trajectory. To construct these distributions, one first chooses a
time period with which to bin the trajectory, computes the
distance value (or FRET efficiency) in each time bin, and
chooses an interval in which to bin the distance measurements.
As illustrated in Figure 1, both the choice of time bins and the
distance bins will affect the shape of the distribution, potentially

impacting the interpretation of experiments. While the choice
of time bins has been discussed previously,6,7 the choice of
distance bins represents yet another obstacle toward realizing
the full potential of single-molecule spectroscopy, measurement
of the distribution of molecular properties. This article seeks to
address this issue by developing a comprehensive method for
the extraction of PDFs from single-molecule measurements.

When a trajectory is treated using the maximum information
method (MIM), each data point has the same statistical
significance.6 This is superior to equal-time binning, where
different data points may have wildly different variances. MIM
treatment can thus be regarded as equal-information binning
along the time trajectory. This is advantageous in probability
density (histogram) estimation and is critical to the use of the
maximum entropy method (MaxEnt)10 for removal of the
broadening of the histogram that occurs due to photon-counting
statistics. The MaxEnt approach is employed because it offers
an unprejudiced framework for extraction of the molecular
conformational distribution, constrained by available information
and known experimental uncertainties. Prior knowledge about
the molecular system can be easily included with proper
statistical weighing. When little is known about the density
distribution, which is usually the case at the single-molecule
level, the MaxEnt approach allows quantitative recovery of the
underlying distribution without assuming any models or shapes
for the unknown PDF. This is consistent with our previous
development of information-based, model-free approaches to
analysis of fluorescence single-molecule data.6,7 To evaluate the
accuracy of the deconvolved functions, we have also derived
an analytical expression for the covariance matrix of the
measured PDF.

As an experimental demonstration, we have measured
distances and distance distributions in a series of poly(L-proline).
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Previous studies have shown an excellent correspondence
between bulk and single-molecule FRET measurements of
distance.11-13 Therefore, the current report focuses on the issues
mentioned above. The constituent amino acids of poly(L-proline)
are expected to exist primarily in the trans-state and should be
fairly static on the time scale of single-molecule measurements,
with no complex dynamics.14 They are thus a good test case
for our new approach. Indeed, we recovered narrow distance
distributions for donor-acceptor distances in the polyprolines.
The means of these distributions are well-explained by applica-
tion of the wormlike chain (WLC) model with a persistence
length of 23 Å.15 While the short persistence length may have
further implications for the structure of proline-rich signaling
proteins16swhich are beyond the scope of this articlesit is
hoped that the general methologies described herein will aid in
the development of quantitative and predictive understanding
of the dynamic behavior of biological macromolecules.

Materials and Methods

Server-Based Single-Molecule Microscope.Microscope
Construction.The design of the microscope is diagrammed in
Figure 2. The 532 nm excitation light from a continuous-wave
lasersa diode-pumped solid-state laser or DPSS (Coherent,
Compass 315M-100)sis passed through a cleanup filter (Chro-
ma, HQ545/10x) and expanded to a diameter of∼8 mm to
match the back aperture of the microscope objective. To
minimize sample exposure to light, a shutter is installed in the
beam path and is controlled by the control server (see System
Software). A polarization element is placed immediately before
the entrance of the microscope; it can be aλ/2 plate, or aλ/4
plate, a Pockel cell, or any combination thereof. In the
experiments reported here, aλ/4 plate was used to ensure
circularly polarized excitation. After it enters the microscope,
the excitation beam is reflected from a dichroic mirror (Chroma,
Z532rdc) into an 60×, infinity-corrected, N.A. 1.4, oil-immer-
sion objective (Olympus, PlanApo). The objective focuses the

light to a diffraction-limited spot on the surface of the sample
cover slip, which is secured onto a custom-made, temperature-
regulated vacuum chuck mounted on top of a nanometer-
resolution piezoelectric stage (Physik Instrumente, P734). The
piezoelectric stage is driven by a high-voltage driver (Physik

Figure 1. Comparison of histograms constructed from a simulated trajectory by constant-time binning with the true probability density (solid
lines), illustrating the challenge in determining conformational distributions from single-molecule measurements. Here,x ≡ R/R0 is the normalized
donor-acceptor distance in a FRET measurement (cf. eq 3). The left column shows the truex-trajectory, as well as the donor (black) and acceptor
(gray) intensity trajectories, binned at 10, 50, and 100 ms. The other three columns compare the underlying probability density (- - -) with histograms
computed from the equal-time binned intensity trajectories, usingNb bins in thex-coordinate. The numbers of bins for the set of histograms in the
third column are generated according to Scott’s formula for the optimal bin width.8 This formula, like most nonparametric density estimations,9

assumes that there is no error associated with each datum. This assumption is not valid for single-molecule measurements. The columns to the left
and right use bin numbers half and twice the optimal value, respectively. Note that different regions of the histogram are broadened differently
because of the changes in the variance of the distance estimator as a function of distance.6

Figure 2. Configuration of a cw-excitation photon-by-photon micro-
scope. Illumination is provided by a continuous-wave DPSS laser.
Telescope lens assembly L1 expands the beam to 8 mm in order to fill
the back aperture of the objective O. A shutter S is installed in the
beam path to minimize unnecessary illumination. A polarization element
P is placed immediately before the entrance of the home-built
microscope body. Dichroic mirror D1 reflects the excitation light into
the back aperture of an infinity-corrected objective O, which focuses
it onto the sample mounted on a piezo stage. The excitation light that
leaks through D1 is detected by a photodiode PM to monitor laser
excitation power. Fluorescence from the sample is collected and
collimated by objective O and passes through dichroic D1 before being
focused by tube lens L2 and split into donor and acceptor channels by
dichroic mirror D2. The emitted photons finally pass through emission
filters E1 and E2 before being recorded by APDs APD1 and APD2.
The stage and the APDs are each controlled by a separate computer
server, all of which are connected via a high-speed network backbone
via the TCP/IP protocol to a client computer, which runs the user
interface. The modular design of the system is such that if more
parameters such as polarization are to be measured, one simply drops
in additional APD/server modules.
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Instrumente, E509.C2 and E503.00) that is interfaced to the
control server computer (see below).

Emitted light from individual molecules immobilized on the
surface of the slide is collected by the same objective and passes
through the dichroic mirror. It then passes through a tube lens
and is separated by another dichroic mirror (Chroma, Q645LP)
into donor and acceptor channels. The photons on their
respective beam paths are spectrally filtered by band-pass optics
(Chroma, HQ600/80m for donor emission and HQ705/130m
for acceptor emission) before being focused on a pair of single-
photon-counting avalanche photodiodes (APDs, Perkin-Elmer,
SPCM-AQR13). Each APD is connected to a photon registration
server and outputs a TTL pulse upon detecting a photon. The
modular design of this microscope is such that if more
parameters such as polarization were to be measured, one simply
drops in additional APD/server modules and the software (see
below) will take care of coordination.

