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This work describes a simple method linking specific rate constd&td) of bond fission reactions AB~

A + B with thermally averaged capture rate constdatgT) of the reverse barrierless combination reactions

A + B — AB (or the corresponding high-pressure dissociation or recombination rate cotks{@ntsPractical
applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-
space theoretical treatment with the most realistic minimum energy path potential available, either from reduced
dimensionality ab initio or from model calculations of the potential, providing the centrifugal baEjghs

The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity
factorsfiigia(E,J) andfigia(T), respectively. Simple relationships provide a link betwggr(E,[LJ0) andfiigia(T)
wherelJlis an average value dfrelated toJma(E), i.e., the maximund value compatible withe > Eq(J),
andfigia(E,[J0) applies to the transitional modes. Methods for construdtigg(E,J) from figiq(E,LJ0) are also
described. The derived relationships are adaptable and can be used on that level of information which is
available either from more detailed theoretical calculations or from limited experimental information on specific
or thermally averaged rate constants. The examples used for illustration are the sygtems>@CeHs* +

H, C,ngojL e C7H7+ + CH3, ﬂ-CngzJr And C7H7+ + C2H5, ﬂ-CloHliL Ad C7H7+ + C3H7, H02 =H+ 02, HOZ

<= HO + O, and HO, < 2HO.

1. Introduction modes, constructed either from ab initio or from model

- . . . calculations. On the experimental side, we rely either on
Sophisticated experimental and theoretical techniques over e . e
measurements of specific rate constak(ts) for dissociation

the past decades have been developed which allow to study

; . . . _~over certain energy ranges or on measurements of rate constants
state-resolved unimolecular reaction dynamics on a very detalledkc {T) for ca ture%r asgociation recombination and the reverse
level; for instance, see ref 1. The transformation of the derived - P ! ’

quantities into and the comparison with thermally averaged dissociation) over certain temperature ranges. The method can

guantities may look like a trivial task. However the contrary is be applied with or without detailed SACM/CT results and can

the case. Each of the derived quantities in general is sensitive.be adapted to the amount of available information. [t applies to

. . : ionic as well as neutral reaction systems and illustrative
to different properties of the reaction system such that state- ! .
o ; examples are given for both classes of reactions.

specific and thermally averaged measurements in most cases
are cqmplement_ary. Obviousl_y, they_should be linked in_ an 5 seneral Formalism
intrinsically consistent way. It is the aim of the present article
to provide a simple approximate method which is suitable for ~ Our approach is based on an SACM/CT treatment where
this purpose. conserved and transitional modes are separated such that reduced

There are various ways to link state-specific and thermally dimensionality potentials can be employed. We consider the
averaged quantities. For instance, one may have a completeProcess
potential energy surface of the system from ab initio calculations
and perform dynamical, either quantum or classical, calculations A+B<=AB (2.1)
on them. Then a correct relation between state-specific and
thermally averaged quantities is directly accessible. In practice, and, for simplicity, identify the conserved modes with the
unfortunately one is far from this situation, theoretical as well internal modes of A and B, excluding their external rotations.
as experimental information being only fragmentary. Our work Our goal is to relate specific rate constak(ts,J) for dissociation
addresses this case. On the theoretical side, we rely on statistica®f AB with thermally averaged rate constants for dissociation
adiabatic channel model/classical trajectory (SACM/CT) cal- of AB or, more conveniently, with thermal high-pressure rate
culations such as performed in refs@ This approach employs ~ constantskeece(T) for recombination of A and B. Omitting
reduced dimensionality potential energy surfaces for transitional electronic partition functionsQe from keec(T), we focus
attention on thermal capture rate constatg(T), related to
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In detail, keaf(T) is given by’

. E\dE
/s Z(2J+ 1WE,J) eXp(_k_T)k_T

(2.3)

kT

A 00

whereQy is the product of translational partition functions

Q, = (2mukT/h?)¥? (2.4)
with the reduced mags of the reaction pair A and BME,J)
denotes the number of “activated complex states” or “open
channels”, or the “cumulative reaction probabiltyQa and

Qg are rovibrational partition functions of A and B, respectively.
At the same level, specific rate constak(g,J) are expressed

by

k(E,J) = W(E,J)/hp(E,J) (2.5)
with the rovibrational density of stategE,J) of AB. E is the
total rovibrational energy of the system and the total angular
momentum is characterized by its quantum number

2.1. Phase Space Theorylhe present approach intends to
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valueslnax Or Lmax define the range of or L in which centrifugal
barriersEqg(J) andEg(L) can be overcome on the way from A
and B to AB, i.e., in whichE > Ey(J) or E > Eg(L). Eo(J) and
Eo(L) are not identical, see ref 2. Howevdrapproaches for
large values of both quantities which are most relevant in
thermal recombination experiments. Likewise, most experimen-
tal studies ofk(E) have been done under conditions of
comparably largel such thatd ~ L represents an adequate
approximation.

