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Finding multidimensional nondirect product discrete variable representations (DVRs) of Hamiltonian operators
is one of the long standing challenges in computational quantum mechanics. The concept of a “DVR set”
was introduced as a general framework for treating this problem by R. G. Littlejohn, M. Cargo, T. Carrington,
Jr., K. A. Mitchell, and B. PoirierJ. Chem. Phys2002 116 8691). We present a general solution of the
problem of calculating multidimensional DVR sets whose points are those of a known cubature formula. As
an illustration, we calculate several new nondirect product cubature DVRs on the plane and on the sphere
with up to 110 points. We also discuss simple and potentially very useful finite basis representations (FBRS),
based on general (nonproduct) cubatures. Connections are drawn to a novel view on cubature presented by
I. Degani, J. Schiff, and D. J. TannoN@m. Math.2005 101, 479), in which commuting extensions of
coordinate matrices play a central role. Our construction of DVR sets answers a problem left unresolved in
the latter paper, namely, the problem of interpreting as function spaces the vector spaces on which commuting
extensions act.

1. Introduction obstacle to devising DVRs orfiis that the coordinate matrices
Xi, i =1, ...,d, do not generally commute.

To avoid this problem of noncommuting coordinate matrices,
Littlejohn et al* introduced a general framework for multidi-
mensional DVRs which does not explicitly invoke coordinate
matrices. Their approach is based on the concept of “DVR sets”,
which consist of arN-dimensional function spacé together
with N points in the configuration space possessing the following
property: the projections to” of the d functions at theN
points are orthogonal. These points are then regarded as DVR
points, and normalizing the projected delta functions gives the
DVR basis functions. However, no general method for con-
structing multidimensional DVR sets was given in ref 4 or later
publications, apart from two special cases relying on sym-
metry 6

Littlejohn and Cargo made two observatidmsich form the
asis for our development. The first is that usual choices of
function spaces (e.qg., those spanned by typical FBR functions)
are generally too restrictive; we therefore need to carefully
extend them to obtain the spad&in a DVR set. The second

is that DVR sets correspond to cubatures (multidimensional
quadratures) evaluating exactly inner products .6n the
DVR points correspond to the cubature nodes, and the normal-
ization factors used to obtain DVR basis functions correspond
to cubature weights. Therefore, the construction of a DVR set
can begin from constructing (or receiving) Brpoint cubature
formula that evaluates exactly inner products on rans
N-dimensional space’and then extending appropriately to
anN-dimensional space’ 2 /. The symmetry methods used

in refs 5 and 6 to obtain DVR sets are very elegant and im-
portant in relevant cases; however, they are also restrictive. For
example, the approach to calculating DVRs on the sphere in
ref 5 relies on rotation groups of the regular solids; therefore,
the number of nodes must belong to a specific set of integers

T Part of the special issue “John C. Light Festschrift”. whose maximal member is 50' More generally, .We would ”ke

* To whom correspondence should be addressed. E-mail: ilan.degani@ {0 have DVRs that are suited to problems with no special
weizmann.ac.il (1.D.); david.tannor@weizmann.ac.il (D.J.T.). symmetries.

The discrete variable representation, or DVR, is an important
computational approach in quantum mechanics. Among other
applications, it is used to calculate highly excited eigenfunctions
and large amplitude dynamics of nuclei in molecules within
the framework of the BorrOppenheimer approximation. The
motivation for introducing DVRs is the difficulty of calculating
potential energy matrix elements. In a DVR algorithm, the basis
functions are localized and the entire potential energy matrix is
calculated at once, simply by evaluating the potential function
on a diagonalized coordinate matrix. The potential matrix is
then combined with the kinetic energy matrix to obtain a matrix
representing the Hamiltonian operator. The eigenvalues and
eigenfunctions of the Hamiltonian matrix give approximate
solutions of the time independent ScHirger equation, while
quantum mechanical time evolution is approximated by using b
the Hamiltonian matrix in the time dependent Sdlinger
equation. Comprehensive reviews of the DVR approach are
given in refs 2 and 3.

Although one-dimensional DVRs are well understood, the
construction of multidimensional DVRs beyond the obvious
“direct product” type is a subject of ongoing research. The first
step is to introduce a set of suitabteyariable, basis functions
o1, ... ,¢n, called the finite basis representation (FBR) functidns.
Typically, these are the set of all eigenfunctions of a simple
Hamiltonian up to a given energy. Suppose for a moment that
the coordinate matricesX{jap = [PalXi|pp)i = 1, ... ,d, are
commuting. Then, their joint eigenfunctions form a DVR basis
of S'= spaf ¢, ... ,¢n}, and DVR points irRY are formed by
concatenating the eigenvalues of the i = 1, ... , d,
corresponding to each DVR basis function to form the vector
(a1, --- , Aad). Each DVR basis function is typically localized
in a neighborhood of the corresponding DVR point. The main
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Here, we assume that a cubature formula is given and 13 present an alternative to the framework given in ref 4; as far
formulate the problem of constructing the extension space as we can see, the DVR functions in ref 13 are generally not
J* as a linear algebra problem, which is solved in full projecteds functions.
generality. In this way, we construct eight new nonproduct DVR  We now give a brief overview of the contents of this paper.
sets for the plane and sphere based on cubature formulas withSection 2 reviews some preliminaries on which our subsequent
no special symmetries. We also discmss n cubature FBRs development is based: the basics of one-dimensional DVRs,
of Hamiltonians, obtained by projecting x N cubature DVR the DVR set framework introduced in ref 4, and some basic
Hamiltonian matrices to the;, ... , ¢n basis of /'(n < N). Our facts from cubature theory including the relation with commut-
results indicate that if suitable cubature formulas were available ing extensions described in refs-80. In section 3, we show
then such FBRs may outperform DVRs (see also ref 7). Ideally, how to calculate multidimensional DVRs and FBRs based on
we would like to have DVRs and FBRs based on high degree general, nonproduct, cubature formulas, and we show the
cubatures whose nodes are concentrated in relevant regions ofonnection with the commuting extension formalism. In section
configuration space (e.g., low potential regions). However, 4, we show how our ideas can be used for obtaining cubature
available cubatures are limited and the field is waiting for new DVRs and FBRs on the plane, and on the sphere. In section 5,

methods for constructing cubature formulas. we review the existing types of multidimensional DVRs and
A new approach to the cubature construction problem was Study their relations with our approach. In section 6, we give
presented in refs-810. It is based ogommuting extensiores numerical results obtained using cubature DVRs and FBRs.

coordinate matrices, which are formed by adding rows and Section 7 ends this paper with a summary of our main findings
columns to noncommuting coordinate matri¢gésReferences ~ and directions for future work.
8—10 show that the eigenvalues and eigenvectors of commuting
extensions of coordinate matrices give the nodes and weights2. Preliminaries
of cubature formulas. Conversely, it is shown there that the
nodes of a known cubature formula give the eigenvalues of
commuting extensions of coordinate matrices, and the weights
participate in determining their joint eigenvectors. Thus, the
problem of calculating cubature formulas is equivalent to the
problem of calculating appropriate commuting extensions. Initial
attempts at solution yielded several new cubatéfdsowever, time dependent cas&/ = V(% ). Q, which is called the
this approach is still largely unexplored. configuration space, can be quite general. Particularly, in section
Although DVR sets were introduced by Littlejohn et al. to 6 we give numerical examples f@ = R2 andQ = <, the
avoid relying on noncommuting coordinate matrices, it turns syrface of the unit sphere iR3. We are interested in solving
out that appropriately defined coordinate matrices on the DVR the Schirdinger eigenproblem, that is, finding € % E € R,
function spaces/” are actually commuting. This is SOX, ... such thatHy = Ey, and the time dependent SétHinger

, Xq, the coordinate matrices oif, are calculated using the  equation (TDSE)A(8/dt)y = Hy, whose solutions describe the
assomated cubature formula, rather than the exact inner productdynam|cs of a quantum mechanical system with Hamiltonian

Suppose that/’is a space of we|ghted degreepolynomials A.

2g+ 1. Then, in a suitable basis of, theX; are commuting  problems is based on projection to a finite dimensional subspace
extensions of the noncommuting coordinate matriggson of %, thereby replacing the full Hamiltonian operator with a
S C /. This actually solves a problem that was left open in  finite matrix. Introducing suitably chosen orthonormal functions
refs 8 and 9. It was not known there how to interpret as a é1, ... , ¢n in 7 we obtain then-dimensional subspacé =
function space the vector space on which commuting extensmnsspa,wL ..., én}. We can then construct the x n matrix H
act. Here, thé; act on thefunctionspace/’. This observation with entrlesHab = [$4/H|¢p0] The Schidinger eigenproblem
puts cubature DVRs in the same framework together with one- js thus approximated by the problem of finding the eigenvalues
dimensional quadrature DVRs. In one-dimensional quadrature and eigenvectors dfi, and the TDSE is approximated by the
DVRs, the eigenvalues of the coordinate maXiare the nodes  ODE iku = Hu, whereu e C" is the coordinate vector of a
of a quadrature formul&;!? in multidimensional cubature  function in /. A technique widely used in the calculation tdf
DVRs, the joint eigenvalues of thé are the nodes of a cubature is based on splitting the Hamiltonidth Write H = Hg + V —
formula. Vo, whereHo = T + Vo. Thus, the matrixd can be decomposed
Apart from refs 5 and 6, we know only one other previous to the sumHg + V — Vo, where Ho)ap = D}&a|Ho|¢bDand V-
publication on “nondirect product” multidimensional DVRs, Vo)an = [@al(V — Vo)|¢ull If they are known, eigenfunctions of
given by Dawes and Carrington in ref 13. The idea of ref 13 is Ho can be chosen as the basis functiggghus,Ho is a diagonal
to find a basis of/in which the coordinate matrices are almost matrix with diagonal entries equal to eigenvaluesigfin other
diagonal, that is, in which they have small off-diagonal entries. cases, the eigenfunctionsldf are not used; still, the functions
Then, commuting approximations of the coordinate matrices are ¢a are chosen so that calculation of the matky (or an
obtained by discarding the small off-diagonal entries. The approximation) is not too difficult. Moreover, for a particular
resulting commuting matrices are regarded as the new coordinatechoice of. /" and o, the matrixHo is calculated once and is
matrices. Theirn joint eigenvectors give the DVR basis then used for different problems given by different potentials
functions in.J/; and thed eigenvalues corresponding to each V.
eigenvector give the DVR nodes, which are pointsth An The difficulty lies in calculating the matri¥ — Vy involving
important advantage of the algorithm in ref 13 is that it can be costly, generally multidimensional, integrals which are specific
conveniently applied for general” with large dimension; for each problem. Note that in our notativandVy aren x n
however, the main limitation is the loss of accuracy associated matrices,V(x) andVo(X) are potential functions, and = V(X)
with discarding the off-diagonals. Note that the DVRs of ref andV, = V(X) are operators onZ. For simplicity, we hence-

