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In a recent paper [J. Chem. Phys.2005, 122, 124318], a full-dimensional quantum method, designed to
efficiently compute the rovibrational states of triatomic systems with long-range interactions, was applied to
the benchmark Li-(H2) ion-molecule system. The method incorporates several key features in order to
accurately represent the rovibrational Hamiltonian using only modestly sized basis sets: (1) exact analytical
treatment of Coriolis coupling; (2) a single bend-angle basis for all rotational states; (3) phase space optimization
of the vibrational basis; (4) G4 symmetry adaptation of the rovibrational basis. In this paper, the same
methodology is applied for the first time to a van der Waals complex system, He(H2). As in the Li-(H2)
study, all of the rovibrational bound states, and a number of resonance states, are computed to very high
accuracy (1/10 000 of a wavenumber or better). Three different isotopologues are considered, all of which are
found to have a single bound state with a very low binding energy. Several extremely long-lived Feshbach
resonances are also reported.

I. Introduction

The He(H2) system has been studied theoretically for
decades.1-4 It is of great interest for quantum chemistry, serving
as the simplest test case for theories of the interactions of a
molecule with a closed-shell atom. This system is also of
particular interest in astrophysics, in that helium and hydrogen
compose the giant molecular clouds of the interstellar medium.3

Heating of these clouds by strong shock waves causes rotational
and vibrational excitation of the H2 molecules and can lead to
collision-induced dissociation of H2 into free H atoms. Because
of the extemely low density of the clouds (mean free molecular
paths of thousands of kilometers), these processes cannot be
readily studied experimentally, thus motivating theoretical
investigations, particularly at low energies/temperatures. In
broader terms, the He(H2) system is also interesting from the
standpoint of being a van der Waals (vdW) complex. In
particular, the predissociation of vdW complexes has been a
topic of long-standing theoretical and experimental investi-
gation.5-8 Initial studies were motivated by the desire to unveil
how bulk properties of materials emerge from those of smaller
systems.9,10 These have subsequently come to serve as proto-
types for other important phenomena such as solvation.

Recently, high-accuracy theoretical calculations for vdW
complex formation have been further motivated by a novel
idea: creating ultracold molecules for a number of important
applications, such as the formation of molecular Bose-Einstein
condensates (BECs), the production of molecular lasers (i.e.,
coherent beams of state-selected molecules), and so forth. Most
of the methods for producing cold molecules create species that
are translationally cold but internally excited (electronically,
vibrationally, or rotationally). Understanding the rates of col-
lision processes involving cold and ultra cold molecules is thus
crucial for guiding new experimental developments. Since the
collision rates can be difficult to measure experimentally, there

is a desire to obtain these from theoretical calculations, e.g.,
the pioneering studies by Dalgarno and co-workers.11,12

In the case of He(H2), the well depth is so shallow (De )
10.3 cm-1),13 and the masses so light, that there has been a
question as to whether bound states even exist. In a recent
experiment by Kalinin and co-workers,14 the presence of a bound
He(H2) complex was identified in a molecular beam produced
by cryogenic free jet expansion of a mixture of H2 and 4He
gases (1% H2 in 99%4He). The experiment measured the first-
order diffraction angle after passing a molecular beam through
a 100-nm-period transmission grating. Although this work
provides strong evidence for the existence of a bound4He(H2)
complex, the extremely small observed binding energy,D0, was
too small to be determined accurately but could only be
estimated as being less than around 0.04 K (∼0.03 cm-1).
Similarly, although potential features of the He(H2) system have
been investigated for many years (for a review, see the
introduction of ref 13), only recently has a global potential
energy surface (PES) been developed (by Boothroyd and co-
workers13) that may be sufficiently accurate to theoretically
establish the existence of bound He(H2) rovibrational states.

Using the PES of Boothroyd et al., Gianturco et al. computed
a single rovibrational bound state for He(H2), with an extemely
small binding energy ofD0 ) 0.036 34 cm-1.15 Resonance states
were not considered. Using a different and less accurate PES,4

Balakrishnan, Forrey, and Dalgarno conducted a theoretical
calculation of ultracold atom (He) and diatom (H2) scattering,11

which also predicted the existence of a bound He(H2) complex
(D0 ) 0.0298 cm-1), together with a set of Feshbach resonance
states (some of which are extremely long-lived) corresponding
to vibrationally excited H2. Using empirical diatomic pair
interaction potentials and ignoring three-body interactions, Li
and Lin16 also predicted a bound state with an estimatedD0 of
0.0474 cm-1.