We write W(E,L) in the form

W(E,L) = WE — E¢(L)) =W?2) (2.6)

with
2=E — E(L)

whereW(2) is equal to the number of quantum states of the
combined system A- B in the energy range O o The integral
in eq 2.3 can be executed with the result

2.7)

[ W(@) exp(~Z/KT) dz/kT = Q,Qp (2.8)

be as general as possible. This means that it has to be designe@uch that eq 2.3 reads

as close to the real potential energy surface (PES) as possible.
However, it restricts attention to a reduced dimensionality PES
for the transitional modes which has the advantage that
molecular systems of arbitrary size can be handled with equal

kT
Keap - (T) = EZ(ZL + 1) expl-Eo(L)/KT]  (2.9)

effort. It avoids the guess of more or less undefined “activated

Elaborating the relationship between the centrifugal barkgrs

complex frequencies” which are often used as fit parameters in (L) and the PES then leads to well-known expressionkfgt>",

the Rice-RamspergerKasset-Marcus (RRKM) theory. On the
way to a relation betweek(E,J) andke.fT), which is the goal
of the present article, it is obligatory to construct the most

for instance to the Langevin equatibag ST = k. = 27zqv a/u
for ion-induced dipole PESsy(= ionic charge of A,a =
polarizability of B), or to locked-dipole theory for ion-permanent

realistic phase space theory (PST) possible. PST neglects thejipole PESskea ST = kip = 27qupv/2/mukT (up = dipole

anisotropy of the interaction of the potential between A and B.
PSTs have been constructed on different levelsthout any
centrifugal barriersEq(J), with centrifugal barriers such as
calculated from the long-range part of the interaction between

moment of B). PSTs for valence potentials (Gorin models or
loose transition state theory employing realistic MEPs of the
potential) can be handled in the same way as well.

The situation is more complicated for a PST treatment of

A and B only (orbiting transition state theory, OTS), and with (£ J). Here, as mentioned above, the convolution over con-
centrifugal barriers determined from the complete short-range/ served and transitional modes, for instance in a Beyer

long-range PES and its minimum energy path (MEP) obtained

Swinehart/SteirrRabinovitch state counting routine fo¥(E,J)

from ab initio or model PESs. We are convinced that only the (see refs 8 and 9), can hardly be avoided. Considering the
latter version of PST can be of general use, treating neutral andtransitional mode part only, which in the following exclusively
ionic reaction systems on a common ground. This does not means included inW(E,J), there are practically useful expressions
that simpler versions of PST cannot be realistic under some ayaijlable (see refs 1013) for all types of molecular complexi-

circumstances.
Qa, Qs, W(E,J), and p(E,J) in egs 2.3 and 2.5 contain

ties (A + B = atom+ linear, atom+ spherical top, lineas-
linear, linear+ spherical top, spherical tofpy spherical top).

contributions from conserved and transitional modes. Within However, these expressions only apply to PST without cen-
the present SACM/CT approach, these are separable such thaifugal barriers, i.e., withEo(J) ~ Eo(L) ~ 0. Denoting the

the contributions from conserved modes in the integral over
W(E,J) in eq 2.3 cancel against the contribution$jgn andQg.

As a result, only contributions from transitional modes need to
be considered itV(E,J), Qa, andQg in eq 2.3. The situation is
slightly more complicated fok(E,J) in eq 2.5 where one has to
include contributions from conserved modes of A and B and
transitional modes ilV(E,J), while p(E,J) is determined by the
modes of AB. The contributions from the conserved modes,

correspondingV(E,J) by Wo(E,J), fortunately, we found a way
to approximately account for the true centrifugal barriers:
SACMI/CT calculations in refs 2 and 5 showed that, for large
Jx~L

therefore, cannot be factored out and canceled such as in the

thermal rate constants given by eq 2.3.

On the basis of the previous thoughts, in the following we
first elaborate a PST fdk.adT). Within the integral of eq 2.3
the summation oveW(E,J) can either go ovel from 0 t0 Jnax
or W(E,J) is replaced byM(E,L) andL summed from O tdmax
Here L denotes the quantum number of the orbital angular
momentum of the relative motion of A and B. The maximum

WST(E,J) = W,(E,J) W(E,J) (2.10)
with a PST-capture probabilitw(E,J) given by
W(E,J) ~ [1 — E4J)/E]" (2.112)