We begin by setting notation and terminology. lethbe a
region inRY, and let% be the Hilbert space of square integrable
functions onQ, % = L% Q). The Hamiltonian operator on
HisH =T+ V, whereT andV are the kinetic and potential
energy operators, respectively. The potential operator is deter-
mined by a potential functioW(x); then,V = V(X), or in the
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forth replace all appearances df — Vp by V; similiarly, and possibly other properties (e.g., symmetry) of the exact
V(X) — Vo(X) is replaced by(x) andV — V; is replaced by. eigenfunctions oH. The question of convergence with increas-
The problem of calculating the matrikd is essentially the ing n is discussed in some detail in ref 4.
problem of calculating (or approximating) the matkix An important class of one-dimensional DVRs is based on
. orthogonal polynomials. Suppose we are given an interval,
M) = @, VIg = fgqﬁz(x) V(X) ¢, (X) dx Q <€ R, and a nonnegative weight functiow, such that the
ab=1 n (1) integrals/q W(X)x™ dx exist for all naturam. Then, it is possible
’ e to construct a sequence of orthogonal polynonggls. = 1, 2,
2.1. One-Dimensional DVRsHere, we summarize the basics - With degreed,) = a — 1, which satisfy/o W(X) €a(X) en(X)

of one-dimensional DVRs which were introduced by Light et dx = dap. The weighted polynomialg, = v'we, are orthonor-
al4 based on earlier work by Harris et’aand Dickinson and ~ mal with respect to the usual inner productii [ba| o= dap.
Certain!2 Shizgal and Blackmore have independently considered One-dimensional DVRs are then constructed witk= span-
similiar methodg? Our point of view is similiar to that of Kanfer (1, ... , ¢n). Denoting the space of degrggpolynomials onc2
and Shapir®® who emphasized the role of the coordinate matrix by Vﬁf we see that/’ = «/v_vy)ﬁf with g = n — 1 (recall that

on general spaces n = dim /). The weighted polynomial spaces to which we
To address the difficulty of approximating the potential matrix previously referred are obtained in this way. Zero boundary
V, one-dimensional DVRs replace the operatavith then x conditions are satisfied by a suitable choice of weight function
n matrix X defined byXap = [$a|X|ppl) X is Hermitian, and there  w(x).
exists a unitary1 x n matrix Q and a diagonah x n matrix A There are intimate connections between polynomial DVRs
such that in one dimension and Gaussian quadrature. It is shown in refs
11 and 12 that the DVR points1, (eigenvalues oK) are the
X=QAQ' 2 nodes in the degreen2— 1 (=2q + 1) Gaussian quadrature

formula for the intervak2 and weight functiorw and that the

We can then define the x n matrix V = V(X) = QV(A)Q' or matrix Q from eq 2 is given by

V(A) 0 - 0

= Jw.e, 1 6

\7_ 0 V(AZ) . . , Qab b a( b) ( )
=Q : “. 0 Q 3) wherewy, are the weights in the Gaussian quadrature formula.
For a simpler proof of these facts, see ref 2; the discussion of
0 0 V(@) Gaussian quadrature in refs 8, 9, and 18 is also very relevant.

5 Due to these relations, this type of DVR is commonly called
wherel, ... ,An are the eigenvalues &f V is an approximation quadrature DVR. Note that eqs 3 and 6 imply that in this case
of V defined in eq 1 and the matrix the matrix element\)., is the - — 1 degree Gaussian
guadrature approximation of the matrix elem¥fg.

It is worth noting that the applied mathematics literature
discusses the “sinc collocation method”, of which sinc DVR
(see ref 4 and references therein) is a particular case. Of
particular interest are the results on convergence rates and on
the passage from infinite to finite intervals (see Sugihara and
Matsud® and references therein).

2.2. Multidimensional DVR Sets.The basis for our discus-
sion is the notion of DVR set as introduced in ref 4. Our
interpretation of DVR sets emphasizes the extension of an initial
function space/’ to a larger space/” so that appropriately
defined coordinate matrices oA are commuting. For clarity,
we introduce the following index convention:

(i) Indexesa andb run from 1 up ton = dim /.

H=H,+V 4

is an approximation of the Hamiltonian in the basis, ... , ¢n}
of ..V andH correspond to what is often called in the literature
VFBR and HFBR,

The eigenvectors oK correspond to the following eigen-
functions in; fa(}) = Y p_; Qoats(X), @ = 1, ... ,n. Thef,
comprise an orthonormal basis @fwhich is called the DVR
basis!* In this basis X is represented by the diagonal mataix
andV is represented by the diagonal matigA). This is the
source of the DVR name (discrete variable representation): the
“continuum variable™X is replaced by the “discrete variable”
A to obtain the DVR approximation of the potential operator.
The DVR basis functions, are typically peaked at the

corresponding eigenvalul and decay agx — i grows. In (”) Indexesi, j, andk run from 1 up tod. o
the DVR basis, the Hamiltonian is represented by (i) Indexes a, B, andy run from 1 up toN = dim J’,
N=>n.
HPYR = Q'HQ = Q'H,Q + V(A) (5) In multidimensional problems, the potential is a function of
the operators, ... , X, with the associated x n coordinate

For a given/; the matrixX can be calculated and diagonal- matricesXy, ..., Xq, (Xi)ab = [dalXi|ppl] Suppose, for the moment,
ized to obtainA and Q once and for all. Hence, calculating that these matrices commuté;,[X]] = O for all i, j. Defining
HPVR or H amounts to evaluating the potential function on a V = V(Xi, ... , Xg) and simultaneously diagonalizing _the
set ofn points and calculating the matrix produc®HoQ in commuting coordinate matrice¢ = QA;Qf, we can writeV
the DVR basis (eq 5) 0QV(A)QT in the FBR basis (eq 4); as in eq 3 but now the points 1, are vectors withd entries,
direct evaluation of the integrals in eq 1 is avoided. The quality (1a)i = (Ai)aa that is,V = QV(A4, ... , Ag)Q'. If the 1, are in
of the DVR/FBR approximations (note that in one-dimensional Q, then multidimensional DVRs could be constructed in this
problems the DVR and FBR correspond to different bases of way (evaluation o¥/(x) outsideQ is often meaningless). Direct
the same function spac€ thus, they lead to identical energy product DVRs, which were until recently the only known
eigenvalues) depends on the choice/bfGenerally, the func- multidimensional DVRs, can be formulated precisely in this
tions ¢, are chosen to satisfy the same boundary conditions, way.
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Working with a domain® and a space/” which are not of
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for all f e *5 and such that there existef /25, , for which

the direct product type, we are faced with the problem that the eq 9 is not true. Then, the sum on the Ihs is called a degree D
X; do not generally commute and therefore cannot be simulta- cubature formula for the regio® and weight function w(x).

neously diagonalized. This observation led Littlejohn ettal.
a generalized notion of DVR sets. Lét be anN-dimensional
subspace of7 such that ./’ € /” and letgy, ... , n be ortho-
normal basis functions. Lé4, ... , Ay be points inQ and define
the projected delta functionS, = 3 _, ¢, b, |0(x — Ae) =
Y )_1 #5(Aa)d,. Note that

[AGIA= Ay (4g) ©)
that is, the projection ol\, on Ag is obtained by evaluating it
on Ag.

Definition 1 (adapted from ref 4). The spaceS’ and the
pointsis, ... , Ay are called a DVR set if

Ay(Ap) = A IA D (8)
In this case, we callf= (1/]]Aq||)A« DVR functions, and the
Aq are called DVR points.

The discussion of DVR approximation accuracy in ref 4 is
based on the assumption that = J” and consists of all
eigenfunctions oHp up to a given energy. Here, we retain the
latter property of /" but use “larger” spaces’ > /.

Equation 8 implies that, is zero on all DVR points except
its own, wheref,(1,) = ||Aql|. Therefore, eq 7 implies that the
DVR functions are orthonormal; hence, they form an orthonor-
mal basis of /. Therefore, [g|h0] = Z’y\'zl Q1A 11Dg*(Ay)
h(4,) for all g, h € J°; that is, ifJ” andAy, ... , Ay are a DVR

The 14, ... , Ay are often called nodes (this term is justified,
since the points of cubature formulas are common zeros of
quasi-orthogonal multivariable polynomials; see 'Xu we
consider only cubature formulas with positive weights whose
nodes are iff2. Estimates on the number of nodes are discussed
in ref 8 and references therein. Particularly, the following
estimate ofN in a degree § + 1 formula is given there:

(10)

T 1 d+2g+ 1]
NN‘d—i—l d )‘

It is obtained by requiring that the number of parameters
defining the formula will be the same as dkm?qﬂ. A similiar
calculation for the sphere giveN ~ [{*3)(q + 1)°00 Note
however that parameter counting just gives a guideline; gener-
ally, cubature formulas can have either a smaller or larger
number of nodes.
Commuting extensions are a central object in cubature theory;
Definition 3 (from ref 8). We say the Nx N matrices X,
Xo, ... , % are N x N commuting extensions of the>n n
matrices X, ... , % (N > n) if the top left nx n block in X is
X, and the matrices % ... , % pairwise commute. If the;¥nd
X; are symmetric (Hermitian), we say that theaxe symmetric
(Hermitian) commuting extensions of the X

Given a domaing2, and weight functiony, it is shown in
refs 8-10 that knowing symmetric commuting extensions of

set, then this sum is a cubature rule evaluating exactly inner coordinate matrices on’; is equivalent to knowing a degree

products inJ’. An important observation that was not dis-
cussed in refs 5 and 6 is that we can defimordinate matrices

29 + 1 cubature formula forQ and w (extension to the
Hermitian case is trivial). However, refs-80 do not show how

onJ using the cubature rule above rather than the exact innerto interpret commuting extensions as operators on function

product. In the DVR basis, they aré\jos = ¥ )y (1/]|A,|[?)

f ()4 T5(dy) = (A)idag. These matrices are simulta-

neously diagonal (in the DVR basis), and we can defit&;,

..., Ag) as the DVR approximation of the potential operator.

This is equal to diad((41), ... , V(An)), the DVR potential matrix

in ref 4, which is defined without invoking coordinate matrices.
2.3. Cubature Formulas and Commuting ExtensionsOur

discussion of cubature DVRs and FBRs will rely on some basic
notation and facts of multivariable polynomials and cubature.

Commuting extensionsf coordinate matrices are particularly
important for our discussion.

The degree of a monomiad™ ... -x3* in d variables is
my + ... + my, and the degree of a polynomial dhvariables is

spaces; our construction of DVR sets in the next section also
solves this problem, thereby showing that cubature DVRs based
on odd degree formulas are generalizations of one-dimensional
guadrature DVRs.

For clearer notation, we define

@ih, = w09 g*(x) h(x) dx (11)

N
[glhtd= Z\wag*(ia) h(4,) (12)

3. Obtaining Multidimensional DVRs and FBRs from

the maximal of the degrees of the constituent monomials. We Cubature Formulas

denote the space of polynomials with complex coeficients, in

d variables restricted t&, and of degree up ta|, by 5.
Generally, dimf&? =n=(d Jg 4); however, in some cases,

Here, we give the general solution for the problem of
calculating DVR sets from known cubature formulas. Further-
more, we consider the use of cubature formulas to obtain

the monomials are not independent and the dimension is smallerpotentially very efficient FBRs of Hamiltonians (see also ref
Consider for example the space of polynomials in three variables 7).

on the surface of the sphege = S2, where the relatior? =
1 — x?2 — y? holds. We later show that dir}i}{’qs’2 = (q+ 1)
rather thar(3 —5 q) = (q+ 3)(@+ 2)(g + 1)/6. By saying that
J' is a space of weighted polynomials, we mean that=
x/V_V(/’('? wherew(x) > 0 is an appropriate weight function.

