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We present new results for the water dimer equilibrium constantKp(T) in the range 190-390 K, using a
flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to
explicit consideration of the monomer vibrations is handled via an adiabatic (6+ 6)d decoupling between
intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured
by computingall energy levels up to dissociation for total angular momentum valuesJ ) 0-5 and using an
extrapolation scheme to higher values. The newly calculated values forKp(T) are in very good agreement
with available experimental data at room temperature. At higher temperatures, an analysis of the convergence
of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant.
Additional thermodynamical quantities (∆G, ∆H, ∆S, andCp) have also been determined and fit to quadratic
expressionsa + bT + cT2.

Introduction

In recent years, it has been proposed that the water dimers
may be important in several atmospheric processes, such as
excess absorption of solar radiation,1-5 water continuum absorp-
tion in the far infrared,6,7 homogeneous nucleation of water into
droplets and ice,8,9 and catalysis of important chemical reac-
tions,10,11 such as acid rain formation. However, from a
quantitative viewpoint, its influence remains a controversial
issue, as its concentration and variation with conditions have
not yet been precisely established.

For a long time, the only available values for the dimerization
constantKp(T) were from the thermal conductivity of the classic
steam experiments of Curtiss et al.,12 which provided results
only over a very limited temperature range of 358-386 K.
Another source of experimental data comes from the measure-
ment of the second virial coefficientB(T) through the relation12

Kp(T) = -(B - b0)/RT.
Recently, different experiments aimed at assessing dimer

concentrations at lower temperatures, more relevant to atmo-
spheric processes, have appeared. (i) A direct measurement was
attempted by Pfeilsticker et al.13 by means of atmospheric long
path absorption of the third overtone|0〉f |4〉b of the OH
stretching mode. The resulting value forKp, obtained at a unique
temperature (292 K), was determined using the water dimer line
strength calculated by Low and Kjaergaard.14 However, recent
cavity ringdown measurements15 of the water monomer absorp-
tion in the same spectral region revealed 123 new lines, which
seems to question the validity of the interpretation of the dimer
spectrum by Pfeilsticker et al. (ii) Ptashnik et al.16 obtained high-
spectral-resolution pure water vapor absorption spectra for two
different temperatures (299 and 342 K). Using HITRAN
database and two different representations of the water con-

tinuum (Clough-Kneizys-Davies and Ma-Tipping), they
derivedKp values from a fit of the residual.

In two previous papers,17,18 we presented a theoretical
determination of the dimerization constantKp(T) via a calcula-
tion of the canonical water dimer partition function. The
rovibrational energy levels were computed on the VRT-ASP
dimer potential energy surfaces previously fitted to (D2O)2
microwave and far-infrared transitions. These surfaces consider
the monomer to be rigid, i.e., constrained to some reference
geometry over the potential well up to dissociation. In these
calculations, because of limited computing resources available
at that time, only theJ ) 0 levels were actually computed. The
J > 0 values were extrapolated using the symmetric top energy
level pattern.

In the present work, we improve these calculations in several
ways:

(i) We employ a flexible potential energy surface fitted to
known (H2O)2 transitions.19 Flexibility allows the water dimer
to change its monomer geometries with intermolecular separa-
tion, and thus provides a more accurate description of excited
dimer energy levels.

(ii) A larger basis set is used, resulting in an increased number
of bound states. Notably, because of its weak binding energy,
the bound energy levels located in the highest 100 cm-1

contribute for ca. 5% of the partition function at 300 K.
(iii) All the bound states, up to dissociation, were computed

for J values of 0, 1, ..., 5 (K ) 0, ..., J). As the calculated
splittings vary substantially with theK quantum number, the
extrapolation scheme is only required forK > 5 values for which
those splittings stabilize.

The outline of this paper is as follows. We first briefly recall
our (6+ 6)d adiabatic treatment of the system and the potential
energy surface considered. We then present the bound states
calculations performed and the scheme used to extrapolate the
calculated energy levels to highJ values. This scheme allows
us to compute the dimer partition function and to determine
the equilibrium constant in the range 250-400 K, which is
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compared to available experimental values. From the partition
function, we can also evaluate the temperature dependence of
different thermodynamic properties of the dimer. We conclude
by discussing some future directions to be investigated.

