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Sensitivity analysis has been widely used in the studies of complicated chemical reaction and biological
networks, for example, in combustion studies and metabolic control analysis of pathways. In the latter cases,
the responses of system properties at steady states with respect to changes of parameters, such as initial
concentrations and rate constants, are often expressed as sensitivities. Besides steady-state sensitivities, time-
dependent sensitivities should be useful; however, the explicit use of them in analyzing complicated biological
systems has so far been limited. Using the coupled mitogen activated protein kinase (MAPK)-phophati-
dylinoisitol 3′-kinase (PI3K) system of the Ras pathways, known to be involved in about 30% of human
cancers, as an example, we show that time-dependent sensitivities are useful for the studies of complex
biological systems. They provide, for example, the following information: (a) multiple time scales existing
in a complex system involving cross-talks and feedback loops; (b) the signs and strengths of responses to
perturbations (as system complication increases, the signs of global responses are not always easily determined;
for example, response may change sign more than once as time evolves); (c) beyond concentration dynamics,
sensitivities revealing further details about the intricate dynamics and the effects of the cross-talks; (d) ranking
of vulnerability of nodes of a biological network using integrated sensitivitysa first step toward the
identification of drug targets; (e) reduced sensitivity serving as a measure of the stability or robustness of
pathways. Our results indicate that the role of the PI3K branch in the coupled pathways is to enhance the
robustness of the MAPK pathway. More importantly, they demonstrate that time-dependent sensitivity analysis
can be a valuable tool in system biology.

I. Introduction

The application of sensitivity analysis in the studies of
complicated chemical and biological networks has a long
history.1-4 In chemical kinetics, the associated techniques have
been applied to combustion,5 atmospheric chemistry,6 the
determination of parameters of potential energy surfaces,7

biomolecular simulations,8,9 etc. The tool of sensitivity analysis
speeds up the processes in identifying the key parameters that
control the behavior and performance of the entire systems. This
is achieved by calculating simultaneously many derivatives,
instead of changing parameters one step and one variable at a
time. For biological networks, sensitivities have been extensively
used in the studies of metabolic pathways.3,4 In particular,
various types of sensitivity derivatives are defined in the
metabolic control analysis (MCA) and summation and con-
nectivity theorems associated with them established.3,4 However,
applications of similar types of analyses to cellular signaling
pathways are relatively rare, as discussed in several recent
papers.10-12 In most MCA as well as applications to signaling
pathways, steady-state sensitivities are often used. The potential
usage of time-dependent sensitivities along non-steady-state
trajectories12 has rarely been explored.

Because abnormalities of signaling pathways are involved
in many diseases, such as cancers, diabetes, depression, etc.,
and our knowledge of the enzymatic reactions involved in these
pathways are improved daily, some pathways have become so

well-defined that it is worthwhile to simulate them in silico. In
fact, it may be necessary for the close collaboration between
experimental, theoretical, and simulation studies to determine
eventually the correct reaction kinetic steps as well as the
protein-protein interactions, cross-talks, and feedback loops
existing in pathways. The importance of signaling pathways
demands us to use all the tools that are available to reveal their
functionality and dynamic behaviors as detailed as possible. It
is the purpose of this article, using the coupled MAPK-PI3K
pathways as an example, to show that the time-varying
sensitivity analysis is a valuable tool in this regard.

In the following paragraphs, we briefly describe the nature
of the complicated Ras signaling network in general and the
coupled MAPK-PI3K pathways in particular. The Ras signaling
network13,14 plays an important regulatory role in controlling
cell proliferation, differentiation, cell survival, and apoptosis.
Cancer occurs when normal cell growth regulation breaks
down.15,16Such breakdown is often attributed to an accumulation
of defects in one or more signaling pathways. Ras oncogenes
and their coded proteins are among the first molecules identified
as effectors of pathways regulating cell growth and death.14

Studies show that about 30% of all human tumor growth is
related to mutations of the Ras protein.15,16This number is likely
to be even higher, if one considers all effectors in the Ras-
related signaling pathways.

Among the Ras pathways, the most well studied is the
mitogen activated protein (MAP) kinase cascade,17-21 which
includes a sequence of enzymes serving as kinases (activators)
and their associated phosphatases (deactivators). The first
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downstream kinase from Ras is Raf, which is activated at the
intracellular membrane by the GTP-bound Ras.22-24 In turn, Raf
activates MEK, which activates ERK, forming a cascade of
MAPK that amplifies the external signal.17-21 Activated ERK
then translocates to the nucleus and activates transcription
factors,25 which regulate the transcription processes. Because
the MAPK cascade controls cell growth, survival and apoptosis
and dysregulation of their kinases and phosphatases may result
in cancer formation, many of its effectors (kinases and phos-
phatases) have been considered as targets for therapeutic
intervention for cancers.26

The network of human cellular pathways is very complex
and many parallel pathways are interacting with one another.13,14

Most pathways have not yet been mapped out and the cross-
talks that act between them are so far largely unknown. For the
purpose of developing an understanding of how protein interac-
tion networks work, subsets of these pathways are often
considered. Several pathways are known to interact with the
MAPK pathway to regulate, enhance or inhibit its functions.26

The most important one among them could be the PI3K and
Akt pathway (PI3K/Akt). However, the cross-talks between
them are complicated.27 In fact, PI3K seems to play contradic-
tory roles in regulating MAPK signals; sometimes it is to
enhance the signal, other times to inhibit its signal,27 depending
on the details of the connections and phosphorylation. In the
present article, we shall analyze the model proposed by
Hatakeyama et al. for heregulin (HRG)-induced ErbB receptor
signaling,19,20,28where a direct cross-talk between the MAPK
and PI3K pathways exists through Akt deactivation of Raf via
Ser259 phosphorylation and an indirect cross-talk exists that is
created by the double functions of a phosphatase, protein
phosphatase 2A (PP2A), which deactivates both MEK (MAPK/
ERK kinase) and Akt, where ERK stands for extracellular
signal-regulated kinase. The Hatakeyama model is developed
on the basis of experiments done on Chinese-hamster ovary cells
expressing ErbB4 receptors.28

The organization of the article is as follows: The model of
Hatakeyama et al. for coupled MAPK and PI3K pathways28 is
described in section II along with a modular representation of
the model that we have introduced. Concentration dynamics of
some pathway proteins, which exhibit amplification and delay,
are presented in section III, setting up the reference frame for
later discussion of sensitivities. Time-dependent sensitivities of
effector concentrations to rate parameters and initial conditions
are defined and numerically solved using symbolic differentia-
tion methods in section IV. These sensitivities are used to reveal
the details of the effects of cross-talks on effector dynamics. In
section V, we rank the vulnerable points (or drug targets) of
the pathways using integrated sensitivities. Because robustness
and redundancy are often properties associated with design
principles of natural biological network, we examine the
robustness of MAPK/PI3K pathways using integrated sensitivi-
ties in section VI, which is followed by a conclusion and
discussion section.