Definition 2. Suppose we h& N pointsi,, ... ,Ay € R%and
N weightswy, ... , wn € R such that
N
Zw“ f(2e) = [ W(x) f(x) dx (9)
&

3.1. Calculating Multidimensional Cubature DVR Sets.
In section 2.2, we saw that a DVR set generates a cubature
formula giving exactly inner products if’. The converse is
also true; given such a formula, the, associated with the
cubature points are orthogonal and therefore give a DVR set.
The mathematical literature provides cubature formulas giving
exactly inner products in spaces of multivariable weighted
polynomials. However, except for special cases, the number of
cubature point® must be greater tham= dim( /). To generate
a DVR set with the cubature points, we need to extéhtb a
larger space/” on which the cubature formula still evaluates
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inner products exactly. The full solution of this problem is given assuming rankP) = N, which is a necessary condition for the

in ref 17; here, we give an outline. existence of a solution.
Problem 1. Suppose we are ggn (a) a degree 2q or 2¢ Writing 7/ = (g @ null(®))", we can decompose’:
1 cubature formula with nodeg,, ... , Ay € Q and positve
ightsws, ... , d (b -di ional functi 57—
weightsw; oy and (b) an r-dimensional function space B = !/)22 ® 7/ @ null(®) (14)

@8 with the inner productd|-[} defined in eq 11, and such that
f/’f C 9. Find, or prave, that there do not exist, N functions
Uy, ..., W € @ such that

n,—n)xn

1. u,(dy) = 0,41/
i ﬁ) “ﬁ( @ columns are an orthonormal basisfiz’?l?. Then,®(E, Y) (this
2. Wy |ugl, = 6aﬂ is the matrix productb-(E, Y)) is an invertibleN x N matrix,
and if W is the unique solution of

Let Y be ann; x (N — n) matrix whose columns form an

|n><n

orthonormal basis of7, and letE = o) whose

3. ¢ Csparfuy, ..., Y}

12

If a solutionuy, o =1, ... ,N, is found, then the DVR functions PE W= o (15)
T“ OZ deﬁ\r}mon L aref, = Viwu, and the DVR fupc_tlon SPaCe  thenu = (E, Y)W satisfies items 1 and 3 of problem 2. However,
is /" = vw spafjuy, ... , un}. A DVR set consisting of the  the columns of such 6 will generally not be orthonormal. To
nodesiy, ... , Ay and the space/ WI|.| bg called a cubatgre resolve the problem, we introdue ann, x (0 — N) matrix
DVR. Note that theu, are generalizations of the familiar \\hose columns form an orthonormal basis of nb)l( ThenU
interpolation polynomials on Gaussian quadrature nodes: Item — (E, Y + KC)W satisfies items 1 and 3 of problem 2 for any
1 specifies their value§ on.the nodes so thgiugld = dgp (M — N) x (N — n) matrix C; that is, we can modify// with
(recall eq 12). Item 2 implies thaillly|Usld = [We|Usla; that any elements from nul§) without compromising a solution
is, the cubature formula gives _exactly inner produgt; in span- of jtems 1 and 3 in problem 2. To satisfy item 2, we require
{Ul, ey UN}. Note also that item 3 lmplles that’ is an thathxN =uUtu = \M(E, Y + KC)T(E, Y + KC)W Using the
extension of)' = «/v_vy‘ff that is,.J'C J'. relationsE'E = Inxn, YK = On-nyx(ni—ny Y'E = Op—ryxny KTK

Xu considered a similiar problem obtained by dropping item = | (n—Nyx (n—ny, aNAW1 = oV2D(E, ), and using the fact that
2 (see ref 10, p 45). His analysis does not give a full solution; the cubature formula has a degree of at least& obtain the
however, it reveals additional properties (beyond the scope of following problem which is equivalent to problem 2.
this text) for the cases in which a solution is found. The approach  proplem 3. Find an(n, — N) x (N — n) matrix C satisfying
described here is different: using only linear algebra techniques, the following equations:
problem 1 is solved fully.

Letey, ..., €y, €1, ... , €y, be an orthonormal basis oB T Tt
(with respect tod|-[J) in which the firstn elements form an I+CC=Y P 0oy (16)
orthonormal basis on’ff. We use boldface letters to denote E'kc =E'dipdy (17)

the vector of coordinatescorresponding to the functian while
taking the liberty of denoting function spaces and the isomorphic
spaces of coordinate vectors by the same symbol. As in ref 10,
the starting point of our discussion is the sampling operator on
the cubature nodeB: ¢8 — CN defined byF(f) = (f(11), ... ,
f(An))T, f € 9. TheN x ny matrix representing in our chosen

where | is the (N— n) x (N — n) identity matrix.

In our basise, ... , ey, of @3, the bilinear form[|-L, is
represented by the; x n; identity matrix, while [|-[d is
represented bypTw®. Thus, eq 16 requires thatgly, = [H|gld
if f andg are in the space spanned by the columnsYoft(

basis is KC), while eq 17 requires the same whiea ngz
e(dy) - enl(j'l) The solu.tqon of egs 16 and 17' is based on the singular value
decompositionC = LDR'. Equation 16 determine® and R
d = ey - enl(}“Z) (13) uniquely up to unitary transformations preserving the eigens-
: : paces ofY'®Tw®Y. Multiplying both sides of eq 17 bRD !
el - enl(,lN) (or an appropriate interpretation & ! in the case of zero

singular values) gives an equation tHatmust satisfy. This
generally has infinitely many solutions which all gite= (E,

Y + KC)W, solutions of problem 2. Figure 11 gives pseudocode
describing the full solution process; Matlab code can be
downloaded from ref 17. In the special case that our cubature
formula has degree2+ 1 and rank®) = N for &8 = M’gﬂ,

the solution of problem 3 is very simple. Equation 17 is
automatically satisfied, with both sides equal to zero (in this

Given any vectov € 93, the vector®v € CN contains the values
of the corresponding functiomat the cubature nodes. Problem
1 is equivalent to the following.

Problem 2. Find an n x N matrix U such that

1.®U = o "2 wherew = diag®,, ... ,w,).

2.UU=1,. case, eq 17 equates the integrals of polynomials of degree at
most 2y + 1 with their cubature evaluations, which are exact),
3. There is an Nx n matrix X such that and eq 16 is easily solved with a free choice of dnwith
UXx = (gxn ) orthonormal columns. The cubature formula used to calculate
(hg=>n the DVR set in ref 5 (briefly reviewed in section 5.3) is of this

Once a solutiorlJ of problem 2 is found, the corresponding type. . ,

solution of problem 1 isl, = Y™, U€. Note that item 3 Let Hy' be the projection ofHy to vw@, (Hg), =
simply means that the our firgtbasis vectorsy, ... ,e, (on the El/\TveK|I3|o|x/v_ve('D Kk, k" =1, ... ,n. Then, the cubature DVR
rhs) are in the space spanned by the columng.&e continue representation of the Hamiltonian operator.fnis
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V(4,) 0 e 0 S as calculated in section 3.1. Sin€k|¢.0= [ileld =
0 V(L) e, Vo.8a(Aa), the n x N projection matrix from the DVR
HOVR — UtH BA’U +| . . (18) representation af” to the{¢, ... , ¢n} representation of" is
Q., = Vo & 19
TR e = N 0oE ) (19)

Projecting the DVR potential matrix to, we obtainV, the

If the cubature formula has degreg 2 1, then the solution ~ cubature FBR potential matrix:

of problem 1 also solves a problem left open in ref 8: how to V(i) 0 0

interpret the commuting extensions (see definition 3) associated L

with an odd degree positive weight cubature formula as 5 0 V(4,)

operators on function spaces. Consider an orthonormal basis V=Q| . . Q' (nxn) (20)
b1, o by i1, ... ,én OF S in Which the firstn functions are : - . 0

¢a=vWwe, a=1, ...,n; these functions form an orthonormal 0 0 V(&)

basis of /'= \/V_Vf/’ff We define the diagonal DVR coordinate

matrices by Qi)as = Wie|%|usld i = 1, ... ,d. In the basig ¢y}, Then x n cubature FBR Hamiltonian matrix is then

they are represented by the commuting matriggs... , Xq, 5 .

defined by &)os = [Bo//W[S%|ds/~/WLJ. Our choice ofpy, ... , H=Hy+V (21)

#n and the fact that the cubature formula has degmpe-2L . .
imply that the upper lefh x n block of eachX; is X, theith Note that to calculat®¥/ andH we do not need to know DVR

coordinate matrix on/defined by K)ap = [dalXi|¢pl] That is, basis functions; the projectid@ depends only on the cubature

the X;, which act on the DVR function spacg, are commut- ~ nodes and weights and on the FBR basis/bAs far as we

ing extensions of the;. know, most existing FBRs (with the exception of ref 7) use
Currently, our choice of the spacé and the matrix (from only product cubature formulas; here, there is no such restriction.

the singular value decomposition 6f used to construct cuba- ~ We can discard DVR basis functions also in cubature FBRs: if
ture DVRSs is arbitrary. However, the connection with commut- some of the cubature nodes are in high potential regions, we
ing extensions of coordinate matrices suggests that the choicecan reduce computational effort by deleting the corresponding
of ¢ andL should minimize the difference between the exten- diagonal entries fromV(As, ... , Ag), together with the
sion blocks of theX; and the corresponding blocks of the exact corresponding columns & and rows ofQ". Similiar ideas have
coordinate matrices o . Where relevant symmetry can pro- been used by Wang and Carrington an FBR calculation of
vide an additional approach to the choiceléindL, see ref 5. the bend eigenfunctions of an HF trimer.

It is interesting to compare the number of nodes in cubature  The dimension of/’is generallyn = (d a‘ q) ~ g¥/d!. Recall
DVR with that of direct product DVR. Equation 10 gives the  hat typically we expecN = dim(/”) ~ 29(d + 1)!, while
typical number of nodes in a degreg 2 1 cubature formula  the Jeading term in the dimension of the corresponding direct
giving a cubature DVR. The number of nodes in a DVR qroduct DVR isgd. Thus, /dim DP DVR)~ 1/d! and /N ~
obtained from a product cubature formula of the same degree(q + 124, These estimations, the simplicity of cubature FBRs
is (@ + 1)d.dWhen q is large, the leading term of each is  (no DVR functions needed), and the opening remarks of this
(1/(d + 1))( + qu+ 1) ~ 2dgd/(d +1)! and @ + 1)¢ ~ section indicate that if high degree cubature formulas were

Thus, the ratio between the number of nodes of a cubature DvRavailable for relevant domains and weight functions then

obtained from a high degree nonproduct formula and that of cubature FBR may be the method of choice.

the corresponding direct product DVR is expected to be 3.3. Currently Available Cubature Formulas. Here, we

approximately /(d + 1)!. survey existing cgbatqre formulas for the domains relevant for
3.2. Calculating Cubature FBRs.An important advantage ~ nuclear Hamiltonians in molecular problems.

of the DVR approach is the possibility of discarding DVR basis ' "€ spaces/; and.J’, should be large enough for conver-

functions peaked in high potential regions. This is particularly 9€nce of eigenvalues and eigenfunctions within a given error

true for direct product DVRSs; their rectangular grids often cover tolérance. Speaking very generally,and N should be at

unnecessary regions of configuration space. However, imagineleast several hundreds. Sinoe= (d 3 q) ~ g¥d! when./'=

that we could easily produce high degree cubature formulas for /iy 2%, this implies that, to be useful for calculations involv-
general domains and weight functions. We could then potentially jng nuclear Hamiltonians in molecular problems, cubature DVRs
tailor cubature DVRs to specific problems by an appropriate and cubature FBRs should be derived from formulas whose
choice ofQ andw; discarding DVR basis functions would then degree B or 2q + 1 is at the very least several dozens or
become less important. Moreover, the higher part of the hyndreds. The domains appearing in such problems are varied,
spectrum oHPVR may contain large errors (see Figures 5 and pyt @ = R¢, Q = bounded rectangles R, Q = & (the unit

