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A method for expressing the wave function in terms of Lewis structures is proposed and tested on the allyl
cation. This computational scheme is called valence bond BOND (VBB). The compact VBB wave function
gives consistent results with the breathing orbital valence bond method (BOVB) for the resonance energy of
the allyl cation (54 and 55 kcal/mol for VBB and BOVB, respectively). The optimization of theσ orbitals,
in such a way they adapt to each resonance structure, makes use of the breathing orbital effect. It is shown
that this “breathing” of theσ frame is more efficient in the resonant hybrid than in the localized state, so that
a resonance energy of 63 kcal/mol is obtained at this level of computation.

Introduction

Although there have been these past years a wide spread of
computational concepts and tools to the chemists, one shall
recognize that the usual wave function’s concept is sometimes
very broad from the usual chemist’s way of thinking, that is,
Lewis structures,1 mesomery, and resonance.2 The molecular
orbital (MO) and density functional theory (DFT) theory of
course give an accurate view of the electronic structure and
contribute significantly to major advances in understanding
chemical reactivity and structural properties. Yet, the orbital
delocalization across the whole molecule in these methods does
not provide a directly readable wave function in terms of Lewis
structures. Significant advances have been made in using
fragments’ densities (or orbitals) to further analyze how frag-
ments interact.3 Several other methods are also available to re-
express the wave function in terms of usual Lewis bonding
schemes such as lone pairs and bonds between two atoms.4-6

Those proceeda posteriori, on a wave function that has been
optimized in the MO (or DFT) fully delocalized scheme.

One of the key chemical concepts in relation with the
language of Lewis structures is resonance. This concept shows
up when several Lewis pictures (resonance forms) have to be
invoked to reach a correct physical description of a molecule.7

However, the computation of the resonance energy between
contributing structures is always a challenge. One of the simplest
examples is the allyl cation that can be written as the resonance
between two contributing structures (Scheme 1). Its resonance
energy has been the subject of numerous contributions and
controversies.8,9 The most recent of them, from Mo10 and from
Barbour et al.,11 gave quite different values for the resonance
energies. While Mo suggested for the cation a resonance of
about 45 kcal/mol, Barbour et al. found a value about 2 times
smaller, around 21 kcal/mol. One reason for such discrepancies
is related to the geometric relaxation of resonance contributors.
In the dehydrogenation strategy used by Barbour et al. (eq 1),

such a relaxation is included in the resonance evaluation. We
can thus attribute a part of the discrepancy to the resonance
definition. Using a relaxed geometry for the resonant contribu-
tors, Mo proposed to use the adiabatic resonance energy (ARE)
instead of the vertical resonance energy (VRE). Because the
geometrical relaxation lowers the energy of the resonant
contributor by a little less than 10 kcal/mol, the ARE is found
to be about 38 kcal/mol, in slightly better agreement with the
Barbour result.

Such a definition facilitates the comparison with the dehy-
drogenation reactions such as the one described in eq 1.
However, if we restrict ourselves to the resonance energy as
defined by Pauling and Wheland,2 then VRE is the valid
definition. This is the difference between the energy of the
resonant state and that of the lowest localized contributor taken
at the geometry of the resonant state. Because the Lewis
structures are somehow localized, the valence bond (VB) theory
appears as a most valuable tool to gain knowledge about
resonance. Each bond can indeed be individually described
through its covalent and ionic structures.

VB theory suffered from a lack of accuracy in the past time,12

for dynamic correlation was not included and orbitals were not
optimized. Bond dissociation energies were thus poorly repro-
duced. However, it has been shown that a crucial part of the
dynamic correlation can be brought into the compact VB wave
function through what has been called the breathing orbital effect
(BOE).13 The BOE is included in the VB wave function using
different orbitals for different resonating structures.Each set
of individual orbitals can adapt in size and shape to best
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SCHEME 1

CH3CH2CH3 f CH3CH2CH2
+ + H- (1)
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describe its valence bond structures, while being fully optimized
to minimize the energy of the total wave function and remaining
strictly local (i.e., each orbital is defined on only one atom).
The corresponding method, the breathing orbital valence bond
(BOVB), has been tested on correlation demanding systems and
provides valuable information and concepts.14 It has been shown
to accurately reproduce the bond dissociation energies given
by experiments or most accurate MO schemes such as coupled
cluster methods. Yet, the BOVB wave function dissociates to
the Hartree-Fock fragments, that is, the zero correlation refer-
ence. The BOE is thus to be attributed to thedifferentialdynamic
correlation that is involved during bond breaking processes.15

Despite its accuracy, the Pauling valence bond (VB) scheme,
where each bond is described by one covalent and two ionic
structures, is not always much more readable than is the
delocalized MO wave function. With each bond being expanded
in its three components, the number of VB structures tends to
increase rapidly with the size of the system considered. Such a
wave function is the most localized one can think about and is
still far from the usual Lewis structure because it is too much
localized.