II. Coupled MAPK and PI3K Pathways

The model we study in the present article is that proposed
by Hatakeyama et al.,28 which comprises primarily two pathway
branches activated by the ligand-induced and tyrosine-phos-
phorylated ErbB4 receptor (R). One is the Ras-Raf-MEK-ERK
cascade pathway (also known as the MAPK pathway) and the
other is the PI3K-Akt pathway, which regulates the MAPK
pathway. Both pathways are initiated when heregulin (HRG)
binds to the receptors, which are then dimerized and trans-
phosphorylated to form phosphorylated receptor (RP).

The phosphorylated ErbB4, RP, is known to bind competi-
tively with Src-homology and collagen domain protein (Shc)
and with the p85 subunit of the phophatidylinoisitol 3′-kinase
(PI3K).29-31 Binding of RP to Shc (to form R-Shc) initiates the
MAPK pathway. This is achieved by complex formation and
dissociation with adapter proteins (e.g., Shc, GS). Details can
be found in Hatakeyama et al.28 and are summarized in a
schematic modular diagram in Figure 1. Focusing on the MAPK
cascade, we just mention that the adapter ShGS complex
accelerates the GDP-GTP exchange on Ras. The activated form,
RasGTP, then activates Raf, which is deactivated by an unknown
enzyme “E”28,32 as well as by Akt-PI-PP, an effector of the
PI3K-Akt pathway. As in a standard MAPK cascade, activated
Raf (Raf*) then activates the downstream kinase MEK, which
then activates ERK. In both of these cases, phosphorylation and
dephosphorylation are done through a double phosphorylation-
dephosphorylation cycle (DPdPC). This is all shown in the
schematic diagram of the pathways, which for the convenience
of analysis are divided into eight modules. More details are given
later in the section.

The other branch, the PI3K-Akt pathway, is activated when
HRG-stimulated receptor (RP) binds to the SH2 domain on the
p85 subunit of PI3K. This is achieved through the activation of
Akt, which is recruited to the inner surface of the plasma
membrane by phosphatidylinositol-3,4,5-triphosphate (PIP3).
Akt is fully activated through a double phosphorylation process
catalyzed by 3′-phosphoinositide-dependent protein kinase 1
(PDK) and deactivated by PP2A. This pathway can also be
switched off through deactivation of PIP3 by phosphatase and
tension homologues (PTEN).

In the present model, the coupling between the MAPK and
PI3K-Akt pathways is through Raf’s deactivation at Ser25928,33,34

by PIP3-bound doubly phosphorylated form of Akt (Akt-PI-
PP). There exists actually another more subtle cross-talk between
the two pathways, which arises from the fact that phosphatase
PP2A catalyzes the deactivation of both MEK and Akt. The
dual function of PP2A causes a competition for PP2A by the
MEK and Akt double phosphorylation and dephosphorylation
cycles. As a result, activation of one inhibits the activation of
the other. We will refer to this latter type of cross-talk as PP2A
sharing. The competitive and balancing effects of these two
types of cross-talks on the dynamics and sensitivity of the
MAPK/PI3K pathways are one important aspect of the present
study.

As shown in Figure 1, we have divided the coupled MAPK
and PI3K pathways into eight modules,35 which from top down
and left to right are: the RP module, the Shc module, the PI3K
module, the Ras, Raf, MEK, ERK modules, and the Akt module.
Our definitions of these four Ras-Raf-MEK-ERK modules
follow those of Kholodenko et al.,10 who defined simple modules
as those that have one communicating effector as input and one
communicating effector as output. However, this module
definition needs to be expanded to include multiple inputs and
outputs10 for complicated networks as the present one. For
instance, the Raf module sitting at the crossroad of pathways
has three inputs and one output and, therefore, is not a simple
module. As shown, each of the Ras and Raf modules contains
a phosphorylation-dephosphrylation cycle (PdPC) and each of
the MEK and ERK modules consists of a DPdPC. The Akt
module contains a PdPC of PI, binding of Akt and PIP3, and a
DPdPC of Akt-PIP3. Finally, in Figure 1, the numbers attached
to connection edges denote the reaction numbers, which are
defined by Hatakeyama et al.28 and are often referred to in the
present article.
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III. Concentration Dynamics of Effectors

To set up a reference frame for the discussion of the time-
dependent sensitivities, we first characterize the dynamic
behaviors of effector concentrations in this coupled pathway
system. Dynamic behaviors are obtained by solving the chemical
kinetic equations28 numerically. Letx be a column vector of
the concentrations of the effectors,p represents a parameter
vector, andk be the vector of the rate constants and Michaelis-
Menton rate parameters.3 The chemical kinetic equations of the
coupled pathway system can then be written as

whereF is a vector of functions,{Fi}, defining the rates,x )
(x1, x2, ...,xN), andp ) (p1, p2, ...,pM) ) (k, x(0)). The number
of effectors,N, explicitly represented in the equations is 36,
whereas the total number of parameters,M, is 82, of which 68
are rate constants or Michaelis-Menton rate parameters and
14 are nonzero initial effector concentrations, as given by
Hatakeyama et al.28 The rest of the initial concentrations are
all set to zero. If not otherwise specified, all of our dynamic
results presented below are based on this set of initial conditions
of effector concentrations. To obtain dynamic behavior of
effectors of the pathways, we solve eq 1 on computers (SUN
V880) using numerical algorithms. Several algorithms (see
section IV) are used for comparison and checking of accuracy.

