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We have observed and modeled the1H and19F solid-state nuclear spin relaxation process in polycrystalline
3-(trifluoromethyl)phenanthrene. The relaxation rates for the two spin species were observed from 85 to 300
K at the low NMR frequencies ofω/2π ) 22.5 and 53.0 MHz where CF3 rotation, characterized by a mean
time τ between hops, is the only motion on the NMR time scale. All motional time scales (ωτ , 1, ωτ ≈ 1,
and ωτ . 1) are observed. The1H spins are immobile on the NMR time scale but are coupled to the19F
spins via the unlike-spin dipole-dipole interaction. The temperature dependence of the observed relaxation
rates (the relaxation is biexponential) shows considerable structure and a thorough analysis of Bloch-
Wangsness-Redfield theory for this coupled spin system is provided. The activation energy for CF3 rotation
is 11.5( 0.7 kJ/mol, in excellent agreement with the calculation in a 13-molecule cluster provided in the
companion paper where the crystal structure is reported and detailed ab initio electronic structure calculations
are performed [Wang, X.; Mallory F. B.; Mallory, C. W; Beckmann, P. A.; Rheingold, A. L.; Francl, M. M
J. Phys. Chem. A2006, 110, 3954].

1. Introduction

We report1H and19F spin-lattice relaxation rate measure-
ments as a function of temperature at twolow NMR frequencies
in 3-(trifluoromethyl)phenanthrene.

The low frequencies are necessary in NMR relaxation studies
to bring the CF3 group mean hopping rateτ-1 into resonance
with the 1H and 19F NMR frequencies, as well as with the
difference between the two NMR frequencies. This is in stark
contrast to NMR spectroscopy where the drive is to higher and
higher frequencies to better resolve chemical shifts and other
interactions. The experiments and their analyses (section 4)
provide an excellent test of the much-used Bloch-Wangsness-
Redfield theory (section 2) for nuclear spin relaxation. This

theory has been well tested for like-spin spin-1/2 systems such
as1H. An extensive search of the literature (section 3) reveals
several examples of unlike-spin spin-1/2 systems (usually, but
not always,1H and19F) but the systems studied involve either
more than one motion or limited dynamical regimes. In all cases
known to us, this results in only a partial application (and
therefore a partial test) of the theory. We are also able to
compare the fitted NMR relaxation parameters presented here
with those computed from knowing the crystal structure and
from carrying out detailed ab initio electronic structure calcula-
tions, in both the isolated molecule and a 13-molecule cluster
(section 5). These calculations are provided in the accompanying
paper.1 We conclude with general remarks (section 6).

2. Bloch-Wangsness-Redfield Relaxation Theory

We use the Bloch-Wangsness-Redfield theory of nuclear
spin relaxation.2-4 It is presented by Abragam (chapter 8),5

Slichter (chapter 5),6 Ernst et al. (chapter 2),7 and Kimmich
(chapter 11).8 This perturbation theory approach has withstood
the test of time, it has recently been presented in a broader
context,9 and its results can even be developed using a
nonperturbative approach.10 The perturbation Hamiltonian in the
present case involves both the like-spin (19F-19F) and unlike-
spin (19F-1H) spin-spin dipolar interactions. These interactions
are modulated by CF3 rotation.

In the nuclear spin relaxation experiments reported here, the
magnetization of one of the two spin species is perturbed and
its recovery to equilibrium monitored. The relaxation follows
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for magnetizationMk(t) and equilibrium magnetizationMk(∞)
(k ) H or F). The first term in eq 1 with the diagonal relaxation
rates is the usual single-species single-exponential relaxation
equation.5 The second term in eq 1 describes the relaxation of
both species resulting from the unlike-spin H-F dipolar
interactions. (This second term in eq 1 is eq 87, p 295 in
Abragam,5 where it is developed in detail.) The superscipts on
the relaxation rates in the relaxation matrices refer to like (L)
or unlike (U) spin-spin interactions. The subscripts refer to
the position of the relaxation rate in the appropriate 2× 2 matrix
in eq 1. The like-spin1H spin-lattice relaxation rateRHH

L

results from the modulation of H-H dipolar interactions, the
like-spin 19F spin-lattice relaxation rateRFF

L results from the
modulation of F-F dipolar interactions and the unlike-spin1H-
19F spin-lattice relaxation ratesRHH

U , RHF
U , RFH

U , and RFF
U all

result from the modulation of H-F dipolar interactions.