The exponenn is equal to 1, 1.5, 2, 2.5, and 3 for atoin
linear, aton+ spherical top, lineat- linear, linear+ spherical
top, and spherical top- spherical top combinations of A B,
respectively. This solves the problem of calculativgg,J) in
PST. The second task of determinip(@,J) is not trivial. Apart
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from the J dependence of(E,J), see refs 1115, there is the 1.0 ettt il
problem of anharmonicity contributions which is far from being N . )
solved. Leaving these complications aside, however, the given . a0
expressions fokM(E,J), together withp(E,J), provide a direct 084 3 i
and simple link betweek(E,J) andk.o{T) within the framework
of PST. 064 B
2.2. Results for Anisotropic Potentials.The real complica- i’:
tion of the problem comes in through the anisotropy of the PES %,
which reduces.adT) andk(E,J) to values below those given =" 044 -
by PST. In reality, all potentials are more or less anisotropic
and even PESs, which are isotropic at largeBAdistances, at
small A—B distances contain considerable and often underes- B i
timated anisotropic components arising from short-range valence
contributions to the PES. We characterize these anisotropy o, 1 % i
effects by rigidity factordgiq, defined by 1 10 100 1000 10000
. [E-E,()]/ hc em”!
kcap(T) = frigid(T)kcap ° (M (2.12) Figure 1. Specific rigidity factorsigia(E.J) for the transitional modes
in the dissociation of ethylbenzene cationsiGt < C/H;" (benzylium)
and + CHs (points, SACM/CT calculatiorisfor individual J in the range

25—-210 with Eo(J)/hc in the range 0.82750 cnt?; for symbols, see
ref 5; full line, empirical representation bygiq(E,J) ~ exp{—[E —
W(E,J) = fiigia(E.J) WSTE,J) (2.13) Eo(J)]/kTo} with the empirical fit parameteF, = 376 K).

where figig(E,J) and WPST(E,J) correspond to the transitional with an empirical_fi_t parametery, then the integral in eq 2.15
modes only. The convolution of the contributions from transi- €an be solved, giving
tional and conserved modes leads to the té#i,J) employed
in the calculation of the specific rate constak(g,J) in eqs j;w figia(@W(2) exp(=Z/KT) dzkT ~ (t/T)Q,(7)Qgs(7)
2.3 and 2.5 as well as in section 2.1. (2.17
Our full SACM/CT treatments of the processes of eq 2.1,
both on ab initio and on model PESs, have given detailed resultswith
for figia(T) and figia(E,J); see refs 26. These trajectory
calculations may appear routine today. They are nevertheless T=ToT/(Ty+ T) (2.18)
time consuming, and it is the aim of the present article to provide
short-cuts and avoid the CT-calculations. This leads to
In what follows, we neglect the difference betwekandL.
We inspect the results of SACM/CT from refs-8 and first -
consider the case whdpyq(E,J) is of the form Kea T) (T’)

)

Qa(m)Qg(7)

MM 0 @219

frigia(E:) ~ Triga(E — Bo(I)) = Trigia(@ (2.14) As a consequence we finally obtain
wherez as above is given by = E — Eg(J). In general, there ~ n, PST,
will be a complicated dependence dfigiq(E,J) in addition to kCa‘{n ~ (/M) kCap M (2.20)
that throughE — Ep(J). We shall show examples of such
dependences below. However, detailed calculatiorfigefE,J)
show that theJ-dependent curves sometimes can approximately
be collapsed into one curiggd(z) such as illustrated below.
Figure 1 gives an example from ref 5 for the reaction system
CgHig" = C7H7" + CHz which will be considered in more detail
below. Cases like this are particularly simple to handle such as
demonstrated in the following sentences.

If eq 2.14 is valid, one may insert egs 2.6 and 2.14 into eq
2.3 and obtain

withn=2, 2.5, 3, 3.5, and 4 for A B = atom+ linear, atom

+ spherical top, linear- linear, linear+ spherical top, and
spherical top+ spherical top combinations, respectively. For
this special case, we have thus established a simple relationship
between specific rigidity factors for the transitional modes
of the form figia(EJ) ~ figia(2) = exp(—zkTp), with z =

E — Ep(J) from eq 2.16 and the empirical fit parameter and
thermal rigidity factors

frigid(T) ~ (T/T)n (2-21)

kT
Kool T) & —Z(ZJ +1) in eq 2.20.
hQ,QaQs In the same way as before one may generalize eq 2.16 for

exp[~Eq(J)/KT] ﬁ)” f14id@W@ exp ZKT) dzikT (2.15) the case that specific rigidity factors can be approximated by
figia(d ~ fo + f exp(-zKT,) + f, exp(~=zKkT)) + ....

If the specific rigidity factor for the transitional modes (2.22)
frigia(E.J) from eq 2.14 now can be represented in exponential
form In this case, we derive

figia(2) ~ exp (-ZKTo) (2.16) Kead ) 2 [fo + Fo(@/ D"+ Fe )" + .l kg - (1) (2.23)



Unimolecular Bond Fission

This gives
figia(T) & fo + fi(r/T)" + f(0/T)" + .. (2.24)
where the exponent is defined as in eq 2.20 and
T, =TTI(T,+T) (2.25)

J. Phys. Chem. A, Vol. 110, No. 21, 2006735

plicated dependences diigia(E,J) on J, one may at least
approximately reconstruct thé dependence around by
comparison with the model calculations from ref 2. The
corresponding procedure is illustrated later on. It should be
emphasized, however, that real systems can have quite specific
properties where the present simple approach can only serve
for a first estimate.