Bound States Calculations

In this section, we briefly recall the (6+ 6)d adiabatic
approximation that we previously developed in order to
explicitly deal with the flexibility of the monomers (see ref 19
for a detailed description). The method employed to obtain
converged eigenstates (Lanczos recursive scheme) in ultralarge
basis sets is then discussed. Using the VRT(MCY-5f) flexible
potential previously fitted to experimental results,19 we first
consider the energy levels pattern in order to justify the
symmetric top approximation used later on. We then discuss
the variation of the acceptor tunneling splitting as a function of
the J andK quantum numbers. The observed behavior allows
us to define an extrapolation scheme to very highJ values,
which are needed in order to compute the equilibrium
constant.

A. (6 + 6)d Adiabatic Approximation. In the rigid ap-
proximation for the monomers, the molecular Hamiltonian is20,21

where
• R is the distance between the centers of mass of the two

monomers A and B, andµAB their reduced mass.
• Hrot

X and jX are respectively therigid rotational Hamilto-
nian and total angular momentum of monomer X (X) A, B).

• j ) jA + jB is the coupled internal rotational angular
momentum.

• J ) j + L is the total angular momentum (L is the relative
angular momentum between the monomer centers of mass).

• ΩX ≡ (æX, θX, øX) represents the Euler angles defining
the orientation of monomer X in the dimer body fixed (BF)
frame.

To deal with the flexibility of the monomers, we replace in
eq 1 the above rigid potentialV(R, ΩA, ΩB) by its adiabatic
counterpartVad(R, ΩA, ΩB) which takes into account the
variation of the intramolecular zero-point energy as a function
of the intermolecular geometry. More specifically,at each point
of the six-dimensional grid associated to the intermolecular
coordinates, we solve for the ground-state energy of the
intramolecular modes using the successive adiabatic reduction
method of Bacˇić and Light.22,23 The resulting Hamiltonian
operator will be denoted byH in the following. Such a (6+
6)d adiabatic approximation is justified by the high frequencies
of these modes as compared to the intermolecular ones. In this
approximation, we also consider the intermolecular geometry
dependence of each monomer rotational constantsBx, By, and
Bz (entering the definition of theHrot

A + Hrot
B operators). This

adiabatic approximation allows us to recast the flexible mono-
mers calculation into a rigid one, which was shown to be
efficiently handled by the pseudo-spectral split Hamiltonian
method.24,25

B. Lanczos Calculation of Bound States.To compute the
equilibrium constant of the dimer in the 250-400 K temperature
range, we have to consider all excited rovibrational states up to
dissociation and highJ values of the total angular momentum.

This results in a huge number of molecular basis states required
to converge the required energy levels. An obvious way to
reduce this number is to separately perform the calculations for
each irreducible representation (IR) of the permutation-
inversion group G16 of the dimer.26 Second, as the symmetry-
adapted bases are still much too large (over 106 states),
diagonalization was performed by the standard Lanczos algo-
rithm27 without reorthogonalization.

The actual bound states calculation was performed in two
steps:

(i) In the first one, one builds the Krylov spaceK )
{|un〉}n)0

N

by repetitive actions of the Hamiltonian operator on a seed
vector|u0〉. Diagonalization of the resulting tridiagonal Hamil-
tonian matrixT (of size 3000 at most) leads to the eigenstates
expressed in the Krylov space:

(ii) In a second step, one performs an identical Lanczos scheme
using the same seed vector|u0〉 and generateson the fly the
eigenstates expressed in the initial molecular basis set

each time a new Lanczos vector|un〉 is produced. This two-
step procedure is required, as the molecular basis size is too
large for the Lanczos vectors to be stored during the first pass.
For the system considered here, 3000 recursions typically
ensures convergence of the lowest 150 bound states at a fixed
total angular momentum valueJ and for a given IR. Care must
be taken in removing ghosts and spurious eigenvalues28 from
the list obtained by diagonalization in the Krylov space.