For either1H or 19F relaxation in a polycrystalline sample of
3-(trifluoromethyl)phenanthrene with a unique CF3 environment
in the structure,1 there is only one motion on the NMR time
scale, the reorientation of the unique CF3 group. It follows that
RHH

L is identically zero and that there is only one correlation
time τ that can be taken to be the mean time between CF3 2π/3
hops in a Poisson process. The relaxation rates in the second
row of the two relaxation matrices in eq 1 are

and

It is convenient to separate the intramolecular (the same as intra-
CF3 in this case) and intermolecular parts forRFF

L , but not for
RFF

U and RFH
U , both of which have both intramolecular and

intermolecular contributions, but the latter dominate. The
relaxation rates in the first row of the two relaxation matrices
in eq 1 are obtained by interchanging F and H in eqs 2-4
(except thatτ ) ∞ for RHH

L in eq 2, which makesRHH
L ) 0).

The first term of eq 2 refers to the modulation of intra-CF3 F-F
interactions. The second term of eq 2 refers to the modulation
of inter-CF3 F-F interactions. Because the two F atoms are in
different CF3 groups for the second term, and because each CF3

group is randomly reorienting with a mean frequencyτ-1, the
modulation of these inter-CF3 F-F interactions will be char-
acterized by a mean frequency 2τ-1.

TheK values in eqs 2-4 come from the Bloch-Wangsness-
Redfield theory with minor modifications for the current study
as indicated in the following paragraphs.

and

KHH
U andKHF

U are obtained by interchanging H and F in eqs 7
and 8.

The1H magnetogyric ratio isγH ) 2.675× 108 s-1 T-1, the
19F magnetogyric ratio isγF ) 2.517× 108 s-1 T-1, µo/4π )
10-7 N A-2 whereµo is the magnetic constant,IH ) IF ) 1/2
is the spin of both the1H and19F nucleus, the F-F distance in
the CF3 group isrFFintra, the intermolecular F-F distances are
rFFinter, andrHF is a single fluorine-proton distance discussed
below. The parameterΛ(θ) in eqs 5-8 is

whereθ is the angle between the fixed molecular rotation axis
of the CF3 group and the appropriate spin-spin vector. Equation
9 is part of eq 27 in Beckmann11 where its inclusion in the first
line of eq 5 is derived rigorously. In a polycrystalline sample,
there is a random distribution of orientations of CF3 rotation
axes with respect to the magnetic field. This latter averaging
results in a factor of 1/5 in the first lines of eqs 5-8.

For a single CF3 group there are 6 interactions involving 3
spins and this is the origin of the factor 6/3 in the first line of
eq 5. It is important that all spin pairs have the same fixed
separation and identical motions to include more than a single
interaction in such a simple numerical manner. Otherwise, a
sum must be performed, as indicated in eq 6. The factor 1/3 in
the brackets of both lines of eq 6 allows us to sum over the

KFF
Lintra ) 1

5
6
3(µo

4π)2

IF(IF + 1)γF
4 p2

Λ(θFFintra)

rFFintra
6

) 9
40(µo

4π)2 γF
4 p2

rFFintra
6

) (9.51× 108 s-2) ) B

(5)

KFF
Linter )

1

5(µo

4π)2

IF(IF + 1)γF
4 p2[13 ∑

FFinter(Λ(θFFinter)

rFFinter
6 )]

)
2

3
KFF

Lintra[13 ∑
FFinter

Λ(θFFinter)
rFFintra

6

rFFinter
6 ] ) yB (6)

KFF
U ) 1

5
1
3(µo

4π)2
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2 γF

2 p2
Λ(θHF)

rHF
6

) 1
20(µo

4π)2

γH
2 γF

2 p2
Λ(θHF)

rHF
6

) 2
9(γH

γF
)2〈(rFFintra

rHF
)6

Λ(θHF)〉B ) 〈qHF〉B ) qB

(7)

KFH
U ) 1

5
1
3(µo

4π)2

IF(IF + 1)γH
2 γF

2 p2
Λ(θHF)

rHF
6

) 1
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rHF
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rHF
)6

Λ(θHF)〉B ) 〈qHF〉B ) qB

(8)

Λ(θ) ) 3
4
(sin4 θ + sin2 2θ) (9)

(MH(∞) - MH(t)
MF(∞) - MF(t) ) ) -(RHH

L 0

0 RFF
L )(MH(∞) - MH(t)

MF(∞) - MF(t) ) -

(RHH
U RHF

U

RFH
U RFF

U )(MH(∞) - MH(t)
MF(∞) - MF(t) ) (1)