The filters and dichroic mirrors used were chosen to match
the absorption and fluorescence properties of the fluorophores
used in these experiments. Because cross-talk can be fully
treatedsaccounting for the changing intensities on each channels
by including the cross-talk coefficients in the signal-to-
background ratio, as previously shown,6 much broader band-
pass filters can be used, allowing for more effective collection
of photons.

System Software.To coordinate the complicated tasks of real-
time data acquisition and analysis, the system software is split
into its core functionalities, which are composed of instrument
control, photon registration, and user interface. The piezoelectric
stage and each APD are controlled by server programs running
on separate computers. All servers are connected by a high-
speed TCP/IP network to the client computer running the user
interface program. The current implementation utilizes a 1
gigabit per second intranet backbone. No data stream latency
was observed.

The instrument control server interfaces with the microscope
via a multifunction I/O card (National Instruments, PCI-6052E)
to perform a variety of control and measurement functions.
These functions include setting and measurement of the position
of the piezoelectric stage, control of the shutter, measurement
of the laser power, and operation of any other physical
components necessary to a particular experiment. The photon
registration servers measure and record absolute arrival times
of photons at the APDs via a timing/counting interface (National
Instruments, PCI-6602). The arrival times are measured against
an internal 80 MHz clock on the board, providing 12.5 ns
resolution for photon arrival times, which, with the∼100 ns
dead time on the APDs, is more than sufficient for the CW
excitation being used. Note that the 12.5 ns time resolution refers
only to the timing on individual photons, not to the time required
to make a distance measurement. Theoretical limits on time
resolution in the measured distance trajectories have been
presented before,6 and the experimental realization of those
results is expanded upon below. To ensure that no detected
photons are missed, the measured TTL stream is polled via a
direct memory access channel and buffered before sending out
to the client. While it is possible to run them all on the same
computer, this generally results in dropped photons at high count
rates. Performance is significantly improved when each APD
is monitored by a different computer. For high count rate
applications, the TTL pulses from the APD are monitored
simultaneously by two counters on the same card. The data from
each of these are then compared, and errors are corrected before
the data are sent to the user interface. Tests showed that such

a dual counter configuration should be used when the average
count rate is higher than∼20 kilocounts per second (kcps). This
configuration was tested using a pulse generator (Stanford
Research, DG535) for constant-rate detection and a light-
illuminated APD for exponentially distributed interphoton
duration at average 10-1000 kcps. No missing photons were
observed up to an average count rate of 100 kcps for∼20 s. At
greater count rates, impractical for single-molecule fluorescence
experiments, the setup misses one photon per 3 s at 500kcps
and seven photons per 0.3 s at 1000 kcps. The standard deviation
of chronological time registration was found to be∼3-40 ns.
Both autocorrelation and cross-correlation analyses were per-
formed on these test trajectories. No correlations were found in
the entire photon detection and data registration process.

The client user interface, which may be run on yet another
computer, controls the operations of all of the data and control
servers, as well as providing real-time data analysis capabilities
by networking with a computer cluster that offers parallel
computation. The entire software suite is coded in C++, and
the client runs under both the Windows and the GNU/Linux
operating systems.

Imaging.To locate molecules for time-resolved observation
and on-line analysis, a fluorescence image of the surface that
contains immobilized single molecules must be obtained. The
stage is raster scanned across a predefined area, generally 10
µm × 10 µm, and photon arrival times are recorded on all
channels, along with the position of the stage as a function of
time. The reference times for position measurements and photon
arrival times on each channel are all synchronized by a trigger
pulse generated by the shutter upon opening. With these data,
each photon can be assigned a specific origin on the sample
cover slip. For viewing, the photon origins are spatially binned
into pixels and displayed on screen. These images are generally
acquired at the lowest possible excitation power to guard against
irreversible photochemical reactions or photobleaching. The data
in this report were collected at an excitation power of 780 nW
(or 350 W/cm2 assuming a diffraction-limited focal disk).
Inspection of the two channel image allows selection of doubly
labeled molecules suitable for recording single-molecule tra-
jectories. Molecules labeled only with the acceptor will not be
visible, whereas molecules labeled only with the donor or doubly
labeled molecules with a bleached acceptor will be visible only
on the donor channel. Correctly labeled molecules will be visible
on both channels.

Time Trajectories.Once an appropriately labeled molecule
is found, the stage is moved (with shutter closed) so that the
selected molecule is at the focus of the objective. The counters
are then armed, and the shutter is opened. As in the imaging
algorithm, the opened shutter generates a pulse that simulta-
neously triggers the counters, synchronizing their zero times.
A typical intensity trajectory is shown in Figure 3, where the
characteristic bleaching pattern of a single-molecule FRET
trajectory can be observed. The acceptor usually bleaches first,
causing the intensity on the acceptor channel to drop to the level
of the background plus cross-talk from the donor channel, while
the intensity on the donor channel increases to its value in the
absence of the acceptor. When the donor fluorophore bleaches,
the intensities on both channels drop to their respective
background levels. The high background level on the acceptor
channel is caused by plastic coverwells (Molecular Probes,
C18139) that were used to prevent sample evaporation. Sub-
sequent experiments have found that the use of plastic spacers
(Molecular Probes, P18178) combined with quartz covers
reduces the background level to less than 200 cps. The

Single-Molecule Conformational Distributions J. Phys. Chem. A, Vol. 110, No. 15, 20065193



maximum intensity on the donor channel (region II) is lower
than that on the acceptor channel because, while our filter sets
were optimized to include the tail of the acceptor emission, the
tail region of the donor’s emission spectrum overlaps consider-
ably with the acceptor’s emission spectrum. Photons are thus
much more efficiently collected from the acceptor than they
are from the donor. Data acquired with this microscope may
be analyzed using one of the various powerful statistical methods
available.6,7,17-29

