J. Phys. Chem. R006,110,5513-5519 5513

A Test of the Continuous Configuration Time-Dependent Self-Consistent Field (CC-TDSCF)
Method on the H + CH,4 Reaction'

Liling Zhang, * Soo-Y. Lee$ and Dong H. Zhang*+!

Department of Computational Science, National &émsity of Singapore, Kent Ridge, Singapore 119260,
Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang
Technological Uniersity, 1 Nanyang Walk, Singapore 637616, and Center for Theoretical & Computational
Chemistry and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian, P.R. China 116023

Receied: Nawvember 15, 2005; In Final Form: January 11, 2006

The continuous configuration time-dependent self-consistent field (CC-TDSCF) method is employed to calculate
the flux—flux autocorrelation functions for the H CH, reaction on the potential energy surface recently
developed by Manthe and co-workers. We include up to 10 out of the total 12 degrees of freedom in our
calculations, only with the doubly degenerate bending modes involving the motion of the hydrogens in
nonreacting Chligroup excluded. Comparison of flexlux autocorrelation functions obtained by using the
exact dynamics method and the CC-TDSCF method shows that the CC-TDSCF method is capable of producing
very accurate results. Our calculations clearly reveal that the CC-TDSCF method is a powerful approximation
quantum dynamics method. It allows us to partition a big problem into several smaller ones. By changing
partition systematically, one can investigate the correlations between different degrees of freedom. By
grouping modes with strong correlations together as a cluster, one can systematically improve accuracy of

the result.

I. Introduction account for the important correlations neglected in SC-TDSCF
) . . is to add wave functions with different configurations to give
In the last 2 decades with development of various efficient mqre flexibility to the wave function of the system, resulting
representation schented and time propagators; the time 5 the so-called multiconfiguration time-dependent self-
dependent wave packet method has became a dominant comggnsistent field (MC-TDSCF) methdd:2! Wave functions with
putational tool for studying complex chemical dynamics prob- jferent configurations are usually constructed by imposing
lems with more than three degrees of freedom. It has enjoyed grthogonal condition explicitly, making it hard to use more than
considerable successes on accurate quantum reactive scattering sy, configurations in numerical implementation. Furthermore,
studies of four-atom chemical reactions in a full six dimensfohs. e resulting equations for MC-TDSCF are very complicated
The main advantage of the TD method over the traditional compared to those in SC-TDSCF method. For these reasons,
time-independent method is that it scales almost linearly with MC-TDSCF has only been applied to some model problems.