RFF
L ) RFF

Lintra + RFF
Linter

) KFF
Lintra{J(ωF,τ) + 4J(2ωF,τ)} + KFF

Linter{J(ωF,τ/2) +
4J(2ωF,τ/2)} (2)

RFF
U ) KFF

U {J(ωH-ωF,τ) + 3J(ωF,τ) + 6J(ωH+ωF,τ)}
(3)

RFH
U ) KFH

U {-J(ωH-ωF,τ) + 6J(ωH+ωF,τ)} (4)
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intermolecular FF interactions involving all three F spins in a
CF3 group. In eqs 7 and 8 we assume a single effective unlike-
spin dipolar interaction. Finally, the factors 1/3 in the first lines
of eqs 7 and 8 have their origins in the quantum mechanical
perturbation theory.5

The RFF
Lintra part of eq 2, with eqs 5 and 9, can be obtained

from Beckmann11 eqs 11 and 12 withN ) 3 andL ) 0 (i.e.,
one term in both sums) and with (µo/4π)2 inserted to give SI
units. This is also the same as eq 105 on p 300 of Abragam5 or
eq 31 of Beckmann11 [again with (µo/4π)2 inserted in this work
to give SI units].

There are relatively few parameters. The F-F distance in
the CF3 group is taken to berFFintra ) 0.2174 nm. This number
comes from averaging the appropriate F-F distances in the CF3
groups obtained from the X-ray diffraction data and ab initio
electronic structure calculations.1

The parameterB introduced in eq 5 is justKFF
Lintra. It

reappears in the last line of eqs 6-8 because it is convenient to
compare those terms withKFF

Lintra. The parameterθFFintra ) π/2
in eq 5. The dimensionless parametery is defined by eq 6 and
is about 0.1 (section 4). It is a measure of the ratio of the two
like-spin contributions to the relaxation process; that is, the ratio
of the intermolecular (which is the same as inter CF3) F-F
spin-spin interactions to the intramolecular (the same as intra-
CF3) F-F interactions. The parameter〈qHF〉 ≡ q is defined by
eqs 7 or 8, the last two lines of which are identical. The way
we have set it up, the model only permits one value ofrbHF and
it is not exactly clear how to compute the parameterq, which
we will use as a fitting parameter. The dimensionless parameter
q is found to be about 0.6 (section 4). However, as a guide, we
take an appropriately weighted average of the product (rFFintra/
rHF)6Λ(θHF) as indicated in eqs 7 and 8 by〈〉. The problems
with calculating this value are discussed in section 5. The angles
θFFinter in eq 6 andθHF in eqs 7 and 8 are the angles thatrbFFinter

and rbHF make with the CF3 rotation axis. These can all be
computed from the X-ray diffraction data and ab initio electronic
configuration calculations.1

The spectral density in eqs 2-4 contains all the time
dependence of the motion and is, for a Poisson process,

Note that the spectral density in eq 10 differs from that in both
Abragam5 and Beckmann11 by a factor of 2. Equations 3, 4, 7,
8, and 10, withΛ(θ) ) 1 in eqs 7 and 8, are the same as eq 88
on p 295 of Abragam5 when the different definitions of the
spectral densities are accounted for. (See also eq 104 on p 300
of Abragam5 and the relationships between spectral densities
discussed elsewhere.12) Abragam5 and Beckmann11 review other
important, more fundamental assumptions and Beckmann,11 and
Palmer et al.13 reiterate these assumptions and put them into
perspective for methyl group rotation.

The correlation timeτ is taken to be the mean time between
“events” (in this case reorientations of the three F-F vectors
in a CF3 group) in a Poisson process and is modeled by the
Canonical Ensemble:14

More realistic (and complex) models have been investigated
by Clough and Heidemann.15 Incorporating them is unnecessary
and would constitute an overanalysis of the data.

It is convenient to relate the “infinite-temperature hop rate”
τo

-1 and the “effective activation energy”E in eq 11 as a guide

to what constitutes a reasonable order-of-magnitude value for
τo

-1. If the barrier is taken to be unormalized Diracδ-functions
of width zero and heightE at the rotational angles 0, 2π/3, and
4π/3, then the classical kinetic energy at the top of the barrier
is E ) (1/2)Iω2 ) (1/2)I[2π/(3τo)]2, whereτo is the time taken
to rotate 2π/3 and

whereI is the moment of inertia for the rotor undergoing the
Poissonian reorientation. The parameterx ()1 in the naive
model) is simply inserted into eq 12 as a useful fitting parameter
and has no place in the model. Another simple model forτo