Sample Preparation and Characterization. A series of
peptides with the sequence PnCG3K(biotin) (n ) 8, 12, 15, 18,
and 24) were synthesized using the Fmoc solid-phase synthesis
technique. The C-terminal lysine was prefunctionalized with
biotin on the amine (Nova Biochem, 04-12-1237). The poly-
(L-proline) peptides are expected to be predominantly in the
trans-isomer (forming a polyproline-II helix) under experimental
conditions.30,31The peptides were labeled with Alexa Fluor 647
C2-maleimide (Invitrogen/Molecular Probes, 20347) on the
cysteine and Alexa Fluor 555 carboxylic acid C5-succinimidyl
ester (Invitrogen/Molecular Probes, 20009) on the N-terminal
proline (cf. Figure 4). The free dye was removed by the addition
of 0.2 mg/mL streptavidin (Invitrogen/Molecular Probes, S888)
and subsequent centrifugal filtration. Streptavidin-bound pro-
line-dye conjugates were retained by the filter, while free dyes
passed through the filter. Unfortunately, the chemical structures
of these dyes are proprietary and not available. These two
fluorophores form a FRET pair with anR0 of 51 Å, calculated
from the absorption and fluorescence spectra. The ensemble-
averaged steady-state anisotropies (measured on a SPEX Fluo-
rolog) are given in Table 1. Large anisotropies are an indication
that the orientation of the excited optical dipole does not have
time to randomize before it relaxes back to the ground state.
The fluorescence lifetime of Alexa 555 is 0.27 ns,32 much

shorter than the time scale of rotation of the proline-streptavidin
complex (∼10 ns). Thus, in this case, even though the acceptor’s
anisotropy is low,κ2 is not in the dynamically averaged regime
for single-photon emissions. However, the donor-acceptor
distance measurement is made on a photon-by-photon basis over
a much longer time scale,∼1 ms, far longer than the time scales
for rotation of the dyes. Averaged over this∼1 ms time scale
(which typically contains 15-25 photons), the value ofκ2

approaches the 2/3 limit. This is demonstrated in detail in a
later section (cf. eq 9 and Figure 9).

The labeled peptides were immobilized via biotin-strepta-
vidin chemistry.33 This immobilization scheme has been shown
to exhibit minimal interaction with tethered molecules.34 Briefly,
quartz cover slips (Technical Glass Products, 1× 1 × 0.17
mm3) were first cleaned by sequential sonication in 1 M KOH,
absolute ethanol, 1 M KOH, and ethanol. They were then dried
and silanized with (3-aminopropyl)trimethoxysilane (APS) by
soaking for 2 min in a 2% solution of APS in acetone followed
by 30 min at 110°C. The silanized cover slips were function-
alized with poly(ethylene glycol) (PEG)-SPA and PEG-biotin
by incubation for 3 h in awater solution of 10% PEG-SPA,
0.1% PEG-biotin, and 0.01 M NaHCO3 at pH 8.2. Finally,
the streptavidin-bound fluorescently labeled peptide was incu-
bated for 5 min on the active side of the cover slip at a
concentration of∼10 pM. The sample cover slip was then
secured on the microscope for observation. No deoxygenation
agents were used in the present study. More than 60 valid single-
molecule trajectories were acquired for eachn.

Data Analysis.Measuring Time-Dependent FRET Efficiency
and Distance Photon by Photon.The recently developed MIM
allows one to quantitatively follow single-molecule FRET
efficiency and distance dynamics with the highest time resolu-
tion allowed by the information content in an experimental
data set.6 It has, for example, allowed identification of two
coexisting conformations of the cdAE1 protein.35 The time
resolution (∆t) for each maximum-information measurement is
determined by the expected measurement errorR ≡ δx/x. In a

Figure 3. (A) Raster-scanned image of doubly labeled P12CG3K-
(biotin), where the donor and acceptor emissions are represented in
blue and red false colors, respectively. The image was binned at 40
nm and filtered with a 5-pixel by 5-pixel Gaussian averager. (B) A
representative intensity trajectory acquired from the spot indicated by
the arrow in panel A. The segmentation of different regions for data
analysis is shown by the vertical dashed lines.

Figure 4. Chemical structure of doubly labeled PnCG3K(biotin), where
n ) 8, 12, 15, 18, and 24.

TABLE 1: Steady-State Fluorescence Anisotropy of Doubly
Labeled Polyprolines, Excited at 532 nm

n donor acceptor

8 0.205 (9) -0.000 (7)
12 0.244 (8) -0.003 (6)
15 0.235 (12) 0.016 (11)
18 0.223 (11) 0.023 (14)
24 0.193 (9) 0.040 (20)
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two-channel FRET setting, it is given by

Here, x ) R/R0 is the normalized distance,R is the donor-
acceptor distance, andR0 is the Förster radiussa function of
the orientation factorκ2 that accounts for the relative orientation
of the donor and acceptor transition dipoles.Id

â andIa
â are the

maximum intensities on each channel (Id
â, donor intensity in

the absence of the acceptor, andIa
â, acceptor intensity atR ,

R0), ú(x) is the distance-dependent intensity scaling function
with úd(x) ) x6/(1 + x6) and úa(x) ) 1/(1 + x6). Within the
time period∆t allowed byR, the donor-acceptor energy transfer
efficiency and corresponding distance are computed as

and

In the above equations,nd and na are the number of photons
detected within the chosen time interval on the donor and the
acceptor channels, respectively, andâd and âa are the signal-
to-background ratios. This method has been shown to be
relatively robust against intermittency or transient variations in
the dyes’ quantum efficiency.6 The orientation factorκ2 ) 2/3
was used for calculating the donor-acceptor distances.36

Ensemble-averaged steady-state anisotropy measurements of
doubly labeled poly(L-proline) conjugated to streptavidin indi-
cate that the fluorescent probes have already experienced
depolarization within the∼35 ns protein rotation time. The
linkers used for tethering fluorescent probes to the protein
surface are expected to exhibit segmental dynamics on the
ultrafast to nanosecond time scales.37,38 Together with the
absence of correlation in the single-molecule time trajectories,
these considerations lead to the conclusion that 2/3 is a good
approximation forκ2. This assumption was made in several
recent studies, showing that accurate distance information can
be obtained from immobilized DNA molecules13 as well as from
diffusing single molecules such as DNA12 and polyproline11,28

using FRET. These works all point to the importance of carefully
considering contributions from background, cross-talk, and other
instrumentation factors. Note that in addition to these parameterss
time-independent cross-talk has been shown to be a form of
background6sthe correction factor for detector efficiency for
the donor and acceptor channels, (Φaηa)/(Φdηd), has been
explicitly included in the derivation of eqs 2 and 3. This allows
further correction of potential molecule-to-molecule variations
in the absorption cross-section or emission spectrum as a result
of heterogeneity in the microscopic environment.