10) which can be avoided by projection to a low energy gsphere), and Cartesian products of all of these domains are
Subspace. All of this leads us to define cubature FBRs that especia"y important’ as they describe bond Stretching and

project theN x N DVR Hamiltonian matrixH®'® to then x angular degrees of freedom. For example, in ref 20, the
n FBR Hamiltonian matrixH (n < N) acting on the subspace  configuration space chosen for a methane molecule, GH2
JCd =R* x [0, 7] x & x & (R*for the stretches and the rest for

Suppose that for the regid@ and weight functiow we have the bends). The boundary conditions are often zer&fowhile
a degree @ or 2q + 1, N point, cubature rule with positive  on spheres? the functions are required to be continuous. At
weights whose nodes are all 2. Let{e)}, a=1, ... ,n, be present, the largest molecules for which high energy nuclear
any basis of_f{/’é2 such that the functiong, = Vwe, are an eigenfunctions and large scale nuclear dynamics have been
orthonormal basis of/, and letf, be DVR basis functions of  calculated are four or five atom molecufésCounting degrees



Multidimensional DVRs from Cubature Formulas J. Phys. Chem. A, Vol. 110, No. 16, 2008401

TABLE 1: Degree and Number of Nodes in Known Cubature Formulag
reference Q =R2 w(x) = e M Q =R4 w(x) =eI¥? Q=2Fwx) =1

24 D=15N=44 D =11,N = (4d° — 20d* + 140d® — 130d? + 96d + 15)/15 D=14,N=72

23 D=31,N=172 D = 11,N = (4d° — 20d* + 140d® — 130d? + 96d + 15)/15 D=14,N=72

25 D=17,N=110

26 D=22,N=117

21 D =131,N=15810
22 D =191,N= 36 864

aThe degreeD and number of nodell in the highest degree cubature formula in each reference is given here. Only formulas with positive
weights and nodes insid® were considered. The regions and weight functionsRérandR? both with Gaussian weight function, and the sphere
S with unit weight function.

of freedom, we see that a DVR calculation witha nine (or V(Ay, ... ,Ag) as in eq 18. Cubature FBR approximaléby H
more)-dimensional domain would be at the present frontier of = Ho + QV(Ay, ... , Ag)Q as in eq 21. In section 6.1, this is
such quantum molecular computations. applied to the HenonHeiles problem.

Most very high order (i.e., more than a few dozen) formulas  4.2. Cubature DVRs and FBRs on the SphereConsider
in the cubature literature for the domains above are of the quantum mechanical systems whose configuration space is the
product type. Notable exceptions are given by Lebedev and unit sphere inR3, Q = £, with Hamiltonian
Laikov?! and by Sloan and WomersléyLebedev and Laikov o .
give cubatures fo& of degree up to 131, whose number of H=L2+V(0, ®) (22)
nodes is approximateR/; the number of a product cubature of R . . .
the same degree. Moreover, in contrast to product formulas Here, L? = (=1/(sin 6))(@/36)(sin 6 (9/36)) —(1/(sir? 6))-
where the nodes are concentrated at the poles, the nodes of?/d¢?) is the square of the angular momentum operator
Lebedev-Laikov cubatures are (nearly) evenly distributed. The €xPressed in angular coordinates. The spherical harmonics are
FBR used in ref 7 is based on these cubatures. The nodes ofigenfunctions ot.?
the cubatures given by Sloan and Womersley in ref 22 are also
evenly distributed over the sphere; however, their number is
double that of a product formula of the same degree. Several .
other sources for existing cubature formulas are refs28 We wish to construct cubature DVRs and FBRs on spaces
and the references therein. Table 1 lists the degrees and numbefPanned by spherical har:]monlc.s with= &. Recall that in
of nodes in the highest degree formulas in each of these SPherical coordinates the™ are given by
references; apart from ref 21 (and possibly also ref 22), this is N
not sufficient for the needs of quantum molecular computations. y"g, ¢) = _m sin@) ™PM(cos))e™
The potential usefulness of cubature formulas for DVR and FBR
calculations provides renewed motivation for finding new 0<O0=<m—-mT=<¢=mn (24)
nonproduct high order formulas. As mentioned in section 3.1,
this is equivalent (at least for odd degree formulas) to the whereP["is a degreé — |m| polynomial. It is easily seen that
problem of calculating commuting extensions of coordinate in Cartesian coordinates the spherical harmoNtare degree
matrices. | polynomials:

L2y =10+ )Y/ (23)

N
4. Cubature DVRs and FBRs for the Plane and Sphere Y™y, X Xg) = Nim PO (%, + )" i m=0
Here, we describe cubature DVRs and FBRs for two V2
particular configuration spaces, the plane and the sphere.
4.1. Cubature DVRs and FBRs on the PlaneConsider a Y= (—1)"(YMy* if m<0 (25)

guantum mechanical system whose configuration space is the

planeQ = R2 with wave functions which satisfy the boundary The inner product on/’is given by

conditions limy— 1(X) = 0. Orthonormal eigenfunctions of

the two-dimensional isotropic harmonic oscillator Hamiltonian, lgt= fsz f*gdo, Of,ge S (26)
Ho = (Y2)(— V2 + ||x||%), can provide a convenient basis. These

are of the formpa(xy, Xo) = exp(=("2) (1 + %2%)) he,(x1) (), where d is the surface area measure,d sin 6 dé dg. Using
where theh;, are Hermite polynomials of degreg and the  the fact that the spherical harmonics are orthonorg| Y[l
correspondlng elgenvalue Ea =1+ry + ro The mth — (3II'°(3mn1, it follows that./is an Z|q=0 (2| + 1) — (q + 1)2

e!genspac_en(l =01 ..) IS the sub_space. _Spaf‘”ed _by all dimensional subspace oS, the space of degreg poly-
eigenfunctions oHo whose eigenvalue is1 + 1; its dimension nomials in x,, X, ¥ on & However, the relationx? =
1y ’ . ) -

is equal tom + 1. We choose/' = spaf ¢a|Ea = q + 1}, that 5 P e )

is, all eigenspaces dfly up to and including thegth eigen- 1= x® = x® implies that’" is spanned by the moszlgmlals

space. It is easily seen that= e 12122, so given a posi- {4 Xxlu + n + 0 = q 0 =0or 3. Therefore, g is a

tive weight degree @ + 1 cubature formula/? e 1™I1%(x)dx direct sum o_f the following two subspaces: the space of all

— 5N L wuf(x) Of € ‘/’2Rz+1 our prescriptions can be applied: polynomials inx;, X, of degree at mosy and the space of all
e Py : S ' € >

this is a standard type of cubature formulas (see refs 23 andpdyr_]omligls In>§1,R>§2 of dgg;ge a mosq. 1, QU't'pgefé’y“’

24). To apply cubature DVR to a given Hamiltoniin= Ho + tgéi is, 7 = L4 @ Xy Thus, dm2y = ( 2 ) +

V(%1, %), we chosed = Q’Rlz, increasingo until a solutionU ( 2 q) = (q + 12 It follows that./'= &% and that the

of problem 2 was found. ThenHQf o = |}j§K||3|O|¢KD: O Ex spherical harmonics with < g are an orthonormal basis of

for e, ¥’ =1, ... ,ng = dim(!/’gzl) and HPVR = UTH U + y’qsz (see also ref 7 and references therein). Following the
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notation of sections 3.1 and 3.2, witi(x) = 1 for x ¢ &, we
relabel the spherical harmonics so

a=0=Y6=6¢,=Y, eg=¢;=Y,,
e,=¢, =Y, etc.

Given a Hamiltonian of the form of eq 22, we st = L2 To
construct DVR functions corresponding to the nodes of a given
cubature formula, we chos& = y’i increasingq; until a
solution U of problem 2 was found. The diagonal DVR
representation of the angular coordinate matrices, Ay, is
obtained by expressing the cubature nodes in angular coordi-
nates. Cubature DVRs and FBRs for spherical problems are the
given by egs 18 and 21, as explained &= R2 Results for

a double-well problem on the sphere are given in section 6.2.

5. Comparison with Other Multidimensional DVRs

Here, we briefly survey other types of multidimensional
DVRs. In each case, we point out how coordinate matrices are
defined so that they are commuting. As previously discussed,
the DVR approximation of the potential is then obtained using
the simultaneously diagonal forms of the commuting coordinate
matrices.

5.1. Direct Product DVRs. Until the appearance of refs 5,

6, and 13, the only known multidimensional DVRs were of the
direct product type. This type of DVR is widely used because
of its simplicity and availability. However, the direct product

b
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operatprski: J"— J'with n x n matrix representationsd<()ap

= [¢4|Ki|¢ppll However, properties 1 and 2 above imply that it
is unnecessary to directly calculate these inner products.
Knowing the matrices;, we have

® |

Ngxny

(28)

Ki=1

o, @@l 0 OK®, ® ...

xn 41X M1

Now suppose that we are given a Hamiltontdn= Ho +
V(%) and that evaluation of the matrix)an, = [da|HolppUis
easy with the tensor product basis functigaslescribed above.
For example, this is so iflp is a sum of 1-d Hamiltonianklg
A, + ... + A, with eachA, depending just on the operators
= —ih(a/dx) andX.. Then,Ho = H; + ... + Hq with eachH;
obtained fronH; as in eq 28. To construct a direct product DVR
approximation of the potential energy matrix, we need to
compute the coordinate matrices)a, = [dalXi|ppl] these are
obtained from the matricesifim = @ |%|¢)0) as prescribed
in eq 28. The following properties of tensor products of matrices
are necessary to continue the discussion:

1. (Al ® Bl)'(Az ® Bz) = (Al'Az) ® (Bl'Bz) if A1, By and
A, B, can be multiplied.

2. A®A) =A@ Al

By property 1, the matriceX; in a direct product DVR are
commuting, K;, X]] = 0. Let g be the unitaryn; x n; matrix
such that'xQ = A is diagonal. Then, by properties 1 and 2,
the matrixQ = Q,®..®Q, is unitary and the matrice4,;
QXQ = lnpn, ® . ® Iy 1 s ® A ® Iy © oo ® Iy

function spaces often require very large dimension for accuraté are diagonal. Thus, product structure generates commuting
approximation of eigenfunctions (see, for example, ref 20 and ¢qordinate matrices which give rise to a DVR approximation
Figure 5). This is a major computational bottleneck for current f e potential energy operatvAs, ... , Ag). Here, the joint
algorithms, and the quest for improved methods, particularly gjgenvectors of th¥; are naturally interpreted as DVR functions,

the quest for nonproduct DVRs, is an important theme in this
field. A crucial aspect of direct product DVRs is the fact that
the coordinate matrices on direct product function spaces
commute. This is mentioned often in the literature (see, e.g.,
refs 2 and 13) but, as far as we know, not explicitly explained.
The following discussion uses the language of tensor products
to explain this fact.

Direct product DVRs are characterized by two properties:

1. The domairR is a (hyper) rectangular domain; that is, it
is a product of one-dimensional, possibly infinite, interv@s
=1l x ... x lg.

2. The space/' is a tensor product of spaces of 1 variable
functions defined on these intervals, thatis= ;1 ® ... ® Jg,
where ; C L¥(l;).

In the following discussion, operators and matrices on the
“small” spaces /i are denoted by smaller fon&, denotes an
operator on/, andk; is its matrix representation in a given
basis. On the “big” space/; an operator and its matrix
representation are denot&dandK.