Although fully quantum vibrational (J ) 0) calculations for
covalently bonded triatomic systems (at reasonably low energies)
have become fairly routine, rovibrational calculations for vdW
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triatomics still pose a major computational challenge. This is
because the long-range vdW interactions require a far greater
range of stretch coordinate values, i.e., typically several hundred
atomic units, or 2-3 orders of magnitude larger than for typical
covalent bonds. This results in a calculation that requires far
more basis functions or grid points. In the He(H2) case, in
particular, although there is evidently only one bound state, the
close proximity to the dissociation threshold ensures that the
wave function even for this ground vibrational state will have
a very long tail. Moreover, the extremely smallD0 value also
implies that a very highly accurate calculation must be
performed in order to compute this quantity to a reasonable level
of relative accuracy. For the rovibrational calculations (required
here to establish the nonexistence ofJ > 0 bound and resonance
states), the computational effort is correspondingly greater,
owing to the (2J + 1) different values for the rotational quantum
numberK.

In a previous paper,8 a combination of computational methods
was suggested as being particularly effective for performing
exact quantum calculations of the rovibrational states of
triatomic vdW and ion-molecule systems. The method treats
Coriolis coupling exactly and analytically.17 Moreover, through
a different partitioning of the various rovibrational kinetic energy
terms than is standard, the full rovibrational Hamiltonian may
be represented exactly using a true direct-product basis repre-
sentation. In particular, the same bend-angle basis set may be
used for all rotational-stateJ and K values and for the
off-diagonal Coriolis coupling blocks (K * K′). This is achieved
by representing part of the kinetic energy as a three-body
“centrifugal potential”, which is added to the true potential, and
represented using the same quadrature scheme.17,18 The vibra-
tional basis set/quadrature scheme is obtained using the phase
space optimized discrete variable representation (PSO DVR)
method,8,19-22 which is particularly well-suited to long-range
potentials, vis-a`-vis reducing the total size of the vibrational
Hamiltonian matrix. Further reduction in matrix size is achieved
using G4 symmetry adaptation of the rovibrational basis.8

In ref 8, the above scheme was applied to the Li-(H2) ion-
molecule system and found to be remarkably efficient. Indeed,
the matrices required to compute all bound rovibrational states
to an accuracy of 0.005 cm-1 or better were sufficiently small
to be stored and directly diagonalized on a single CPU (i.e.,
without exploiting sparsity). A number of rovibrational reso-
nance states were also computed, including some unexpected
very long-lived (sub-milliseconds) Feshbach resonances, as-
sociated with internal relaxation of the bending mode. This
confirmed a previous classical model prediction by Beswick
and collaborators5-7 that weakly interacting complexes can
support extremely long-lived rovibrational predissociation states.
Among other reasons for being of interest, Feshbach resonances
play a very crucial role in producing molecular BECs23 (section
4).

The present paper represents the first application of the above
methodology to a vdW complex system. In particular, we
address the existence or nonexistence ofJ ) 0 and J > 0
rovibrational bound states for He(H2) and perform a highly
accurate calculation of the binding energy,D0, for comparison
with previous theoretical calculations. We also calculate the
rovibrational resonances, computing energies, widths, and
lifetimes, with a special emphasis placed on the Feshbach
resonance states. Finally, the role of isotopic substitution is
considered, both for the He atom and for one of the two H
atoms.

II. Theory and Computational Details

For the most part, the theory and methodology used in this
paper have been described in previous publications.8,17-22

Accordingly, here we provide only a summary of the methodol-
ogy, as well as computational details pertinent to this specific
He(H2) vdW complex system.

A. Coordinates and Potential Energy Surface.Jacobi
vectorsr andR (space-fixed) are used to define the rovibrational
coordinate system, with the vectorr representing the H-H
separation andR the separation between the He atom and the
H2 center of mass. The corresponding reduced masses arem
andM, respectively. The body-fixed frame is defined using the
standard “r-embedding”24 or “zzxgauge”,25 i.e., the body-fixed
z axis points along the vectorR, and the angle formed byr and
R defines the body-fixedx-zplane. The magnitude of this bend
angle,γ, together with the vector lengths,r and R, compose
the vibrational coordinates.