Calibration. Before analysis of the photon arrival time data
using the MIM algorithm, several calibration values must be
determined. These include the background levels on each
channel, the maximum intensities on each channel (the back-
ground levels and maximum intensities may vary from molecule
to molecule), and the cross-talk coefficients (ød andøa, constant
for a given experimental setup).ød is the fraction of donor
fluorescence that will be observed on the acceptor channel.
Likewise, øa is the fraction of acceptor fluorescence that will

be observed on the donor channel. They may thus be calculated
directly from the fluorescence spectraFd(ν) and Fa(ν) of the
donor and the acceptor, the transmission curvesTd(ν) andTd-
(ν) of the emission filters that define the donor and acceptor
channels, and the response curveRA(ν) of the APD itself by

To calculate the other required parameters, each single-
molecule time trajectory is divided into three regions, I (FRET),
II (donor-only), and III (background) (cf. Figure 3). The intensity
changes between regions I and II, due to acceptor photobleach-
ing, and between II and III, due to donor photobleaching, are
abrupt. Quantitative segmentation of the time trajectory was
accomplished by means of an intensity change point detection
algorithm, as detailed previously.7 Depending on the relative
intensities, this method allows one to determine the intensity
change point to within a few photons. Regions I, II, and III, as
determined by the change point algorithm, were then used to
determine the calibration parameters. In region I, the period from
the beginning of the trajectory to the time the acceptor
photobleaches, the observed intensities on the donor and
acceptor channel can be written as

wherexj is the (unknown) average distance in region I andIhd

andIha are the average intensities on the donor and acceptor chan-
nels. These are computed by applying the maximum likelihood
estimatorIh(I) ) NI/TI, whereNI is the total number of photons
in the region andTI is the total time duration of the region.

In region II, the period from the time that the acceptor
photobleaches to the time that the donor photobleaches, the
effective donor-acceptor distance isx f ∞, and the observed
intensities will be

In region III, the period from the time the donor photobleaches
and until the end of the trajectory scan, the intensities are just
the background counts:

Solving these equations, one obtains expressions for the desired
calibration values.

∆t ) 1

R2 ( Id
â

úd(x) [∂úd

∂x ]2

+
Ia

â

úa(x) [∂úa

∂x ]2)-1

(1)

Ê )
Id

â na - Ia
â nd âa

-1

Id
â na (1 - âd

-1) + Ia
â nd (1 - âa

-1)
(2)

x̂ ) (âa

âd
‚

Id
â na - Ia

â nd âd

Ia
â nd - Id

â naâa
)1/6

(3)

ød )
∫0

∞ Fd(ν) Ta(ν) RA(ν) dν

∫0
∞ Fd(ν) Td(ν) RA(ν) dν

øa )
∫0

∞ Fa(ν) Td(ν) RA(ν) dν

∫0
∞ Fa(ν) Ta(ν) RA(ν) dν

Ihd
(I) ) Id

0 úd(xj) + øa Ia
0 úa(xj) + Bd

Iha
(I) ) Ia

0 úa(xj) + ød Id
0 úd(xj) + Ba

Ihd
(II) ) Id

0 + Bd

Iha
(II) ) ød Id

0 + Ba

Ihd
(III) ) Bd

Iha
(III) ) Ba

Id
0 ) Ihd

(II) - Ihd
(III)

Ia
0 )

Id
0 + ød Id

0 P

P + øa
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with P ) (Ihd
(II) - Ihd

(I))/(Iha
(I) - Iha

(II)). Once the calibration
parameters have been determined for an individual molecule,
the photon arrival times from region I can be subjected to the
MIM algorithm, generating the desired energy transfer efficiency
or distance trajectory. The uncertainties in the determination of
these parameters are propagated to assist in the assessment of
variations in molecule-to-molecule measurements.

Photon-by-Photon Intensity Correlation. The time correla-
tion function of a photon-by-photon single-molecule intensity
trajectory can be directly calculated by representing the time-
dependent intensity as a series of Diracδ functions20

where{τi
(n)} is the set of photon arrival times on channeln.

The true correlation function is

where〈‚‚‚〉 indicates an ensemble average.
If the single-molecule trajectory is long enough, the ensemble

average may be converted to a time average

whereT is the duration of the entire trajectory (cf. region I in
Figure 3). The correlation function is just a sum of scaledδ
functions, which can be computed directly from the photon
arrival sequence. The correlation functionCmn(t) may be further
averaged over a time interval [ta, tb] to reduce the stochastic
noise

The term1expr is the indicator function, equal to 1 when expr is
true and 0 otherwise.

Because the correlation function is calculated as a time
average over a single trajectory, errors may arise due to
incomplete sampling of the conformational space. These errors
are estimated using the method of Zwanzig and Ailawadi.39 In
the averaging of correlation functions from multiple trajectories,
errors may be propagated in the usual manner. This allows
calculation of intensity autocorrelation and cross-correlation in
FRET trajectories on a photon-by-photon basis and is analogous
to most implementations of fluorescence correlation spectros-
copy (FCS).40 As such, it is straightforward to use this
microscope in FCS type applications.

Recovering the Underlying PDF.Distributions measured
using single-molecule fluorescence methods are commonly
visualized by constructing a histogram from a binned time
trajectory (averaged over every, e.g., 50 or 100 ms to reduce
Poisson counting noise) and have already allowed researchers
to uncover many new features in various systems,41-46 including

studies on the dynamics and folding of short peptidessone of
the first treatments of the potential of mean force and photon
statistics in relation to single molecule measurementssand the
discovery of the dynamic equilibrium between closed and open
forms of syntaxin I.47 A quantitative assessment of the underly-
ing PDF is therefore expected to provide further insight for the
systems of interest.

When constructed from a fluorescence single-molecule time
trajectory, the PDF contains contributions from both the
molecular property and the photon detection statistics.43,48,49An
information-based method such as MIM, in addition to its exact
accounting of time resolution and measurement uncertainty, is
advantageous for quantitative construction of the molecular
distribution. Because the information content in each measure-
ment (be it efficiency or distance) is constant, MIM can also
be understood as equal-information binning, in contrast to the
commonly used equal-time binning. That the information content
is the same for every measurement is an important property
that allows one to construct statistically robust distribution
functions. This further affords model-free deconvolution to
uncover the sought molecular property distribution in a least-
biased, objective way. While the ideas contained in the following
discussion are general, the development focuses on statistical
methods that are applicable to experiments with immobilized
single molecules. Such an experimental scheme can in principle
provide dynamical information on a time scale covering several
decades.