Matrix representations of operators eofimay be easily
expressed as tensor products of smaller matricex,let , K,
be operators on the corresponding spa¢gs.. , Jg, K: i —

Ji. Write n; = dim Jf and Iet{cpf')}, | =1, ... ,n, be an
orthonormal basis ofj in which then; x nj matrixk; represents

k. We assume thatk(m = [@"|k|¢{)0) other possibilities,
which we avoid, arise from approximating these matrix ele-
ments. The set of all products”- .. -¢(© form an orthonor-
mal basis for the tensor product spatdt is immediately seen
thatn = dim./" = n;- ... -nq. Ordering the above basis functions
lexicographically (e.g., il = 2, theng, = ¢>(11)¢(12), P2 = ¢>(11)
02, b3 = ¢85, . b, = 676D, 1 = 9597, etc), we
label them{ ¢, ... , ¢n}. The operatorg; naturally extend to

which are products of the eigenfunctions of #iéone variable

DVR functions). Note that iff = ./wiog)wg, then the nodes
Ao = (Aoas -+ » Ad)ae) in the direct product DVR are those
of a degree @ + 1 product cubature formula.

Despite their shortcomings, direct product DVRs are particu-
larly useful for Hamiltonians of the forml = Ho + €V(X), where
eis small anddo =i, + ... + A, is @ sum of “sub-Hamiltonians”
acting on spaceg; of functions in one variable. In this cade,
is a small perturbation oHo and a space/ spanned by
eigenfunctions oHy, which are products of eigenfunctions of
the A, is a very natural choice. This is the idea of “potential
optimized” DVRZ2 it is a direct product DVR with a sufficient
number (typically a few dozen) of the eigenfunctions of each
A, chosen as the basis functions’. These are obtained
numerically, to machine accuracy, using one-dimensional DVRs
with a few hundred basis functions. This step is called
“contraction” in the DVR literature. Where applicable, the
potential optimized DVRs are orders of magnitude more efficient
(i.e., dim.Js" is much smaller without compromising accuracy)
compared to general direct product DVRs. As in all direct
product DVRs, the coordinate matrices in potential optimized
DVR are commuting, a fact that allows the convenient evalu-
ation of the potential matrix.

5.2. Dawes-Carrington Commuting Approximations DVR.
The idea of potential optimized DVR was extended by Dawes
and Carrington to the case of multidimensional sub-Hamilto-
nians!® As in the discussion of direct product DVRs, we use
small fonts to denote operators and matrices on small spaces
and large fonts to denote operators and matrices on tensor
product spaces. The algorithm in ref 13 is described in the
following setting, which can be naturally generalized. Suppose
thatH = A, + Ay, + eV(Ry, X2, X3, Xa), Wherefy; is composed of
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the operators;, %, o/0x;, o/9x; for i, j = 1, 2 or 3, 4. Similar to Henon-Heiles V(xy) = 0.50&+y?) + u(xy - y*13)
the case of potential optimized DVR, we chooSe= /1, ® 34 L ' = ' '
where . Jj is spanned by eigenfunctions éf. The nj x nj

(n; = dimJj) coordinate matrices ot are generally noncom-
muting, [x, x] = 0. Using the simultaneous diagonalization al-
gorithm from ref 27, it is possible to find a unitary, x nj
matrix R;j so that the sum of squares of the off-diagonal entries
in both Rj™R;, Rj™R; is small (hopefully minimal). The
diagonal matrices\, = diag(R;}g, R)), A, = diagR] xR;) are
obtained by setting the off-diagonals to zero and then the
(nondiagonal) matricex® = RjaR],x = RjAR] are
commuting approximations of;, x. Commuting coordinate
matrices are then defined ofi by X°° = X ® I,xns, fOr

i =1, 2, andXP® = In,,n, ® X for i = 3, 4. The fact that

[XPC, X]-DC] =0 foralli,j =1, 2, 3, 4 allows convenient s = - >
evaluation of the potential matrix o in Dawes-Carrington K =0.1118034
DVR. Figure 1. Level sets of the HenoenHeiles potential; the setg(x, y)

=0,2,4,..,24 and¥(x, y) = 13.333 333 (straight lines) are shown.

It is very natural to consider replacing the commutin ; ! " \ :
y b 9 9 The triangle is a well and each of its vertices a saddle point.

approximationsx?©, x*° of the Dawes-Carrington DVR with

commuting extensions, % (see definition 3). Recall that the  extension7is needed to obtain a DVR set, and it is argued in
cubature DVR coordinate matrices oh are in fact cCommut-  ref 5 that since their cubature formula is tetrahedrally invariant
ing extensions of the coordinate matrices .dhTherefore, it makes sense to seek an extension which is an irreducible
Figures 4 and 9 indicate that commuting extensions may give jnyariant subspace of the same tetrahedral group. There are many
better accuracy than commuting apprOX|mat|ons_. This p055|b_|llty such extensions, but we need those for which the cubature
further motivates future research on computing commuting formuyla evaluates all inner products exactly. Such an extension
extensions. 7 is found within the space of spherical harmonics With 3,

5.3. The Littlejohn—Cargo Approach. Apart from ref 13, thus giving a DVR set whose nodes are those of the cubature
the only oth_er published nondirect product multidim_ens?onal formula and whose function space. I5 = </’§2 © T
DVRs are given, to the best of our knowledge, by Littlejohn Our approach to the calculation of DVR sets differs in two

and Cargo m_refs > and .6' Thgse are bas_ed on the notion 0fmain points: First, as described in section 3.1, we consider only
DVR sets? r'eV|ewed. here in secthn 2.2. An important observa- the problem of extending’to f when a cubature formula is

tion made in ref 5 is that there is a cor_respondgnce b_etweengiven. The problem of constructing cubature formulas is left to
DVR sets and cubature formulas. Particularly, if arpoint future work. Second, the algebraic approach of our solution to

cub(;:\tu;e .formulgl with posnll\;e W?'ghts glvgihexa;:htly alldlnner the extension problem can accommodate symmetry consider-
products in am-dimensional function spacé then the nodes 401« bt is not restricted by them.

and./" form a DVR set. It is also observed there that if such a
cubature formula hasl points withN > n = dim(/), then a 6. Numerical Examples
DVR set may be obtained by extending to rdimensional )
space /" D ./’ for which the formula still gives exactly inner 6.1. Cubature DVRs and FBRs for the Planeln section
products. Therefore, the task of constructing a DVR set for a 4-1, we explained how to apply cubature DVRs and FBRs to
given function space’ is decomposed in ref 5 to the problem  Problems whose configuration spaceRwith zero boundary
of finding a suitable cubature formula, and then extending ~conditions. Here, this is applied to the Herdreiles Hamil-
to a larger space’. toniar?®

A severe obstacle to finding DVR sets is that there@ge?) 5 5
equations to satisfy (orthogonality of projected delta functions) | = 9 _ o 242
and onlyO(n) variables (coordinates of DVR points); note that 2 X, ! 2
this corresponds to the difficulty of constructing cubature
formulas. Thus, refs 5 and 6 suggest to seek DVR sets in whichwith 4 = 0.111 803 4. A contour plot of the potential appears
the nodes are an orbit of a discrete group of transformations, in Figure 1. It is a triangular well whose minimum is at the
and in which the DVR basis functions are an orbit of a unitary origin and whose maximum value of 13.333 333 is attained at
representation of the same group. Then, the number of orthogo-the straight line level sets (this is the maximal value of the well,
nality conditions is reduced to, since orthogonality of one  not of the potential). Each vertex of the triangle is a saddle point.
DVR basis function to all others implies orthogonality of any Note thatH = Ho + V(X1, %), whereV(X, %) = u(X%Xx —
two. We stress that the correspondence between cubature an,?/3), andHy is the isotropic harmonic oscillator Hamiltonian.
DVR is general, while DVR sets in which the DVR functions The cubature formulas used to construct the cubature DVRs
are obtained as an orbit of a group are a special case. and FBRs are the degreg 2 1 formulas from refs 8 and 9,

These ideas are combined in ref 5 to obtain a 12 point DVR whereq = 5, 6, 7, and 8 and the number of nodes in each is
set on the sphere: a degree 5 cubature formula is found whose6, 35, 46, and 57, respectively. The node locations are
12 nodes are the vertices of an icosahedron invariant under thellustrated in Figures 2 and 3 together with the squared absolute
action of a tetrahedral group and whose weights are equal. Invalue of typical DVR functions, note the nondirect product
fact, this formula can be obtained by rotating the nodes of layout. The function spaces used for the cubature FBRs are
formulaUs: 51 from ref 24. These formulas evaluate exactly ., = exp(—(Y2)(x2 + XZZ))_@RZ, q=>5, 6, 7, 8, whose dimen-

all inner products in the nine-dimensional spaé’éz spanned sionis @ + 1)(q + 2)/2. In the cubature DVRs/[  was extended
by spherical harmonics with < 2. A three-dimensional  to spaces/’, as explained in section 4.1.

+u 3

)A(lzf(z - 1)A(zs) (29)
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26 nodes in 11th degree cubature formula 35 nodes in 13th degree cubature formula Henon-Heiles: Ic:)g1 0(|error in eigenvalues|) vs q
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Figure 2. Cubature DVR nodes and functions f&2; this figure
illustrates the nodes in the cubature DVRs used for the Hefrtwiles
problem, together with the squared absolute value of typical DVR basis
functions. The nodes are those of the 11, 13, 15, and 17 degree cubatur
formulas constructed in refs 8 and 9 f@r= R2, w(xy, X2) = exp(=x;?

— X?). DVR basis functions were obtained by solving problem 1 o
section 3.1 for these cubature formulas.

Figure 4. Performance comparison; eigenvalues in the Hertdailes

problem were approximated using DP DVR (direct product), cubature

DVR, cubature FBR, and DC DVR. This figure shows I@g(or) in

approximating the first, fourth, and seventh eigenvalues (vertical axis)

f versuy (horizontal axis). Note the rapid decay of error with increasing
g in DP DVR, cubature DVR, and FBR but not in DC DVR.

|DVR function|2 and nodes of the 15th degree cubature formula

Henon-Heiles error in eigenvalues (q=8)

14 T T T T T
DP DVR
<& cub DVR
9 * _cub FBR

<0

error
)
T
%
I

Figure 3. Typical DVR function; the squared absolute valfig? of
a typical DVR basis functiof, is shown here, together with the nodes
of the corresponding degree 15 cubature formula used for the Henon
Heiles problem. o . . . . , . . .
0 10 20 30 40 50 60 70 80 90
eigenvalue index
The results are compared to those of two other methods, directrigure 5. Large errors in high DVR eigenvalues; the error in
product DVR obtained from one-dimensional GatuBermite approximating HenonHeiles eigenvalues using cubature DVR, cu-
guadrature (DP DVR) and the algorithm given by Dawes and bature FBR, and DP DVR with = 8 is shown. The steep increase of
Carrington in ref 13 (DC DVR); see section 5 (but bear in mind €rror restricts DP DVR and _cubature DVR to calculation of lower
that here we have only;, 50 the combination o with s, SUETLANES, Howeuer, 1 ne pa ot Spectm, e s of
should be ignored now). The function spaces used in DP DVR . ./ 9 y P
are the product spaces exi{l/2)x,?). 7 ® exp(—(Y2)x?) 7y,
g=>5, 6, 7, 8, whose dimension ig ¢ 1) The function spaces = DVR approximations of eigenvalues which are significantly
used in DC DVR were the same as those used in the cubatureaboveq + 1 (see also Figure 5).
FBRs. Figure 4 shows the log of the absolute value of errors in
Table 2 lists the exact eigenvalues together with errors in approximating the first (lowest), fourth, and seventh eigenvalues
their approximation by the four methods. The exact eigenvaluesin the Henor-Heiles problem using the four methods. Note
were computed using DP DVR withh= 45 for which the first the (approximately) linear decrease in l@gfor) for DP DVR,
45 eigenvalues were observed to converge to 10 decimal digits,cub DVR, and cub FBR (see also Figure 9). This is a
and the remaining eigenvalues up to the 81st were convergedmanifestation of the “exponential convergence” discussed in ref
to 4 decimal digits (the table shows only 50 eigenvalues). The 4; that is, the error in a given eigenvalue seems to decrease
81st eigenvalue is 12.065 039; note that it is below the barrier exponentially with increasing). Although further tests are
energy of 13.333 333. Recall that for eagh= 5, 6, 7, 8 the required, it seems that DC DVR based on commuting ap-
space /' is spanned by all harmonic oscillator eigenfunctions proximations has a much slower convergence rate.
with energyE < g + 1. It is interesting to observe the abrupt Figure 5 gives the errors in all Henemhleiles eigenvalues
error increase in the cub DVR and, to a lesser extent, in the DP calculated by DP DVR, cubature DVR, and FBR, wifh+ 8.