-1 is
that it is an “attempt” frequency and, as such, can be associated
with a vibrational (or librational) frequency. In a harmonic
approximation14 τo

-1 is given by eq 12 with the factor (2E/I)1/2

replaced with (E/2I)1/2. These two models differ by a factor of
2, an amazinglysmall difference given the extreme difference
in the form of the barriers. This just says, unfortunately, thatτo

is extremely insensitiVe to the form of the barrier. If measured
(i.e., fitted) values ofτo

-1 and E are not related by eq 12 to
within, e.g., an order of magnitude or two, then the dynamical
model should be suspect. In solid 3-(trifluoromethyl)phenan-
threne there is a unique CF3 site1 and we do not allow for more
than one value ofτ in the model. This places a very significant
restraint on fitting the data.

Equation 1 means that the nuclear magnetizationsMH(t) and
MF(t) relax with two time constants;

for k ) H, F. The factor 2 is solely for convenience for the
case of a perturbation using aπ-pulse. The amplitudesφkF
depend on the initial conditions (i.e., onMk(0)) butthe obserVed
relaxation ratesλF do not.The rates are obtained by diagonal-
izing the relaxation matrix in eq 1 and are

If the protons are being observed and aπ-pulse inverts the
proton magnetization (i.e.,MH(0) ) - MH(∞)), the amplitudes
of the observed magnetization in eq 13 are

If F is the observed nucleus and aπ-pulse is applied to the F
magnetization, thenall F’s and H’s are interchanged in eq 15.

We note that spin diffusion does not play adirect role in the
model as we have set it up and this is somewhat counterintuitive.
Spin diffusion does play anindirect role in that spin diffusion
in the1H species will play a role in the value ofq in eqs 7 and
8, as discussed further in section 5. For single species relaxation,
the relaxation rate is often presented as the relaxation rate for
a mobile group (like, e.g., a CH3 group) diluted by (i.e.,
multiplied by) the ratio of the number of “relaxing” spins (three
for a CH3 group) to the total number of spins. This dilution
ratio accounts for spin diffusion but does not appear anywhere
here. ForRFF

L in the first term of eq 1, all19F nuclei appear in
identical CF3 groups. There are no other19F nuclei and so spin

τo
-1 ) 1

x( 3
2π)(2E

I )1/2
(12)

Mk(∞) - Mk(t)

2Mk(∞)
) φk1e

-λ1t + φk2e
-λ2t (13)

λ1,2 ) 1
2
[(RFF

L + RFF
U ) + (RHH

L + RHH
U ) (

x[(RFF
L + RFF

U ) - (RHH
L + RHH

U )]2 + 4RFH
U RHF

U ] (14)

φH1 ) 1 - φH2 )
RHH

L + RHH
U - λ2

λ1 - λ2
(15)

J(ω,τ) ) 2τ
1 + ω2τ2

(10)

τ-1 ) τo
-1e-E/kT (11)
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diffusion plays no role in the determination ofRFF
L . For 1H,

RHH
L in the first term of eq 1 is identically zero and so spin

difusion plays no role here either. Spin diffusion plays an
important role for the1H spin system in ensuring that the1H
spin reservoir is always characterized by a common spin
temperature. Indeed, the19F spin reservoir is also always
characterized by a common spin temperature, although one that
can be quite different from the1H spin system soon after a
perturbation to one spin species but not the other. These common
spin temperatures are ensured by noting that the observed values
of (T2)H and (T2)F are much less than the observedλ1

-1 or λ2
-1.

It is important to note that as counterintuitive as it may seem,
from the theoretical point of view, thinking of1H observed
relaxation rates and19F observed relaxation rates is not helpful
here. There are two observed relaxation rates:λ1 andλ2. The
strong unlike-spin couplings force both spin species to relax
with these same two rates.

3. Previous Work on the Two-Species Relaxation
Problem

As is often the case, we were guided in this study by some
beautiful experiments and some very lucid discussions presented,
in this case, between 1961 and 1992. Abragam’s 1961 pie`ce de
résistance5 is the beginning of truly understanding the theory
with unlike-spin interactions included. The first experiment we
could find was 1965, and this exceptional work16 is discussed
below.

In the liquid state, both the dipolar interactionand the spin-
rotation interaction can be present, with the latter even being
the dominant mechanism for19F relaxation.17-19 Indeed, the
spin-rotation interaction can even dominate for1H relaxation
in the gaseous state.20 However, dipolar interactions completely
dominate for both1H and19F for polycrystalline van der Waals
molecular solids.

