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An extensive study of the harmonic frequencies of a large set of small polyatomic closed-shell molecules
computed at both single level ab initio and composite approximations is presented here. Using various
combinations of basis sets, composite methods are capable of predicting single level ab initio CCSD(T)
harmonic frequencies to within 5 cm-1 on average, which suggests a computationally affordable means of
obtaining highly accurate vibrational frequencies compared to the CCSD(T) level. A general approach for
calculating the composite level equilibrium geometries and harmonic frequencies for polyatomic systems
that uses the Collin’s method of interpolating potential energy surfaces is also described here. This approach
is further tested on tetrafluoromethane, and an estimation of the potential CPU time savings that may be
obtained is also presented. It is envisaged that the findings here will enable theoretical studies of fundamental
frequencies and energetics of significantly larger molecular systems.

1. Introduction

Since the introduction of G1 theory by Pople and co-workers
in 19891 a sizable literature has appeared that utilizes composite
methods or, more generally, methods that use various lower
levels of ab initio or DFT theory to approximate significantly
higher levels of theory. The advantage in doing so lies in the
very significant saving in computational expense resulting from
the lower level computations. G1 theory and its descendants,
G22, G33, G3S,4 G3X5 were originally developed to achieve
“chemical accuracy” (energies to within 4 kJ mol-1 when
compared with experiment) in the computation of thermochemi-
cal properties (enthalpies, ionization energies, electron affinities,
etc.) of gases. Indeed, this level of accuracy has been achieved
for many molecules.

The Gn theories of Pople and co-workers are by no means
the only methods that aim to, and achieve, chemical accuracy
by approximating expensive higher level methods using several
lower level results and empirical parameters. Some of the more
popular include the complete basis set (CBS) methods from
Petersson and co-workers,6 the Weizmann-n theories and their
variants of Martin and co-workers7 and the multicoefficient
correlation methods (MCCMs)8 of Truhlar’s group.

Significantly fewer studies have appeared in the literature that
utilize composite methods for predicting potential energy
surfaces (PES). Collins and co-workers have successfully
utilized a G3X(MP2) type method in the construction of PES
for reactive systems and the calculation of various kinetic
parameters.9 Such methods have also been used in a nine-
dimensional bound-state problem for the determination of zero-
point energies and ground-state rotational constants.10 Császár
and co-workers utilized a CBS approach to generate a base PES
for water and then added in a core-correlation surface, a
relativistic correction surface, a quantum electrodynamics cor-
rection surface and an adiabatic correction surface.11

Other groups have considered up to quartic expansions of
the potential about an equilibrium configuration. In these studies

it is the fundamental frequencies of vibration that are of interest,
as well as other spectroscopic constants. Bose and Martin12

published a detailed study on the azabenzene series, which
included considering the possibility of combining DFT anhar-
monic force fields with coupled cluster geometries and harmonic
frequencies. Pouchan and co-workers have also combined
harmonic ab initio force constants with DFT anharmonicity
constants in a number of studies.13

Although high accuracy can be obtained using the above
approach for computing fundamentals, high-level ab initio
calculations are still required of the harmonic frequencies.
Furthermore, such approaches to obtaining a PES, although
perfectly suited for the determination of spectroscopic observ-
ables of tightly bound systems, are not applicable over the entire
PES but presumably can only be applied to turning points. An
alternative approach is to define a potential energy that can be
computed for any single configuration that is composed of
contributions from various levels of theory in a manner similar
to Gn theory. In this way, not only can composite force constants
and anharmonic force constants be computed, but composite
energies, gradients and second and higher derivatives can also
be evaluated forany configuration.

Though the high accuracy of composite methods has been
demonstrated by numerous studies for total energies, at least at
and around minima on the PES, almost no work has been done
on examining the general accuracy of the approach for first and
higher order derivatives. One way of measuring the accuracy
of the curvature of the PES is by comparing composite harmonic
frequencies to those obtained using a high single level of theory.