For the He(H2) PES, we used the highly accurate global
surface developed recently by Boothroyd et al.13 This analytic
PES, with 112 parameters, was fit to a large number of ab initio
energies (more than 20 000). The ab initio energy calculations
have an estimated root mean square (rms) “random” error of
0.2 millihartree. However, the fitting procedure uses a reduced
weight for the high-energy ab initio points, in order to more
accurately reflect the interaction region. The Boothroyd et al.
PES exhibits a slightly bent equilibrium geometry, withγeq )
19.2°. The equilibrium H-H separation,req, is close to that of
an isolated H2 molecule, whereas the equilibrium He-H2

separation,Req, is fairly large (about 6.3 au). Even by the
standards of vdW complexes, the well depth (classical dissocia-
tion energy)De ) 10.3 cm-1 is quite shallow.

B. Basis Representation of theJ ) 0 Hamiltonian Matrix.
For the vibrational (J ) 0) Hamiltonian, Ĥ00, the standard
differential form in terms of (R, r, γ) is applicable, i.e.

Two types of DVRs26-32 were employed for the vibrational basis
representation. In particular, PSO DVRs8,19-22 were used forr
andγ, wherein marginal effective potentials,Vr(r) andVγ(γ),
were customized for the eq 1 vibrational Hamiltonian. For the
present application,Vr(r) andVγ(γ) were computed at a large
number (∼5000) of uniformly spaced points in their respective
coordinates,r andγ. Cubic spline interpolation33 was then used
to compute these functions at arbitrary coordinate values. The
density of points is sufficiently large to eliminate numerical
problems such as spline-ringing, known to adversely affect DVR
techniques.20,32

Initially, a PSO DVR inRwas also used, in conjunction with
a rescaling technique34 that reduces quadrature error at the
expense of increased basis set error. However, convergence
difficulties for theγ-excited resonance states prompted a switch
to the more straightforward (but less efficient) uniformly spaced
sinc-DVR basis29 for the coordinateR. The convergence
difficulties remained (section 3.2), but the sinc-DVR basis was
nevertheless retained. Even with this choice, the largest matrices
required were still found to be sufficiently small to allow for
direct diagonalization on a single CPU, without exploiting
sparsity.

C. Basis Representation of theJ > 0 Hamiltonian
Matrices. Once theJ ) 0 vibrational Hamiltonian matrix,Ĥ00,

Ĥ00 ) - p2

2MR2

∂

∂R
R2 ∂

∂R
- p2

2mr2
∂

∂r
r2 ∂

∂r
-

( p2

2MR2
+ p2

2mr2)( 1
sin γ

∂

∂γ
sin γ ∂

∂γ) + V(R, r, γ) (1)
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is determined, it is straightforward to obtain the exact rovibra-
tional Hamiltonian matrix for anyJ > 0 value, using the method
described in section 1.17 With the standard Wigner rotation
functions35 as the rotational basis,|JKM〉, the resultantJ > 0
matrix is essentially independent ofM (M ) 0 chosen for
convenience) and block tridiagonal inK. Regarding each
rotational block as a differential operator acting on the internal
coordinates, (R, r, γ), these blocks can be given explicitly as
follows:17,18

The last two terms in eq 2 above may be regarded as aJ-
andK-dependent three-body “centrifugal potential” contribution,
which can be easily represented as a diagonal matrix, using the
vibrational DVR quadrature scheme of section 2.2. To compute
the diagonal blocks,ĤJK, this diagonal centrifugal potential
matrix is simply added to the vibrationalĤ00 matrix discussed
previously.

The off-diagonal blocks,ĤJK(, represent Coriolis coupling.
Note that this contribution involves a partial derivative inγ.
Instead of obtaining the correspondingγ matrix elements
numerically via quadrature integration on theγ grid, one can
obtain a completely analytical characterization of this contribu-
tion in the standard (i.e.,not associated) Legendre polynomial
representation using a recent method.17 Straightforward trans-
formations can then be used to obtain the correspondingγ PSO
DVR representation. Since onlyonebend-angle basis set need
be considered forall J andK values, the matrix elements for
eq 3 need only be evaluated once.