Most prior work in solids has been done in ionic systems.
Both 19F and1H relaxation rates were measured21 in NH4PF6.
There is both PF6 - and NH4

+ rotation and the authors were
able to observe biexponential relaxation in the slow-motion limit
of PF6

- rotation. The details are complicated by the fact that
this occurs at the onset of NH4

+ rotation.19F and1H relaxation
measurements22 in NH4HF2 showed complex behavior similar
to that found in NH4PF6. Again, there are different motions in
different regimes and at high temperatures the19F and 1H
magnetizations are not coupled and relax independently. Thus
two separate applications of the theory for like-spin systems
are applied at high temperature and, somewhat independently,
the theory for the two-spin unlike-spin system is applied at low
temperature.

Bloch-Wangsness-Redfield theory can certainly be applied
to spins withI > 1/2 and a beautiful study23 of 13C relaxation
in KCN and NaCN makes an important point. Whereas13C has
I ) 1/2,23Na (100% abundance) and39K (93% abundance) have
I ) 3/2. WhenωC/2π ) 24.15 MHz,ωNa/2π ) 26.45 MHz
andωK/2π ) 4.67 MHz. Thus in the13C relaxation rate versus
temperature plot, the effects of cross relaxation with the
quadrupolar23Na spin species are observable for NaCN (where
the difference in the two NMR frequencies is 2.3 MHz) but the
effects of cross relaxation with the quadrupolar39K spin species
arenot observable in KCN (where the difference frequency is
19.5 MHz). This paper has a very clear discussion of Bloch-
Wangsness-Redfield theory and how it applies when dipole-
dipole and chemical shift anisotropy interactions are both present
(13C relaxation in KCN), and when quadrupolar interactions
(23Na) and dipolar interactions (13C relaxation in NaCN) are

both present. The13C relaxation rate versusT plot also shows
the relaxation rate maximum when (ωNa - ωC)τ is of order
unity due to the first term in our eqs 3 and 4.

In a thorough study,24 the basic Bloch-Wangsness-Redfield
theory for a two-spin species system was applied to a well-
studied complex: H3N:BF3. Very slight departures from expo-
nential relaxation were observed and single rates were extracted
from initial slopes of the magnetization recoveries. The same
authors followed with a more complex ionic system25 in which
the cation, containing four mobile CH3 groups, was obtained
by one-electron oxidation ofN,N,N′,N′-tetramethyl-p-phenylene-
diamine, and the counterion was BF4

-. Both the19F and 1H
magnetizations relaxed largely exponentially in a situation where
the modulations of different interactions were responsible for
19F and1H relaxation: hyperfine interactions for the former and
dipolar electron-nuclear interactions for the latter. In both these
studies and some of those mentioned previously, the H- F
distances are too great to result in significant nonexponential
relaxation. This was also found to be the case26 in the complex
FeSiF6‚6H2O.

In the ionic system [Sb(CH3)4]PF6, complicated relaxation
rate versus temperature plots for19F and1H contain a wealth
of information, in principle, but in practice, there are too many
motions and the19F and1H nuclei are too far apart (to provide
a significant test of Bloch-Wangsness-Redfield theory).27

[Sb(CH3)4]+ rotation is seen at high temperatures and three types
of PF6

- rotation (uniaxial reorientation, isotropic reorientation,
and translational motion) are seen over a wide temperature
range. In addition, the31P resonance is too far from the19F and
1H resonance for cross relaxation to have much effect. Nonex-
ponential relaxation was only seen over a very small temperature
range at very low temperatures where the19F and 1H nuclei
could communicate effectively with each other. The experi-
ments, however, were a tour de force.

A few important studies have been conducted in van der
Waals molecular crystals such as that studied here, but not many.
One of the earliest observations (1965) of both19F and 1H
relaxation was in the three compounds C6H5CF3, m-C6H4(CF3)2,
andp-C6H4(CF3)2.16 These room-temperture liquids were studied
in the solid state over the temperature ranges 105-195, 88-
190, and 90-160 K, respectively. Although the authors were
unable to measure specific rates with the apparatus available at
that time, they noted “null points” in magnetization recovery
experiments and presented a beautiful discussion that contains
the essence of much of the application of Bloch-Wangsness-
Redfield theory to these kinds of systems. Our review of the
literature suggests that this paper is, in some sense, the beginning
of this experimental field.