Gaussian Kernel Density Estimation.To estimate the distance
distribution from a single-molecule time trajectory, one starts
by constructing the raw experimental PDF,r̂(x)scontaining
contributions from photon counting-related measurement
uncertaintiessfrom MIM-extracted distancesx̂i. The maximum
likelihood estimatorsx̂i are asymptotically normal (Gaussian
distributed) and are centered around the true but unknown
distance,xi. By virtue of the equal-information binning (cf. eq
1), eachx̂i has the same varianceR2.6 This naturally leads to
the use of the Gaussian kernel estimator forr(x)

whereN is the number of MIM measurements made from the
trajectory and∆ti andx̂i are the duration and distance estimate
from the i-th measurement.

To illustrate how experimental measurements yield overly
broad density functions, raw PDFs calculated from three
trajectories simulated under different conditions are compared
in Figure 5 with their respective true PDFs (see Computational
Validation for simulation methods). As can be seen, the raw
PDF is an entirely inadequate measurement of the underlying
PDF. It should be emphasized, however, that due to the
statistically uniform nature of MIM measurements, these raw
PDFs already represent an improvement over histograms
constructed from constant-time binned trajectories. In equal-
time measurements, each time bin contributes to the overall
histogram with different significance levels, bringing additional
bias and skewness to the resulting histogram.

Mathematically, Figure 5 can be understood by considering
the raw density as the underlying molecular PDF,h(x), twice
convoluted with the Gaussian kernelk(x;R2). One convolution
is due to the measurement error inx̂, normally distributed with
a varianceR2 by virtue of maximum likelihood estimation, and
one is due to use of the Gaussian kernel estimator in eq 4,
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N
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introducing an additional varianceR2. That is

whereX denotes the convolution operation. The task at hand is
then to recover the true molecular PDF,h(x), from knowledge
of the raw PDFr(x) and the convolution kernelk(x).

CoVariance of the Raw Density.Because of the limited
duration of single-molecule trajectories, the raw PDF will
contain errors resulting from the nonzero relaxation time of the
distance correlation function and from lack of suitable sampling
of the raw histogram. Errors of the second sort can be assessed
by application of Efron’s bootstrap method, explained further
in the Appendix. The use of the bootstrap, however, requires
the data to be independent and identically distributed. In general,
a single-molecule time trajectory may exhibit significant time
correlation. That is, the discrete distance measurements (coarse-
grained in time) made by the MIM are not necessarily
independent, although they should be identically distributed.

To calculate the covariance matrix for the raw density, the
notation is changed slightly from that of the previous section.
Instead of writing the raw density as a weighted sum of
Gaussians (cf. eq 4), it is written as an integral over time. This
makes the treatment more general, since it is not constrained to
situations with discrete distance measurements. Given knowl-
edge of the estimated trajectoryx̂(t), the raw PDF at a particular
x obtained from a trajectoryx̂(t) of durationT can be written as

Note that in the case of discrete measurements, this reduces to
eq 4. This PDF is estimated from a trajectory of limited duration,
so it may contain statistical errors due to insufficient sampling
of the conformational space, as has been discussed by Zwanzig
and Ailawadi.39 However, its ensemble average will be the true
raw PDF

The second equality holds because the ensemble average and

the time integral operations commute. Writing the difference
between the measured raw PDF and the true raw PDF asδ r̂(x)
≡ r̂(x) - r(x), the covariance matrix of the raw PDF is

The integrand is a time correlation function and, to a very good
approximation, will only be a function of|t2 - t1|. When the
conformational space projected on thex-coordinate is ap-
propriately sampled, this correlation should decay on a time
scale much shorter than the length of the trajectory,T. This
allows simplification to a more convenient form

This formula is just the integral of a correlation function and is
simple to evaluate. The ensemble average in the integrand may
be converted to a time average for calculation of the correlation
function. Given multiple trajectories from the same sample, the
correlation function should be averaged across trajectories before
integration. Once again, errors in this correlation function may
be evaluated by the method of Zwanzig and Ailawadi.39 To find
the covariance of a raw PDF that has been averaged over
multiple trajectories,T in eq 5 should be the sum of the durations
of all the trajectories.

MaxEnt.To deconvolve the raw PDF, a one-dimensional form
of the MaxEnt can be used.10,50,51 A merit function M is
constructed for a trial molecular PDFh(x)

ø2 is a measure of the goodness-of-fit between the raw PDF
and the convolution of the proposed molecular PDF

H is the negative entropy of the proposed molecular histogram

andλ is a Lagrange multiplier, adjusted so that the finalø2 after
optimization is within 1( 1/xN. An initial guess ofh ) r̂(x)
is used and a provisionalh(x) is found whenM [h(x),λ] is
minimized. The minimization is performed numerically using
a steepest descent algorithm. The analytical gradients of the
merit function are provided in the Supporting Information.

The provisionalh(x) is used to find the correctλ and, thus,
the experimentally justifiedh(x). This is the core concept behind
MaxEnt. Given a set of underlying PDFs, all of which
adequately represent the data, the one with the highest entropy
is the only one that is justified by the data. While one of
the lower entropy PDFs may be more correct, the data are
insufficient to show this. This correcth(x) can be found by
varying the Lagrange multiplierλ used in the minimization until
ø2 is within the range 1( 1/xN.

CoVariance of the DeconVolVed Density.Becauser(x) ) h(x)
X k(x), δr(x) ) δh(x) X k(x) and the covariance matrixσh

2 of

Figure 5. Comparison of true (- - -) and raw (s) PDFs for trajectories
simulated (A) at constantx, (B) on a harmonic potential, and (C) on a
bimodal potential.
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the molecular PDF can be calculated by the two-dimensional
deconvolution of the covariance matrix of the raw PDF

Knowledge of this covariance matrix is important for several
reasons. The diagonal term gives the variance of the decon-
volved PDF as a function ofx, a measure of the overall and
point-by-point accuracy. Just as important are the off-diagonal
terms, which provide information about the relative accuracy
between different regions of the density. For instance, in a
trajectory from a bimodal PDF, the time-scale of equilibration
between the two high-density regions will be much longer than
that within the two regions. This means that the deconvolved
densities at values ofx within the same potential well should
be accurate with respect to one another. That is, they should be
positively correlated. This will be reflected by a positive
covariance. The densities at values ofx in different potential
wells, on the other hand, should be negatively correlated, since
more time spent in one potential well means less time spent in
the other. This will produce a negative covariance. Thus, the
covariance between two points in the PDF is primarily
determined by the time-scale of equilibration between those two
points. Therefore, the deconvolved covariance matrix provides
further insights into the dynamics afforded by the experimentally
measured PDF.