D. Symmetry Adaptation of the J > 0 Hamiltonian
Matrices. To further reduce theJ > 0 Hamiltonian matrix sizes,
a symmetry adaptation scheme was applied to the rovibrational
basis set, according to the G4 permutation inversion (PI) group.
There are four irreducible representations (irreps) for this
group: A+, A-, B+, B-, with A/B denoting permutation
symmetry (H atom exchange) and( denoting overall parity
(space-fixed inversion). Note that the above symmetry labels
refer to the full six-dimensional (6D) rovibrational wave
function. The corresponding 6D basis functions are denoted
|JKM〉|γRrâRγ〉, where |γR〉, |râ〉, and |Rγ〉 are the one-
dimensional (1D) vibrational DVR basis functions in the
respective angular and radial coordinate spaces.

The symmetry-adapted basis functions were constructed from
the 6D basis functions described above by applying the four
G4 irrep projection operators. The resultant symmetry-adapted
linear combinations are presented in eq 4. Note that, since the
G4 symmetry operations affect only|K〉 and |γR〉, the notation
|Kγ〉 is used in eq 4 as a shorthand for|JKM〉|γRrâRγ〉.

Use of the symmetry-adapted, eq 4 basis, rather than the original
|Kγ〉 basis, reduces each rovibrational Hamiltonian to four
independent diagonal blocks of substantially smaller size.
Further details may be found in ref 8

III. Results and Discussion

A. Bound State.Using the methodology described in section
2, only one rovibrational bound state was obtained for the4-
He(H2) system. This state corresponds top-H2 (wherep stands
for “para”), J ) 0, and the totally symmetric irrepA+. No other
bound states were computed for theJ > 0 case, and none were
obtained for He(o-H2) (with o ) “ortho”). The computed binding
energy was found to beD0 ) 0.036 40 cm-1, converged to the
last digit indicated, using 1D basis sizesNr ) 3, NR ) 251, and
Nγ ) 10. Other parameters used in the calculation are as
indicated in Tables 1 and 2.

Since ther andR motions are very weakly coupled, and the
H2 stretch frequency is so much larger than that of the other
vibrational modes (∼400 times larger thanDe), only a very small
number of PSO DVR points inr are required to achieve
convergence of the bound-state energy level. In fact, one can
further reduceNr by converging the binding energy (difference
between the level energy and the dissociation limit) rather than
the level energy itself. The idea is to obtain the dissociation
limit numerically, by computing the zero-point energy of (p-
H2) using the same PSO DVR basis inr as is used for the full
vdW calculation. Such a scheme is appropriate, given the
extremely close proximity of the4He(H2) bound state to the
dissociation limit, and in fact enablesD0 to be converged to
around 10-5 cm-1.

As discussed in section 1, the well depth (De) of the
Boothroyd et al. PES for He(H2) is only about 10.3 cm-1;13

consequently, the existence of a bound level has been in doubt
for some time. Considering the extreme closeness of the
purported bound level to the dissociation limit (several hun-
dredths of a wavenumber), the existence of such a state is
extremely difficult to verify. Our calculation is sufficiently
accurate to prove that the Boothroyd PES does indeed support
such a state and to determineD0 to several significant figures.
The accuracy of the PES itself (section 2.1) is probably sufficient
to confirm the existence of the bound state, but perhaps
insufficient for placing much quantitative confidence in the
computedD0 value.

It is instructive to compare the present He(H2) results with
those of the Li-(H2) ion-molecule system.8 As is typical for
such complex systems, the well depths are both quite small,
despite which the ground-state vibrational energy is located most
of the way out of the wellsi.e., (D0/De) ratios are also quite
small. However, this effect ismuchmore pronounced in He-
(H2). Another key difference is thatD0 is larger for Li-(o-H2)
than for Li-(p-H2), whereas He(o-H2) is not even found to have
a bound state.