TABLE 2: Results for the Henon—Heiles Problent

error, q = 5 error, q = 6 error, q = 7 error, q = 8

exact DPDVR cubDVR cubFBR DCDVR DPDVR cubDVR cubFBR DCDVR DPDVR cubDVR cubFBR DCDVR DPDVR cubDVR cubFBR DCDVR
0.998595 0.000000 0.000000 0.000004 -0.000583 0.000000 0.000000 0.000000 0.000548 0.000000 0.000000 0.000000 0.000948 0.000000 0.000000 0.000000 0.000418
1.990077 0.000002 -0.000020 -0.000018 0.003238 0.000000 -0.000003 0.000016 0.000958 0.000000 0.000000 0.000001 0.003651 0.000000 0.000000 0.000000 0.001992
1.990077 0.000029 0.000011 0.000015 0.004465 0.000005 0.000011 0.000017 0.007186 0.000001 0.000001 0.000001 0.003752 0.000000 0.000000 0.000000 0.004129
2.956243 0.000390 0.000646 0.001235 0.019416 0.000100 -0.000024 -0.000003 0.018893 0.000018 0.000030 0.000057 0.017488 0.000003 0.000008 0.000012 0.014750
2.985326 0.000021 0.000096 0.000205 -0.007941 0.000007 -0.000080 -0.000046 0.006673 0.000001 0.000001 0.000065 -0.000627 0.000000 -0.000000 0.000001 0.004717
2.985326 0.000385 0.000397 0.000439 0.021110 0.000101 0.000033 0.000044 0.006768 0.000018 0.000049 0.000069 0.012380 0.000004 0.000007 0.000008 0.005310
3.925964 0.002085 0.008247 0.012930 0.042783 0.000316 0.000567 0.002612 0.025720 0.000053 0.000119 0.000294 0.029820 0.000008 0.000107 0.000177 0.027242
3.925964 0.009038 0.013202 0.015156 0.047230 0.002167 0.002609 0.003520 0.037305 0.000631 0.000727 0.000829 0.030480 0.000140 0.000183 0.000234 0.030645
3.982417 0.003544 0.002335 0.017583 0.006217 0.000896 0.000503 0.001053 0.008038 0.000247 0.000299 0.000441 0.007600 0.000053 0.000168 0.000258 -0.004051
3.985761 0.000953 0.013542 0.015087 0.004630 0.000069 0.000120 0.000164 0.005433 0.000013 -0.000001 0.000047 0.005534 0.000002 0.000066 0.000150 0.016010
4.870144 0.033902 0.022212 0.023024 -0.034251 0.010767 0.015073 0.024217 0.039863 0.003521 0.005985 0.009152 0.053823 0.001157 0.001762 0.001997 0.052571
4.898644 0.012103 0.062193 0.067121 0.058173 0.002472 0.013088 0.022299 0.029489 0.000554 0.002333 0.006797 0.025995 0.000115 -0.000243 0.000040 0.033590
4.898644 0.063453 0.083364 0.084776 0.101734 0.019065 0.020845 0.026372 0.047154 0.005634 0.007465 0.008489 0.049508 0.001703 0.002738 0.002845 0.034745
4.986251 0.007590 0.018426 0.018788 0.031302 0.001705 0.004797 0.026918 -0.034654 0.000371 -0.000159 0.000901 0.004759 0.000082 0.000168 0.000394 0.004980
4.986251 0.041604 0.035273 0.036168 0.206281 0.004043 0.025306 0.027824 0.086615 0.001246 0.002157 0.002502 0.005723 0.000374 0.000496 0.000581 0.005035
5.817019 0.074343 0.169759 0.183062 0.093524 0.038010 -0.016327 -0.000006 -0.031627 0.010861 0.019547 0.044865 0.079910 0.002508 0.016256 0.020598 0.067069
5.817019 0.088449 0.184125 0.189228 0.098149 0.050402 0.065039 0.074163 0.005318 0.026626 0.046871 0.052892 0.086146 0.013211 0.019715 0.022655 0.077801
5.867015 0.131959 0.141751 0.144499 0.145074 0.035440 0.043405 0.048259 0.120179 0.017951 0.023990 0.043697 0.043001 0.011326 0.016940 0.020914 0.030988
5.881446 0.125710 0.169670 0.183892 0.139033 0.091741 0.074274 0.075243 0.111737 0.020381 0.030349 0.043649 0.055245 0.000947 0.007142 0.009268 0.066545
5.991327 0.024169 0.087208 0.094521 0.139699 0.008859 0.026177 0.026267 0.234206 0.001267 0.008610 0.042805 -0.051163 0.000548 -0.001632 -0.000042 0.003661
5.991327 0.054513 0.156798 0.181447 0.143149 0.060769 0.052299 0.052776 0.245441 0.006363 0.033717 0.043550 0.091950 0.002021 0.005755 0.005920 0.004035
6.737916 0.129690 1.460453 0.103292 0.244322 0.263010 0.151273 0.063844 0.015767 0.038018 0.015192 0.029002 0.079671 0.087365 0.129075
6.764867 0.126945 2.183174 0.083200 0.229370 0.237373 0.137574 0.040484 0.006456 0.025891 -0.004370 0.012644 0.057740 0.065547 0.103478
6.764867 0.234379 2.539693 0.205699 0.248368 0.254481 0.167889 0.095193 0.113151 0.120286 0.212621 0.061615 0.082028 0.087563 0.128020
6.853431 0.211197 2.655938 0.125617 0.239564 0.259603 0.185466 0.039408 0.085167 0.116495 0.147852 0.012770 0.050167 0.066336 0.069126
6.853431 0.225570 2.879236 0.165573 0.278270 0.303799 0.299759 0.134080 0.145834 0.150598 0.180184 0.040152 0.058500 0.071238 0.069971
6.998932 0.856438 0.056185 0.194247 0.239916 0.172583 0.010062 0.050151 0.052812 0.308977 0.004160 0.041230 0.062553 -0.075123
6.999387 0.928360 0.066091 0.244404 0.326441 0.210546 0.085883 0.069605 0.071375 0.309626 0.006010 0.051016 0.064820 0.089984
7.659485 0.450972 0.139632 2.743188 0.119957 0.268973 0.303157 0.200509 0.075454 0.065939 0.072652 0.051978
7.659485 0.462141 0.181354 2.988359 0.120481 0.326403 0.347711 0.232315 0.078070 0.124968 0.134088 0.052207
7.697721 1.268657 0.281562 3.054962 0.230206 0.324308 0.363308 0.215646 0.108347 0.178693 0.191378 0.253357
7.736885 1.280679 0.256186 3.343254 0.200339 0.310083 0.351203 0.314408 0.119821 0.167053 0.176641 0.281055
7.832735 1.333181 0.261015 3.762126 0.183422 0.318941 0.407662 0.243146 0.041470 0.138161 0.140757 0.225554
7.832735 2.320738 0.277888 4.105353 0.209372 0.371660 0.420817 0.392391 0.170434 0.240532 0.245858 0.229214
8.009425 2.271808 0.782532 4.130564 0.056054 0.230082 0.258994 0.252006 0.014698 0.087779 0.090166 0.379132
8.009425 3.083438 0.825866 0.105268 0.350205 0.398974 0.286901 0.115704 0.122653 0.122935 0.379204
8.554023 0.434060 0.192347 1.991762 0.146083 0.437525 0.449110 0.301778
8.576351 0.582125 0.178296 2.186544 0.131562 0.420779 0.449360 0.280145
8.576351 0.588688 0.356606 2.530373 0.280127 0.459297 0.464017 0.329332
8.677929 1.113288 0.296154 2.765010 0.228276 0.395689 0.415854 0.424285
8.677929 1.256393 0.355155 2.933068 0.316883 0.541364 0.561665 0.426548
8.811327 1.402949 0.315470 3.094330 0.191449 0.438750 0.461031 0.304290
8.815188 1.399100 0.321572 3.407805 0.239771 0.495176 0.517503 0.519255
9.021723 1.948624 0.671814 3.602606 0.078285 0.434931 0.487885 0.312895
9.021723 2.050122 0.743266 3.819408 0.166246 0.476680 0.553556 0.379001
9.444055 1.848686 0.522405 3.958890 0.224253 5.457143
9.444055 2.818157 0.532827 0.235971 5.753576
9.466773 3.017031 0.744734 0.410656 5.791812
9.552382 3.620778 0.663102 0.378695 5.917146
9.629394 1.099355 0.402723 6.090892

aThis table gives exact eigenvalues and errors (approximaieact) of the four different methods applied to the Henbieiles problem. DP DVR stands for direct product DVR, cub DVR and cub FB

stand for cubature DVR and FBR, and DC DVR stands for the Dawesrington algorithm. All numbers were rounded to six decimal digits.
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Vi, %% = 10 6C + 1) Figure 6 gives a plot of this double-well potential; the well
centered at the point1, 0, 0) is due to negative, values,
] and the well centered at (61, 0) is due to negative, values.

The results of cubature DVRs and FBRs obtained from
nonproduct cubature formulas were compared to those of
product cubature FBRs (PC FBR) and to the Daw@arrington
method (DC DVR). For the latter three methods, the corre-
sponding function spaces are= ffcsf, withgq=>5, 6, 7, 8, of
dimension ¢ + 1), and in each case, spherical harmonics were
used as basis functions. In cub DVR, the spdogas extended
toS, as explained in section 4.2. The cubature formulas used
in cubature DVR and FBR were the 11th degree formuga
11-3 from ref 24 with 62 nodes, and the 13, 15, 17, degree
formulasUs: 13—2.1(1, 0, 1, 0, 2, 0y 78,Us: 15—-1.1(1, 0, 1,

ol B N 1,2,0)— 86,Us 17-1.1(1, 0, 1, 1, 3, 0 110, from ref 25
Figure 6. Potential on sphere; illustration of the potentgb, ¢) = with 78, 86, and 11_0 nodgs, respectlveliy. The n'odes of th.ese
10 sir? 6(cos ¢ + sim ), which in Cartesian coordinates reads;, formulas together with typical DVR functions are illustrated in
%o, X3) = 10(:* + %°). The plotted surface consists of the points Figures 7 and 8. The product formulas used for PC FBR were
(0.05V(x1, Xz, X3) + 1) (%1, Xo, Xg); that is, standing at any poinky( x, obtained as follows: Thé coordinates of the nodes in a degree

x3) on & and looking up (or (’jown) at the plotted sur_face, its height 2q + 1 product formula ors? are cos? of theq + 1 nodes in
above_(or belqw) the sphere’s surface is the normalized value of the the degree @+ 1 Gauss-Legendre formula onf1, 1]. Theg
potential function, 0.08(x1, Xz, Xs). .
coordinates aren(27/(2q + 2)), m=1, ..., 3 + 2; thus, there