the number of basis functions. However, due to the quantum  Tpe closely related multiconfiguration time-dependent Hartree
nature, that number of basis functions grows exponentially with yathod (MCTDH) generalizes MC-TDSCF in a systematic way,
dimensionality, so it is only practical at present to deal with g eliminating the need for choices of the TDSCF st&é%.
seven to eight strongly coupled degrees of freedbience, It has successfully been applied to study various realistic and
to study quantum dynamical problems involving many atoms, ¢omplex quantum dynamical problems (see ref 22 for refer-
one has to resort to the reduced dimensionality approach to cutgpces). Very recently, it was successfully applied to calculate
down the number of degrees of freedom included in dynamical {he 3 = 0 cumulative reaction probability the six atom H
studies or some computational approximate methods to over-c, reaction in full 12 dimensions on an ab initio potential
come the scaling of effort with dimensionality. energy surface (PES), from which the thermal rate constants in
A promising approach is the time-dependent self-consistent a broad temperature region were obtained for the reaétion.
field (TDSCF) method! 2% In the simplest version, i.e., the  However, the general application of MCTDH method to strongly
single configuration time-dependent self-consistent field (SC- correlated systems yields a numerical method wherein the
TDSCF) approach, the wave function of the system is written number of possible TDSCF configuration grows exponentially
as a direct product of the wave functions for subsysteimig.é with the number of degrees of freedom, again confining practical
A principal drawback of SC-TDSCF is that it replaces exact use of the method to relatively small systems.
interaction between subsystems by mean-field coupling, result-  Recently, we proposed a new and efficient scheme for MC-
ing in the lack of correlations between subsystems. One way to TpgcF, namely, continuous-configuration time-dependent self-
consistent field (CC-TDSCF) meth&élVery often dynamical
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the coupling between bath modes in different clusters may be the total dimension of the problemiis + 3 ni. We partition
neglected. The basic idea for our new method is to use discreteit into an ns dimensional system and clusters of bath modes.
variable representation (DVRjor the system and then to each In eq 1, the Hamiltonians for systessand bath clustex' are
DVR point of the system we associate a configuration of wave given by
function in terms of direct product wave functions for different
clusters of the bath modes. In this way, the correlations between N . o
the system and bath modes, as well as the correlations between h(s) = Z[T(ﬁ) +V(s)] = zh(ﬁ) 2
bath modes in each individual cluster can be described properly, J ]
while the correlations between bath modes in different clusters nj n
are neglected. Since the DVRs used for the system are h(x') = z[-i-(x;) + V(X} )] = Zﬁ(x;) ()
orthogonal, the resulting equations are as simple in structure as T T
those for SC-TDSCF. The dimensionalities of the equations are . o )
determined by the number of degrees of freedom in the systemWhere T is the kinetic energy operatol(x) is the one-
and in each individual cluster of bath modes. The method was dimensional reference for coordinate S
tested on a model problem of a one-dimensional double well The CC-TDSCF ansatz for the total wave function is written
linearly coupled to a harmonic ba#fr.28 It was found for this as follows®
model harmonic bath system that the CC-TDSCF approach is M
much more accurate than the traditional SC-TDSCF method, s, XN t) = ZCa(t)Isa@a(Xl, N ) (4)

&

Ns

because it allows the bath wave function to change continuously
along the system coordinate, in contrast to the SC-TDSCF

method which just uses one bath wave function. Our test

demonstrated that the CC-TDSCF approach was capable Of\Nhgre|§(1Ddenotes DVR, poi_nts for the system coord!naﬁes
producing semiquantitative or even quantitative results. which is constructed via direct product of DVR grids for

In the present work we test CC-TDSCF method on the H  individual coordinates (i =1, ...,ng); ®a(x", ..., X", 1), which
CHs — H, + CHs reaction. Because of its important roles in  déPends on the DVR poilt,LJis written as a product of single-
CH4/O, combustion chemistry, the reaction has been the subjectmOde functions as in the single configuration TDSCF
of both experimental and theoretical interest for many years. N
Because five of the six atoms involved are hydrogens, it is an D (X, .. XN 1) = ¢L(Xi, ) (5)
ideal candidate for high quality ab initio quantum chemistry =
calculations of the potential energy surface and quantum o
dynamics studies. This reaction has become a benchmark forwhereg,(x, t) is the time-dependent wave function for titie
developing and testing various theoretical methods to accuratelycluster of bath coordinates!, at|s,[DVR point for the system

study polyatomic chemical reactioHs?%-3> Very recently, coordinates. It has the following constraints
Manthe and co-workers constructed a high quality PES for the T _ _
reaction in the vicinity of the saddle point. The PES can be @’Ia(t)‘a‘ﬁim(t)ﬂz 0, andg,(0)|¢,(0)= 1 (6)

used to calculate thermal rate constant for the reaction by using

flux—flux autocorrelation-based metho#fsThe cumulative

reaction probabilities for the total angular momentdrm 0

were calculated on the PES from which the thermal rate

constants for the reaction in a broad range of temperature were

obtained. It was found that the theoretical thermal rate constants o0 = ¢l___¢(i—1)¢(i+1)_"¢N 7

has an accuracy comparable to or even exceeding experimental ¢ TerTe e *

precision. In this work, we use the PES developed by Manthe Then®, in eq 5 can be written as

and co-workers to test the accuracy of the CC-TDSCF method

for the H+ CH,4 reaction. o, = ¢‘a q)g) (8)
In the following section, we introduce the CC-TDSCF method

in a general form and review the transition state wave packet Employing the Dirac-Frenkel variational principlewe can

method (TSWP). In Sec. Ill, we then present the results for obtain the equations of motions?as

some seven dimensional calculations and 10 dimensional . .