In a very interesting system, solid 1,3,5-trifluorobenzene, the
low-temperature biexponential regime was observed, with both
19F and1H relaxing with the same two relaxation rates.28 The
magnetization fractions relaxing with each rate were 50%, as
must be the case in the low-temperature limit for this system.
Indeed, in this case, interchanging H’s and F’s gives an identical
molecular system. This experiment was a beautiful test case of
Bloch-Wangsness-Redfield theory in the low-temperature
regime.

A very thorough and helpful study29 has been presented in
the molecular solid CHF3 over the temperature range from 70
to 120 K. Here, the crystal structure is known and the authors
were able to interpret the relaxation in terms of the modulation
of H-H, F-F, and F-H interactions resulting from 3-fold
rotation about the C-H axis of the molecules. The authors were
only really able to observe in the low-temperature regime and
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in the vicinity of a relaxation rate maximum. Whereas they did
observe the1H magnetization relaxing with both rates, they were
only able to observe exponential19F relaxation with the single
rate being the lower of the two1H rates. An interesting aspect
of this study is that the authors tried to correlate the intensities
of the various rates (i.e., theK-values in eqs 2-4) with second
moment measurements, though they treated the second moments
as parameters in their fits of the data. We present a simpler
system in this paper and we have calculated the dominant
constant,KFF

Lintra in eq 5 explicitly. It is not a fitting parameter.

4. Relaxation Rate Experiments and Their Analysis

The fluorine-19 (19F) and proton (1H) spin-lattice relaxation
ratesλik (i ) 1, 2; k ) F, H) were measured as a function of
temperatureT at two Larmor frequencies:ωk/2π ) 22.5 and
53.0 MHz. (The ratesλik are independent of nucleus k but we
still need to keep the data separate.) The experiments are fixed
frequency,not fixed field. For ω/2π ) 53.0 MHz,BH ) 1.24
T andBF ) 1.32 T. Forω/2π ) 22.5 MHz,BH ) 0.527 T and
BF ) 0.560 T. The λik were measured using a standard
inversion-recovery sequence (π-t-π/2-observe-to) with to
> 8 times the largest value ofλik

-1.

Temperature was varied by means of a flow of cold nitrogen
gas and temperature was measured with a carefully home-silver-
soldered, calibrated copper-constantan thermocouple. The data
are shown in Figure 1. The relaxation is exponential within
experimental uncertainty above 110 K (1000T-1 < 8.9K-1) with
19F relaxing withλ1 and1H relaxing withλ2. Measuring these
rates to an uncertainty of(5% is straightforward. The biexpo-
nential relaxation below 110 K (1000T-1 > 8.9K-1) is more
time-consuming to characterize accurately, especially for the
smaller λ2 values for19F (lower triangles in Figure 1). The
uncertainties, in some cases, are considerable. The lowest-
temperature19F measurement is shown in Figure 2.

The observed relaxation rates are independent of nucleus; that
is λjF ) λjH for j ) 1, 2. This is not readily apparent from the
data at high temperature in Figure 1. At low temperatures, where
the relaxation is biexponential, this is apparent. However, asT
increases,φH1 f 0, φH2 f 1, φF1 f 1, andφF2 f 0 in eq 13 as
shown below. Thus, only one of the two rates can actually be
observed, the relaxation is exponential withλF1 ) λ1, λH2 ) λ2,
andλF2 andλH1 though, in principle present, cannot be measured
becauseφF2 andφH1 are vanishingly small. In Figure 3, we show
φH1 andφH2 as a function of temperature in the low-temperature,
biexponential regime.

At high temperatures,ωHτ, ωFτ, 2ωFτ, (ωH + ωF)τ, and (ωH

- ωF)τ are all,1, whereτ is the mean time for CF3 2π/3 hops
in a Poisson process. (The parameter 2ωHτ does not enter the
problem because H-H interactions are not modulated by CF3

rotation.) This is the fast motion limit on all time scales. In this
regime, ln(λj) ) (E/k)T-1 + constant (with the constant being
different for the two ratesλ1,2). Going down in temperature,
there is a maximum whenωHτ, ωFτ, 2ωFτ, and (ωH + ωF)τ are
all of order unity but (ωH - ωF)τ is still ,1 or at least<1.
Then there is another maximum at lower temperatures when
(ωH - ωF)τ is of order unity and all the others are.1 or at
least>1. These two maxima are most clearly resolved at 22.5
MHz. Finally, at low temperature,ωHτ, ωFτ, 2ωFτ, (ωH + ωF)τ,
and (ωH - ωF)τ are all.1 and ln(λj) ) -(E/k)T-1 + constant
for both rates (with the constant again being different for the