Thus, 81 eigenvalues are calculated by DP DVR, 57 are are 2§ + 1) nodes. The weights are products of Gatiss
calculated by cub DVR, and 45 by cub FBR. For the first 45 Legendre weights with the constant Ij(2- 2). The product
eigenvalues, the errors of the three methods are similiar. cubature FBRs used here were obtained from such product
However, the error steeply rises in the additional eigenvalues cubature formulas witly = 5, 6, 7, and 8, and the number of
provided by DP DVR and cub DVR. These results support our nodes in each is 72, 98, 128, and 162, respectively. In ref 30,
discussion of section 3.2 in favor of cubature FBRs; the several methods are compared for constructing representations
additional information calculated by DVRs (eigenvalues-46  of spherical Hamiltonians, among which is PC FBR. The
81 in this example) may contain large errors. However, cubature conclusion there is that this method is the most accurate and
DVRs may possibly overcome this problem in the future. efficient among the alternatives tested. The DC DVR was
Presently, DVR basis functions are arbitrarily chosen from the applied in Cartesian coordinates; that is, commuting approxima-
solutions of problem 3; a refinement is certainly needed. tions of the X;, Xz, X3 coordinate matrices were found by

6.2. DVRs for the SphereS%. We now turn to problems on  discarding small off-diagonal entries, as explained in section
the sphereQ = §2 discussed in section 3.2. Consider the 5.2. In all of our numerical examples, the DC DVR points
HamiltonianH = L2 + V whereV(0, ¢) = 10 sir? (cos ¢ + ((A1)aa (A2)aa (A3)aa) Were on the spher€; it is not clear at

sin® ¢); in Cartesian coordinate¥|(x;, Xz, X3) = 10(x:% + x2°). present if this is generally true.
62 nodes in 11th degree cubature formula 78 nodes in 13th degree cubature formula
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Figure 7. Cubature DVR nodes and functions f8% this figure illustrates the nodes in the cubature DVRs used for the double-well problem on

the sphere, together with the squared absolute value of typical DVR basis functions. The nodes are those of the 11, 13, 15, and 17 degree cubature
formulas from refs 24 and 25 which are specified in the text. DVR basis functions were obtained by solving problem 1 of section 3.1 for these
cubature formulas.



TABLE 3: Results for Problem on the Sphere

error, q = 5

error, q = 6

error, q = 7

error, q = 8

exact cubDVR PCFBR cubFBR DCDVR cubDVR PCFBR cubFBR DCDVR cubDVR PCFBR cubFBR DCDVR cubDVR PCFBR cubFBR DCDVR
-4.564174 -0.003017 -0.000680 -0.001801 2.777245 0.000301 0.000159 0.000358 2.503076 -0.000014 0.000028 0.000017 -0.065542 0.000001 0.000000 0.000001 -0.164797
-2.522768 -0.001794 0.008865 0.004725 2.581197 0.000848 0.000092 0.000899 2.387476 0.000018 0.000062 0.000043 1.694697 0.000002 0.000005 0.000005 1.639890
0.255758 0.005581 -0.001080 0.006241 1.159641 -0.000102 0.000655 0.000090 1.026775 0.000049 0.000022 0.000068 -1.069600 0.000002 0.000004 0.000003 -1.125076
2.229091 0.019354 0.026248 0.023769 0.804582 -0.000784 0.000962 -0.000241 0.831997 0.000266 0.000335 0.000314 0.245911 0.000007 0.000018 0.000017 0.214493
4.051134 0.021141 0.014149 0.028142 0.949941 -0.000157 0.002185 0.000711 0.936394 0.000174 0.000069 0.000196 0.324692 0.000011 0.000022 0.000018 0.280967
4.162917 -0.002494 0.016540 0.006038 1.244494 0.001238 0.000536 0.001553 0.980747 0.000068 0.000294 0.000209 0.248456 0.000003 0.000009 0.000011 0.190775
5.873425 0.011223 0.008838 0.015069 0.093475 0.000147 0.001695 0.000235 0.121953 0.000104 0.000004 0.000136 0.120009 0.000004 0.000013 0.000009 0.135917
6.176480 0.004456 0.040351 0.035203 0.274049 0.004089 0.005251 0.006763 0.352457 -0.000819 -0.000674 -0.000754 -0.161189 0.000020 0.000022 0.000030 -0.160582
7.847146 0.000101 0.018945 0.012182 -1.129376 -0.000034 0.000082 0.000769 -0.988807 -0.000043 0.000232 0.000018 -0.040065 0.000005 0.000006 0.000010 0.006304
10.571264 0.038190 0.117508 0.085275 0.770191 0.002520 0.009553 0.008982 0.754284 -0.000672 0.000781 -0.000435 0.425390 0.000017 0.000041 0.000027 0.382957
10.631898 0.045632 0.070075 0.072090 0.944880 0.009650 0.011536 0.011800 0.746239 0.001014 0.000256 0.001227 0.405675 0.000033 0.000066 0.000077 0.356732
11.853191 -0.171764 -0.200608 -0.136266 -0.014278 0.022975 0.017304 0.027232 0.182729 -0.000452 0.002703 0.002323 -0.030994 0.000054 0.000021 0.000088 -0.039996
11.911442 0.053243 0.033762 0.070444 0.137484 -0.000498 0.013246 0.006962 0.198296 0.000703 0.000175 0.000989 -0.050380 0.000007 0.000072 0.000026 -0.021757
12.370341 0.042599 0.011566 0.051707 -0.231977 0.006962 0.009194 0.008679 -0.119824 0.000762 -0.000532 0.000795 0.150429 0.000018 0.000061 0.000036 0.197124
12.840853 -0.018759 0.023166 0.003669 -0.520800 -0.000371 0.004399 0.004079 -0.547168 -0.000340 0.000989 0.000120 -0.283441 0.000004 -0.000005 0.000015 -0.264316
13.294078 0.063419 0.156144 0.087558 -0.831434 0.007459 0.010276 0.010934 -0.772051 0.000346 0.001411 0.000668 -0.357129 0.000023 -0.000002 0.000035 -0.313026
19.020923 -0.287322 -0.068052 -0.248045 0.057002 0.002951 0.039765 0.027313 0.341056 -0.000639 0.005183 0.007110 0.294504 -0.000500 0.000301 -0.000415 0.270952
19.024855 -0.072801 -0.013467 -0.047415 0.220960 0.056286 0.048597 0.067714 0.415566 0.001480 0.005694 0.003662 0.355260 0.000759 0.000199 0.000879 0.302535
19.706739 0.009821 -0.026511 0.086776 -0.279062 0.042739 0.021645 0.059564 0.115867 0.009762 0.014299 0.013485 0.057640 0.000040 0.000471 0.000334 0.036512
19.783650 0.135000 0.246471 0.177195 -0.077819 -0.005447 0.052586 0.008870 0.182823 0.003942 0.007278 0.007635 0.034047 0.000364 0.000459 0.000544 0.032131
20.286198 -0.258738 -0.058256 -0.201283 -0.369555 0.019760 0.030235 0.035207 -0.188756 0.003193 0.002000 0.004044 -0.184861 0.000083 0.000409 0.000120 -0.118286
20.298254 0.116085 0.063482 0.178037 0.098241 0.024167 0.029564 0.028594 -0.041049 -0.002912 0.005800 0.002827 -0.097637 0.000069 -0.000325 0.000109 -0.083819
20.356430 0.229890 0.019675 0.244418 0.206082 0.030366 0.048716 0.048972 -0.085554 0.006179 0.004559 0.007890 0.053645 0.000006 0.000464 0.000093 0.041167
20.643964 0.119021 0.110057 0.145382 0.055894 0.042474 -0.037022 0.049740 -0.315185 -0.008107 0.004014 0.004359 -0.206027 0.000526 0.000696 0.000816 -0.168348
20.726590 0.379144 0.807376 0.552623 0.057697 -0.019070 0.064421 -0.010097 -0.382565 0.004940 0.010904 0.008608 -0.213559 0.000277 0.000311 0.000507 -0.171699
29.291987 0.220238 0.714643 0.719833 -1.611612 -0.095765 -0.134730 -0.067421 -0.572556 -0.008360 0.024100 0.015474 0.149463 0.001784 0.003325 0.003869 0.193949
29.293494 0.401238 0.715092 0.728574 -1.269847 -0.078555 0.128371 -0.062293 -0.127194 0.022947 0.038626 0.046412 0.287199 0.002179 0.003587 0.003059 0.238158
29.703363 0.652310 0.857810 0.887823 -1.247244 -0.309156 -0.209834 -0.272630 -0.403942 0.026646 0.055488 0.056112 -0.000382 0.002267 0.005802 0.005076 0.018911
29.716363 0.793485 1.085193 1.077708 -0.910398 0.106220 0.051102 0.123477 -0.095118 0.034110 0.065303 0.059864 0.096105 0.004259 0.005472 0.006181 0.046921
30.159471 0.467864 0.908975 0.714926 -1.284536 -0.282942 -0.256963 -0.274360 -0.302555 -0.047467 -0.006274 -0.015417 -0.224864 0.003560 0.004786 0.005352 -0.167637
30.161245 0.632057 0.915777 1.061430 0.208173 -0.216089 -0.155044 -0.196536 -0.066898 0.017685 0.025514 0.044366 -0.151029 0.002308 0.004751 0.004396 -0.079888
30.183635 0.659771 0.967518 1.123667 1.611845 0.101631 -0.008325 0.148786 0.165940 0.015771 0.034557 0.023711 -0.068470 0.001178 0.001271 0.002063 -0.044017
30.212557 0.731718 1.105261 1.310408 1.642066 0.297594 0.157076 0.301701 0.255993 0.002651 0.022108 0.018470 -0.060481 0.001138 0.002830 0.002323 0.059788
30.296161 0.954175 1.385575 1.293847 2.310786 0.316863 0.270404 0.334886 0.365316 0.036816 0.023252 0.042476 -0.026534 0.001971 0.003917 0.003375 0.021111
30.445755 0.990548 1.309871 1.479880 2.214337 0.182603 0.135351 0.217110 0.277405 -0.051823 -0.025790 -0.037363 -0.045445 0.003046 0.004622 0.005386 -0.106846
30.477131 2.304622 2.838875 2.579330 3.082443 0.467866 0.831508 0.511291 0.539226 0.050823 0.086658 0.082243 0.054070 0.004183 0.006355 0.006494 -0.039562
41.468987 11.446208 0.389748 0.533924 0.534017 -2.246029 -0.272715 -0.117400 -0.259694 -0.106246 0.013345 0.031063 0.025825 0.074512
41.469564 13.052851 0.484496 0.539181 0.538542 -1.512979 -0.095061 -0.016215 -0.070150 0.003935 0.025196 0.033665 0.037057 0.154610
41.718463 14.883231 0.647509 0.713718 0.688002 -1.521911 -0.296306 -0.132207 -0.277001 -0.201697 0.025125 0.035462 0.034078 -0.073519
41.721214 17.521087 0.686920 0.863687 0.911428 -1.357439 -0.059477 -0.078312 -0.034349 -0.160790 0.026694 0.041992 0.047171 0.041393
42.036347 18.618229 0.420139 0.704447 0.673379 -1.339846 -0.251891 -0.200957 -0.198651 -0.329795 0.023579 0.025127 0.037671 -0.157994
42.042876 23.434579 0.534692 0.773143 0.738087 -1.120236 -0.082176 -0.147873 -0.055794 -0.300314 0.019595 0.037450 0.032918 -0.085514
42.123245 25.407586 0.544753 0.874102 0.734173 -0.112610 -0.158897 -0.050573 -0.110860 -0.275247 0.015416 0.019094 0.024355 -0.059058
42.125840 26.612733 0.575418 0.917106 0.762259 1.681443 -0.073350 0.072505 -0.052369 -0.190838 0.014228 0.025511 0.022333 0.008119
42.173999 27.237635 0.794832 1.081393 0.958162 1.934344 0.060507 0.051243 0.092434 0.007816 0.022116 0.023972 0.031251 -0.013244
42.214949 30.233350 0.980636 1.076810 1.133215 2.090458 0.040785 0.056097 0.073506 0.167649 0.015273 0.027856 0.024859 0.011924
42.215904 32.449262 1.639584 1.185489 1.839535 2.577004 0.312548 0.235297 0.319804 0.289688 0.016078 0.028956 0.027901 0.055575
42.324108 34.916290 1.592439 1.146159 1.760840 3.131057 0.282828 0.158473 0.285438 0.260174 0.021705 -0.015940 0.029153 0.062986
42.338642 36.011735 1.593863 2.651312 1.813688 3.322794 0.659065 0.805566 0.769089 0.424136 0.012881 0.061838 0.023535 0.121911
55.588705 23.937626 47.222084 -0.159746 0.413655 0.413714 -3.470509 -0.409245 -0.235364 -0.399986 -0.360051
55.588871 26.407265 48.749309 0.179722 0.418190 0.417597 -3.232754 -0.122594 0.001943 -0.112019 -0.185121
55.745631 26.868760 54.368934 0.206709 0.601606 0.570245 -2.496484 0.149842 -0.091311 0.151177 -0.290863