The Lanczos scheme can also be used to computeall the
energy levels up to dissociation. If one is only interested in the
energies, and not in the associated eigenstates, one can let step
(i) run for a very large number of iterations (up to 70 000 in
the present case) until all the bound energies are converged.
The modified QL algorithm of Wyatt and Scott29 was used when
only the eigenvalues were needed. Identification of spurious
eigenvalues can be efficiently realized by computing the error
norm

without actually requiring the knowledge of the eigenstatesΨR
but using a minor extension of the modified QL algorithm.30

C. Potential Energy Surface.In the calculations presented
here, we used the flexible VRT-MCYf potential energy surface
previously fitted to experiments19

In the above expression,qX stands for the three internal
coordinates of monomer X, andVJPT2 refers to the JPT2 water
potential energy surface as fitted by Tennyson and collabora-
tors.31 Only the two-body partV(2)(...) was fitted to known
microwave and far-infrared transitions. It must be recalled that
the water dimer corresponds to a very flexible molecule, far
from the harmonic oscillator model. As a consequence, the zero-

Hrigid ) - p2

2µAB

1
R

∂
2

∂R 2
R + Hrot

A + Hrot
B +

V(R, ΩA, ΩB) + 1

2µABR 2
{J2 + j2 - 2j ‚J} (1)

ân+1|un+1〉 ) (H - Tn,n)|un〉 - Tn,n+1|un-1〉 (2)

|ΨR〉 ) ∑
n)0

N

CnR|un〉 (3)

|ΨR〉: ) |ΨR〉 + CnR|un〉 (n ) 0, ...,N) (4)

σR ) ||(H - ER)ΨR|| (5)

V(qA, qB, R, ΩA, ΩB) ) VJPT2(q
A) + VJPT2(q

B) +

V(2)(qA, qB, R, ΩA, ΩB)
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point energy (∼600 cm-1) represents a significant fraction of
the binding energy (De ≈ 1750 cm-1). The set of transitions
considered (up to 160 cm-1 of excitation energy) thus allows
the fitting procedure to sample the lower half of the potential
well. In the fit, the binding energyDe was also constrained to
the best converged theoretical value of 21 kJ/mol32-35 available
at that time. It results in a dissociation energy valueD0 ≈ 1230
cm-1, to be compared with the value 1070 cm-1 associated to
the rigid VRT(ASP-W)III potential used in our previous
calculations.18

As the two-body term vanishes at large separation,R,
flexibility enforces the correct (free equilibrium) geometry for
the monomers near the dissociation limit. This effect is
particularly important for the OH distance involved in the
O-H‚‚‚O hydrogen bond, which changes from 0.968 Å at the
equilibrium geometry of the dimer to the free equilibrium value
0.958 Å. Although this effect might appear small, the zero-
point energy of the donor molecule changes accordingly from
4569 cm-1 to 4634 cm-1.

All the calculations presented in this work have been
performed with the same basis set as that used for fitting the
flexible dimer potential,19 namely, (i) a Wigner basis set up to
j ) 10 on each monomer and (ii) an initial radial basis set of
16 sine functions spanning the box 4.2e R e 10 (bohr),
contracted to 9 grid points by means of the HEG procedure.36,37

D. Energy Level Patterns.For differentK > 0 values up to
J ) 5, we have computed the energy levels associated to
different IRs. It appears that all these levels are quasi-doubly
degenerate according to the following associations

exemplified in Figure 1 (actually, the B1
( energy levels do not

exist because of zero nuclear spin statistics). This results from
the dimer being a quasi-symmetric top, as shown by the values
(in cm-1) of the rotational constants of the ground state

which leads to a symmetry parameter valueκ ) -0.9998
(prolate top). Henceforth, in our calculations, we will
resort to a symmetric top approximation which consists of
neglecting the 2j ‚J term in the expression (eq 1) of the
Hamiltonian.

As we are interested in computing the dimer spectrum at room
temperature, very highJ values will be needed in order to
converge the rotational partition function. For such highJ values,
the bound states calculations cannot be performed, and one has
to resort to some extrapolation scheme, which will be presented
in the next section. The frequently usedJ-shifting approxima-
tion38,39 is essentially a molecular version of the wavenumber
approximation of atomic physics. It considers the vibration and
rotation to be decoupled and expresses the vibration-rotation
energyEVJK as that of a prolate top

in the case considered here. Such an approximation cannot be
directly used here, as each level is split into six sublevels due
to tunneling effects (see Figure 1). Furthermore, these splittings
strongly depend on theK value. Figure 2 displays both the
acceptor and donor-acceptor splittings for the ground (V ) 0)
state, as a function ofJ andK, up toJ ) 5.