In the present contribution, we wish to propose a Lewis-based
valence bond wave function that exactly mimics the chemists’
way of writing. Our scheme resembles in its principle to
previous valence-bond-like studies of the resonance inπ systems
such as the R-GVB method from Goddard16 or the bond
distorded orbitals approach proposed by Mo for the description
of 1,3-butadiene.17 However, while the previous methodologies
concentrated on theπ system and neglected to pay attention to
the σ frame, in our approach, we will make full use of the
breathing orbital concept for theσ orbitals (different sets of
orbitals for different Lewis structures). As we will see, this extra
ingredient can improve significantly the predictions and in
particular the resonance energy. Similarly to the bond distorded
orbital approach, theπ bonds are explicitly considered in their
natural meaning with a delocalization between only two atoms.
Because of both the BOE on theσ frame and the naturalπ
delocalization, we called the present scheme valence bond
BOND (breathing orbitals naturally delocalized). It is abbrevi-
ated as VBB in the following. We first investigate the allyl
cation resonance energies using the BOVB framework. We then
detail the VBB scheme and apply it to the allyl cation.
Comparisons are made between the VBB and BOVB results as
for the resonance energy, and between the VBB wave functions
and the weights we obtain from an NBO-NRT analysis.6,18

Computational Details

Our study used MP2/cc-pvdz19 geometry (Table 1) as
optimized with the Gaussian package.20 The VB calculations

were held with the same basis set. For these calculations, we
used the XMVB program from Wu and co-workers.21 The
XMVB program is a modern and efficient spin-free valence
bond code. It allows a full flexibility for the definition of the
valence bond wave function, including VBSCF, BOVB,12,13or
VBCI methods.21c Additional computations with the natural
resonance theory (NRT) were held using the NRT code
embedded in the NBO 5.0 program.22

Results and Discussion

Valence Bond Description of the Allyl Cation.The wave
function is composed of a set of VB structures that forms a
complete and minimal set (also called Rumer basis) for the
description of a given electronic state. Among the electrons and
orbitals, one distinguishes an active space and active electrons,
which will be described at the VB level. Here, the carbon atoms’
p orbitals orthogonal to the molecular plane form the active
orbitals, while the twoπ electrons are the active electrons. All
theσ orbitals are held “inactive”, that is, they will be described
by delocalized MO. The Rumer basis of VB structures describ-
ing theπ system of allyl cation is made of all of the possible
arrangements of two electrons into the three active orbitals that
can form a singlet state. To find the VB structures of the allyl
cation, it is more convenient to start from the traditional Lewis
description for this molecule (structuresI and II ) and expand
them into their covalent and ionic contributions (Scheme 2).
Doing so for structuresI andII , six VB structures are obtained
(a-f). Because structuresb andeare identical, one can remove
eitherb or e from the total wave function. To reach a complete
description, we also considered the additional structureg. This
structure has no charge separation and has some relevance in
the wave function, as pointed out earlier.23 The set of VB
structuresa, b, c, d, f, andg then forms a Rumer basis.

In these calculations (Table 2), we used fixedσ orbitals that
were taken from an Hartree-Fock calculation on the allyl cation
(restricted Hartree-Fock (RHF) orbitals). So, at this level of
description, allσ orbitals are common in the different structures
composing the BOVB wave function. The RHF energy is
indicated here as a convenient, well-defined, reference energy
for the tables. Following the BOVB framework, the VB orbitals
were held strictly localized, mono-occupied, and are free to
optimize in each VB structure. Because they bear no charge
separation, the structuresa, d, andg are the lowest in energy,
followed by b ande where the charge separation is alternated
(+/-/+). The energy of the nonalternating structures (-/+/+)
c and f is as high as 294 kcal/mol over the Hartree-Fock
reference (Table 2).