Figure 1. Coupled MAPK and PI3K pathways separated into modules. The numbers on the connection arrows denote the reaction numbers referred
to in the text (see ref 28). A number located between two converging arrows denotes two protein molecules reacting to form a protein complex.
This includes reactions 1, 2, 5, 7, 23, and 29. A number located between two diverging arrows denotes a protein complex dissociating into two
protein components. This includes reaction 8, 9, and 25. Furthermore, as examples,k5 corresponds to the rate constant of the complex formation
of R-ShP from RP and Shc andk-5 is the rate constant for the complex dissociation. The symbolk9, on the other hand, denotes the rate constant
of complex dissociation of ShGS into ShP and GS, andk-9 is the rate constant for the complex formation. Designations:

HRG: Heregulin PP2A: protein phosphatase 2A
R: ErbB4 receptor ERK: extracellular signal-regulated kinase
R-HRG: HRG-bound ErbB4 receptor ERKP: singly phosphorylated ERK
R-HRG2: (R-HRG)2, dimerized receptor ERKPP: doubly phosphorylated ERK
RP: tyrosine-phosphorylated receptor MKP3: MAPK phospatase 3
Shc: Src-homolog and collagen domain protein PI3K: phosphatidylinositol 3-kinase
ShP: Shc-P (phosphorylated Shc) R-PI3K: RP-PI3K
R-Shc: RP-Shc R-PI3K*: RP-PI3K-P
R-ShP: RP-Shc-P (phosphorylated RP-Shc complex) PI3K*: PI3K-P
GS: Grb2-SOS PI: phosphatidylinositol
ShGS: Shc-Grb2-SOS PIP3: phosphatidylinositol-3,4,5-trisphosphate
R-ShGS: RP- Shc-Grb2-SOS Akt: serine/threonine kinase
RasGDP: GDP-bound Ras Akt-PIP3: PIP3-bound Akt
RasGTP: GTP-bound Ras Akt-PI-P: singly phosphorylated PIP3-bound Akt
Raf: Raf-1 Mitogen-activated protein kinase kinase kinase Akt-PI-PP: doubly phosphorylated PIP3-bound Akt
Raf*: Ser259 dephosphorylated Raf-1 PDK: PDK1, 3-phosphoinositide-dependent protein kinase
MEK: MAPK/ERK kinase or Mitogen-activated protein kinase kinase E: unknown enzyme
MEKP: singly phosphorylated MEK RP_internalization: internalized RP
MEKPP: doubly phosphorylated MEK

dx
dt

) F(x,p) (1)
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To characterize the dynamic behaviors of effector concentra-
tions, we first investigate the behavior of signal amplification
and delay of the MAPK cascade, as exhibited by the present
MAPK-PI3K coupled system. Figure 2 shows the delayed
responses of downstream effectors as compared to their upstream
effectors. The peaking times of the effectors concentration
dynamics appear in the following order: RasGTP< Raf* <
MEKPP< Akt-PI-PP< ERKPP. This is the expected behavior
of the MAPK cascade (that is, upstream kinases peak ahead of
downstream ones) with the additional information on Akt.

The signaling strength of a kinase is determined not only by
its maximal intensity but also by the duration of the signaling.
Thus, the integrated area under the concentration curve is a better
measure of the overall signal strength, according to which an
amplification factor can be defined as the ratio of the downtream
effector area over the upstream one. Based on this criterion,
the amplification factor from RasGTP to Raf* is 206, that from
Raf* to MEKPP is 68.2, and that from MEKPP to ERKPP is
23.2, so the overall strength of ERKPP is amplified about 3×
105-fold over that of RasGTP.

We have also examined the competition dynamics within the
MEK and ERK cycles. In these DPdP cycles, the substrates
are phosphorylated by their kinases (Raf* in the MEK cycle
and MERPP in the ERK cycle) and dephosphorylated by their
phosphatases (PP2A in the MEK cycle and MKP3 in the ERK
cycle). In Figure 3, the concentrations of ERK, ERKP, ERKPP
are plotted as a function of time and the MEK cycles show
similar behavior; for example, in both the singly phosphorylated
substrate shows double peaks.

The general competition dynamics of these DPdPC cycles
can be understood in the following way: Let M stand for the
unphosphorylated substrate, MP for the singly phosphorylated,
and MPP for the doubly phosphorylated substrate. Initially, when
M was phosphorylated, MP starts to rise, and MPP also rises
as a result, but at a slower rate. At this time the kinase has a
greater effect on the reactions than the phosphatase does. As
time goes on, M further decreases and MP has a higher rate to
turn into MPP than the rate at which M turns into MP. So MP
starts to drop, while MPP still goes up. While this is going on,
kinase is going through its own time evolution determined by
the upstream cycle right before this one; its concentration
decreases to zero at a faster rate. Because of this decay and the

simultaneous action of phosphatase, MPP starts to decrease and
MP rises again for a second time as a consequence. Because
MP is also dephosphorylated by phosphatase, its concentration
will drop to approach zero and at the same time the concentra-
tion of M rises all the way up to about its initial value and is
ready for another round of signaling transduction.

IV. Time-Dependent Sensitivity Analysis

A set of dynamic equations for the time-dependent sensitivi-
ties is obtained simply by differentiating both sides of eq 1 with
respect to a parameterpj and can be written as

whereSij ≡ ∂xi/∂pj is defined as the sensitivity of theith chemical
species with respect to thejth parameter. Equation 2 is the
starting point for sensitivity analysis1,2,36and also fundamental
equations for metabolic control analysis.3,4,12,37-39 Similar to the
concentration dynamics, we can solve eq 2 for the dynamic
developments of sensitivities by numerical algorithms, but here
the i-index goes from 1 to 36 and thej-index from 1 to 82;
thus we have in all 2952 coupled first-order differential
equations to solve. The initial conditions forSij are Sij ) 0,
unlesspj ) xi(0), in which caseSij ) 1.1,12 Presentation and
discussion of the calculated results of time-dependent sensitivi-
ties in this section are one of the main objectives of the present
article. As discussed in the Conclusion and Discussion (section
VII), the time-dependent sensitivities in some cases are good
approximations to the time-dependent changes in the finite-
difference perturbation experiments. Thus their investigations
can be, to some extent, related to real experiments.