One can see from this figure that the acceptor splitting values
(boldface figures) strongly depend onK in the bottom of the
spectrum and then tend to stabilize at higher values ofK. The
donor-acceptor splittings show a similar pattern, although the
variation is smoother. However, both splittings do not depend
on J for a fixed K value. Despite the strong variation of these
splitting values, one can make use of the relation given by eq
6 for the center of each fork, defined as

where the (i, j) indices can take the values (1, 2) or (2, 1). In
Figure 2, the numbers in brackets on theK ) 0 row report the
difference EhVJ0 - EhV00, which obeys theBJ(J + 1) law.
Similarly, the numbers in parentheses appearing on theK > 0
rows report the differenceEhVJK - EVJ0 which follows the (A -
B)K2 law. Although only displayed for the ground state, one
finds the same pattern for all vibrational states.

E. Extrapolation to High J Values. To build a data basis
for energy extrapolation to highJ values,all the bound energy
levels up to dissociation were calculated for all IRs, forJ values
0, 1, ..., 5, and for associatedK values 0, 1, ...,J. Actually,
only the A1

+, A1
-, A2

+, A2
-, and E+ representations were

considered forK > 0 values. Because of the symmetric top
approximation previously invoked, the B2

+, B2
-, and E- energy

levels are degenerate with the A2
-, A2

+, and E+, respec-
tively. One can then estimate the energy of an arbitrary
(V, J, K, Γ) energy level according to a modifiedJ-shifting
approximation

Figure 1. Rotational energy levels pattern of A′ states associated to a
given V vibrational state. Each fork corresponds to levels split by
tunneling between the eight equivalent minima of the potential energy
surface. The quasi degeneracy observed forK > 0 components results
from the water dimer being a nearly symmetric top.

{A1
(/B1

-}, {A2
(/B2

-}, {E+/E-}

A ) 7.858,
1
2
(B + C) ) 0.187,

1
2
(B - C) = 3 × 10-4

EVJK ) EV + BJ(J + 1) + (A - B)K2 (6)

EhVJK ) 1
4
[E(A i

+) + E(Bi
+) + E(A j

-) + E(A j
-)] (7)

EVJK
Γ ) EVJoKo

Γ + BVJK
Γ J(J + 1) - BVJoKo

Γ Jo(Jo + 1) +

(AVJK
Γ - BVJK

Γ )K2 - (AVJoKo

Γ - BVJoKo

Γ )Ko
2 (8)
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where Γ stands for the IR, andJo and Ko refer to actually
calculated (V, Jo, Ko, Γ) energy levels as shown in Figure 3.
More specifically, one considers the three different situations,
depending on the value ofK:

K ) 0: J andJo must be of the same parity as the IRs alternate
with J (see Figure 1).

1 e K e 5: One then decreases theJ-value until matching a
calculated (V, Jo, K, Γ) level.

K > 5: In this case, one has to decrease both theK and J
values according to Figure 3.

One important point to be considered concerns the a priori
(V, J, K, Γ) dependence of theA and B rotational con-
stants entering eq 8. To assess it, we calculated the lowest
150 bound statesΨVJK

Γ for A1
+, A1

-, A2
+, A2

-, and E+ IRs, for

J values 0, 1, ..., 5, and for associatedK values 0, 1, ...,J.
Using the eigenfunctions, one can compute the associated
rotational constants as the eigenvalues of the averaged inertia
tensor

Figure 4 represents, for the B1
+ states, the variation withK of

the A constant and the variation withJ of the B constant, as a
function of their energies. The first plot displays theA-values
for J fixed at the value of 3 andK varying from 0 to 3, while
the second one corresponds to the equivalent values forK fixed
at 3 andJ varying from 3 to 5.

Figure 2. Representation of the ground state (V ) 0) rotational manifold up toJ ) 5. For sake of clarity, the E( states are not reported. Boldface
figures indicate the acceptor tunneling splittings, while donor-acceptor splittings appear between each Ai

(/Bi
( pair. The values in square brackets

give theEhVJ0 - EhV00 energy difference between the centers of the forks (eq 7), and numbers in parentheses report theEhVJK - EhVJ0 energy change.