calculations by using the approximation CC-TDSCF method, iC, = ;E‘kﬂ’almsﬁq)ﬁmﬁ, fora=1,...M (9)

in comparison with the results from exact calculations. We

briefly summarize in section IV.

fori =1, 2, ...,N. These constraints will guarantee that the
single-mode functions are normalized at any time
Now we introduce the “single-hole function”:

i[C, ¢, + Cdl] = ;a@gmmsﬂ@g’mcﬂ ¢p  (10)

Il. Theory .
A. CC-TDSCF Method. Consider a general multidimen- fori=1,2,..N
sional problem with Hamiltonian written as By defining a new function
N i—C ¢
. . L @ ¢ (11)
H(s, X %3, ..., x™ = h(s) + Zh(x') + V(s x5 %2 XN oo
[ we can rewrite eq 10 as
(1)
. igl =S 3,00 As,eP0p, i=1,.,N (12
wheresandx (i = 1, ...,N) are multidimensional vectors, with P Z w P IHIS; D5 Ly (12)

dimension equal tos andn;, respectively. We caithe system _
coordinates, and' the ith cluster of bath coordinates. Hence The single-mode functios, can be obtained by multiplying
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C; on both sides of eq 11 and resorting the normalization
conditions for the single-mode functions

, , . C ¢l
* 2 i i o o

P =1C ¢y — o= (13)
o o o o o IICZ(pLII

where||f|| = +/[|f0ddenotes the modulo of a function.
We can see from eq 9 that the evolution @fin eq 9 is

J. Phys. Chem. A, Vol. 110, No. 16, 2008515

(8,0, |FlIs;® ;0= 3),|5,00Als,d 08,0
N
= (8, IA(9) |8, T | b 5 [ZE‘;“(XK) +
V(81005 (17)

Wif[h ma_trix elements for E'ka<I>a|I:I|sﬁ<D/5D and
[$PY|H|s3@Y Dwritten down, we can propagate the equations

governed by an gffective Hamiltonian arising from averagiqg of motion for C(t) and ¢iu_ We use split-operator method to

Fhe total Hamlltonlaq over all the bath modgs at each DVR pqmt carry out these propagations. Everything is very straightforward,
in the system coordinates, while the evolution of wave function 54 in ordinary DVR based wave packet propagation, except that
for theith cluster of bath modes is governed by an effective {he Hamiltonians involved now are time-dependent. So we have
Hamiltonian arising from averaging the total Hamiltonian OVer g diagonalize relevant matrices at every step. This may produce
all the bath clusters except itseifi{ mode) on each DVR point 5 pottleneck for computational speed if the maximum number
in the system coordinates. Hence to propagate the total waveys pyR points used for one system coordinate becomes large.

function, one needs to solve apdimensional equation for the
system andN equations for all theN bath clusters with a
dimension equal to + n; for theith cluster.

To propagate CC-TDSCF equations given in eq 9 and 12,

While in the current application this number is around 50, so it
does not cause any problem to the computation.