We have again established a relationship between the specific3. practical Examples

rigidity factors from eq 2.22, with the empirical fit parameters
fi andT; and thermal rigidity factors given by eq 2.24. The fits
can be used in either direction, froffyid(2) to figia(T) or vice
versa. The following section demonstrates how this simple

The derived simple relationships between specific and thermal
rigidity factors from section 2 provide opportunities for practical
applications. To go beyond simple fitting of relatively undefined

procedure, which short-cuts the cumbersome complete SACM/ “activated complex frequencies” in conventional rigid activated

CT calculations, can be exploited in practice.

If frigia(E,J) has a more complicatebidependence than given
by eq 2.14, one can obviously not conclude fréu(T) on
the detailecE andJ dependences difgiq(E,J). Instead, one can
only derivef;giq(E,[J0 for an averagd and ask for the meaning
of the corresponding average vallebf the angular momentum
quantum numbed. This question may look difficult to answer
in general. However, our detailed SACM/CT calculations from
refs 2-6 provide relationships betweésiland Jyax which can
be used for practical applications. SACM/CT calculations of
frigia(E,J) andfiigia(T), for a variety of model potentials, in ref 2
showed that indee@Uis linked toJnax For instance, for ion-
permanent dipole potentials witEy(J) = 0 for J < Jnax We
derived

frigid(-r) ~0.5 (2-26)

and
figa(ED) ~ 1 — (43,207 (2.27)

whereJnax~ (2uqup/fi?)Y2is independent dE. Equations 2.26
and 2.27, therefore, lead to
QW ~ 12~ 0.707 (2.28)

Model valence potentials for atomic A and linear B combining
to linear AB in ref 2 gave

O, ~ (1 — 1V/2)"2~ 0.541 (2.29)
while the combination td-shaped AB gave
O, ~ (1 — V2132~ 0.428 (2.30)
Dipole—dipole systems treated in ref 2 led to
DI, ~ 0.541 (2.31)
Therefore, one may estimafdito be in the range
O, ~ 0.55+ 0.2 (2.32)

Investigations with ab initio potentials are analyzed with respect
to the ratiolJ[MJmax in the following section.

The SACM/CT calculations from ref 2 illustrated that various
types of J dependences di;q(E,J) can occur besides the
dependence oB — Ep(J). If the dynamics is nonadiabatic, i.e.,
has a small effective madd and a Massey parametér=
v/2M smaller than unityf;sia(E,J) tends to become indepen-
dent ofJ/Jmax In this case our simple treatment with eqs 2:22

2.25 becomes fully adequate. In other cases with more com-

complex RRKM theory, it requires realistic PST calculations
of kPST(E,J) and ke, ST(T). Unavoidably, this at first involves
the determination of centrifugal barrieEs(J) with a realistic
MEP potentiaM(r) wherer denotes the center-of-mass distance
between A and B. In other words, fdr~ L, the centrifugal
maximakEg(J) of the potential

V(r,J) = V() + I + 1) A%2zur® (3.1)
have to be calculated. Provided that one ¥ig$ from ab initio
or model calculations of the PES, this is an easy task. For
instance, if the @H10™ system characterized in Figure 1 would
be treated by an ion-induced dipole poten¥t) only, one
would have

V(r) ~ —o gf2r (3.2)
and Eq(J) would be given by
E,°(J) ~ [J(J + 1) h%2u)*/20. of (3.3)

Accounting for a short-range valence contribution(), in
addition to the long-range ion-induced dipole part from eq 3.2,
adds an additional factor t#'®(J) from eq 3.3. One obtaifs

E,(J) ~ E,°(J)/(1 + 0.0169J + 2.65x 10 * J""9 (3.4)

Having determinedEq(J), such as described for theghTio"
system, egs 2.9 and 2.12 leadktg{T). The calculation ok(E,J)
is slightly more involved. It may be done with a standard rigid
activated complex RRKM code. However, in this case the
starting array of the BeyetSwinehart state counting routihe
for the conserved modes has to be chosen(@&sJ) from section
2.2. On a simpler and often equally sufficient level, one may
calculateME,J) andp(E,J) employing the Whitterr Rabinovitch
formulab-1> for the conserved modes and convolute this with
W(E,J) for the transitional modes from section 2.2.
3.1. Examples for lonic SystemsWe have recently treated

a series ofn-alkylbenzene cation systehfsby SACM/CT
calculations on model PESs, calibrating the leading anisotropy
parameter of the potential by comparison with one experimental
observable and then predicting all other quantities. These cases
were characterized by small Massey parameters, i.e., by nona-
diabatic dynamics, such that our method applies best, see above.
In the following, we illustrate the results. We first again consider
the reaction

CgHyo" = CH," + CH, (3.5)
where GHig" is the ethylbenzene and;@;* the benzylium
cation. Figure 1, such as obtained for this systemcgeed
showed thaf;igq(E,J) essentially only depends db — Eq(J),
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Figure 2. Specific rate constant§E,J) for the dissociation of gH;"
(see Figure 1; upper curves, PST witk= 0, 55, and 90 from bottom

to top andJ = 0 without centrifugal barriers (shorter curve); full line,
empirical representatiéfiof experimentak(E) by k(E) O (E-Eo)*8%4

see ref 5; full circle, experimental result from ref 17; heavy line around
18000 cn?, experimental results from ref 16; dashed line, SACM/CT
calculations ok(E,J = 50); open circles, this work witfgia(E,J) from

eq 2.16 with the empirical fit paramet&p = 376 K).
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Figure 3. Thermal capture rate constaktg{T) for the reaction @H,*