Figure 1. Observed spin-lattice relaxation ratesλ1 and λ2 versus
inverse temperatureT-1: λ1F andλ2F at 22.5 MHz (circles [blue online]);
λ1F andλ2F at 53.0 MHz (triangles [green online]);λ1H andλ2H at 22.5
MHz (squares [red online]);λ1H andλ2H at 53.0 MHz (diamonds [yellow
online]). Where error flags are not shown, they are within the size of
the symbols. Where the same symbol is used for bothλ1k andλ2k (k )
H, F), the two rates are sufficiently distinct as to not be confused. The
relaxation is exponential within experimental uncertainty for 1000T-1

< 8.9K-1 (T > 110 K) with 19F relaxing withλ1 and1H relaxing with
λ2. The relaxation is biexponential within experimental uncertainty for
1000T-1 > 8.9 K-1 (T < 110 K) and is independent of the nucleus;
that isλjF ) λjH for j ) 1, 2. The several lines are a single fit with four
adjustable parameters as discussed in the text.

Figure 2. 19F magnetization versus timet at T ) 93.5 K (1000/T )
10.7 K-1). The wait time in the inversion-recovery experiment (π-
t-π/2-observe-to) is to ) 60 s, which is 7.8λ2F

-1. Four scans were
collected for eacht value, and the experiment took 2 h. The
five-parameter Simplex fit givesλ1F ) 3.01( 0.02 s-1, λ2F ) 0.13(
0.06 s-1, φ1F ) 0.71 ( 0.05,φ2F ) 0.29 ( 0.07, anda ) 0.6 ( 0.3.
The last parameter is the effectiveness of theπ-pulse. A perfectπ-pulse
corresponds toa ) 1. These two data points are the lowest-temperature
triangles in Figure 1.

Figure 3. Observed values ofφH1 andφH2 versus 1000/T. The linear
fits provide a convenient guide for the eye and have no theoretical
basis. The uncertainties are within the size of the symbols. Note that
φH1 + φH2 ) 1 (exactly).
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two ratesλ1,2). This is the slow-motion limit on all time scales.
This explains the general shape of the relaxation curves in Figure
1.

We fit the data with four adjustable parameters that were
determined to beE ) 11.5( 0.7 kJ/mol in eq 11,x ) 0.36(
0.06 in eq 12,y ) 0.10-0.05

+0.10 in eq 6, andq ) 0.055( 0.010 in
eqs 7 and 8. The fit is relatively insensitive to the parametery,
as can be seen from the large percentage experimental uncer-
tainty in that parameter. The slopes of the high and low-
temperature ln(λ1) or ln(λ2) versus 1/T plots (both frequencies)
are equal and opposite and uniquely determine the activation
energyE independently of the other parameters. The remaining
fit can then be considered a three-parameter fit to determinex,
y, andq.

We define the parameterQ by

For the magnetizations at high temperature, it can be shown
that to orderQ3, eq 15 can be written

It then follows from eq 13 that the relaxation is exponential
with the 19F magnetization relaxing withλ1 and the 1H
magnetization relaxing withλ2.

Finally, we note, for curiosity’s sake, that in the theoretical
fits, the difference in the relaxation terms inωH - ωF when
observing 1H and when observing19F (i.e., the difference
between 2π[3.139 MHz] when observing1H and 2π[3.336
MHz] when observing19F) lead to the two closely spaced lines
in the middle and low temperatures in Figure 1. The difference
between these two difference frequencies is 6% andλj at the
lowest temperatures is proportional to (ωH - ωF)-2. This very
small difference cannot be distinguished in the experimental
relaxation rates.

5. Comparing the Fitted and Computed Values ofE, x, q,
and y

The observed effective activation energy for CF3 rotation is
E ) 11.7( 0.7 kJ/mol. Extensive ab initio electronic structure
calculations based on the crystal structure are performed in the
accompanying paper.1 The barrier height has both intramolecular
and intermolecular contributions. The former is computed to
be 2 kJ/mol and the two together are computed to be 11 kJ/
mol. Although a barrier height is not quite the same physical
quantity as an observed effective activation energy in an NMR
relaxation experiment, they are close and the agreement between
the computed value and the experimental value reported here
is reassuring.

The values ofx andE fix the mean time between hopsτ for
the CF3 group via eqs 11 and 12. The value ofx ) 0.36( 0.06
simply suggests that the assumption that CF3 rotation is
responsible for the relaxation is reasonable. Ifx were several
orders of magnitude from unity, this would be difficult to
explain. Because models forτ are so insensitive to the fitted
value of τo, this agreement serves only as an “order-of-
magnitude” check on the meaningfulness of the model.