Rovibrational bound states were also computed for two
additional systems,3He(H2) and 4He(HD), related to4He(H2)
via isotopic substitution. The same effective potentials were used
as for the 4He(H2) calculation; however, the substantially
different reduced masses (derived from the Table 1 mass values)

ĤJK ) 〈JKM|Ĥ|JKM〉

) Ĥ00 +
p2J(J + 1)

2MR2
+ ( 1

2mr2 sin2 γ
+ cot2 γ - 1

2MR2 )p2K2

(2)

ĤJK( ) 〈J(K ( 1)M|Ĥ|JKM〉

) p2

2MR2xJ(J + 1) - K(K ( 1) (- ∂

∂γ
+ K cot γ) (3)

|Kγ〉A+ ∝ [|Kγ〉 + (-1)J|(-K)(π - γ)〉 +
(-1)J+K|(-K)γ〉 + (-1)K|K(π - γ)〉]

|Kγ〉A- ∝ [|Kγ〉 + (-1)J|(-K)(π - γ)〉 -
(-1)J+K|(-K)γ〉 - (-1)K|K(π - γ)〉]

|Kγ〉B+∝ [|Kγ〉 - (-1)J|(-K)(π - γ)〉 +
(-1)J+K|(-K)γ〉 - (-1)K|K(π - γ)〉]

|Kγ〉B-∝ [|Kγ〉 - (-1)J|(-K)(π - γ)〉 -
(-1)J+K|(-K)γ〉 + (-1)K|K(π - γ)〉] (4)

Quantum Rovibrational Calculations of He(H2) System J. Phys. Chem. A, Vol. 110, No. 16, 20065477



resulted in different PSO DVR vibrational basis sets. The4He-
(HD) calculation was converged using the same basis sizes as
for 4He(H2); however, the3He(H2) calculation required a
substantially largerR coordinate range and basis size (Table
2). For each isotopic substitution, only a single rovibrational
bound state was obtained, corresponding to the same symmetry
and quantum number labeling as the4He(H2) bound state
(note: the4He(HD) case uses only G2 symmetry adaptation and
labeling).

The computedD0 values for all three systems are presented
in Table 3 and also compared with previous calculations
performed by other researchers. For the two systems involving
4He, our results agree very well with a recent calculation by
Gianturco et al.,15 who used the same Boothroyd et al. PES as
we did. In particular, both calculations predict nearly an order-
of-magnitude increase inD0 for the HD versus H2 systems, as
is reasonable given the substantially heavier masses involved.
Regarding3He(H2), the existence of a bound state is even more
tenuous than for4He(H2); our calculations nevertheless unam-
biguously predict such a state, withD0 ) 0.003 27 cm-1. This
D0 is roughly an order of magnitude smaller than the4He(H2)
value and disagrees markedly with the Gianturco result, which
is only slightly smaller than for4He(H2). Given the quantitative
level of agreement between the two calculations for the other

two isotopologues, the reason for the3He(H2) discrepancy was
initially unclear; however, one possible explanation is provided
below.

Balakrishnan, Forrey, and Dalgarno11 also computedD0

values for the4He(H2) and 3He(H2) systems, albeit using a
different PES.4 Their results are qualitatively similar to ours
and, in particular, also exhibit the largeD0 reduction under He
isotopic substitution. Similar comments apply to the work of
Li and Lin,16 who used a somewhat less accurate empirical two-
body interaction potential. For both systems considered, our
computedD0 values lie between those of Balakrishnan et al.
and Li et al.

In addition to computingD0 values, we have also obtained
ground-state vibrational wave functions for each of the three
isotopologues considered. These are presented in Figure 1, which
are “slices” inR, taken from the 3D computed vibrational wave
functions by fixingr andγ near their equilibrium values. Since
excitations inr andγ require energies much larger thanDe, the
long-range tails evident in the Figure 1 plots provide an
indication of the “size” of the bound He(H2) complexes. This
clearly shows a very strong correlation with the reduced mass
M. In particular,4He(HD) is much more localized in the vdW
well than is 4He(H2), which in turn is substantially more
localized than3He(H2).

Indeed, from the bound-state wave function plot for3He-
(H2), it is evident why such a largeRmax ) 288 au value (Table
2) was required to achieve convergence for this system. In the
corresponding Gianturco et al. calculation, the valueRmax )
226.8 au was used, which, on the basis of Figure 1, does not
appear to be sufficiently large to adequately capture the long-
range tail behavior. This may well account for the observed
discrepancy in the computed values forD0.