+ CH; — CgH1o" (see Figures 1 and 2; upper curve, PST; lower curve,
this work withfiigia(T) = [To/(To + T)]* andTo = 376 K, see eqgs 2.18
2.20; points, experimental results from ref 19).

with Eq(J) given by egs 3.3 and 3.4. Approximatiffigjq(E,J)
from the detailed SACM/CT calculations illustrated in Figure
1 by eq 2.16 leads to the empirical fit parametgr= 376 K.
On the basis of thiigiq(E,J), our simplified approach tk(E,J),
e.g., gives &(E,J = 50) which in Figure 2 is compared with
experimentdP 17 k(E), with k(E) from an empirical representa-
tion'8 in the formk(E) O (E-Eg)s" 1, with k(E,J)PST from PST,
and withk(E,J) from the detailed SACM/CT calculatiofsThe
simple representation dfigia(E,J) from Figure 1 by eq 2.22
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Figure 4. Specific rate constantdE,J) for the dissociatiom-CgH15"

— C;H7" (benzylium)+ CHs (upper curve, PST fat = 50; full circles,
experimental results from ref 20; line through full circles, SACM/CT
calculations forJ = 50 from ref 5; open triangles, this work with
figia(E.J = 50) from eq 2.16 with the empirical fit paramet&s =
259 K).

constantk(E) and thermal rate constants. One of the two has
been used to calibrate the anisotropy of the PES which then
formed the basis of the SACM/CT calculations for the other
guantity. As shown here, the described simple direct link
betweenk(E) andksadT) would have provided similarly good
results and avoided the cumbersome SACM/CT calculations.
However, one would have had to know in advance that one
may use eq 2.16.

Measurements of(E)?° and keadT)?* have also been made
for the dissociation of-propylbenzene cations

n-CgH,,” = CH," + C,Hs (3.6)

In this case, the experimental data f&(E) were more
fragmentary than for gH,¢" but they also allowediga(E,J) to
be represented by eq 2.16 with the empirical fit param&er
= 259 K. Figure 4 compares the derived simplified representa-
tion of k(E,J = 50) with the experimental resutfsand SACM/
CT calculation$.Good agreement between the two latter results
are obtained. One should remember that the latter treatment also
used the calibration of the anisotropy amplitude by the
experimentalk(E). Employing eqs 2.162.21 for the link
betweerk(E,J) andk:a{T) leads to thermal capture rate constants
such as illustrated in Figure 5. Again the experimental redults
for keadT) are reproduced surprisingly well.

The dissociation ofi-butylbenzene cations on the bond fission
channel

n'(:10H14+ - C7H7+ + CgH; (3.7)

has been studied experimentally in défedf with respect to

performs very well indeed and well reproduces the experimental the specific rate constarkéE). The results can well be expressed

k(E,J = 50) (E andEq(J) in our article are counted above the
rovibrational ground state of separated-"B, where in contrast
to this conventionE in k(E) in the figures is always counted
above the rovibrational ground state of the combined AB).

by eq 2.22 with the empirical fit parametdts—= 0.0037,f; =

1 — fp, andT; = 179 K. Similarly good agreement between
this representation, SACM/CT calculations from ref 6, and the
experiments has been found as feHg™ andn-CoH12™, such

Employing the derived parameters in eq 2.23 then leads to that we do not need to illustrate the data here. However, in this
thermal capture rate constants such as shown in Figure 3. Theré@S€, no measurements kf{T) have been made as yet.

is very good agreement between the limited available experi-

mentsd®and the present simplified prediction kfx{T) on the
basis of the experimental data k{E). For this reaction system,

experimental results have been obtained for specific rate

Although one predic# that the competing tight transition state
channel

n-CyoH,," — CHg' + CoHg (3.8)
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Figure 5. Thermal capture rate constattsyT) for C;H;* + C;Hs —
n-CyoH12t (upper curve, PST; full circle, experimental results from ref
21, line through experimental point, this work withia(T) = [To/(To
+ T)]* from eqgs 2.18-2.20 with To = 259 K).
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Figure 6. Thermal capture rate constatts{T) for C;H; + CsH; —
n-CioH14™ (upper curve, PST; lower curve without dots, SACM/CT
calculations from ref 6 based on experimental resultsk{&) from
refs 22 and 23; lower curve with dots, eq 2.23 with the empirical fit
parameterd, = 0.0037,f; = 1 — fo, T1 = 179 K).