The fitted parametery ) 0.10-0.05
+0.10 is a measure of the

intermolecular (and therefore inter-CF3 group) FF dipolar
interactions. This range iny values means that these interactions
contribute between 5 and 20% of the relaxation coming from

intramolecular (and therefore intra-CF3 group) FF dipolar
interactions. These intermolecular spin-spin interactions should
not be confused with, and have nothing to do with, the
intermolecular interactions that dominate the barrierE. The
dimensionless parametery can be computed from eq 6. Using
both the crystallography data and the ab initio calculations as
described in the accompanying paper,1 we have computedy
using the nearest 36 F atoms to each of the three F atoms in a
CF3 group, for a total of 108 intermolecular FF interactions.
This computed value givesy ) 0.111, in good agreement with
the albeit poorly determined experimental value. If we included
only the 16 nearest FF distances, all of which are<0.5 nm,y
) 0.102. Indeed, if we considered only the three nearest
neighbors at 0.276, 0.303, and 0.303 nm,y ) 0.057, more than
half the observed total. We note for completeness that the factors
Λ(θFFinter) in eq 6 (and the factorsΛ(θHF) in eqs 7 and 8), and
defined in eq 9, are all of order unity, ranging, in practice, from
0.4 to 1.0. (This parameter does range from 0 to 1, but only a
small range of angles centered around 0 andπ contribute to
the range from 0 to 0.4.)

The dimensionless parameterq in eqs 7 and 8 is more difficult
to relate to a computed quantity, but a crude calculation can be
performed and is of the right order of magnitude. One is tempted
to compute

whereqFH is defined in eqs 7 and 8 and where the sum involves
the relevant FH interactions for all three F spins in a CF3 group.
The factor 1/3 normalizes the sum to a “per F spin” interaction.
On the average, each set of three F nuclei are interacting with
nine H nuclei. The CF3 groups are arranged in sheets1 and many
F spins are interacting with the H spins in and near those sheets.
On top of this, both FF and HH spin diffusion is going to affect
this process in ways that are difficult to model. Indeed, it is
likely that one or two FH interactions are totally dominant for
each F spin and that HH spin diffusion quickly equilibrates the
H spin temperature.

The four largest individualqFH/3 values in eq 18 (corre-
sponding to the smallest values ofrHF) are 0.0294, 0.0201,
0.0195, and 0.0174, whose sum, 0.0864, can be compared with
the observed value ofq ) 0.055 ( 0.010. A sum over the
nearest 10rHF distances givesqFH/3 ) 0.17. Because there are
only three1H spins for each19F spin, simply adding the nearest
ten F-H interactions represents “overcounting.” Further work
is needed here but it is not unreasonable to say that the
theoretical model used to fit the data and the computations based
on the crystal structure are of the same order of magnitude.

6. Concluding Remarks

We have measured1H and19F nuclear spin-lattice relaxation
rates in solid 3-(trifluoromethyl)phenanthrene. The relaxation
is exponential at high temperature and biexponential at low
temperature. The temperature dependence of the rates at two
NMR frequencies shows considerable detail, all of which has
been modeled using Bloch-Wangsness-Redfield theory plus
structural information provided by X-ray crystallography and
appropriate F and H atom positions provided by ab initio
electronic configuration calculations.1 Applying Bloch-Wang-
sness-Redfield theory to these data results in a good quantitative
understanding of the relaxation process. We have also developed
a clear conceptual understanding of the relaxation process over
the entire temperature range, which includes the high, fast-

Q ) ( q

1 + 1
2
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motion and low, slow-motion temperature regimes, as well as
the intermediate temperature regime that includes two maxima
in the relaxation rates, even though there is only a single motion.
To our knowledge, this is the only report of the measurement
of the relaxation rates for unlike dipolar coupled nuclei in which
all motional regimes have been investigatedbothexperimentally
and theoretically. We have included both intramolecular and
intermolecular FF dipolar interactions and both intramolecular
and intermolecular FH dipolar interactions. (HH interactions are
not modulated by CF3 rotation, the only motion on the NMR
time scale.)

Bloch-Wangsness-Redfield theory has succeeded admira-
bly, and although it was well-presented 45 years ago,5 only by
combining the observed relaxation rates of both spin species
over all motional regimes with X-ray crystallography and ab
initio electronic structure calculations with clusters of van der
Waals molecules1 can a thorough test of the theory be conducted.
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