〈I 〉 ) 〈ΨVJK
Γ |I |ΨVJK

Γ 〉 (9)
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Dependence With Energy.These data allowed us to perform
a linear regression of the constants

and a similar expression forBVJK
Γ . These expressions are used

to extrapolate the constants at higher energies (V > 150).
Dependence with K. It will be shown in the next section (see

Table 2) thatK-values less than or equal to 5 contribute more
than 90% to the total partition function belowT ) 350 K. One
can then expect that using forK > 5 the values corresponding
to K ) 5

will bring minor errors. This approximation is comforted by
the fact that the averaged values (lines displayed on theAJ)3,K

vs E graph) tend to coalesce at high energies.
Dependence with J.As high values ofJ (up to 70) are required

to converge the partition function at room temperature, one can
wonder whether the centrifugal distortion changes significantly
the B rotational constant used in eq 8. It will be shown in the
next section (see Table 3) that this effect only introduces
negligible errors in the evaluation of the partition function for
the temperatures considered.

Equilibrium Constant

The equilibrium constant is defined from the canonical
expression

where D and M stand, respectively, for the dimer and the
monomer, andλX ) h/x2πmXkT represents the thermal de
Broglie wavelength. The monomer rovibrational partition func-
tion QVR

M was taken from Harris et al.,40 who fit their calcula-
tions to a polynomial inT. The exponential term eD0/kT accounts
for the difference in the dimer (V0 ) -D0) and monomers (V0

) 0) zeros of vibrational energies.
A. Dimer Partition Function QVR

D . The dimer rovibrational
partition functionQVR

D reads as

where the factorsgΓ, given in Table 1, account for both space
and nuclear spin degeneracies. The normalization factor (1/16)
appearing in front of eq 11 is to comply with the convention
used by Harris et al.40 for the definition of the monomer partition
function which affects weights of3/4 and1/4 to ortho and para
states, respectively.

Before presenting theKp(T) value as computed from
eq 10, let us consider the behavior of the dimer partition function
QVR

D as a function of temperature. Figure 5 represents the

Figure 3. Scheme used to extrapolate energies to highJ-values: All
the bound states appearing in the lower left rectangle (K e J e 5)
have been computed and serve as (Jo, Ko) reference states to be used
in eq 8. The left arrows indicate the successive modifications brought
to the original quantum numbersJ and K until a reference state is
reached.

AVJK
Γ ) aJK

Γ + bJK
Γ E

AVJK>5
Γ = AVJK)5

Γ

Figure 4. Variation with J and K of the A constant for the A1
+

states as a function of their energiesE(V, J, K): (a) J fixed at the
value of 3, andK varying from 0 to 3; (b)K fixed at the value of 3,
andJ varying from 3 to 5. The lines correspond to a linear fit of these
values.

Kp(T) )
pD

pM
2

) 1
kT(QVR

D eD0/kT

λD
3 )(QVR

M

λM
3)-2

(10)

QVR
D (T) )

1

16
∑

Γ

gΓ∑
VJK

gJ exp(-EVJK
Γ /kT) (11)
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Boltzmann averaged density of states

whereF(E) corresponds to the standard density of states (i.e.,
number of rovibrational states per unit energy). The partition
function QVR

D is related toF̃(E, T) according to

Figure 5 shows that, whileF̃(E, T) converges for energies
below D0 at T e 200 K, at higher temperatures there is an
increasing fraction of the weighted density extending beyond
the dissociation threshold. The occurrence of energies greater
than D0 can be easily understood within theJ-shifting ap-
proximation. In this approximation, the total energy is defined
as the sum of the vibrational and rotational contributions. A (V,
Jo, Ko, Γ) calculated energy level can thus be dressed by a
rotational energy (see eq 8) large enough for the extrapolated
energyEVJK

Γ to lie in the dissociation continuum. This feature is
not an artifact of the extrapolation scheme: Such high energy

levels actually exist and correspond to resonances, i.e., quasi-
bound states, which will decay in the continuum. Many years
ago, Smith41 discussed how to deal with such states: In the
calculation of the partition function, these states should be
weighted according to their lifetimes. As these quantities would
necessitate enormous calculations for their determination42 due
to the size of the system considered here, we chose to ignore
all quasi-bound states. As a consequence, the calculation of the
partition functionQVR

D will be limited to energy levelsEVJK
Γ

located below the dissociation thresholdD0. We will, however,
discuss below the possible influence of these quasi-bound states
in the equilibrium constant values. It should also be noted that
another type of quasi-bound states exist, which cannot be
obtained in our present calculations, namely, Feschbach reso-
nances, where part of the total energy (larger thanD0) is
temporarily trapped in modes perpendicular to the dissociation
coordinate.