B. Resonance States.Calculations of the rovibrational
resonance states were also conducted for the4He(p-H2) system.
This was achieved using the methodology of section 2, with
the addition of a complex absorbing potential (CAP),36-41 -iW,
along the dissociation coordinateR. A quartic CAP function
was employed, i.e.,

whereΘ[ ] represents the step function,R0 is the point at which
the CAP is “turned on”,Rmax is the maximum value of theR
coordinate grid, andA is the strength parameter. In general,
resonance-state calculations are much more difficult than bound-
state calculations, because the matrices are complex, rather than
real-valued, and the CAP requires a substantially largerR
coordinate range. These difficulties are particularly compounded
when the relative translational energy of the dissociation

TABLE 1: Masses and Coordinate Ranges Used to Generate
Vibrational Coordinate 1D DVR Basis Sets for He(H2)
Calculationa

category parameter value (a.u.)

masses H 1837.362216
D 3671.479690
3He 5497.886346
4He 7296.293435

coordinate ranges rmin 0.6
rmax 4.0
γmin 0.0
γmax π
Rmin 4.0
Rmax see Table 2

a All units are atomic units.

TABLE 2: Parameter Values Required to Converge the
Various He(H2) Rovibrational State Calculationsa

parameter

4He(H2)
(bound)

4He(H2)
(resonance
with j ) 0)

4He(H2)
(resonance
with j > 0)

3He(H2)
(bound)

4He(HD)
(bound)

Nr 3 5 3 3 3
NR 251 240 800 336 251
Nγ 10 10 10 10 10
R0 (a.u.) 400.0 1600.0
Rmax (a.u.) 216.0 1200.0 8000.0 288.0 216.0

a The j > 0 resonance calculation (column 4) is particularly difficult
to converge.

TABLE 3: Computed Binding Energies, D0, for Different
Isotopologues of the He(H2) Systema

isotopologue
D0

(this work)

D0

(Gianturco
et al.)

D0

(Balakrishnan
et al.)

D0

(Li et al.)
4He(p-H2) 0.03640 0.03634 0.0298 0.0474
3He(p-H2) 0.00327 0.02916 0.0016 0.0072
4He(HD) 0.23089 0.23427

a All energies are in cm-1. Column 2 is from this work, while
columns 3, 4, and 5 are from Gianturco et al.,15 Balakrishnan et al.,11

and Li et al.,16 respectively.

Figure 1. Slice of computed bound state vibrational wave function
for different isotopologues of the He(p-H2) system: 4He(p-H2) (dotted
line); 3He(p-H2) (solid line); 4He(HD) (dashed line).

W(R) ) AΘ[R - R0]( R - R0

Rmax - R0
)4

(5)

5478 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Xiao and Poirier



fragments is small or encompasses multiple scales, as is often
the case for vdW complex dissociation. Indeed, the authors are
aware of only one other research group (Dalgarno and co-
workers)11,42 who have addressed the rovibrational resonance
states of4He(p-H2).

Our initial resonance calculation was for theJ ) 0 case.
Similar to our previous work on Li-(H2), several long-lived
Feshbach resonances were observed. However, in the present
case, these correspond to excitations inr (the H2 stretch mode)
rather thanγ (the bend mode). In other words, the4He(p-H2)
Feshbach resonances correlate asymptotically to H2(ν, j ) 0),
with (ν, j) the vibrational and rotational quantum numbers for
the H2 fragment. Another key difference is that the Feshbach
resonance lifetimes for4He(p-H2) are much longer than for
Li-(H2), i.e., subseconds, rather than sub-milliseconds. As
indicated in (Table 4), these lifetimes areextremelylong, i.e.,
for most intents and purposes, these may be regarded asr
vibrationally excited bound states. It is therefore natural to report
these resonance energies relative to the asymptotically correlat-
ing He+ H2(ν) energy levels, as is done in Table 4. In all cases,
the relative energies are negative, by a few hundredths of a
wavenumber, i.e., the same order of magnitude asD0. The
present results agree qualitatively with a previous calculation
by Forrey and Dalgarno42 using a different PES; in particular,
the resonance widths/lifetimes are within an order of magnitude
of the ref 42 results.