will dominate the thermal dissociation nfC1gH14™ over wide
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Figure 7. Specific rigidity factorsigia(E,J) for the transitional modes
in the dissociation of benzene cationsHg" — CgHs* + H (curves
with points, SACM/CT calculations from ref 6 far= 0, 10, 20, 30,
40, 50 with starting points from left to right, reproducing experimental
k(E,J) from refs 25 and 26, see ref 6; dashed line, average digve
(E,B30 reproducindfigia(T)).-

which starts to behave in a different way. This system still has
a small Massey parameter and, hence, it shows major deviations
from adiabatic dynamic3® However, because of the small
polarizability of H atoms, the isotropic long-range ion-induced
dipole potential is so weak that the anisotropic short-range
valence potential dominates. For the latter potential, there are
large J dependences dfigig(E,J) beyond those included in
Eo(J). These effects are more common in neutral systems such
that the GHe™ system described in the following represents a
transition case to systems considered in section 3.2.

To illustrate the transition character of theHg" system,
we first look at SACM/CT calculations dfigia(E,J) in Figure
7. Unlike Figure 1, which characterizes systems likgi{*,
n-CoHi12™, and n-CyoH14™, there is a certain spread of the
J-specific curves. The dashed line in the figure represkgis
(E,30 which, after thermal averaging, leadskadT) such as
derived by SACM/CT calculations. As the spread of the curves
is only comparably small, for this case we do not elaborate the
relation betweenJOand Jyax in detail but assume that eq 2.32

temperature ranges, one may also be interested in the dissociaholds sufficiently well. More pronounced spreadsf@fu(E,J)

tion via channel 3.7 and the correspondiag(T) for the reverse

will be analyzed in the following section 3.2. We note, however,

association. Figure 6 shows the prediction by comparing the that the experimentdl(E,J) from ref 25 andk(E) from refs 25

full SACM/CT modeling with the simple link ofkeaT) and

and 26 are all very well reproduced by SACM/CT calculatfons

k(E) by eq 2.23 using the parameters given above. Apart from using a model PES which in part was based on ab initio
a minor deviation at high temperatures, the agreement betweercalculations?’

the two methods to predick.dT) on the basis of the
experimentak(E) appears quite satisfactory.

Even though the measurementsk(E) and ofk(E,J) in the
CsHs" system are unusally detailed and accurate, it is important

There are two reasons why the simple procedure of eqs-2.14 t0 emphasize that they are by far not sufficient to specify a

2.25 works so well for the describedalkylbenzene cations:

completefiigia(E,J) and a unique functional form of the type of

on one hand, these systems have relatively strong isotropic long-€d 2.22 forfigia(E,LJ0. In addition to the experiments, one
range ion-induced dipole potentials; on the other hand, they arerequires knowledge of the character of the PES and SACM/CT

characterized by small Massey paramet&rsuch that their
dynamics is relatively nonadiabatic Both factors move
frigia(E,J) into the direction where there is nd dependence
beyond that included iEy(J). As a consequence, one may use
the functional form off,igia(E,J) chosen in eqs 2.16 and 2.22.

In the following we now consider the¢Bs" system and its
dissociation

CeHs — CgHs + H (3.9)

calculations to find the adequate functional form figr(E,J).

In the present case, this was provided by the investigations from
ref 6. The SACM/CT calculations digq(T) led to results shown

in Figure 8 which can be fitted by eq 2.23 up to the third term
with the empirical fit parameters = 2.5, f, = 0.0135,f; =
0.109,f, = 0.0527,T, = 7.81 K, andT, = 58.6 K. This
expression then corresponds to the curvefigi(E,[J0 shown

in Figure 7. Employing centrifugal barrieE(J) derived from

the MEP of the PES and given Wgp(J)/hc cnmt ~ 1.88 x

1073 J¥(1 + 0.1143*2 + 0.0122J3%), one may also verify the
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Figure 8. Thermal rigidity factorfigia(T) for CeHe™ < CeHs* + H
(SACMI/CT calculations from ref 6 such as illustrated in Figure 7).
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Figure 9. Thermal capture rate constakgdT) for CeHst + H —
CeéHs" (upper curve, PST; lower curvekdT) corresponding to
figia(T) from Figure 8 and the numerical representation given in the

text).

validity of eq 2.31. Although the spread of the curvesffgi-
(E,J) around the curve fdkigia(E,LJ0) is not large, eq 2.32 serves
well for the estimate ofJC] For instancef;igia(E,[J0) intersects
with frigia(E,J = 50) at [E — Eo(J))/hc ~ 340 cn1l. Having
Eo(Q0= 50)/hc= 235 cnT! andEg(Jmax = 74)/hc= 572 cn1t
one obtaindJMmax ~ 0.68 which is well within the limits of
eq 2.31. For larged, figia(E,J) becomes nearly-independent
andf(E,[J0 cannot be attributed to a specifitdllanymore. At
the same time, the curve fdkgq(E,LJD in Figure 7 becomes

Troe and Ushakov
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Figure 10. Thermal rigidity factorfigia(T) for the reaction HO, <
2HO (filled circles, SACM/CT calculations from ref 4; full line,
representation by eq 2.24 with parameters given in the text).