A. Numerical Methods of Calculating Time-Dependent
Sensitivities.Our code is written in such a way that it reads in
a description file, which describes the reaction steps, fixes initial
concentrations, and specifies the set of sensitivity equations to
solve. The code automatically generates the differential equa-
tions for the chemical kinetic steps involved as well as the
differential equations for the sensitivities. This means that the
sensitivity differential equations are generated in the code
through symbolic differentiation, not directly read in as an input.
This set of differential equations and the set of chemical kinetic
equations are then solved simultaneously using numerical
algorithms, such as fourth-order Runge-Kutta or semi-implicit
extrapolation method.40 The accuracies of the integrators have

Figure 2. Amplification and delay of downstream signals shown in
the time series of RasGTP, Raf*, MEKPP, ERKPP, and Akt-PI-PP
concentrations. Logarithmic values are plotted and the curves are
denoted by RasGTP (solid line), Raf* (2 dashed lines with 1 dotted
line), Akt-PI-PP (1 dashed line with 1 dotted line), MEKPP (dashed
line), and ERKPP (dotted line). The reactions and rate constants are
the same as Hatakeyama et al.28

Figure 3. Competition dynamics of the ERK cycle. The reactions and
kinetic parameters are the same as Figure 2. The ERK cycle includes
time ERK (solid line), ERKP (dashed line), and ERKPP (dotted line).

d

dt
Sij ) ∑

l

∂Fi

∂xl

Slj +
∂Fi

∂pj

(2)
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been checked by comparing results using different numerical
methods. Furthermore, the accuracies of the time-dependent
sensitivities have also been checked against finite difference
calculations in which the value of the parameter (pj) is varied
by a small finite amount.

B. Effects of Cross-Talks on the Sensitivities of Raf* and
MEKPP. Raf plays an important role in the MAPK pathway
and in the present model its activation is a good indicator of
the effects of the direct cross-talk, because it sits at the crossroad
of the two branches, as shown in the modular plot, Figure 1.
To see how sensitive the activated form of Raf, Raf*, is to an
upstream interaction, we have plotted its time-dependent
sensitivity with respect tok3 in Figure 4A.k3 is the rate constant
for the self-phosphorylation of the HRG receptor, R, after HRG
attachment and receptor dimerization. Thus the sensitivity of
Raf* to k3 indicates how generation of RP affects generation
of Raf*. The phosphorylated receptor, RP, triggers two branches
of signal transduction, one of which activates RasGTP and the
other activates Akt-PI-PP. RasGTP activates Raf, whereas Akt-
PI-PP as well as enzyme ‘E’ deactivate Raf*, by converting
Raf* back to Raf. Figure 4A reveals two properties of the
pathways: the sensitivity of Raf* tok3 goes through a sign
change as time evolves and the positive response comes before
the negative one. The interpretation of the results is: As shown
in Figure 2 that RasGTP reaches its peak value far earlier than
Akt-PI-PP does. So when the number of RP increases, more
RasGTP is generated first than Akt-PI-PP is. At this stage, more
RP means more RasGTP, and thus more Raf*. Therefore, the
early response of Raf* with respect tok3 is positive. When
RasGTP is converted to RasGDP and its concentration decreases
to close to zero, at the same time the concentration of Akt-PI-

PP approaches its peak value. Thus the sensitivity curve
decreases as a function of time and becomes negative, for Akt-
PI-PP deactivates Raf*. The fact that the time-dependent
sensitivity curve in Figure 4A first shows a (sharp) positive peak
and then decreases to become a (shallow) negative valley tells
us that the time scale of the signal transduction via the Shc-
RasGTP branch is much faster than that of the PI3K-Akt branch.
This is a desired property, probably an underlying design
principle of the Ras pathways, because one of the roles of the
PI3K-Akt branch is to switch off or regulate the activation of
the MAPK cascade stimulated by the external (HRG) signal.

A few remarks about the sensitivities of other effectors with
respect tok3 can be made. As a function of time, the sensitivity
curve of RasGTP with respect tok3 also changes sign from
positive to negative. The reason that the sensitivity of RasGTP
changes sign from positive to negative is different from that of
Raf*. The sign change of Raf*’s sensitivity is not because of
the effect of RasGTP’s sensitivity over k3. Because without
the PI3K branch, RasGTP’s sensitivity goes up and down, but
Raf*’s is always positive. It is, instead, attributed to the shift
of the equilibrium of the complex dissociation reaction, R-ShGS
a RP+ ShGS, when the concentration of RP becomes higher.
In contrast to the sensitivity curve of Raf*, those of MEKPP
and ERKPP stay positive for the whole time, where a small
positive peak followed a larger positive peak. The fact that the
second peak is positive is surprising in view of the behavior of
Raf*, but it can be explained by PP2A sharing, discussed in
the next subsection IV.C. The main reason is that increasing
Akt-PI-P and Akt-PI-PP concentrations use up more PP2A, thus
less PP2A is available for the deactivation of MEKPP.

As another example, we examine the responses of MEKPP
to the change ofV4, the Michaelis-Menton limiting rate at
which the phosphorylated ErbB4 receptor, RP, is deactivated
to a dimer of the HRG-receptor complex. Figure 4B shows that
the response of MEKPP is characterized by one peak and two
valleys. To understand their origins, we note that the effect of
V4 is similar that ofk-3, the backward rate constant for the
phosphorylation of the dimer receptor. Thus we expect quali-
tatively MEKPP’s response is the negative of the Raf* response
shown in Figure 4A. This explains the first valley followed by
a peak. However, an additional second valley following the
positive response appears in Figure 4B and is attributed to the
effect of PP2A sharing (more details discussed in subsection
IV.C). Because, as can be seen in Figure 2, by the time the
second negative valley arrives, RasGTP is long gone; however,
the concentrations of MEKPP and Akt-PI-PP are still ap-
preciable. Less RP means less Akt-PI-PP, thus more PP2A
available to deactivate MERPP; thus the effect is negative. The
disappearing times of MERPP in Figure 2 and of its sensitivity
toward PP2A as shown later Figure 6 are roughly consistent
with the timing of the second negative valley in Figure 4B.
(Sensitivity data and plots of all the effectors with respect to
k3, V4, k27, k11, only some of which are reported in this article,
are available to interested readers, who can contact us using
the e-mail addressess listed in the article.)

In short, these two examples show that, in general, time-
dependent sensitivities can be used to provide information on
time scales of dynamical processes as well as signs of responses
to parameter changes. An additional comment is that when we
examine a sequence of upstream and downstream effectors
(ShGS, RasGTP, Raf*, MEKPP, ERKPP) to the same rate
parameters, such asV4, we see that, as in concentration dynamics
(as shown in Figure 2), the sensitivity responses also exhibit
signal amplifications and peak delays. Thus a small sensitivity

Figure 4. (A) Time-dependent sensitivity of Raf* versusk3. (B) Time-
dependent sensitivity of MEKPP versusV4.
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of an upstream effectors can induce large amplified sensitivities
in the downstream effectors.

C. Effects of the Akt-Raf Cross-Talk and PP2A Sharing
on Dynamics.ERKPP is the key signal of the MAPK pathway,
which is translocated to the nucleus to activate transcriptional
factors. It is thus important to study its sensitivities to various
parameters. In this subsection, the sensitivity of ERKPP to the
cross-talk of the coupled system is examined and, specifically,
the sensitivity of ERKPP tok27 is used as an indicator. The
results are plotted in Figure 5.