B. Application to the H + CH,4 System.The thermal rate
constant,k(T), can be calculated from the time integral of a

one needs to calculate the averages of Hamiltonian over wavef x—flux autocorrelation functioh—3°

functions. Let us first take a look at the average in eq 12.
Substituting the Hamiltonian given in eq 1 into the average,
we can get

3,0 |H|s, @0

N
= 5,00 |h(s) + Zﬁ(xk) + V(X4 5, XY 5,000

N
= SR ST+ [y 0 )0+
@IV (5,x" %, ... X200,

N
= 3,/A(9)|s,m Y| @Y [A(X) + § ES(xY) +

V(s X105 (14)
where

Eq () = (X, DI p5(x", )0 (15)
with ¢>‘;(xk, t) given in eq 5, is the expectation value of
Hamiltonian, or, energy foith bath cluster at thés,[IDVR
point. Vet(sy, X)) in eq 14 is the effective potential at system
DVR |s,0and coordinates foith bath clustei'.

To discuss the first term in eq 14, we write a system DVR
point |a0as |sq.JoMC] with |, Odenoting theuth DVR point
for kth system coordinateda®Odenoting the corresponding
DVR points for the other coordinates in the system. Foikthe
system coordinate, we have

0}

|0 IA(s9 15, BOTDY | DY 509 0=
S| h(sy)| Swmgz“a(k) | ®23Vﬁ<k)

Hence theEmﬁ(s)|sﬁ|]]ﬁ>g)|d>g)ﬂmatrix is block diagonal for
each system coordinate as in ordinary DVR representation.
However, the matrix for each system coordinate is now time-
dependent, in contrast to that in ordinary DVR representation.

Once having matrix elements fdi,®%|H|s;®@Y0] it is
straightforward to do one more integration with the wave
function for theith bath cluster to get

(0]
§,4®

aa(k)ﬁ(k) (16)

kT =Q(M)™ f; dt Gy(®), (18)
whereQ(T) is the reactant partition function
() = tr[Ferefe MY = zb ), (19)
&

andt. =t — ip/2 with B = (ksT)"1. ¢ is defined as the
autocorrelation function for thenth transition state wave
packet?” In present study, we focus on the flaflux autocor-
relation function for its ground transition state wave patket

Calt) = O'3() = @ (OFlypg(H)0

The wave functioryg(t) for the ground-state transition state
wave packet is given by

(20)

() = & e 2714 0gy() g (). oM (21)

where|gix¥ k=1, 2, ...,N) is the ground-state wave function
for hy(x¥), |+0is the flux operator eigenfunction with nonzero
eigenvalue ofl for coordinate perpendicular to the dividing
surface in systemgo(s)Cis the ground-state wave function on
the dividing surfaces. From eq 21, one can see that we first
propagate each transition state wave packet in imaginary time
to /2, and then propagate it in real time.

Following Manthe and co-workef$;2%3%we use transition
state normal coordinate system in our calculation to minimize
correlation effects in the transition state region. Normal modes
and normal coordinates were calculated at the transition state
geometry and the corresponding linear transformation matrix
was used throughout the calculation to convert the working
coordinates into Cartesian coordinates. The transition state for
the reaction, g—H,—CHj, is of C3, symmetry with H—H,—C
lying on theCs, symmetry axis. Here we labeled two hydrogen
atoms involving in reaction to distinguish them from three other
hydrogen atoms in the GHgroup. For such a system of six
atoms, there are 12 normal vibrational modes. They are the
imaginary mode @;) concerning the asymmetric stretching
motion of the H—Hp—CHjz fragments on th€s, symmetry axis,

a doubly degenerate low-frequency bending modegs Qs)
mainly involving the motion of H atom, an umbrella mode
(Qg) for the nonreacting Ckigroup, a doubly degenerate high-
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frequency bending mode®4, Qs) mainly involving the motion
of Hp atom, another doubly degenerate bending moQess)
essentially involving the motion of the hydrogens in nonreacting
CHgs group, a symmetric stretching mod@dj of the H,—Hp—
CHs; fragments on th€;, symmetry axis, and a symmetriQ{p)
and doubly degenerate asymmetric stretclis Q12) concern-
ing mainly the nonreacting GHyroup. Among all these modes,
Q1 andQq are directly relevant to the reaction.