for which SACM/CT calculations have been maaa the ab
initio PES from refs 28-30. The potential is characterized by
strong long-range HO dipotedipole and short-range J@,
valence contributions. The relevant quantitiEs(J), Jmax
frigid(E,J), andfygia(T) for the dipole-dipole system have been
derived explicitly in ref 2, being

Ej(d) = {30 + Dff6u(uoiny) ™} (3.11)
InaImax 1) = BUE (pyipy) - (3.12)
figia(E:d) ~ [1 — (39,071 (3.13)

and
figia(T) ~ 0.354 (3.14)

whereup; = up2 = up(HO) in this case. The combination of
egs 3.13 and 3.14 led to eq 2.31, see above. Considering the
complete ab initio potential of ¥#D,, obviously one expects
deviations from eqgs 3.}3.14. These are inspected in the
following. Since the experimental data fl(E,J) and keadT)
are relatively fragmentary, see refs 31 and 32, in the following
we rely on our SACM/CT calculatioA®n the ab initio potential
and determine relationships betwefggq(E,J) and figia(T) by
analyzing this theoretical modeling. We, nevertheless, note that
the experimental data appear to be consistent with the SACM/
CT results; see ref 4.

Thermal rigidity factorsfgia(T) for reaction 3.10 from the

relatively uncertain. The results of Figure 8 in Figure 9 are used SACM/CT calculations are shown in Figure 10. One first notes

to predictke{T). As in Figures 3, 5, and 6 {T) at higher
temperatures is far beloke,S(T). However, because of the

that the thermal rigidity factor even for the rea}®p system
does not differ too much from the dipetelipole value of 0.354.

much weaker long-range potential, the approach betweenA fit to the form of eq 2.24 up to the third term again is possible

keadT) andkead ST(T) takes place at much lower temperatures
in CsHgt than in the alkylbenzene cations.

3.2. Examples for Neutral SystemsSpecific rate constants
frigia(E,J) for the transitional modes may also show much
strongerd dependences besides the dependenceé enEy(J)

such as shown in the figure. The empirical parameters of this
fitaren = 3, fo = 0.0413,f; = —0.320,f, = 0.639,T; = 1000

K, and T, = 40 000 K. By means of eq 2.22, specific rigidity
factorsfygia(E,LJ0) are directly obtained such as shown in Figure
11. The comparison of thifgia(E,LJ0 with fiigia(E,J) from the

than shown in Figures 1 and 7. This will be the case, when the SACM/CT calculation¥ in Figure 11 indicates a very broad
reaction approaches adiabatic dynamics with Massey parameterspread and, therefore, a strodglependence ofigia(E,J) in

& larger than unity and when both the long-range and short- addition to that orE — Eg(J). The spread is much larger than
range parts of the potential are strongly anisotropic. As an in the GHg" system illustrated in Figure 7 and is completely

example, we have chosen the®3 system

H,0, < 2HO (3.10)

different from Figure 1, where it is absent. The broad spread of
frigia(E,J) aroundfyigig(E,LJ0) may suggest that there is no simple
way from figia(T) to fiigia(E,J). However, this conclusion is not
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Figure 11. Specific rigidity factorigia(E,J) for the transitional modes
in the reaction HO, < 2HO (set of light curves, SACM/CT calculations
from ref 4 withd = 1 (top), 5, 10 ... 120, 125 (bottom); heavy curve,
frigia(E,LJ0) derived fromfiigia(T), see Figure 10).
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Figure 12. AveragelJCas a function oflna(E) for figia(E,LJ0) in the
reaction HO, <= 2HO (fiigia(E,[J0) derived fromf,igia(T), See Figure 10;
open circles, SACM/CT calculations from ref 4; full lingd[= 0.541
Jmax like eq 2.31 for dipole-dipole potential).

right. First, there is a simple relation betweglland Jnax
Analyzing Figure 11 with respect to this relation, one obtains
Figure 12 which is in perfect agreement with eq 2.31 for the
pure dipole-dipole system. At a given ener@y thereforefiigia-
(E,J) spreads between 0 adgha(E) aroundlJOsuch as given
for the pure dipole-dipole system. Apparently, the specific
rigidity factors of real HO, have the same general features as
the dipole-dipole system. One then may try to reconstruct
frigia(E,J) from figia(E,LJ0) by scaling the dipoledipole results
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Figure 13. Reconstruction ofigiq(E,J) from fiigia(E,[J0) in the reaction
H,0, < 2HO (dashed lin€figia(E,[J0 from Figure 11; full lines, SACM/
CT calculations ofyigiq(E,J) from ref 4, see Figure 11; lines with circles,

reconstructed curves &f;q(E,J) from f,gie(E,L00 and egs 3.15 and 3.16
with J = 15, 30, 45, ..., 120 from top to bottom).
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Figure 14. Thermal rigidity factorsfigia(T) for the reaction H+ O,
— HO; (filled circles, SACMI/CT calculations from ref 3; full line, fit
by egs 2.23-2.25 with the parameters given in the text).

that even with the complicated real PES of thgOhl system
the procedure works quite well and frdigia(T), with the help
of Jna{E), allows one to construct a complete set of specific
rigidity factorsfigia(E,J) for the transitional modes.