We first note thatk27 is the kcat (turnover number)3 of the
enzymatic reaction in which PI3K catalyzes the PIf PIP3
reaction. PIP3 is in turn an intermediate that eventually leads
to the production of Akt-PI-PP. On the basis of this fact, one
would have conjectured that the sensitivity was always negative.
But this turns out not to be the case. As mentioned earlier, there
exists another element of the cross-talk in the scheme, which
arises from the fact that PP2A serves as the common phos-
phatase for both the MEK and Akt cycles. As a result, MEKP,
MERPP, Akt-PI-P, and Akt-PI-PP compete for PP2A through
the enzyme-substrate complex formation processes. Higher
concentrations of Akt-PI-P and Akt-PI-PP would mean less
PP2A available to deactivate MEKPP (and MERPP), and thus
higher ERKPP produced; this is positive sensitivity. To see the
separate actions of these two elements of cross-talk, we have
plotted in Figure 5 the time-dependent sensitivities for three
cases: with both elements present, switching off the Akt-PI-
PP and Raf* interaction, and switching off the PP2A cross-
talk. The results show that the effect of the Akt-PI-PP and Raf*
cross-talk alone is always negative, that due to PP2A sharing
is mainly positive, and the combined effect is that the sensitivity
is first negative and then becomes positive. The fact that it is
first negative, then positive, also tells us about the timings of
the competing processes; the positive effect on ERKPP due to
PP2A sharing lags behind the negative effect due to Akt-Raf*
cross-talk by more than 1000 s. As to the double-peaked nature
of the ERKPP sensitivity (with only PP2A sharing) curve, we
have traced its origin and attribute it to the fact that its precursor,
ERKP, is double-peaked as seen in Figure 3.

D. Sensitivities of MEK, MEKP, MEKPP with Respect
to PP2A. To see the effects of phosphatase in a double

phosphorylation-dephosphorylation cycle, we have plotted in
Figure 6 the sensitivities of MEK, MEKP, and MEKPP to the
initial concentration of PP2A. Because PP2A catalyzes the
MEKPPf MEKP and MEKPf MEK reactions, higher PP2A
concentration implies more MEK is produced and more MERPP
is deactivated. So MEK has positive sensitivity with respect to
PP2A’s initial concentration, and MEKPP has negative sensitiv-
ity. This prediction agrees with the results shown in Figure 6.
Furthermore, because PP2A deactivates MEKP into MEK, and
MEKPP into MEKP, the sensitivity of MEKP against PP2A’s
initial concentration should be the negative of a combination
of the MEK and MEKPP sensitivities. This fact is dictated by
the mathematical equations (eq 2) and verified in Figure 6.
Initially, MEKPP’s sensitivity dominates and is negative, so
MEKP’s sensitivity is positive. When MEKPP’s sensitivity
gradually goes down to zero, MEK’s sensitivity goes up from
zero and becomes dominating. So MEKP’s sensitivity turns from
positive to negative.

E. Sensitivities of the ERK Cycle to Upstream Kinase Rate
Parameters.In section III, we show the competition dynamics
between the concentrations of the DPdPC effectors, in this
subsection we investigate how their sensitivities with respect
to the rate parameters of upstream kinases vary with time. As
an example, the sensitivities of ERK, ERKP, and ERPP with
respect tok 11, kcat for the activation of Ras by ShGS, are plotted
in Figure 7. We see there that the sensitivity dynamics are even
more fluctuated than those of the concentrations (Figure 3). To
analyze the details of these curves, we note that the ERK
sensitivity curve stays negative throughout the entire period,
but instead of one minimum, as in its population dynamics
(Figure 3), it has two minima, revealing the two time scales
existing in the dynamics. Along with this two-minimum feature,
two maxima are also observed in the ERKPP sensitivity curve,
where a second maximum appears as a shoulder of the first
maximum. The curve, however, stays positive for the entire
period. The ERKP curve does change sign; it begins with a
sharp positive maximum, followed by a broad negative well,
and then a broad second positive maximum. The signs of ERK,
ERKP, and ERKPP are all consistent with the underlying
dynamics. Increasingk11 corresponds to increasing RasGTP, thus
increasing the Raf* activity and increasing the MERKPP signal.
Therefore the increasing amount of ERK is converted to ERKP,
which is then converted to ERKPP. So, the ERK sensitivity
stays negative and the ERKPP sensitivity stays positive, but
the ERKP sensitivity changes sign from positive to negative

Figure 5. Effects of Akt-Raf cross-talk and PP2A sharing on the
sensitivity dynamics of∂[ERKPP]/∂k27. The time series plotted are cases
for a system with the Akt-Raf cross-talk and PP2A sharing (solid line),
without Akt-Raf cross-talk, but with PP2A sharing (dotted line), and
with Akt-Raf cross-talk, but without PP2A sharing (long dashed line).
The rate constants and kinetic parameters used are the same as those
of Hatakeyama et al.,28 except that the initial concentration of Akt is
set to 40 nM.

Figure 6. Time-dependent sensitivities of MEK (solid line), MEKP
(dashed line), and MEKPP (dotted line) with respect to PP2A’s initial
concentration.
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and then back to positive. We note that, as in the MEK cycle
(Figure 6), the sensitivity of ERKP is the negative of the sum
of the sensitivities of ERK and ERKPP, as dictated mathemati-
cally by eq 2. The physical reason for the fluctuations of the
ERKP sensitivity is that ERKP first increases when ERK is
converted into it; then, when enough ERKP is accumulated, it
starts to be converted to ERKPP. Therefore, sensitivity becomes
negative. When the ERKPP concentration becomes high enough,
it is dephosphorylated to yield ERKP. Thus the ERKP sensitivity
becomes positive again. The observation that the maximum of
the ERK sensitivity curve corresponds to the negative minimum
of the ERKP sensitivity arises from the fact that when an
appreciable amount of ERKP is converted to ERK, the ERK
sensitivity becomes less negative.

Results in this subsection show that sensitivity curves show
more fluctuations thus reveal more details about the time scales
and interacting strengths of underlying competing mechanisms
than the population dynamics themselves.