With mixed derivatives in the kinetic energy resulting from
vibrational angular momentum neglected, the Hamiltonian for
the system can be simply written as

AQu Q- Q) = 1221 - 55; + 71Qy Q- Q1)
p
=3 M@+ V(@0 Q) (22
where
h(Q) = —%%z V(@) (23)

is the one-dimensional Hamiltonian for these normal modes.
The reference potentidi(Q;) for modei is taken as

Vi(Q) =0, forQ,;, Q, andQq
Vi(Q) = MQ,=0,...,.Q, ...,Q;,=0),

for other coordinates.

To choose a proper dividing surface, we define two new
coordinatex)'; andQ'g by rotatingQ; and Qg coordinates by
an anglef = 25°

Q';=sinf Q, + cosh Qq
Qg =c0s6 Q, —sinf Q.
The dividing surface is located &¥; = 0 in our calculation.

I1l. Results

A. Numerical Details. To check the accuracy of the CC-
TDSCF method, we need to calculate the autocorrelation
functions by using exact quantum dynamics method. With the

computer available to us, we are able to include up to 10 of out
the total 12 degrees of freedom. Intensive tests reveal that the

doubly degenerate bending mod€s,(Qs) involving the motion
of the hydrogens in nonreacting @lgroup essentially play no
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Figure 1. Cy as a function of real time propagation for the ground
transition state by using both exact quantum method and CC-TDSCF
method withQ, Qz, Qs, Q4, Qs, Qs, Qo included in calculations.

1000.0

chooseQ; and Qg as the system coordinatesThe other five
coordinates involvedQ,, Qs, Qs, Qs, Qg, are treated as five
bath clusters, i.e., with one coordinate in every bath cluster. In
the paper, we usf(1, 9),(2),(3),(4),(5),(8) to denote this kind

of partition in coordinates, with the numbers in the first pair of
parentheses referring the system coordinates, and the number-
(s) in the following pairs of parentheses referring the coordinate-
(s) in each bath cluster. Under this partition, one needs to solve
one two-dimensional equation for the system, plus five three-
dimensional equations for the bath clusters.

Figure 1 show<k as a function of real time propagatian,
for the ground transition state by using both exact quantum
method and CC-TDSCF method. The ex@gshown in Figure
1 exhibits a typical behavior for the flixflux autocorrection
function for a direct reaction: it decays quickly as time
increases, goes through zerotat 300 au, then becomes a
little bit negative, and finally gets stabilized at zera at 700
au. Hence for the temperature considered here, recrossing in
flux—flux autocorrection does occur, although it is not sub-
stantial. From Figure 1, we can see that overall agreement
between the CC-TDSCE; and the exact one is quite good. At
t = 0, it is about 12% smaller than the exdct. It decays
slightly slower than the exa€l, hence crosses with the exact
Ci curve att ~ 220 au. The CC-TDSCEx also moves in and
out of the recrossing region slightly slower than the exact one.
It is quite interesting to see that the largest difference between
CC-TDSCF and exadts is att = 0, right after the imaginary
time propagation. Neglecting of correlations between bath modes

role in the dynamics, hence are excluded in this study. We usePrevent the whole system from relaxing as in the exact treatment

49 sine-DVR in a range off120, 120] forQ,, 13 sine-DVR
in a range of £100,50] forQ4, 29 sine-DVR in a range of
[—50, 150] forQe. For Q,, Qz, Qs, Qs, Q11, and Qq2, We use
five potential optimized DVR (PODVRY, and forQy,, we use

six PODVR. Hence the basis number used in the exact ten-

dimensional quantum dynamics calculation reaches<110°.

during imaginary time propagation, making the CC-TDSG#

att = 0 smaller than the exact one. While during the real time
propagation, neglecting of correlations between bath modes
makes the whole system slower in dissipating energy and in
moving away from the dividing surface. As a result, the CC-
TDSCFCx decays slightly slower than the exact one as shown

The temperature considered in this study is 500 K. We propagatei" Figure 1.

wave packet 50 steps for imaginary time propagation in eq 21.