The computation of vibrational frequencies has seen much
interest in recent years, with frequencies determined on average
to within 8 cm-1 of experimental values using CCSD(T) and
large basis sets.14 However, the CPU time associated with this
method scales as the seventh power of the number of basis
functions, which makes the calculation for even medium-sized
molecules prohibitive. Of course, one must include the effects
of correlating the core-electrons to achieve such high levels
of accuracy. Dunning and Peterson have examined the use of
composite methods for making reliable estimates of the elec-
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tronic energy, spectroscopic properties (De, re, ωe, ωexe),
ionization energy, and electron affinities compared with the
single level CCSD(T)/aug-cc-pV5Z for a test set of diatomic
molecules.15 Specifically, the authors calculated an energy at
the CCSD(T) level using a smaller basis aug-cc-pVXZ, X)
D, T, and Q, and then added to this energy a correction,∆basis,
to account for the inadequate basis set. Their study revealed
that for the test set of molecules, the composite approach is
capable of predicting single level CCSD(T) harmonic frequen-
cies to within 2 cm-1 on average when X) T. This approach
has also been successfully applied for the calculation of
harmonic and fundamental frequencies for first-row closed shell
diatomic molecules.16 Thus, if the success of composite methods
for computing energies could be carried over into the calculation
of vibrational frequencies, then significantly larger molecular
systems can be studied with high accuracy.

However, for this to be possible, it is first necessary to
establish the general applicability of composite methods for the
calculation of other vibrational modes viz. molecular bends and
torsions. To the best of the authors’ knowledge, all previous
studies utilizing a Gn-type approach have been restricted to
simple diatomic systems, where only uncomplicated stretching
modes are assessed. In this work, the harmonic frequencies at
both single level ab initio and Gn-type composite approxima-
tions of CCSD(T) theory, are reported for 19 tri- and 18
tetratomic nonlinear molecules where the bends and torsions
are examined as well. Additionally, a general scheme for
calculating the composite level equilibrium geometries and
harmonic frequencies for polyatomic systems that utilizes the
Collins’ method of interpolating potential energy surfaces is also
described. The accuracy of the composite-level harmonic
frequencies are evaluated through comparison with the corre-
sponding single level CCSD(T) calculations.

It is envisaged that the results of this study should provide a
clearer indication of the general applicability of composite
methods for the calculation of vibrational frequencies of more
complicated molecules. Furthermore, this would also contribute
toward an alternative procedure for calculating highly accurate
ab initio frequencies of larger molecules with significant
reductions in computational cost.

2. Computational Details

The single level ab initio calculations were carried out at
CCSD(T)/aug-cc-pVXZ, where X) D, T and Q. The calcula-
tions were performed using the MOLPRO 2002.117 and Gauss-
ian 9818 suite of programs. The composite energies were based
on the ad hoc expression

where∆basis) E[MPn/L] - E[MPn/S], MPn refers tonth-order
Moller Plesset perturbation theory, and S and L denote small
and large basis sets, respectively.EL/S is an approximation to
the energy at the CCSD(T)/L level of theory. Note that if the
MPn treatment in the basis set correction term∆basis was
substituted with the CCSD(T) treatment, then this would yield
exactly the CCSD(T)/L energies. This expression is similar to
the electronic energy given in G3X(MPn) theory in refs 9 and
10 and is the same as that used in refs 15 and 16. It can thus be
seen from eq 1 that one significant source of error in this
approximation is the difference in treatment of electron cor-
relation between the MPn and CCSD(T) levels.

In the subsequent sections, short-hand notations to describe
the above calculations are D, T and Q for CCSD(T)/aug-cc-

pVDZ, CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVQZ,
respectively. Similarly, composite methods are denoted by L/S,
where L and S are shorthand notations of the above basis sets.
It should be noted from eq 1 that the energy is defined forany
molecular configuration, not just locally at and around minima,
and provides a means to generate a composite potential energy
surface (PES), as discussed earlier. Because each term in eq 1
is differentiable with respect to Cartesian displacements of the
atoms so too is the composite energy. Thus we are able to obtain
a composite equilibrium structure and harmonic frequencies.
All molecular structures in this work have been optimized using
both composite and single level ab initio methods specifying
tight convergence. A threshold for the convergence of the energy
in the SCF procedure of 10-10 Hatree has also been chosen in
all calculations.