V. Lists of Vulnerable Points of the Pathways According
to Integrated Sensitivities

Besides their use to improve our understanding of the
dynamics and interactions of pathways, time-dependent sensi-
tivities can also be used to rank the most sensitive reaction steps
or initial concentrations of the pathways. In other words, we
rank the vulnerable points of the pathways using sensitivities.
Similar rankings have been done using finite differences.41 If
these vulnerable points are realized experimentally, for example,
if oncogenic mutations or over- or underexpression of some
effectors are found to be associated with certain diseases, then
these reaction steps or initial concentrations can be considered
to be potential drug targets. Because ERKPP is an effector
translocated into the nucleus to regulate transcription and the
abnormality of the ERKPP regulation is considered to be a
potential cause of tumor growth, we shall use the ERKPP signal
to rank the vulnerable points. We shall consider the sensitivities
of ERKPP with respect to the rate constants, Michaelis-Menton
parameters of the reactions, or nonzero initial concentrations.
In the ranking of sensitivities, a quantity, such as∂ [ERKPP]/∂
log(pj), which has the dimension of ERKPP concentration, can
be used for common measure. This is preferred, because all
parameters are not of the same dimensionality. (The commonly
used, dimensionless quantity,∂ log[ERKPP]/∂ log(pj), has the
difficulty of numerical instability, caused by division by a
concentration approaching zero.) The ranking is done using the

integrated sensitivity, that is, the area under the time-dependent
sensitivity curve integrated over time, because it represents a
measure of the accumulated effects of a parameter on ERKPP.
The list of the vulnerable points for ERKPP is given in Table
1 in the order of decreasing absolute values of sensitivities,
independent of their signs which are also given in the table.

A. List of the Vulnerable Points of the Coupled Pathways
Using Integrated ERKPP Sensitivities.Table 1 shows some
interesting trends. Ranked at top 1 and 2 are the reaction rates
related to the activation and deactivation of RasGTP, the first
kinase of the MAPK cascade. This can be understood in terms
of the amplification property of the cascade. For the same
reason, the reaction steps of Raf, MEK and ERK should also
rank. Indeed ranked 8-12 are reaction rates related to them
and upstream effectors in general rank higher than the down-
stream effectors. We note also in Table 1 the deactivation steps
often rank higher than the corresponding activation steps; thus
the model seems to predict that phosphatases may be better drug
targets than kinases. This fact may not be useful in reality,
because phosphatases often lack specificity. Almost all the
reaction parameters ranked in the top 25 in Table 1 are related
to the MAKP cascade, except for reactions ranked numbers 5,
15, and 17, which are related to reaction numbers v5 through
v9, located in the Shc module (see Figure 1). For instance,
Reactions v7, v8, and v9 form loops that directly regulate the
concentration of the ShGS complex, the kinase for the RasGTP
formation. In particular, Reactions v9 and v5 rank much higher
than what one would expect and thus may be considered as
novel vulnerable points predicted by the present model. We note
also that reactions v1 thru v4 (RP module) and v23 thru v34 (PI3K
and Akt modules) are missing in Table 1.

In Table 1, initial concentrations of some effectors rank high
as well. These include kinases, such as ERK and MEK,
phosphatases, such as MKP3, PP2A, and E, as well as receptor-
complex forming proteins, such as Shc and GS. Again, similarly
to v9 and v5, initial concentrations of Shc and GS of the ShGS
module rank higher than expected.

Figure 7. Time-dependent sensitivities of the ERK cycle with respect
to an upstream kinase rate parametersk11: ERK (solid line), ERKP
(dashed line), and ERKPP (dotted line).

TABLE 1: Vulnerability Ranking of the Coupled Pathways
Using Integrated ERKPP Sensitivities

rank
(ERKPP) parameter

value
(mM s) description

1 k11 2.33 kcatfor RasGDPf RasGTP
2 V12 -2.29 kcat for RasGTPf RasGDP
3 ERKinit 1.80 initial concentration of ERK
4 Shcinit 1.68 initial concentration of Shc
5 k9 -1.59 ShGSf ShP+ GS
6 MEKinit 1.14 initial concentration of MEK
7 MKP3init -0.90 initial concentration of MKP3
8 k14 -0.88 kcat for Raf* f Raf
9 k18 -0.83 kcatfor MEKPPf MEKP

10 k22 -0.79 kcat for ERKPPf ERKP
11 k13 0.77 kcat for Raf f Raf*
12 Km14 0.73 Km for Raf* f Raf
13 Km12 0.73 Km for RasGTPf RasGDP
14 GSinit 0.70 Initial concentration of Grb2-Sos
15 k5 0.69 RP+ Shcf R-Shc
16 PP2Ainit -0.69 Initial concentration of PP2A’s
17 k8 0.68 R-ShGSf RP+ ShGS
18 k-8 -0.67 RP+ ShGSf R-ShGS
19 Km18 0.62 Km for MEKPPf MEKP
20 Einit -0.60 enzymeE’s initial concentration
21 k19 0.57 kcat for ERK f ERKP
22 Km19 -0.57 Km for ERK f ERKP
23 k17 0.48 kcat for MEKP f MEKPP
24 k21 0.45 kcat for ERKPf ERKPP
25 Km21 -0.45 Km for ERKPf ERKPP
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Furthermore, a ranking list (not given here) obtained with
the entire PI3K pathway branch switched off is very similar to
those listed in Table 1. It seems to indicate that the PI3K
pathway plays a minor role in the ranking of the ERKPP
sensitivities. In other words, the list seems to be robust.

Because the MAPK pathway plays a central role in transmit-
ting proliferating stimuli in a broad range of human cancer cells,
the components of the pathway are targets of small-molecule
inhibitors. This is an intensely pursued area of research and
development in pharmaceutical companies and research insti-
tutes.42,43 Ras was the first oncogene found to be associated
with human cancers14 and was therefore one of the first among
all kinases to be identified as a drug target. Here in Table 1 it
sits at the top of the list. Following Ras, Raf has become an
important drug target recently and inhibitors have also been
developed for MEK.43

B. List of the Vulnerable Points of the Coupled Pathways
Using Integrated Akt-PI-PP Sensitivities. In a similar way,
we have ranked the integrated sensitivities of Akt-PI-PP of the
full system with respect to all reaction parameters and initial
concentrations in Table 2. All the rate and concentration
parameters ranked in top 17 (except the initial concentration of
PI3K) are related to the effectors in the Akt module (Figure 1).
At the top are 2 initial concentrations, those of the phosphatase
(PP2A) and a complex-forming protein Akt of the Akt module.
These are followed by the rate parameters related to the
dephosphorylation and phosphorylation processes of the reac-
tion: Akt-PIP3f Akt-PI-P, the catalyzed reaction: PIf PIP3
and its dephosphorylated counterpart, and then PI3K. Ranked
17 and 18 are rate parameters related to the RasGTP phospho-
rylation and dephosphorylation reactions, the highest ranked
among all MAPK effectors. The fact that MAPK effectors do
not rank higher is not surprising, because they are not upstream
effectors of Akt-PI-PP and all effects must come indirectly from
the branching from RP and feedback loops involving RP as well
as PP2A sharing.