Figure 2 shows the exact and CC-TDSCf as a function

For real time propagation, the time step is 5 au for the exact of time by integrating th& function shown in Figure 1. The
calculation and 1 au for the CC-TDSCF method because of the curves looks very similar, except that the CC-TDSC§ is

self-consistent nature of the method.

B. Seven-Dimensional (7D) ResultsNe first test the CC-
TDSCF method on seven low-frequency modes, {&,,Q>,
Qs, Q4, Qs, Qs, and Qq. In the CC-TDSCF calculation, we

lower than the exact one. At~ 300 au when they reach their
maximum values, the CC-TDSGCE;s is about 9% smaller than
the exact one. The difference increases to 12%-~at700 au
when they are stabilized. Thus, the CC-TDSCF method intro-
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Figure 2. Cs as a function of real time propagation for the ground  Figure 3. Same as Figure 1, except with three high-frequency modes,
transition state by using both exact quantum method and CC-TDSCF ,, Q,;, andQy, included.

method withQ1, Qz, Qs, Qa, Qs, Qs, andQy included in the calculations.
4.0 . r

duces an error of 12% by approximating a seven-dimensional
problem with one two-dimensional plus five three-dimensional
problems.

Under the{(1, 9),(2),(3),(4),(5),(8) partition, we only took
into account the correlations between system coordinates and
individual bath coordinate, while neglected the correlations
between bath coordinates. To investigate the importance of the?:
correlations between bath coordinates, we carried out many x
calculations by using different partition of the coordinates. It ;
was found that the fbending mode®. andQ; have substantial X

3.0 -

2.0 -

exact 10D
correlations with the klbending mode&s andQs on the same wly {(1,9)(4)(5)(6)(2)(3)(10)(11)(12)}
plane, i.e.,Q. correlatesQs, Qs correlates withQs. Thus, an N g:g’g‘;‘;{g&g;ﬂg]]:gg
higher accuracy may be achieved by putt@gandQs in one - Y
bath clusterQs; andQg in another bath cluster. As we can see
from Figure 2 that CC-TDSCE;s with the{(1, 9),(4),(2, 5),(3, 0.0 .
6)} partition is considerably more accurate than that with the 00 Ti.:Z(::.u.) 1000.0

{(1, 9),(2),(3),(4),(5),(8) partition, when compared to the exact
result. It is only smaller than the exact result by 3.5%. Under
this partition, one needs to solve one two-dimensional equation

Figure 4. Same as Figure 2, except with three high-frequency modes,
Q10 Qu1, andQqo, included.

for the system, one three-dimensional equatiorQfgrtwo four-
dimensional equations fof, Qs) and Qs, Qg). If we put the
umbrella mode, in the system, i.e., with &(1, 9, 4),(2, 5),(3,
6)} partition, we can further reduce the difference between the
CC-TDSCF and exad@is to 2%. As we can see from Figure 2
that the CC-TDSCE;s with the{(1, 9, 4),(2, 5),(3, 8) partition
is essentially identical to the exact one, indicating that there is
very little correlation betweenQ, Qs) and Qs, Qe) clusters.
Another way to improve the accuracy of thel, 9),(4),(2, 5),-
(3, 6} partition is to moveQ, and Q; modes to the system,
resulting a{(1, 9, 2, 3),(4),(5),(8) partition. Figure 2 shows
that the accuracy of thig1, 9, 2, 3),(4),(5),(8) partition is very
close to that of thg (1, 9, 4),(2, 5),(3, 8) partition. Compared
to the{(1, 9),(4),(2, 5),(3, &) partition, the{(1, 9, 4),(2, 5),(3,
6)} partition takes into account the correlations betw€gan
mode andQ,, Qs, Qs, Qs modes, while thg(1, 9, 2, 3),(4),-
(5),(6)} partition takes into account the correlation betw€an
mode andQ,, Qz modes, the correlations betwe€a and Qg,
Q3 andQs. The close agreement between {lig, 9, 4),(2, 5),-
(3, 6)} partition and the{(1, 9, 2, 3),(4),(5),(8) partition
indicates to some extent that the correlation betw@gmode
and Q,, Q3 modes are more important than the correlation
betweenQ, mode andQs, Qs modes.