Table 2 displays the probabilities associated to differentK
values contributing to the partition function for temperaturesT
) 250 and 350 K. One can check thatK values less than or
equal to 5, for which energy levels were actually computed,
comprise more than 90% of the partition function. Conversely,
the extrapolatedK-levels (K g 6) comprise less than 10% of
the function.

In the preceding section, the possible effect of centrifugal
distortion (a decrease of theB rotational constant with respect
to J) was evoked. To assess this effect, we performed a series
of calculations for the valueJ ) 30, still retaining the symmetric
top approximation. Namely, in eq 1, we replaced theJ2 operator
by the valueJ(J + 1) (usingJ ) 30) and computed all A1

+

bound energy levels forK-values 0, 2, 4, and 6. In doing so,
we explicitly take into account the centrifugal distortion term
J(J + 1)/2µABR2. From these energies, one can compute the
partial partition functions defined as

(ignoring the M degeneracy). The equivalent approximate
quantity Qap.(J ) 30, K, A1

+) can be obtained from energy
levels extrapolated according to eq 8. A comparison of these
two sets of values, calculated forT ) 300 K, is shown in Table
3 and reveals that the error coming from extrapolated energy
levels is on the order of 2% at most.

B. Equilibrium Constant. Figure 6 presents the calculated
equilibrium constantKp(T) in the range 270-400 K, with and
without the contribution of quasi-bound states. In the former
case, as the associated lifetimes are not known, these resonance
states are affected by weight only determined by the Boltzmann
factor e-E/kT. On this figure are also represented the following:

Figure 5. Boltzmann-averaged densities of statesF̃(E, T) ) F(E) ×
e-E/kT (number of rovibrational states per cm-1) for temperaturesT )
223 and 373 K. The curve at temperature 273 K can be fitted to the
form F̃(E, T) ) A‚Es‚e-E/kT, whereA ) 1.054 10-3 ands ) 2.52.

TABLE 1: Symmetry Dependent Factors Accounting for
Both Space and Nuclear Spin Degeneracies

Γ A1
+/A1

- A2
+/A2

- B2
+/B2

- E+/E-

gΓ 1 3 6 3

F̃(E, T) ) F(E) e-E/kT (12)

QVR
D ) ∫0

Emax F̃(E, T) dE (13)

TABLE 2: Probabilities of the Different K Values Entering
the Rovibrational Partition Function for Temperatures 250
and 350 K

P(K) K ) 0 K ) 1 K ) 2 K ) 3 K ) 4 K ) 5 K > 5

T ) 250 K 0.128 0.242 0.208 0.162 0.114 0.071 0.075
T ) 350 K 0.118 0.224 0.198 0.161 0.120 0.081 0.098

TABLE 3: Comparison between Exact Partial Partition
Functions (eq 14) and Results Obtained from Extrapolated
Energy Levels and Rotational Constants, forT ) 300 Ka

Q (J ) 30,K, A1
+) K ) 0 K ) 2 K ) 4 K ) 6

exact 19.73 35.99 32.66 28.62
approximated 19.52 35.42 32.03 28.27

a These values do not take into account theM degeneracy.

Qex.(J ) 30,K, A1
+) ) ∑

V
exp(-EV,J)30,K

A1
+

/kT) (14)
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(i) the results, at high temperatures, based on the thermal
conductivity of steam experiments of Curtiss et al,12 (ii) the
values extracted from the relation12

whereB(T) is the second virial coefficient as determined by
Harvey and Lemmon43 from vaporization data (the above
relation was used by either neglecting the excluded volumeb0

or using the value 38.5 cm3/mol as estimated by Curtiss et al.12),
(iii) the direct measurement of dimer concentration in the
atmosphere atT ) 292 K by Pfeilsticker et al.13 by means of
atmospheric long path absorption of the third overtone of the
bound OH stretching mode OHb, combined with line strength
calculated by Low and Kjaergaard,14 (iv) the expression

whereε ) D0 ) 3.27 kcal/mol, fitted by Evans and Vaida3 to
thermochemical data, (v) our previous results18 based on the
rigid VRT(ASP-W)III potential, and (vi) the values, at temper-
atures 299 and 342 K, estimated by Ptashnik et al.16 from high-
spectral-resolution pure water vapor absorption spectra. The two
sets of values correspond to using the CKD-2.4 or the Ma and
Tipping continuum models, respectively.44

One can note a definite improvement in the newly calculated
values, with respect to all the experimental data either observed
or derived from the second virial coefficient, as compared to
our previous calculations.18 While it is difficult to ascertain the
actual reasons for this, because of many differences in the two
sets of calculations, it seems probable that the new extrapolation
scheme played a significant role: We explicitly considered all
the bound energy levels, up to dissociation, forJ values 0, 1,
..., 5 (K ) 0, ...,J), which allowed us to take into account the

energy-level splitting dependence upon theK-value. The close
agreements between our results and the recent estimation of
Ptashnik et al.16 comforts their conclusion that water dimer
absorption is most probably included partly in the modern CKD
continuum model.