Computational Validation.To test this procedure, some basic
simulations were performed. Three classes of trajectories were
produced as follows: constantx, a harmonic potential, and a
bimodal potential. The trajectories were produced by simulation
of one-dimensional high-friction Langevin dynamics and sub-
sequent conversion to photon arrival time data, as previously
described.6 The trajectories on harmonic potentials were simu-
lated at a temperature ofâ ) 100, with friction coefficientγ )

1.0. The bimodal trajectories were simulated at the same
temperature, with a friction coefficient ofγ ) 0.1. The combined
number of photons emitted before bleaching of the dyes was 2
× 105, and the signal-to-background ratio on both channels was
5.0.

As can be seen in Figure 6, the deconvolution procedure
performs well. The constant-distance trajectories in Figure 6A
all deconvolve toδ functions. Bias in the location of the peak
is small (less than 0.023). This is expected based on the bias
analysis of the MIM.6 Trajectories from harmonic potentials
produce Gaussian PDFs in Figure 6B that match the true PDF
from the underlying trajectory. The deconvolved height and
standard deviation of the Gaussian profile are 4.57( 0.70 and
0.22( 0.06, respectively, agreeing with the true values of 5.64
and 0.17. The covariance matrices for these deconvolved PDFs,
shown in Figure 6D,E, are similar. Densities that are close to
each other are positively correlated, while points farther away
are negatively correlated. If the trajectory spends more time in
one part of the density function, it spends less time in the other.

The deconvolution of the trajectory from a bimodal potential
is more revealing. The raw PDF is too broad, and it obscures
the true separation of the two potential wells. From the raw
PDF (cf. Figure 5), it is not possible to measure the width of
the individual peaks or the depth of the barrier that separates
them. The deconvolved PDF shown in Figure 6C, on the other
hand, matches well with the underlying PDF. The heights of
the peaks and the depth of the well between them are 2.88(
0.37, 2.45( 0.57, and 1.71( 0.51, respectively; all compare
well with the true values of 2.85, 2.85, and 2.28. The
deconvolved covariance matrix in Figure 6F is similarly
informative. Two distinct regions of positive covariance can
be identified, corresponding to the two wells in the potential.
The covariance between points in different wells is negative,
indicating the slower time-scale of equilibration between the
wells. None of these properties would be apparent from the raw
histogram alone.

Figure 6. Results from deconvolution of test trajectories: (A) True (black) and deconvolved (red) probability densities for constant trajectories at
x ) 0.6, 0.8, 1.0, 1.2, and 1.4. (B) True (black) and deconvolved (red) probability densities for a trajectory simulated on a harmonic potential
centered atx ) 1.0. The 95% confidence interval for the deconvolved density is indicated by dashed lines. (C) True (black) and deconvolved (red)
probability densities for a trajectory simulated on a bimodal potential centered atx ) 1.0. The 95% confidence interval for the deconvolved density
is indicated by broken lines. (D) Covariance matrix for the deconvolved density shown in panel A atx ) 1.0. (E) Covariance matrix of the
deconvolved density shown in panel B. (F) Covariance matrix of the deconvolved density shown in panel C.

〈 dr(x1) δr(x2) 〉 ) 〈 dh(x1) δh(x2) 〉 X k(x1) X k(x2)

σr(x1, x2) ) σh(x1, x2) X k(x1) X k(x2)
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The differences between the true density and the recovered
density can be attributed to the finite length of the trajectories.
This root cause manifests itself in two ways. The accuracy of
the density at a particularx value depends on how often the
trajectory visits that value. Additionally, the accuracy of the
covariance estimate depends on the accuracy of the correlation
functions, which are themselves strongly dependent on the length
of the trajectory.

Results and Discussion

Static Poly(L-Proline) End-to-End Distance on Single-
Molecule Experiment Time Scales.Representative intensity
trajectories for all peptide lengths are shown in Figure 7 (first
column), along with the reconstructed efficiency (second
column) and distance trajectories (third column) from MIM
analysis with a relative error ofR ) 0.1 (equivalent to a distance
uncertainty of∆R ) 5.1 Å). The bleaching times for both the
donor (∼160 s) and the acceptor (∼10 s) appear roughly
exponentially distributed (histograms are presented in the
Supporting Information) and are summarized in Table 2. The
average time resolution (∆t) is ∼26-70 ms.

The fluorescence intensities appear constant over time,
indicative of constant energy transfer efficiency on the time
scales accessible to fluorescence single-molecule experiments.
Similarly, the MIM-determined FRET efficiencies and distances
appear to fluctuate randomly about their respective mean values.
To examine if the extrinsic probes may transiently interact with
the peptide in a nonspecific way,52-55 correlation analyses on

the fluorescence intensity, energy transfer efficiency, and
distance were carried out on all of the trajectories. The lack of
correlation on the experimental time scales indicates that single
poly(L-proline) molecules interrogated in this study can be
considered as exhibiting static mean end-to-end distances on
time scales from milliseconds to tens of seconds (see Supporting
Information for correlation results), in contrast to studies where
the measurement time scale is comparable to that of molecular
motions.52,53Higher time resolution data or more extended poly-
(L-proline) molecules may allow direct observation of confor-
mational dynamics.

For molecules such as poly(L-proline) that presumably exhibit
constant energy transfer efficiencies, one expects a sharp
distribution peaking at the mean value. The raw distribution
functions r̂n(E) (n ) 8, 12, 15, 18, and 24) constructed using
the Gaussian kernel estimator (cf. eq 4), however, appear very
broad (cf. Figure 8). This is not surprising, as they are broadened
both by the photon-counting noise and by the density estimation
procedure. To recover the underlying efficiency distribution of
individual poly(L-proline) molecules, the MaxEnt deconvolution
procedure was applied to the raw distribution functionsr̂n(E).
As shown in Figure 8, the MaxEnt deconvolution drastically
reduces the distribution to sharply peakedĥn(E), as one would
have expected from poly(L-proline) molecules with time-
invariant energy transfer efficiency.

Toward Quantitative FRET Measurement. Sufficient Sam-
pling of Donor-Acceptor RelatiVe Orientations Using MIM.
The use ofκ2 ) 2/3 inR0 implies that orientational correlations
between the donor and the acceptor dyes disappear on a time-
scale shorter than the interphoton timing and that the number
of photons used in distance calculations is sufficient to ensure
that the distribution ofκ2 is close to normal. For the former,
one examines the intensity auto- and cross-correlation functions
(shown in the Supporting Information). They show no significant
correlation at short time-scales, in support of this randomization
assumption.