There are experimental evidences relating the effectors listed
in Table 2 to cancers and human malignancies. In fact, following

MAPK, the PI3K/Akt pathway has emerged as the second hotly
pursued pathway.44 Particularly vulnerable effectors are Akt,
PTEN, and PI3K, which are ranked, respectively, (#2-#5, #9,
#10, #12-16), (#7 and #11), and (#8, #20-22) in Table 2. Some
of experimental facts for them are as follows: Akt’s activation
and overexpression has been found to correlate with breast,
ovarian, thyroid, and pancreatic cancers.44,45 PTEN, a tumor-
suppressing protein, is also identified as an important drug target.
Its mutation and silencing is tied to many human malignancies,
such as ovarian, breast, melanoma, prostate, lung, hepatocellular
renal-cell carcinoma, glioblastoma, thyroid, and lymphoid
cancers.44 Furthermore, two compounds, wortmannian and
LY294002, are commonly used as pharmacological agents to
indicate PI3K involvement in cancers.

C. Common and Different Features of the Two Ranking
Lists. The common features of the ERKPP and Akt-PI-PP
sensitivity rankings:

(a) None of the reactions v1-v4 involving the receptor
(inactivated) and HRG rank at the top 34 in either ranking.

(b) Rate constantsk9 andk5 as well as initial concentrations
of Shc and Gs appear in both lists. On the basis of the present
study, these two complex dissociation and formation reactions
are vulnerable points, thus potential drug targets.

(c) RasGTP and RasGDP score high in both lists.
(d) Other initial concentrations ranked top 34 in both lists

(only the top 25 are shown in Tables 1 and 2) are those of PP2A,
MEK and receptor R.

Some differences between these two rankings:
(a) In the ERKPP ranking, the reaction steps involving

upstream effectors usually rank higher than the corresponding
steps involving the downstream effectors. However, it does not
seem to be the case for the Akt-PI-PP ranking. The latter may
be correlated with the fact that this is no amplification
phenomenon associated with the Akt-PI-PP activation.

(b) Endocytosis of RP ranks at top 26 in the Akt ranking but
does not appear in the ERK ranking.

VI. Robustness of Pathways Using Integrated Sensitivities

One of the important goals of scientists studying biological
networks and pathways is to learn about their design principles
and to compare these principles to those of man-made systems,
such as computers, cars, and airplane.46,47For instance, robust-
ness and redundancy are often regarded as two of the common
properties associated with the design principles of biological
networks in nature as well as man-made systems. Biological
systems are constantly fluctuating and noisy. To avoid noise-
induced transformations, the system should not be sensitive to
small fluctuations, that is, be robust in its behaviors. In this
section, using the MAPK/PI3K systems again, we want to
demonstrate that integrated sensitivities can be used as a
countermeasure of the robustness of pathways, because reduced
sensitivity may cut down noise-induced transformations. Thus,
reduced sensitivity is equivalent to an increase of the threshold
of the response to stimulus. The hypothesis here states: the
design principle behind the coupled pathways is that the PI3K
pathway is to make the MAPK system less sensitive to noise
or defects, that is, to counterbalance its ultrasensitivity.17,48

To test this hypothesis, we have calculated the integrated
sensitivities of the MAPK cascade effectors with respect to
certain initial concentrations and rate parameters. Integrated
sensitivities are calculated for the full system as well as the
system with PI3K pathway switched off. The integrated
sensitivities of the cascade effectors, RasGTP, Raf*, MERPP,
and ERKPP, are listed in Table 3 in four parts, one each for a

TABLE 2: Vulnerability Ranking of the Coupled Pathways
Using Integrated Akt-PI-PP Sensitivities

rank
(Akt-PI-PP) parameter

value
(uM s) description

1 PP2Ainit -10.97 PP2A’s initial concentration
2 Aktinit 7.55 Akt’s initial concentration
3 k31 -5.21 kcat for Akt-PI-P f Akt-PIP3
4 V30 5.21 Vm for Akt-PIP3f Akt-PI-P
5 Km30 -5.21 Km for Akt-PIP3f Akt-PI-P
6 k27 4.81 kcat for PI f PIP3
7 V28 -4.81 Vm for PIP3f PI
8 PI3Kinit 4.79 PI3K’s initial concentration
9 k29 4.78 Akt+ PIP3f Akt-PIP3

10 k-29 -4.78 Akt-PIP3f Akt + Pip3
11 Km28 4.78 Km for PIP3f PI
12 k33 -4.62 kcat for Akt-PI-PPf Akt-PI-P
13 V32 4.61 Vm for Akt-PI-P f Akt-PI-PP
14 Km32 -4.61 Km for Akt-PI-P f Akt-PI-PP
15 Km31 3.94 Km for Akt-PI-P f Akt-PIP3
16 Km33 3.63 Km for Akt-PI-PPf Akt-PI-P
17 k11 2.91 kcat for RasGDPf RasGTP
18 V12 -2.86 Vm for RasGTPf RasGDP
19 Rinit 2.67 receptorR’s initial concentration
20 V26 -2.52 Vm for PI3k* f PI3K
21 Km26 2.51 Km for PI3K* f PI3K
22 k23 2.30 RP+ PI3K f R-PI3K
23 Shcinit 2.09 initial concentration of Shc
24 k9 -1.96 ShGSf ShP+GS
25 MEKinit 1.72 initial concentration of MEK
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different parameter. In (A), the sensitivities toward the concen-
tration of the ligand HRG are listed. Listed in (B) are the effector
sensitivities with respect to the initial concentrations of the
receptor, R. This is motivated by the fact that some cancers are
found to be associated with the overexpression of certain
receptors in the cell membrane. To simulate the effects of Ras
mutations on some downstream effectors, we have listed in (C)
and (D) the effector integrated sensitivities toward,k11 andk13,
the turnover numbers of the Ras and Raf activations, respec-
tively. Table 3 shows clearly that the integrated sensitivities of
Raf*, MEKPP, and ERKPP are reduced when the PI3K branch
is switched on for all four parameters studied. The percentage
differences of sensitivities for these parameters are very close
for all parameters, except for R, the initial concentration of
receptors. For R, the percentage differences are highest among
all, it may indicate that PI3K can protect cells against the risk
of overexpression of receptors more effectively. It is also seen
that the percentage differences of sensitivities go down rapidly
from Raf* to MEKPP to ERKPP.