C. Approximate Partition Function. When calculating the
partition function (eq 11), one can actually restrict the summa-
tion to a single IR: Table 4 reveals that, excluding the spin
degeneracy factorsgΓ, they all contribute the same amount

except for the degenerate speciesE+ andE-. In fact, Figure 1
shows thatE( states occur twice as frequently compared to
nondegenerate ones. One can thus write the total partition
function QVR

D (T) according to

where the factor 32 results from the summation over the spin
degeneracies and counting the degenerate speciesE( twice. This
property, which was not actually used in the calculations
presented here, can reduce by 1 order of magnitude the
numerical effort needed to compute the partition function.

D. Thermodynamic Properties. The close agreement be-
tween our calculated equilibrium constantKp(T) and the
available experimental data allows us to derive thermodynamical
quantities from the partition function.18 In doing so, we assume
that the dimer behaves like a perfect gas, which is consistent
with the way the partition function was calculated (water dimer
without any exterior interaction).

The simplest way to estimate the Gibbs free energy for the
dimerization process is to use the relation∆G°(T) ) -RT ln
K°(T). The dimerization enthalpy∆H°(T) is calculated from the
equation∆H°(T) ) HD - 2HM where45

One can then extract the dimerization entropy∆S°(T) from
∆S°(T) ) [∆H°(T) - ∆G°(T)]/T. Finally, the heat capacityCp(T)
of the dimer is given by

and Cv(T) ) Cp(T) - R. The resulting curves are shown in
Figure 7 and have been fitted to a quadratic expressiona + bT
+ cT2 (valid in the range 190-390 K), the coefficients being
given in Table 5.

It can be seen from Figure 7 that the quadratic law is
particularly well obeyed by the Gibbs function∆G°(T), associ-
ated to a standard deviationσ ) 6.78 J‚mol-1. Using theKp(T)

Figure 6. Calculated equilibrium constantKp(T) in the range 270-
400 K, with (- - -) and without (s) the contribution of pseudo-bound
states and comparison to different experimental data: (b) valuesKp(T)
) -(B - b0)/RT extracted from the second virial coefficient data of
Harvey and Lemmon,43 neglecting the excluded volumeb0, or (O) using
the value 38.5 cm3/mol as estimated by Curtiss et al.;12 (×) direct
measurement of dimer concentration in the atmosphere atT ) 292 K
by Pfeilsticker et al.;13 (4) expressionKp(T) = 0.0293(eε/kT - 1)/T
(atm-1) (ε ) D0 ) 3.27 kcal/mol) fitted by Evans and Vaida3 to
thermochemical data; (0) results based on the thermal conductivity of
steam experiments of Curtiss et al.;12 (‚ - ‚) our previous calculations,18

based on the rigid VRT(ASP-W)III potential; estimation by Ptashnik
et al.16 from high-spectral-resolution pure water vapor absorption spectra
using either the CKD-2.4 (]) or Ma and Tipping (/) continuum models.

Kp(T) ) - (B - b0)/RT

Kp(T) = 0.0293
eε/kT - 1

T
(atm-1)

TABLE 4: Rovibrational Partition Functions QVR
DΓ (×10-5),

Excluding the Spin-Degeneracy FactorgΓ, Associated to the
Different IR Γs for the Two TemperaturesT ) 270 and 400
K. All Nondegenerate IRs Roughly Contribute to the Same
Amount, While the Degenerate OnesE( Contribute Twice as
Much Because of the Double Occurrence of These Former
States (see Figure 1)

QVR
DΓ × 10-5 A1

+ A1
- A2

+ A2
- B2

+ B2
- E+ E-

T ) 270 K 1.013 0.980 0.971 0.998 1.011 0.979 1.981 1.981
T ) 400 K 3.839 3.739 3.681 3.765 3.835 3.740 7.510 7.510

QVR
DΓ(T) ) ∑

VJK

gJ exp(-EVJK
Γ

/kT)