To calculate the L/S harmonic frequencies of a molecule, a
PES is first required to locate its L/S optimized geometry. The
PES was constructed using Collins’ method of interpolation and
has been described in detail elsewhere.19 Once the PES
minimum is located, the second derivative matrix is calculated
numerically at this geometry and the harmonic frequencies
obtained. The algorithm for obtaining the L/S harmonic
frequencies of anN-atom nonlinear polyatomic molecule is
described below:

1. Obtain an approximate set of normal coordinates (Z1, Z2,
..., Z3N-6) at a lower level ab initio method such as MP2/6-
31G(d), where analytic calculation of the Hessian matrix is
possible. The optimized geometry,Zo, at this level of theory
serves as an initial guess to the composite method equilibrium
structure.

2. The L/S gradient and Hessian matrices are evaluated
numerically by central difference formulas atZo. This generates
the initial L/S PES, which corresponds to a second-order Taylor
polynomial aboutZo.

3. The minimum point,Z1, of this PES is located using the
Newton-Raphson method. The process repeats from step two,
generating the next data point. After more than one data point
is generated, the PES is expressed as an interpolation over the
total number of data points,Ndata, based on eq 2, wherewn(Z)
andTn(Z) refer to the normalized distance-based weight function
and second-order Taylor approximation of thenth data point at
Z.

where

4. The optimization is deemed converged if all the calculated
gradient elements (∇Vi, i ) 1, ..., 3N - 6) of the newest data
point are less than or equal to an ad hoc value,εtol; otherwise
the algorithm repeats from step 2. The final data point is the
L/S optimized geometry,Zeq expressed in terms of the MP2/
6-31G(d) normal coordinates.

5. Zeq is expressed in terms of the 3N - 6 standardZ-matrix
internal coordinates, where the Hessian with respect to these
coordinates is calculated numerically. The L/S harmonic

EL/S ) E[CCSD(T)/S]+ ∆basis (1)

V(Z) ) ∑
n)1

Ndata

wn(Z) Tn(Z) (2)

wn(Z) )
Vn(Z)

∑
i)1

Ndata

Vi(Z)

Vn(Z) ) ||Z - Z(n)||-2p

2p > 3N - 3 (3)
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frequencies are obtained in the usual manner from the Hessian
and atomic masses.

All numerical derivatives were evaluated using a step size
of 5 × 10-4 au andεtol was specified as 5× 10-5 au, which
corresponds to the tight convergence criteria in the Gaussian
software package. In all the molecules examined, the geometry
optimization converged within three cycles.

3. Results and Discussion

Table 1 shows the full list of molecules that were examined
in this study. Unless otherwise stated, all composite frequencies
were evaluated using MP2 theory in eq 1. We shall first examine
the results for the triatomic molecules, followed by the tetratomic
and larger systems.

3.1. Triatomics. The single level D, T and composite T/D
harmonic frequencies for 19 triatomic molecules have been
calculated, providing a sample of 57 bending and stretching
frequencies for comparison (see Table S1 in the Supporting
Information). The data for the T/D and D harmonic frequencies
are compared to the T frequencies and are summarized in Table
2. As mentioned earlier, the CCSD(T) theory has an intrinsic
error of about 8 cm-1 in terms of the calculation of experimental
vibrational frequencies, and including core-correlation (not
included in this work). Thus, it is desirable that the composite
harmonic frequencies lie within the same range of their single
level CCSD(T) counterparts. It is clear by examining the data
in Table 2 that a substantial improvement in the accuracy of
the harmonic frequencies is achieved using composite methods
compared with the D frequencies. For example, the T/D mean
absolute deviation (MAD) and root-mean-square (RMS) values
are 4.46 cm-1 and 6.88 cm-1, which are about 8 times smaller
compared to the D frequencies with MAD and RMS values of
37.0 and 45.7 cm-1 respectively.