The Lewis structureI corresponds to a mixture of VB
structuresa, b, andc. The energy ofabc can be used as the

TABLE 1: Geometrical Parameters (Å and deg) for the
Allyl Cation (MP2/cc-pvdz)

SCHEME 2
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zero energy to evaluate the resonance energy in the allyl cation.
By comparing the energy ofabc to that of the full BOVB wave
function (abcdfg), we found that the resonance energy is as
large as 53.8 kcal/mol, a value that is to be compared to the
most recent vertical resonance energy published by Mo (∼45
kcal/mol).10 The resonance energy obtained by the BOVB
scheme is thus larger than Mo’s results by about 10 kcal/mol.
This is partly because, in the localized state (I ), we are using
frozen RHF orbitals as theσ orbitals of the wave function, while
these orbitals are relaxed in the block-localized wave function
(BLW) used by Mo. By lowering this localized state’s energy,
Mo’s BLW method might tend to underestimate the resonance
energy. As a matter of fact, other computations by the same
group with Hartree-Fock frozenσ orbitals gave a resonance
energy much closer to the BOVB results, 55.7 kcal/mol.23 The
role of structureg is evaluated by taking the energy difference
between theabcdf andabcdfgBOVB wave functions. We find
that its contribution to the resonance energy amounts to 16.6
kcal/mol, that is to say, as much as a third of the total resonance
energy.

It is to be noted that the absolute energy obtained with the
complete BOVB wave functionabcdfg is about 10 kcal/mol
lower than the energy of the complete active space wave
function involving the twoπ electrons in the three valenceπ
orbitals: CAS(2,3). This difference indicates which amount of
dynamic correlation is included in the BOVB wave function
(∼10 kcal/mol).

Lewis-Based Valence Bond Description of the Allyl
Cation. The previous section considered the traditional VB
picture for the allyl cation system. It has its advantages and its
limitations. Among the limitations is the fact that the weights
of the Lewis structures cannot be obtained directly. Another
limitation concerns the computational price one would have to
pay for taking into account the breathing of theσ frame (vide
infra). Doing so in each of the six VB structures would require
a total of six different sets of all theσ orbitals. Evident
computational requirements would render such an approach
expensive.

To better fit to the usual Lewis-based description, we propose
using the VBB scheme, that is, a partially delocalized wave
function. Such a wave function is composed of different terms,
each corresponding exactly to one of the Lewis structures
involved in the chemical description of the molecule considered.
To best describe the allyl cation, we use a three-structure wave
function (I , II , III ). The additional Lewis structureIII allows

us to include the VB structureg in our description and will be
discuss later. We thus define here a wave function that sticks
strictly to Lewis language and is, in addition, significantly more
compact than the six-structure VB picture.

In the VBB scheme, theπ orbitals are all considered as pure
GVB (Coulson-Fisher) pairs: they are singly occupied and
delocalized between only two atoms (eq 2).24 The delocalization
of the pair orbitals allows the indirect inclusion of ionic terms
for each two-electronπ bond. Thus, for each pair bond, the
valence bond covalent-ionic description is built in the Coul-
son-Fischer pair. For the third structure (III ), for instance, the
GVB pair naturally includes the structuresg, c, and f. With
this approach, one can either fix or optimize theσ orbitals. When
they are held fixed to their RHF values (notedσ-RHF), the VBB
scheme is equivalent to the aforementioned BDO approach.17

The σ frame can also be optimized, either as a set of orbitals
that is common for all the structures or with specific sets for
each resonating structure. When each Lewis structure possesses
its own set ofσ orbitals, the BOE is taken into account in the
σ frame.

The orbitals (σ andπ) can be variationally optimized during
the calculation of the total wave function of either the resonant
hybrid I-II -III or a specific isolated Lewis structure such as
I or III . This allows the variational adjustment of the optimal
covalent-ionic mixing, throughπ orbital optimization. In other
terms, our description includes the nondynamic (left-right)
correlation for each bond. In any case, the different sets of
orbitals in the multireference VBB wave function and the
weights of its components are optimized simultaneously.

The computation at the VBB level normally includes theσ
BOE. However, to compare to the BOVB results, we first
present the scheme withσ orbitals held fixed to their RHF values
(that is, without the BOE for theσ frame).

The energy of structureI , with the RHFσ orbitals held fixed,
is 37.3 kcal/mol over the Hartree-Fock reference energy (Table
2). This value is slightly higher than that of the BOVB computed
Lewis structureabc. This is because the VBB wave function
with only structureI does not include any dynamic correlation,
while the “abc” description does, thanks to the breathing orbital
effect. The resonance energy, as computed directly from the
energy difference betweenI and I-II -III , is similar to that
obtained with the BOVB method (54.9 vs 53.8 kcal/mol).