aThis table gives exact eigenvalues and errors (approximaggact) of the four methods applied to the double-well Hamiltomias £2 + 10 sir? 6(cos ¢ + sir? ¢) on the sphere. PC FBR stands for

product cubature FBR, cub DVR and cub FBR stand for cubature DVR and FBR, and DC DVR stands for the-Oamiegton algorithm. All numbers are rounded to six decimal digits.
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[DVR function|? and nodes of the 17th degree cubature formula error in theadditional eigenvalues produced by cubature DVR
(see Figure 10) suggests that the arbitrary choice of DVR
functions in the solution of problem 3 should be refined.

7. Discussion and Conclusion

< The concept of DVR sets was introduced in ref 4 as a general
framework for future development of multidimensional non-
product DVRs (the DawesCarrington DVR$® present an
alternative framework; as far as we can see, the DC DVR
functions are not projected functions) (see section 2.2).
a typical DVR basis functiofy, is shown here, together with the nodes gzvger\é?;’ 5e Xacr(]a (51 tGS?rtEZS(?:I (;I:/J?z:t:ir(])r? roef %@glgzgsbé;yarmgstgn
of the corresponding degree 17 cubature formula used for the double- -
well problem on the sphere. open pr_oblem. In section 3.1, we formulated the problem of
calculating DVR sets based on cubature formulas as a linear
The results for the four methods applied to the double-well @/gebra problem and solved it in full generality. Our solution
problem above are given in Table 3 and Figures 9 and 10. Thecan give families of DVR sets associated with any known
“exact” values of theéE; were obtained using PC FBR with= cubature formula; pre_wously_, only a few nonproduct DVR sets
19, a value for which the first 81 eigenvalues were converged Were known. As an illustration, we calculate four new non-
to 11 decimal digits (Table 3 gives the first 52 eigenvalues). Product cubature DVRs with up to 110 points for the sphere
Note that here PC FBR is not associated with a tensor productand 4 for the plane.
function space. Rather, the same spherical harmonics function We show that cubature formulas can also give cubature FBRs
space that is used in cub FBR and DC DVR is also used in PC (see section 3.2). In contrast to the one-dimensional and direct
FBR. This is the reason that the corresponding columns in Tableproduct cases, the multidimensional cubature FBRs we suggest
3 have equal length whereas in Table 2 the DP DVR column is do not use the same function space as the corresponding DVRs.
longer. Examination of Table 3 shows that, as in the Henon Rather, cubature FBRs include a projection to a low energy
Heiles problem, an abrupt cub DVR error increase occurs at Subspace. The accurate results produced by cubature FBRs, the

- a
Pl o 4  (rodians)

Figure 8. Typical DVR function; the squared absolute valfig® of

the first eigenvalue which is significantly greater thago + relatively low dimensional function spaces used, and the ease
1). For eachy = 5, 6, 7, 8, this is the maximal2 eigenvalue of application all suggest that cubature FBRs can be useful.
of the spherical harmonic basis functions. 6f This observation is supported by the work of Wang and

Similiar to the Henor-Heiles problem, the results in Figures ~ Carrington] which use an FBR based on Lebeédaikov
9 and 10 and Table 3 illustrate the good performance of cubaturecubaturé! to find bend eigenfunctions of an HF trimer.
DVRs and FBRs relative to PC FBR and to DC DVR. Moreover, Except for product cubature formulas and for refs 5 and 7,
Figure 9 indicates that the error in DC DVR decays compara- the connection between DVRs, FBRs, and multidimensional
tively slowly with increasingy. However, the steep increase of integration formulas has been largely overlooked. Our findings
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Figure 9. Performance comparison; this figure shows the log of the error in approximating the 1st, 8th, and 16th eigenvpbfebesslouble-
well problem withV(6, ¢) = 10 sirf 6(cos ¢ + sir® ¢). Note the rapid decay of error with increasiggn cub DVR, cub FBR, and PC FBR but
not in DC DVR. Note that the errors in PC FBR and cub FBR are similar, although the latter requires significantly less computational effort.
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Several issues in our approach are presently open and call
for further research.

With the exceptions of refs 21 and 22, there are not that many
high degree nonproduct cubature formulas available. DVR and
FBR calculations would benefit from finding new, very high
order (of at least several dozen), cubature formulas for relevant
domains and weight functions. It should be examined whether
. the methods used by Lebedev and Laikov to calculate cubatures
o on the sphere, of degree up to 131, can be extended to other
o domains and higher degrees. Additionally, a fresh and almost
unexplored point of view on the problem of calculating
cubatures is offered by their equivalence to commuting exten-
" w90” ] sions of coordinate matrices on spaces of weighted polynomials,
as described in refs-810.

The problem of constructing cubature DVR sets based on a

S envalue inda known cubature rule was formulated here in problem 3 and was
Figure 10. Large error in high DVR eigenvalues; here, we show the SOIV_ed in section 3.1. The SO'UUO,” allows some frgedpm in the
error in eigenvalues calculated by cubature DVR, and cubature FBR, choice of cubature DVR sets. Figures 5 and 10 indicate that
for the double-well problem with/(0, ¢) = 10 sir? 9(cos ¢ + sin® criteria for optimizing the choice of DVR sets from among the
@). Both cub DVR and cub FBR were based on the degree 11 cubaturefull family of solutions should be introduced. One possible
formula Speciﬁed in the teXt: The Ste.ep increasg of _error in cubature approach is to require that the DVR coordinate matriceS, whose
DVR may be due to the arbitrary choice of solution in problem 3. 4ty elements are calculated using the cubature formula, will
establish general relations between nonproduct cubature for-be as close as possible to coordinate matrices calculated with
mulas and multidimensional DVRs and FBRs. This opens the the exact inner product. In an appropriate basis, this is equivalent
door to using any member in the menagerie of existing (positive to requiring that the extension blocks in the commuting
weight) cubature formulas for DVR and FBR calculations. extensions associated with a cubature DVR will be as close as

Multidimensional DVR algorithms are inextricably connected possible to the same blocks in the exact coordinate matrices.
with commuting matrix representations of coordinate operators. However, it should be kept in mind that our understanding of
This connection is recognized and explicitly used in ref 13 and nonproduct multidimensional DVRs is still preliminary; it may
in direct product DVRs; as explained here in section 2.2, this turn out that the results in Figures 5 and 10 are a manifestation
connection is also implicit in refs 5 and 6. In section 3.1, we of an inherent problem in the DVR approach.
showed that the coordinate matrices in cubature DVRs derived Molecular Hamiltonians are often composed of a sum of
from an odd degree formula areommuting extensionef several sub-Hamiltonians and a coupling potential term. It is
noncommuting coordinate matrices. This draws another con- often desirable to represent the problem in spaces spanned by
nection to cubature theory, where an equivalence was shownproducts of eigenfunctions of the sub-Hamiltonians. This is the
to exist between cubature formulas and commuting extensionsidea of potential optimized DVR which is extended to multi-

50

Double well on Sz, error in eigenvalues (q=5)

T T
O cubDVR
* _cub FBR

o
40 -

0 10 20 30 40 50 60 70

of coordinate matrices on weighted polynomial spdcé$.

Figure 11. Matlab code for constructing DVR sets. This figure gives the code implementing the construction of DVR sets explained in section 2.2.

[nodes,wts] = input nodes and weights of a degree 2q or 2q+1 cubature formula;
q = input q;

n = dinP?; N = length(vts);

ws= diag%wts); W' = sqr(w);

q 4
for k = 1:a sufficiently large integer % increase q, till solution is found
n = din(PY);
® = construct.®(n;,nodes);
if rank(®) == N
K = mull(®);
E = [eye(n); zeros(n - n, n)];
Y = null([E, K]’);
Bl = E'x®’#uxd+y;
K1 = E’*K;
if norm(K1*(pinv(K1)*B1) - B1) < 0.00001
[dummy, cY] = size(Y);
[dunmy,D,R) = svd( Y’+d’+wxdsY - eye(cY) );
if min(diag(D)) > 0.00001 % find r = rank(D)
r = N-n;
else
for r = 1:(N-n)
if D(r,r) < 0.00001
r=r1;
break
end
end
end
A = sqrt(D(1:1,1:1));
B = Bt * R(:,1:r)*inv(A);
k = null(K1);
kL= mull(s?);
C1 = pinv(Kikt)#B;
if (max(svd(C1)) < 1)
break % if 1-C1#C1 is positive semi-def then we have a solution
end
end
end
9 = 4+
end

% check that eq (?7) is solvable

dimensional sub-Hamiltonians in ref 13. The basic step in ref

if rank(®) != N
’no solution with tried values of q,: ramk & != N’
return

elseif norm(Ki*x**C1%[A, zeros(r, N-n-r)]*R’ - B1) > 0.000001
’no solution with tried values of q,: Ki*C1 !=B1’

return

elseif max(svd(C1)) > 1.000001
’no solution with tried values of q;: singular vals of C1 are too big’
return

end

[dummy, cC1] = size(C1);

(dummy,D1,R1] = svd(eye(cC1) - C1’#C1);

(dunmy, ckappa) = size(k);

L1 = [eye(cC1); zeros(ckappa - ¢C1,cC1)]; % choose any L1 with orthonormal columns
€0 = Li*sqrt(D1) * R1’;

L = (k*4C1 + £3C0);

C=Lx [A, zeros(r, N-n-r)] * R’;

W= (Bx[EYD) \ inv(w'?);

U= [E,Y + KsC]¥W;

ErrInprodlU = U’+U - eye(N);
errUU = norm(ErrInprodU(:),inf)
ErrValsU = norm(®*U - inv(w'?),inf)
X=U\E

errX = UxX - E;

ErrReproduceP{’ = norm(errX(:),inf)

% check that U solves problem 2

Note that we use (mostly) Matlab syntax; particulaty,meansA transpose conjugate. However, “not equal” is denoted’ Which is different
from the Matlab *=".
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13 is forming commuting approximations of coordinate matrices

on spaces spanned by eigenfunctions of the sub-Hamiltonians

It would be interesting to check the possibility of replacing these
commuting approximations with commuting extensions. To do
this, the problem of computing commuting extensions on such
spaces of functions (which are not spaces of weighted polyno-
mials) needs to be addressed.
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