The distribution of the absolute deviation (AD) values for
the 57 T/D and D frequencies is illustrated in Figure 1. From
the distribution curves, it was observed that the absolute
deviations in the D frequencies are fairly evenly distributed,
with errors as large as 108 cm-1. On the other hand, about 70%
of the T/D frequencies are within 5 cm-1 of the T frequencies,
and at least 95% within 15 cm-1. However, it was noted that
two (originating from HCO- and HON) of the 57 T/D
frequencies had absolute deviations in excess of 20 cm-1, where
the maximum was 27.1 cm-1. Likewise, the absolute deviations
in the corresponding D frequencies were found to be in excess
of 40 cm-1. Further inspection revealed that these frequencies
arose from the highest frequency stretching modes of these two
molecules. Curiously, the remaining T/D vibrational frequencies
of the two molecules are relatively accurate and fall within 12
cm-1 of the corresponding T frequencies.

Generally speaking, the errors in the composite expression
in eq 1 are likely to propagate and impact most on the high
frequency vibrational modes. The fact that the two outlying

frequencies correspond to the highest stretching frequencies of
two molecules attest to this. There are two main sources of error
in the composite frequencies: First, the gradient vectors and
Hessians were evaluated numerically via central difference and
must therefore incur some errors in the harmonic frequencies.
More significantly, the use of MPn in the basis set correction
term ∆basis must be taken into consideration. Presumably, the
anomalously large deviations in the composite frequencies for
the two systems are due to the inadequate treatment of electron
correlation by the MP2 procedure. As pointed out earlier, this
error can be improved by systematically increasing the level of
electron correlation in the basis set correction term.

As such, the harmonic frequencies for the two molecules were
reevaluated by substitution of MP3 (see Table S4 in the
Supporting Information) for MP2 in eq 1. This led to a marked
improvement in the two outlying frequencies where the devia-
tions were reduced to less than 7 cm-1. There was also further
improvement in the other frequencies of these molecules where
the AD with the T frequencies was reduced to less than 3 cm-1.
Similarly, upon substitution with the corresponding MP3 T/D
frequencies for the two molecules, the MAD and RMS values
were further reduced from 4.46 and 6.88 cm-1 to 3.31 and 4.95
cm-1, respectively. These observations suggest that the high-
frequency vibrations tend to be more sensitive to the inexactness
of the composite expression.

Additionally, the single level Q and composite levels Q/T
and Q/D were also computed for a subset of the six lightest
triatomic molecules shown in Table S2 of the Supporting
Information, and summarized in Table 3. Also provided in
Tables S2 and 3 are the results for T/D, T and D harmonic
frequencies versus the Q frequencies. The Q/T frequencies were
of comparable accuracy to the Q frequencies, with a MAD of
only 1.3 cm-1, compared to a MAD of 9.1 cm-1 in the T
frequencies. It was also noted that the performance of the Q/D
frequencies was slightly worse compared to the Q/T frequencies,
with an MAD of 4.1 cm-1, although this is within the acceptable
error range. Not surprisingly, the T/D frequencies do not predict
the Q frequencies as accurately as the former two but compares

TABLE 1: Test Set of Molecules Used

triatomic H3
+ H2F+ CH2 CHF H2O HNO HON NH2

+ NH2
- HO2

+ HO2
-

OCF- HF2
+ HOF HNF- HCO- CF2 C2O F2O

tetratomic CFH2- NFH2 H2CO H2O2 OFH2
+ cis-N2H2 trans-N2H2

trans-HCOHcis-HCOHcis-HCNH- trans-HCNH-,
CH3

- NH3 OH3
+ H2NO+ H2NO- H2NN H2CN-

TABLE 2: Comparison of D and T/D Frequencies with T
Harmonic Frequencies for Triatomic Systems

method MAD RMS |∆ω|median |∆ω|max

D 37.0 45.7 28.4 108.1
T/D 4.46 6.88 3.12 27.1

Figure 1. Plot of the percentage of vibrational modes against the
absolute deviation from the T frequencies for the triatomic systems.

TABLE 3: Comparison of Q/T, Q/D, T and D Frequencies
with Q Harmonic Frequencies for Triatomic Systems

method MAD RMS |∆ω|median |∆ω|max

T 9.1 11.0 10.2 20.7
D 44.7 54.0 34.9 118.0
Q/T 1.3 1.61 1.2 2.9
Q/D 4.1 5.0 3.9 9.8
T/D 12.2 14.3 12.9 24.7
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well with the T frequencies as illustrated by the good agreement
between their MAD and|∆ω|medianvalues.