Figure 7. Intensity (left), FRET efficiency (center), and calculated donor-acceptor distance (right) as a function of time. Intensity trajectories are
binned at 100 ms on both the donor (black) and the acceptor (gray) channels. Distance and efficiency trajectories are calculated using the MIM and
assumeR0 ) 51 Å. Dimensions of the gray boxes on the distance and efficiency trajectories indicate the time resolution (horizontal dimension) and
expected 95% confidence interval in energy transfer efficiency or donor-acceptor distance (vertical dimension).

TABLE 2: Mean ( τj) and Standard Deviation στ of Donor
(d) and Acceptor (a) Bleaching Times for PnCG3K(Biotin)

n τja(s) στa(s) τjd (s) στd (s) ∆t (ms)

8 6.0 6.9 118 154 70
12 7.8 8.9 161 176 70
15 11 14 192 168 26
18 11 16 135 135 30
24 16 19 194 192 46
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With the operating assumption that the relative donor-
acceptor orientation randomizes on a time scale much faster
than interphoton timing, each detected photon can be considered
as an instantaneous sampling of the PDF forκ2.56

whereg(κ2) ) 0 when 0< κ2 < 1 andg(κ2) ) ln(xκ
2-1 +

xκ
2) when 1 < κ2 < 4. The excitation-emission cycling

within a single molecule then allows repeated sampling of
different relative orientations. In using a set of photons for a
distance measurement, the effectiveκ2 for the measurement will
be the mean,〈κ2〉. As shown by the numerical study presented
in Figure 9, as few as∼10 photons are required before the
central limit theorem takes effect and the means approach the
〈κ2〉 f 2/3 limit. This implies that if the spectra of the dyes
and the refractive index of the medium between the dyes do
not change appreciably over the course of the experiment, the
measured distance is linearly related to the actual molecular
distance in any one trajectory.

Molecule-to-Molecule Variations Are Dominated by Param-
eter Calibration Uncertainty.The underlying distribution of
FRET efficiency and distance within individual molecules
(relative distribution) can be reliably recovered with combined
use of MIM and MaxEnt deconvolution. This permits one to

begin discussing potential complications related to variations
between molecules. The results are summarized in Figure 10.

For this data set, in general, a broad molecule-to-molecule
variation is observed in the measured absolute distancesĥn(x)
and energy transfer efficienciesĥn(E). The width of the distance
distribution for a given oligopeptide exceeds what would have
been expected from statistical errors in the MIM analysis of
individual trajectories. Control experiments using linearly polar-
ized excitation light at 0, 45, and 90° at the same molecule
resulted in trajectories of constant intensity within measurement
uncertainties after correcting for depolarization effects in the
optical components. This observation rules out the scenario in
which either the donor or the acceptor probe is locked in a fixed
orientation during the observation period.

Instead, it was found that the spread was dominated by
variation in the observed calibration values (Id

â, Ia
â, âd, andâa

in eqs 3 and 2). These calibration-related uncertainties may result
from variations in locating individual molecules from the single-
molecule image or from variations in the immediate chemical
environment of the molecule under investigation. This is
visualized in Figure 10 by comparing the distributions ofĥn(x)
from all molecules (bars) with a Gaussian distribution (thick
solid lines) having a variance of

whereM is the total number of molecules of a given poly(L-
proline) length andσ2

x̂(j) is the expected variance of the distance
measure for thej-th molecule by propagating errors in param-
eters calibration. More accurate measurements such as those
using multispectral methods32 will be needed in order to address
issues such as the shape of the molecule-to-molecule distribu-
tion. Indeed, it will be interesting to examine the possibility
that individual polyproline molecules exist in different confor-
mations and do not interconvert on the time scale of observation.
One likely physical origin is that the number of cis-residues
contained in individual polyproline molecules may vary from
molecule to molecule, resulting in such a broad end-to-end
distance distribution. Work along this direction is underway.

Figure 8. Raw (- - -) and deconvolved (s) distribution functions from
single PnCG3K(biotin) trajectories shown in Figure 7.

Figure 9. Probability densityp(〈κ2〉m) as a function of them-
measurement mean value〈κ2〉m. The bold line highlights them ) 1
function. Asm increases, the mean value rapidly peaks at the ensemble-
averaged value,〈κ2〉mf∞ ) 2/3. The inset shows the relative standard
deviation of〈κ2〉m as a function ofm, which quickly decreases to less
than 10% (atm = 15).

p(κ2) ) 2

x3κ
2

[ln(2 + x3) - g(κ2)] (9)

Figure 10. Distributions of donor-acceptor distances and FRET
efficiency of PnCG3K(biotin) (n ) 8, 12, 15, 18, and 24). The solid
line is a Gaussian distribution with a variance that is the mean of
expected variance of individual molecules by propagating uncertainties
in parameters calibration. This indicates that the molecule-to-molecule
distributions are dominated by uncertainties in parameter calibration.

σ2(x̂) ) 1
M ∑j)1

M σ2
x̂(j)
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Here, we will focus on the trend of the mean end-to-end distance
exhibited by the series of polyprolines, discussed below.

Worm-Like Chain Model for Poly( L-proline) Molecules
with a Short Persistence Length.The experimentally deter-
mined mean donor-acceptor distances may be compared with
those predicted by three different models for polymer chains.
In all of these comparisons, a unit length increment of 3.12 Å
from CR to CR will be used for calculating the contour length,
lc.57 In order of decreasing rigidity, these models are (A) a
rodlike poly(L-proline), which exhibits an effective persistence
length lp f lc. This model appears to be implicitly assumed in
the original paper for the use of FRET as a bulk-level
spectroscopic ruler.58 A concurrently proposed theoretical model
is also consistent with this rodlike picture for short poly(L-
proline) chains59 and is, therefore, included in this category.
(B) A less rigid model with the widely used persistence length
of lp ) 220 Å for all-trans-poly(L-proline).60-62 (C) A flexible
model with a lp ) 23 Å persistence length, derived from
osmometric experiments on high molecular weight poly(L-
proline).15

These models will be discussed in the framework of a
statistical description of stiff-chain polymers, the WLC model.
The expected end-to-end distance,〈R〉, of the WLC model is
calculated using the mean-field expression for its probability
density63,64

wherer ) R/lc andu ) lc/lp. The normalization constantN is
given by

with s ) 3u/4. Thus, the expectation value ofR is

where

is the complementary error function.
With the Förster radiusR0 ) 51 Å determined from the

spectral overlap of the donor and acceptor probes, the only
remaining parameter to be determined is the distance between
the center of the emitting dipole to the CR to which the donor
or the acceptor is tethered. Unfortunately, no chemical structure
is available for the Alexa Fluor 555 and 647 dyes. Nevertheless,
the structures for the coupling moieties, maleimide and succin-
imidyl ester (cf. Figure 4), are known and can be used to
estimate a lower bound for the linker distance. For this purpose,
one counts nine chemical bonds from either the N or the C
terminus CR for the linkers. The linkers are also described within
the framework of the WLC model, using a 6.5 Å persistence
length for polymethylene as an approximation and a C-C
contour increment of 1.26 Å.65,66 Using eq 10, a lower bound
of 12.2 Å for the joint linker distance was obtained. Constrained
by this lower bound constraint, the WLC model with thelp )
23 Å persistence length (model C) appears to describe the

experimental data well, with a fitted linker distance of 11.23
Å, as summarized in Figure 11.