QVR
D (T) =

32
16

QVR
DA1

+
(T)

HX ) RT(52 + T
d

dT
ln QX)

Cp(T) ) R(52 + d
dT

T 2 d
dT

ln QD)
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) exp(-∆G°/RT)/p° relation for the dimerization constant, one
can determine the corresponding interpolating formula for this
constant

Fitting directly ourKp(T) results to this formula leads to the
expression

Discussion

In this work, we improved upon our previous estimation18

of the equilibrium constantKp(T) by performing more extensive
calculations of the bound energy levels: All of them, up to
dissociation, were determined for total angular momentum
valuesJ ) 0, ..., 5 andK-values 0, ...,J. Furthermore, we
devised an extrapolation scheme to higherJ-values, which
explicitly takes into account the variation withK of both the
acceptor and the donor-acceptor tunneling splittings. Also, we
employed a flexible potential energy surface, previously fitted
to spectroscopical data, which leads to a better description of
highly excited states. An interesting extension of our calculations
concerns the estimation of thermodynamical quantities and their
fitted analytical expressions to a quadratic form over the range
190-390 K. In particular, it is shown that the frequent
assumption of isothermicity for∆H° and ∆S° is not well-
supported by our results.

In any calculation of the dimer partition function, the
dissociation energy valueD0 plays an essential role, as it
contributes through the exponential term eD0/kT which is on the
order of∼300 at room temperature. Consequently, a change of
50 cm-1 in the value ofD0 ()1234 cm-1 for our flexible
potential) results in a change of 26% of the equilibrium constant
Kp(T) at this temperature. Unfortunately, an accurate experi-
mental value forD0 does not exist, and all present estimations46

contain uncertainties much larger than 50 cm-1. In view of the
most recent ab initio calculations performed on the water
dimer,47 one can estimate that our present surface slightly
overestimates theD0 value, which would result in a small
decrease in the calculatedKp values at lower temperature.

One difficult problem encountered in our calculations, and
still unresolved, concerns the quantitative role of quasi-bound
states or resonances. In principle, the correct way to handle those
states has been shown by Smith41 who related the partition
function to the collision lifetime matrix in a quantum exact
formulation. Similarly, Vigasin48,49 has investigated the effect
of such resonant states on the collision-induced absorption by
means of classical statistical mechanics. It has been argued by
Schenter et al.50 that such resonances could change theKp values
by as much as 2 orders of magnitude, on the basis of a simplistic
water dimer model. Our present results, which bracket the
experimental values available depending on whether one takes
into account the resonance states or not, show that the effect of
such states cannot be so dramatic in the case of the water dimer.
One way to estimate this effect would consist of taking into
account the lifetimes in an approximate way by means of the
microscopic dissociation rate constantk(E, J) such as in the
RRKM51 or the statistical adiabatic channel model of Quack
and Troe.52,53 Indeed, the required ingredients for computing
this rate, namely, the density of states associated to some
transition-state geometryR*, could easily be obtained within
our formulation. To conclude this discussion on the possible
role of resonance states, it should be kept in mind that their
effects are designed to be limited in the temperature range 200-
300 K (see Figure 5), which is the one relevant to atmospheric
processes.

Figure 7. Thermodynamical quantities∆G°, ∆H°, ∆S°, and Cp

calculated from the partition functionQD. These curves are fitted to
quadratic expressionsa + bT + cT2, the coefficients being given in
Table 5.

TABLE 5: Quadratic Expression a + bT + cT2, Valid in the
Range 190-390 K, of the Thermodynamic Quantities

a b c

∆G0 (kJ‚mol-1) -14.977 6.0065× 10-2 4.9618× 10-5

∆H0 (kJ‚mol-1) -17.191 1.5663× 10-2 -7.6546× 10-2

∆S0 (J‚K-1‚mol-1) -69.5 -3.4328 -1.0858× 10-4

Cp (J‚K-1‚mol-1) 116.78 -4.1744 4.9342× 10-4

Kp(T) )

4.7856× 10-4 exp(1851.09/T - 5.10485× 10-3T) (atm-1)

Kp(T) ) e-b/R exp(- a
RT

- c
R

T) (atm-1)
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