The above observations imply that the optimal combination
of basis sets (L and S) for predicting single level L harmonic
frequencies is when they differ by no more than one in the
valence designation. It is possible that the widening difference
in the valence designation of the two basis sets (L and S) would
deteriorate the quality of the basis set correction term∆basis,
thereby leading to poor agreement with the CCSD(T)/L
frequencies.

3.2. Tetratomics Systems.The single level T, D and
composite T/D harmonic frequencies are also calculated for a
set of 18 tetratomic molecules, providing a sample of 108
stretching, bending and torsional modes for comparison. These
molecules have geometries ranging from tetrahedral, trigonal
pyramidal to planar structures. Table 4 summarizes our results,
whereas Table S3 in the Supporting Information provides all
the frequencies.

The performance of the composite frequencies in the tetr-
atomic systems is consistent with the triatomic systems. Here,
the MAD value of the T/D frequencies from the T calculations
is merely 4.2 cm-1, which is about a 5-fold reduction compared
to that of the D frequencies at 20 cm-1. The distribution of the
AD of the 108 T/D and vibrational frequencies is plotted in
Figure 2.

The distribution curves in Figure 2 illustrates a trend similar
to that in Figure 1 where about 95% of the T/D frequencies lie
within 10 cm-1 of the T frequencies, although it was observed
that a small number had absolute deviations greater than 12
cm-1 with |∆ω|max of 20 cm-1. Further examination revealed
that these frequencies arose from high frequency stretching
modes of several tetratomic molecules. On the contrary, the
remaining vibrations of these molecules generally showed good
agreement with deviations of 10 cm-1 or less. To assess the
errors due to the composite approximation, the composite
frequencies were reevaluated using the MP3 rather than MP2
in eq 1 for the two of molecules, H2CN- and H2NN, with the
largest deviations (19.3 and 20.0 cm-1).

Consequently, both deviations were substantially reduced to
0.36 and 10.7 cm-1, respectively (see Table S4 in the Supporting
Information). Likewise, the deviations for the remaining fre-

quencies were further reduced to less than 4 cm-1. Substitution
of these frequencies for the two molecules with the MP3
composite frequencies led to improved MAD and RMS values
of 3.75 and 4.58 cm-1, respectively.

Thus far, the results have been supportive of the capacity of
the composite procedure to make reliable predictions of the
harmonic frequencies corresponding to bending and torsional
modes. However, it has also been noted that the high frequency
vibrational modes, specifically stretches, tend to be more
sensitive to the errors incurred in the composite approximation.
These errors are primarily due to the inaccuracy of the basis
set correction term in eq 1. Our preliminary assessment shows
that the correction term may be systematically refined by using
higher-order perturbation methods such as the MP3 procedure.
This observation was also reported in the study by Dunning
and Peterson on diatomic molecules, where the MP3 composite
procedure out-performed its MP2 counterpart.15

Despite the higher accuracy and consistency in the MP3
approximation, there is also the added computational cost as
the CPU time associated with this method scales as the sixth
power of the number of basis functions. On the other hand, the
MP2 composite procedure is generally very accurate with errors
less than 5 cm-1 on average. Hence, for a given CPU time
budget, the MP2 approximation should be useful for many
molecular studies.

3.3. CPU Time Savings.The major advantage with the
composite approach is the ability to predict single level CCSD-
(T) harmonic frequencies accurately, while only requiring a
significantly shorter CPU time. Based on the MP2 procedure,
the composite approach is approximately a factor ofn times
faster:

wheret{CCSD(T)/L} refers to the CPU time incurred for the
CCSD(T) and large basis set calculation, and so forth.

To estimate the CPU time-savings that may be obtained, the
composite procedure was applied to tetrafluoromethane, which
is composed of five heavy atoms. Based on a single point
calculation at the T/D equilibrium geometry, the CPU times
required by the T and T/D procedures are tabulated in Table 5.