Table 3 also shows that the integrated sensitivity of RasGTP
does not change much with or without the PI3K branch. Their
percentage differences are 1-2 orders of magnitude smaller than
those of other kinases and can be positive or negative. This is
because the MAPK-PI3K cross-talks occur at a point down-
stream from Ras, thus PI3K branch does not affect it directly.
Another measure of reduced sensitivity (not listed) is the change
of the signal amplification factor for the whole MAPK cascade.
Our results show that this factor is down by 17% for the coupled
system compared to the MAPK system alone. Therefore, overall,
our results in Table 3 support the notion that the role of the
PI3K pathway in the coupled system (as described by the present
model) is to reduce the sensitivity or to enhance the robustness
of the MAPK pathway.

VII. Conclusion and Discussion
The MAPK-PI3K signaling pathways play an important role

in regulating cell functions and mutations of related effectors
may be related to cancer formation. To study such complicated

signaling pathways, we have developed a general-purpose
automation algorithm to compute time-varying sensitivities as
well as concentration dynamics. We show that time-varying
sensitivity analysis can be a useful tool for systems biology
studies of complex biological systems, because it can provide
the following valuable information about the systems: (a)
competition between multiple time scales existing in a complex
system, especially, when cross-talks and feedback loops are
involved; (b) the signs and strengths of a system’s responses to
perturbations mediated by protein-protein interactions and
cross-talks; (c) revealing more details of the complex dynamics
of the system than concentration dynamics; (d) ranking of
vulnerable nodes or potential drug targets of biological pathways
using integrations of time-varying sensitivity; (e) reduced
sensitivity used as a measure of stability or robustness of
pathways (here our results seem to support the notion that the
role of the PI3K branch in the coupled MAPK-PI3K pathways
is to reduce the integrated sensitivity or to enhance the
robustness of the MAKP pathway).

Much of our results and discussions in earlier sections focus
on time-dependent sensitivities. One may ask whether any of
the observed relations or conclusions are relevant to real
experiments. Although time-dependent sensitivities are not
directly measured in experiments, the answer, however, is
positive. This is because in at least two regimes, the time-
dependent sensitivities can be related to experiments investigat-
ing effects of finite perturbations.49,50 The first is the weak
perturbation limit; in such a case the differences in time series
of the concentrations of the original and perturbed cases are
approximately given by the time-dependent sensitivities. The
second applicable regime arises when the underlying dynamics
behave in the linear domain. In this linear dynamics domain,
even when the perturbation is not weak, the finite-perturbation
differences are well approximately by the partial derivatives.
In practice, we can always use sensitivities as indications of
how finite perturbations may work. An advantage of using
partial derivatives is that the signs of the derivatives tell us
automatically whether the effects are positive or negative.

Although a more complete network involving the MAPK
cascade and the PI3K pathway can be much more complicated
than the model analyzed in the present article, the Hatakeyama
model, however, serves as a useful model for the study of the
effects of cross-talks on dynamics. One lesson that we learn
from this model is that not only direct protein-protein interac-
tions provide couplings between pathways but also sharing of
common phosphatases (or kinases). The situation here is as
follows: Although the interaction between Akt and Raf* is to
deactivate the latter, the effect of sharing of PP2A between the
MEK and Akt cycles on ERK signaling is more subtle. An input
that increases Akt activation will negatively regulate Raf, and
thus MEK and ERK at an early stage, but this also implies more
PP2A is available to deactivate Akt and thus positively regulate
Raf as well as MEK and ERK at a later stage. An input that
decreases Akt activation has the opposite effects. Furthermore,
a perturbation that increases MEK activation also induces a
higher rate of MEK-PP2A complex formation; thus less PP2A
is available to deactivate Akt. This in turn means lower Raf
activation and lower MEK and ERK activation. Therefore, PP2A
sharing induces self-regulating or balancing effects on Akt and
MEK activation. A point to notice is that redundancy already
exists in this model, in the sense both Akt and PP2A can
negatively regulate ERK signaling.

Finally, the lists of vulnerability, of course, are as complete
as the system that we have simulated in this Article. As already

TABLE 3: Integrated Sensitivities of Effectors with Respect
to Certain Initial Concentrations and Rate Parametersa

effector I I 0 (I0 - I)/I (%)

(A) Integrated Sensitivities with respect to
the Initial Concentration of HRG

RasGTP 3.2274× 10-1 3.2238× 10-1 -0.11
Raf* 7.2340× 101 1.1307× 102 56.30
MEKPP 3.3496× 103 4.2352× 103 26.44
ERKPP 8.0980× 104 8.4466× 104 4.30

(B) Integrated Sensitivities with Respect to
the Initial Concentration of R

RasGTP 7.5645× 10-1 7.5241× 10-1 -0.53
Raf* 1.3103× 102 2.6394× 102 101.43
MEKPP 7.0501× 103 9.8903× 103 40.29
ERKPP 1.7295× 105 1.9725× 105 14.05

(C) Integrated Sensitivities with Respect tok11
RasGTP 9.2792× 100 9.2873× 100 0.09
Raf* 2.0737× 103 3.2456× 103 56.51
MEKPP 9.6198× 104 1.2174× 105 26.55
ERKPP 2.3277× 106 2.4325× 106 4.50

(D) Integrated Sensitivities with Respect tok13
RasGTP 0 0 N/A
Raf* 6.8419× 102 1.0691× 103 56.26
MEKPP 3.1868× 104 4.0220× 104 26.21
ERKPP 7.7245× 105 8.0679× 105 4.45

a The second column is the effector’s integrated sensitivity (I) of
the full coupled system, the third column is the integrated sensitivity
(I0) with the PI3K branch switched off, and the fourth column is the
difference in integrated sensitivities in percentage.
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discussed by Hatakeyama et al.28 and suggested by works of
many others,16,27,42 the present model can be extended by
including more cross-talks and pathways, for example, those
connected to Ras, Raf, PI3K, and Akt and even different
coexpressed Erb receptors. However, such extensions may
require the availability of experimental data of these pathways
and protein-protein interactions for the same cell types and
same species and obtained under the same protocol.
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