It is evident that poly(L-proline) exhibits considerable flex-
ibility even for the relatively short chains studied here. These
results are consistent with the recent studies from diffusing
single molecules11 and from NMR experiments:67 Both found
shorter-than-expected end-to-end distance if compared with a
rigid polyproline model. While poly(L-proline) is believed to
exist predominantly in the trans-form in room temperature
aqueous solutions,30,31 theoretical considerations indicate that
the inclusion of 5% cis-residues in an otherwise trans-polypro-
line is sufficient to reduce the apparent persistence length
significantly.68 Therefore, it is very likely that a small number
of proline residues exist in the cis-form for the short chains
studied here, giving rise to the observed flexibility.

Concluding Remarks

While spectroscopy at the single-molecule level in principle
allows the direct measurement of molecular property distribu-
tions, a quantitative determination of these distributions remains
challenging, especially in time-dependent experiments. Uncer-
tainties associated with low-light detection broaden and some-
times skew the experimentally obtained distribution. To address
this issue, a deconvolution procedure has been developed using
the distance-dependent FRET as an illustrative example.

An uniformly broadened PDF is first prepared using the
previously developed maximum-information approach. This
amounts to equal-information binning and ensures that every
point in the underlying histogram is broadened by the same
amount. Straightforward deconvolution, attempting to make the
best fit possible between the experimental data and the recon-
voluted PDF, produces an overfit that is not supported by
experimental data. The resulting deconvolved PDF is too rough,
and its features are too sharp. This leads naturally to the use of
a maximum entropy-based method. It has two necessary
components: statistical uniformity of the underlying data,

p(r;u) ) 4π Nr2

(1 - r2)9/2
exp(- 3u

4
1

(1 - r2))

N ) 4s3/2es

π3/2(4 + 12s-1 + 15s-2)

〈R〉
lc

)
4x3u(5 + u) - 2e3u/4 xπ(-10 + 3u) erfc[x3u/2]

xπ[20 + 3u(4 + u)]
(10)

erfc[z] ) 2
π ∫z

∞ e-a2
da

Figure 11. Comparison of experimental results with various models
for poly(L-proline). As a reference,(2 Å ranges for the model are
also displayed. Experimental error bars represent 95% confidence
interval of the experimental mean.
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already provided by the MIM, and accurate knowledge of the
variance in the raw experimental histogram. The analytical
expressions for the variance derived in this work provide the
second requirement. It should be emphasized that the calculation
of this variance takes into account the time scale of dynamics
in the system under observation. Furthermore, the calculation
of the full covariance matrix of the deconvolved PDF allows
accurate assessment of the relative heights, widths, and impor-
tance of each observed mode. Prior assumptions about the
functional form of the underlying probability density of the
molecular parameter are no longer necessary for its accurate
calculation.

For each single poly(L-proline) molecule studied here, sharply
peaked distance and FRET efficiency distributions were ob-
served, suggesting a time-independent end-to-end distance on
the time scale of fluorescence single-molecule spectroscopy.
This, in turn, allows discussion of molecule-to-molecule varia-
tions in the measured distance (FRET efficiency) on more
quantitative terms. It was found that these variations were
dominated by uncertainties in parameter calibration. The
systematic study of a series of poly(L-proline) allows one to
assess models of differing rigidity. It was found that a WLC
model with thelp ) 23 Å persistence length (derived from high
molecular weight osmometry studies15) was in very good
agreement with the present single-molecule results. While an
all-trans-polyproline chain is expected to exhibit a persistence
length much longer than oligopeptides of other composition, it
has been suggested that a small percentage of cis-residues would
be sufficient to allow some flexibility in the otherwise rigid
chain.68 Indeed, the presence of cis-residues cannot be ruled
out in room temperature solutions. Therefore, an emerging
picture for short poly(L-proline) chains is that they are composed
of short trans-repeats interspersed with the occasional cis-
residue. Longer time trajectories are expected to allow more
detailed examination of this model and to provide insights into
the nature of the molecule-to-molecule variations.

The approach presented here for recovering the underlying
molecular property distribution is general and is expected to be
applicable to other experimental observables. With methods such
as this, an understanding of conformational features, as well as
the dynamics within, may begin to be developed and placed
within a quantitative, predictive theory. As an example for future
applications, this approach will allow quantitative comparison
of the manner by which molecular property distributions may
change as a result of changes in the underlying molecule and
to identify subtle yet functionally important molecular confor-
mations.
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Appendix

Efron’s Bootstrap. An alternative method for the determi-
nation of errors in the raw histogram is the bootstrap method

by Efron.69,70 Given the raw histogram, a set of auxiliary
histograms is constructed by resampling each original data point
from the raw histogram. The standard deviationσB(x) of this
set of auxiliary histograms has been shown, subject to certain
assumptions, to be a good estimator of the error in the original
histogram.

The assumption required by the bootstrap method is that all
data points in the original histogram are independent and
identically distributed. In single-molecule time trajectories,
though, this assumption may not always be justified. If slow
dynamics are being manifested in the trajectories being studied,
the data points in the original histogram will not be independent,
although they should be identically distributed. This means that
if the original number of data points is used to resample the
raw histogram, the standard deviation determined will be
significantly lower than is justified.

This oversight can be remedied by estimation of the dominant
time scales of the trajectories under consideration. In the spirit
of Zwanzig’s use of correlation times for calculation of errors,
the number of uncorrelated distance estimates can be estimated
by dividing the total duration of the trajectory by the 1/e time
of the correlation function. The bootstrapped error calculated
from this number of independent points is generally comparable
with the error calculated by the analytical method described in
the main text and may be more expedient in situations where
the analytical approach cannot be applied or where fast
calculations are required.

Supporting Information Available: Analytical gradients
of the maximum entropy merit function, dye bleaching lifetimes,
time resolution, and correlation analysis. This material is
available free of charge via the Internet at http://pubs.acs.org.
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