We have also analyzed the systems

HO,=H+ O, (3.17)
and

HO,=HO + 0 (3.18)

from eq 3.13. Figure 13 demonstrates the success of the

procedure which is described in the following.
By analogy to the dipotedipole result of eq 3.13, we model
frigia(E,J) in the form
figid E9) ~ [1 — (007" (3.15)

where the exponemt for each energ¥ is fitted in such a way
that
frig B0 =[1 — (QW,)7" (3.16)

whereJJmax = 0.541 from eq 2.31 applies. Figure 13 shows

in a way similar to the KO, system. Figures 14 and 15 illustrate
reaction 3.17, Figures 16 and 17 are for reaction 34&(T)

in Figure 14 is from SACM/CT calculatioA®n an ab initio
potential which leads to good agreement with experimental
results from ref 33. It can again be fitted in the form of eqgs
2.23-2.25 with the empirical fit parameters= 2, f, = 0.782,

f1 = 0.425,f, = —0.519,T; = 52.1 K, andT, = 5820 K, such
that figia(E,LJ0 follows directly from eq 2.22. Figure 15
illustrates that there is again a considerable spredgefE,J)
around this curve at smdll — Eg(J) while the spread diminishes
at larger values. A reconstruction of the ftiia(E,J) could be
made with eqs 3.15 and 3.16 wheé®lJn.x = 0.578. Figure
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Figure 15. Specific rigidity factordigq(E,J) for the transitional modes

in the reaction H@<= H + O; (full lines, SACMI/CT calculations from

ref 3 forJ =1, 10, 20, 30, 40, and 50 from top to bottom; dashed line,
frigia(E,LJ0) derived from Figure 14).
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Figure 16. As for Figure 14, but for the process H® O — HO;
(SACM/CT calculations from ref 34, fit with parameters given in the
text).
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Figure 17. As for Figure 15, but for the process H®& HO + O
(full lines, SACM/CT calculations from ref 34 far= 1 (top), 20, 40,
60, 80, 100 (bottom); dashed linfyis(E,[J0) derived from Figure 16).

16 showsfigig(T) for reaction 3.18 such as again calculated on
an ab initio potentiat? A fit in the form of eqs 2.23-2.25 with
the empirical fit parametemns = 2, fo = 0.698,f; = —0.353,

Troe and Ushakov

andT; = 765 K well reproduces the calculations. The corre-
spondingdfigia(E,[J0 from eq 2.22 in Figure 17 is compared with
frigia(E,J) which can be reconstructed also by egs 3.15 and 3.16
with the samdJlJnax = 0.578 as used for reaction 3.17.

The given examples for neutral systems illustrate how
frigia(T) andfrigia(E,J) can be linked if there is @ dependence
of figia(E,J) beyond that included irEy(J). The described
procedure is by far less time-consuming than a full SACM/CT
calculation on a complete PES.

4. Conclusions

We have analyzed the treatment of barrierless association and
the reverse bond dissociation processes

A+ B<AB (4.1)

from a practical point of view. Our approach in a first stage
requires to do a phase-space theoretical calculation of thermal
capture rate constarits,{T) (or the corresponding high-pressure
recombination or dissociation rate constants) and the corre-
sponding specific rate constarkéE) for dissociation of AB.
This phase space theory should be done with the most realistic
minimum energy path potential, either from ab initio or from
model calculations for the potential of the transitional modes
between A and B. These PST calculations cannot be avoided if
any reasonable link between rate parameters and the potential
is desired. In a second stage, the effects of the anisotropy of
the potential are analyzed such as expressed by thermal rigidity
factors figia(T) and specific rigidity factordgiq(E,J) for the
transitional modes. Our approach can take advantage of
theoretical calculations, such as SACM/CT calculations, or it
works without them when they are not available. In the latter
case it employs experimental data only, on the level as they
are available, and it provides estimates for the complementary
rigidity factors. For instance, if thermal capture rate constants
keadT) are available at a single temperature or over a certain
temperature range, it provides specific rigidity factors for the
calculation of specific rate constarkéE) at a single energy or
over a certain energy range. In addition, it allows one to
approximately construct specific rigidity factofig;a(E,J) for

the complete determination &{E,J). If, on the other hand,
specific rate constants for dissociatik(f) are available, it leads

to the corresponding thermally averaged analodugfT). We

have demonstrated our method both for ionic and for neutral
reaction systems. These two classes of reactions have much in
common and can be represented by one unifying approach.
Differences are not found so much between ionic and neutral
reactions but between reactions which are dominated by
differing relative magnitudes of the short-range and long-range
contributions of the potentials. The long-range contributions are
generally more important in the class of ionic reactions but the
opposite may also be found in some cases. We hope that the
method outlined in this article because of its simplicity and
versatility will find wide practical applications.
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