The flexibility of the XMVB code allows us to replace Lewis
structureIII with VB structureg, by simply restricting the
optimization of the GVB orbitals to their corresponding atomic
Gaussian functions. This calculation has been carried out to
ensure thatc and f, which are already included in the Lewis
structuresI andII , do not muddle the VBB wave function. The
last entry in Table 2,I-II -g, has the same energy asI-II -

TABLE 2: BOVB Results on the Allyl Cation with the
cc-pvdz Basis Set (RHFσ orbitals)

E (hartree)
∆E/HF

(kcal/mol)
∆E/abc

(kcal/mol)

RHF -116.20131 0.0
a (or d) -116.09792 64.9
b () e) -116.00582 122.7
c (or f) -115.73292 293.9
g -116.01160 119.0
abcor def -116.14411 35.9 0.0
ad -116.17456 16.8 -19.1
adg -116.20970 -5.3 -41.2
abcdf -116.20339 -1.3 -37.2
abcdfg -116.22985 -17.9 -53.8
CAS(2,3) -116.21478 -8.5
I (σ RHF) -116.14190 37.3 0.0a

I-II -III (σ RHF) -116.22934 -17.6 -54.9a

I-II-g (σ RHF) -116.22930 -17.6 -54.9a

a Relative to structureI computed within the Lewis-based VBB
approach with common RHFσ orbitals. See text.

ΨVBB-σ(HF) ) cI × |σHF(π12πj ′12)| + c11 × |σHF(π13πj ′13)| +
cIII × |σHF(π23πj ′23)| (2)
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III . Because both calculations give identical results, we conclude
that Lewis structureIII only brings the contribution from VB
structureg.

The compactness of the VBB description allows the relaxation
of the σ orbitals independently for each structure in the
multireference VBB wave function (eq 3). In the new wave
function, the coefficientsc′i as well as theσ andπ orbitals are
reoptimized to minimize the energy of the total wave function.
Similarly to the breathing orbital effect of the BOVB method,
the optimization ofdifferent σ orbitals for different Lewis
structuresbrings a part of the dynamic correlation into the VBB
wave function (eq 3), that is, the instantaneous adaptation ofσ
orbitals to the charge fluctuation. As the different sets of orbital
are optimized in the presence of each other, the resulting Lewis
structures are a compromise between an optimal individual
description and an optimal resonance between each other.

Such aσ orbital optimization lowers the energy ofI by some
10 kcal/mol and that of the resonant hybrid (I-II -III ) by
almost 20 kcal/mol (Table 3 compared to Table 2). The
resonance energy in the allyl cation is thus increased up to 62.9
kcal/mol when we allow differentσ orbitals for different Lewis
structures. Although the “Lewis” structureIII is about 55 kcal/
mol higher than the traditional bonding pattern (I or II ), its
weight in the wave function is as large as 26%. This value is
consistent with the coefficients reported earlier by Mo with a
fixed σ frame.23

The NRT theory can be applied to this system. This method
allows an interpretation of any wave function (Hartree-Fock,
post-Hartree-Fock, DFT, etc.) in terms of Lewis structures. It
only requires the density matrix to be computed. In this study,
we have carried out the NRT analysis of a B3LYP/cc-pVDZ
wave function. Through its automatic procedure, the program
only managed to find a description in terms of structuresI and
II . Their weights are of approximately 49% for each, with
additional structures that weigh less than 0.3%. These additional
structures are scattered in numerous structures with C-C or
C-H bonds broken into C-‚‚‚C+ or C-‚‚‚H+ and CtC triple
bonds. However, the NRT implementation in the NBO 5.0 code
permits us to indicate other specific bonding schemes, and the
through space bond inIII can be explicitly requested. When
explicitly requested for a description in terms of structuresI ,
II , and III , the NRT program finds the weights 39/39/22,
respectively. This result is in good agreement with the VBB
results (Table 3).

The last entry in Table 3 reports the energy of the two-
structure VBB wave functionI-II . It corresponds the usual
description of the allyl cation, as given in Scheme 1. The
resonance energy of this wave function represents only two-
thirds of the total resonance energy (40.5 vs∼63 kcal/mol).

The VBB method appears here as a valuable tool to assess for
the validity of a Lewis representation. It can be used to show if
an additional structure is significant by either its weight or its
effect on the total energy.

Conclusion

The valence bond BOND (VBB) scheme, presented here on
the case of the allyl cation, allows a direct correspondence
between each component of the multideterminent VBB wave
function and a specific Lewis structure. The method gives results
that are consistent with the BOVB calculations for the energy
and with the NRT analysis for the weights of the Lewis
structures. Thanks to the compactness of the description,σ
orbitals can be optimized within the “breathing orbital” frame,
that is, using differentσ orbitals for the different Lewis structures
composing the VBB wave function. The resonance energy is
found about 10 kcal/mol larger when this adaptation to the
instantaneous charge fluctuation is allowed.

The VBB scheme appears as a valuable tool to compute all
the resonance parameters, such as the resonant contributor’s
energy, resonant hybride’s energy, overlap between structures,
and so forth. As for the weights of the different Lewis structures,
it converges here to the same results as an NBO-NRT analysis
on a MO-based wave function, which is a good sign for both
methods.
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