Accordingly, it is estimated that the CCSD(T)/aug-cc-pVDZ
calculations are approximately 14.5 times faster than CCSD-
(T)/aug-cc-pVTZ. Quite remarkably, the CPU times associated
with the composite approximations are exceedingly close, where
n has been estimated to be 13.5 and 10.7 for the MP2 and MP3
procedures, respectively.

Additionally, the T/D frequencies for CF4 have also been
computed and compared with the corresponding T harmonic
frequencies from earlier work of Wang et al.20 The frequencies
are tabulated in Table 6.

As shown in Table 6, all the T/D frequencies are in excellent
agreement with the T frequencies, with errors of 3.0 cm-1 or
less. This result is most noteworthy considering the mere
additional cost of performing a MP2 energy calculation. It also
appears that for a medium-sized system molecule such as
tetrafluoromethane, the difference in the CPU times required

TABLE 4: Comparison of D and T/D Frequencies with T
Harmonic Frequencies for Tetratomic Systems

method MAD RMS |∆ω|median |∆ω|max

D 20.3 23.7 18.9 63.9
T/D 4.2 5.4 3.5 20.0

Figure 2. Plot of the percentage of vibrational modes against the
absolute deviation from the T frequencies for the test set of tetratomic
systems.

TABLE 5: CPU Times Associated with the MP2 and
CCSD(T) Calculation at the Equilibrium Geometry of CF4

basis set
no. of

basis functions MP2 MP3 CCSD(T)

aug-cc-pVDZ 115 1702.90
aug-cc-pVTZ 230 112.68 593.96 24687.76

n )
t{CCSD(T)/L}

t{MP2/L} + t{CCSD(T)/S}
(4)
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for MP3 and MP2 is somewhat small when compared with the
single level CCSD(T) calculations. Accordingly, the MP3
approximation may be more advantageous in terms of reliability
for small to medium-sized molecules.

4. Concluding Remarks

In this paper, the harmonic frequencies for a test set of closed
shell triatomic and tetratomic molecules have been calculated
at both single level and composite approximations of the CCSD-
(T) method. The results of this study demonstrate the ability of
the composite approximation to make very accurate predictions
of the harmonic frequencies that are within 5 cm-1 of the
corresponding single level CCSD(T) calculation. All previous
studies have focused exclusively on simple diatomic molecules,
where only stretching modes were examined. Through the work
presented here it is established that the composite procedure is
equally capable of making accurate predictions of other
vibrational frequencies corresponding to bending and torsional
modes for more complicated polyatomic systems.

The poorer estimation of the stretching frequencies for
polyatomic molecules has been attributed to the fact that
stretching modes are invariably the high-frequency vibrations
and are therefore more sensitive to the errors in the energy
expression in eq 1. Nevertheless, it has been demonstrated in
problematic systems that the large deviations in the T/D
harmonic frequencies are readily remedied through the use of
MP3 procedure. The tradeoff, however, is the increased
computational cost associated with this method, which scales
as the sixth power of the number of basis functions.

To summarize, it is conceivable that the combination of
efficient Hessian update schemes combined with the theoretical
procedure presented here should enable the study of significantly
larger molecular systems.
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CCSD(T)/aug-cc-pVXZ (X) D and T) and the composite, T/D,
harmonic frequencies (cm-1) for the triatomic molecules. Table
S2 contains the CCSD(T)/aug-cc-pVXZ (X) D, T and Q) and
the composite Q/T, Q/D and T/D harmonic frequencies (cm-1)
for the six lightest triatomics. Table S3 contains the CCSD(T)/
aug-cc-pVXZ (X ) D and T) and composite, T/D, harmonic
frequencies (cm-1) for the tetratomic molecules. Table S4
contains the two tetratomics H2CN- and H2NN, and two
triatomics, HCO- and HON, CCSD(T)/aug-cc-pVTZ and
composite T/D harmonic frequencies (cm-1) using MP3 and
MP2 in the∆basiscorrection. This material is available free of
charge via the Internet at http://pubs.acs.org.
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TABLE 6: Computed CCSD(T) Harmonic Frequencies
(cm-1)

vibrational mode T T/D T-T/D

1 435.2 434.1 1.1
2 630.4 628.4 2.0
3 915.2 912.4 2.8
4 1301.3 1298.5 2.8
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