To converge the above-mentioned Feshbach resonance states
to within 5 × 10-5 cm-1, the parameters listed in Table 2
column 3 were required (alsoA ) 1.8 cm-1). In comparison
with the bound-state calculation, the primary difference is the
increased basis size inr (Nr), as is to be expected. A much
largerR coordinate range was also required,in order to accom-
modate the CAP, although this did not result in a substantially
different NR value.

The above calculation also revealed several additional states
in the continuum that may correspond to Feshbach resonances
with γ (or j) excitations. These states are indicated by imaginary
eigenvalue components36-41 about 2 orders of magnitude smaller
than for nearby continuum states. Subsequent detailed conver-
gence studies have shown that these state aremuchmore difficult
to converge than thej ) 0 resonances (Table 2, column 4),
despite the fact thatNr is 60% smaller. In particular, an
exceedingly largeR coordinate range is required, even when a
more efficient CAP40 is employed.

Our best estimates for the energies, widths, and lifetimes for
thesej > 0 resonances are presented in Table 4. These results
were achieved by exploiting the observation that a small set of
resonance-like continuum states (identified using the criterion
described above) are always found within a small energy
“window”, located a few hundredths of a wavenumber below
each asymptotic He+ H2(ν ) 0, j) energy level. The size of
these energy windows decreases with increasingRmax so that,
by extending theR coordinate range toRmax ) 8000 au, we

were able to obtain the estimates provided in the last three rows
of Table 4. Note that the explicit uncertainties listed in the table
refer to the energy window sizes; if a given resonance state
exists, it should therefore be located within the corresponding
energy window. A quantitative estimate for the width/lifetime
of these resonances is difficult to obtain, but it is clear that these
are less long-lived than thej ) 0 resonances by many orders
of magnitude. Under the assumption that these resonance-like
states correspond toj > 0 Feshbach resonances, the computed
resonance quantities are indeed in good agreement with the
previous work of Forrey and Dalgarno.42

Calculations similar to those described above forJ ) 0 were
also performed for theJ > 0 case. However, no resonances (or
resonance-like continuum states) of either variety were observed.

IV. Summary and Conclusions

We have computed all of the rovibrational bound states of
4He(H2), 3He(H2), and4He(HD) to an accuracy of1/10 000 of a
wavenumber or better. Despite the broad variation in isotopic
masses, each of these systems exhibits just a single rovibrational
bound state, albeit with vastly varying computedD0 values
(∼70-fold increase from lightest to heaviest system). In all cases,
D0 values are extremely small, even relative toDe. The current
D0 results are in qualitative agreement with previous calculations
of the He(H2) bound state, except for the3He(H2) D0 value as
computed by Gianturco et al.15 However, analysis of the ground-
state vibrational wave function suggests that the previous
calculation may be insufficiently converged with respect to the
dissociation coordinate range.

Several rovibrational resonance states for4He(H2) were also
computed, although all of these were found to be vibrational (J
) 0) states. Two distinct categories of resonances emerged, i.e.,
j ) 0 versusj > 0. The former were found to be extremely
long-lived (subsecond) Feshbach resonances. These calculations
were relatively easy to converge to a very high level of accuracy,
i.e., 1/10 000 of a wavenumber or better. The existence of these
j ) 0 Feshbach resonances thus provides further evidence that
weakly interacting complexes can support extremely long-lived
vibrational predissociation states. In contrast, thej > 0
resonances were found to have lifetimes many orders of
magnitude shorter, probably owing to greater coupling between
the bend and He stretch modes than between the H-H and He
stretch modes. These states were also much more difficult to
converge with respect toR.

Highly accurate rovibrational calculations of Feshbach reso-
nances for ion-molecule and vdW complexes are exceedingly
difficult to perform. These are nevertheless very important, as
Feshbach resonances play a crucial role in producing molecular
BECs. Recent work by Wieman and co-workers,23 for example,
has shown that an atomic BEC may be partially converted into
molecules by magnetic tuning close to a Feshbach resonance.
The methodology as applied here for the prototype vdW
complex system He(H2), and in ref 8 for the prototype ion-
molecule system Li-(H2), appears to be very successful in
meeting this challenge, i.e., in both cases, direct diagonalization
on a single CPU was all that was required to obtain highly
accurately converged results. We believe that our method would
also be effective, more generally, in dynamical studies of
ultracold molecules characterized by the extension of vibrational
motion up to hundreds or thousands of atomic units.
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