C. Ten Dimensional (10D) ResultsFigure 3 and Figure 4
shows C and Cg, respectively, as a function of real time

propagationt, for the ground transition state by using both exact
guantum method and CC-TDSCF method wi@k, Q:1, and

Q12 included in dynamical calculations. Before comparing the
exact 10D result with the CC-TDSCF ones, let us make a
comparison between the 7D and 10D exact results shown in
Figures 1 and 3. In our calculations, we set the ground-state
energy for every degree of freedom included in the calculation
to be zero. Hence, if a degree of freedom plays no role to the
dynamics,Cx will only change very little (due to potential
average effect) when that degree of freedom is included in
dynamics calculations. Figure 3 show that the eGathanges
substantially wheQ1o, Q11, andQ;. are included in dynamical
calculation. Att = 0, the 10DCy in Figure 3 is larger than 7D

Cx in Figure 1 by about 60%. For the correspondigshown

in Figure 2 and Figure 4, the 100 is about 50% larger than
the 7D Cs. It is well-known that there is some kind of mixing
between these stretching modes and the umbrella mode in
normal coordinates, in particular at geometries far way from
the reference geometry. Hence freezing stretch modes as in the
7D calculation may substantially underestim@jg as discussed

by Miller and co-workers in the H+ OH systent!

As in the 7D case shown in Figure 1, we carried out a CC-
TDSCF calculation with (1, 9),(2),(3),(4),(5),(6),(10),(11),-
(12)} partition. The comparison between the exact I0and
the CC-TDSCF one shown in Figure 3 is very similar to that in



5518 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Zhang et al.

Figure 1, except that the difference between these two curvessimple {(1, 9),(2),(3),(4),(5),(6),(10),(11),(1R)partition gave
increases. At = 0, the exact one is larger than the CC-TDSCF an error of 22%, indicating these three high-frequency modes
one by 22%. Consequently, the differenceCigbetween them have some strong correlations among themselves and/or with
shown in Figure 4 also increases compared to that in 7D. Whenother bath modes. By using{d¢1, 9),(4),(2, 5),(3, 6),(10, 11,
stabilized, the exadTss is about 22% larger than the CC-TDSCF  12)} partition, we can reduce the error to 11%. The error can
one. Thus, these three high frequencies modes also have sombe reduced further to 6% by puttiri@ andQjs in the sytem in
strong correlations with themselves or other modes. Once againa{(1, 9, 2, 3),(4),(5),(6),(10, 11, 1P)partition.
we can see that the CC-TDSTk decays slower than the exact All these calculations clearly showed that the CC-TDSCF
one as in 7D case, and it becomes slightly larger than the exactmethod is a very powerful approximation quantum dynamics
one att ~ 230 au for the reason discussed. method. It allows us to partition a big problem into several
As in 7D calculations shown in Figure 2, bath modes are smaller ones. By changing partition systematically, one can
combined together as clusters to take into account the correla-investigate the correlations between different degrees of free-
tions between them. One partition we tried (&, 9),(4),(2, 5),- dom. By grouping modes with strong correlations together as a
(3, 6),(10, 11, 12)following the 7D calculation, with additional ~ cluster, one can systematically improve accuracy of the result.
three high frequencies modes put in one cluster. As we can seeAnd, by choosing the system and bath clusters carefully, one
from Figure 4 that the((1, 9),(4),(2, 5),(3, 6),(10, 11, 1p) can always keep the number of dimensions in CC-TDSCF within
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