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We present new results for the water dimer equilibrium congfg(if) in the range 196390 K, using a

flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to
explicit consideration of the monomer vibrations is handled via an adiabatic €&l decoupling between

intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured
by computingall energy levels up to dissociation for total angular momentum value®—5 and using an
extrapolation scheme to higher values. The newly calculated valuds,fdy are in very good agreement

with available experimental data at room temperature. At higher temperatures, an analysis of the convergence
of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant.
Additional thermodynamical quantitieAG, AH, AS andC,;) have also been determined and fit to quadratic
expressions + bT + cT2

Introduction tinuum (Clough-Kneizys-Davies and MaTipping), they
. . derivedK, values from a fit of the residual.
In recent years, it has been proposed that the water dimers . 18 .

In two previous papers;® we presented a theoretical

may be important in several atmospheric processes, such asoI terminati f the dimerizati A . tcul
excess absorption of solar radiatfon,water continuum absorp- \etermination ot the dimerization cons WT) via a cacuia-
tion of the canonical water dimer partition function. The

tion in the far infrared;,” homogeneous nucleation of water into . .
droplets and ic&? and catalysis of important chemical reac- rovibrational energy levels were computed on the VRT-ASP
’ dimer potential energy surfaces previously fitted to,Q

tions1%11 such as acid rain formation. However, from a . d far-infrared transiti Th " id
guantitative viewpoint, its influence remains a controversial microwave and far-inirared transitions. These surlaces consider

issue, as its concentration and variation with conditions have the monomer to be r|g|d,_|.e., constrame_d to some reference
not yet been precisely established. geometry over the potenpa! well up to_d|ssomat|on. In these
For a long time, the only available values for the dimerization calt;]ulat.lons, b(laca#;e_og I||m|t?d computlng”resources 3vz_a|_|lhable
constanKy(T) were from the thermal conductivity of the classic ?t: c‘?t ging’ oney;et o t? a o(lee\llteej V\;e_rr]e ?ﬁ;u: %;Oerprpcu:g .ene?
steam experiments of Curtiss et &l.which provided results level vaiues w xtrap using Yy Ic top gy
only over a very limited temperature range of 3586 K. evel pattern. ) ) )
Another source of experimental data comes from the measure- In the present work, we improve these calculations in several
ment of the second virial coefficieB(T) through the relatio¥ ways: _ _ _
Ko(T) = —(B — bo)/RT. (i) We employ a.f.IeX|bIe pot.e.n_tlal energy surface fIFted to
Recently, different experiments aimed at assessing dimer known (H0); transitions'® Flexibility allows the water dimer
concentrations at lower temperatures, more relevant to atmo-t0 change its monomer geometries with intermolecular separa-
spheric processes, have appeared. (i) A direct measurement walon, and thus provides a more accurate description of excited
attempted by Pfeilsticker et &by means of atmospheric long ~ dimer energy levels.
path absorption of the third overton@ |40 of the OH (i) A larger basis set is used, resulting in an increased number
stretching mode. The resulting value fy;, obtained at a unique ~ Of bound states. Notably, because of its weak binding energy,
temperature (292 K), was determined using the water dimer line the bound energy levels located in the highest 100 cm
strength calculated by Low and Kjaergaafddowever, recent contribute for ca. 5% of the partition function at 300 K.
cavity ringdown measureme#t®f the water monomer absorp- (iii) All the bound states, up to dissociation, were computed
tion in the same spectral region revealed 123 new lines, which for J values of 0, 1, ..., 5K = 0, ..., J). As the calculated
seems to question the validity of the interpretation of the dimer splittings vary substantially with th& quantum number, the
spectrum by Pfeilsticker et al. (i) Ptashnik et&bbtained high- extrapolation scheme is only required for 5 values for which
spectral-resolution pure water vapor absorption spectra for two those splittings stabilize.
different temperatures (299 and 342 K). Using HITRAN The outline of this paper is as follows. We first briefly recall
database and two different representations of the water con-our (6+ 6)d adiabatic treatment of the system and the potential
energy surface considered. We then present the bound states
TPart of the special issue “John C. Light Festschrift”. calculations performed and the scheme used to extrapolate the
:Sgir\;gfg?e“ﬁg‘r?t;:ﬁihe?r“ E-mail: Claude.Leforestier@univ-montp2.fr.  cajcylated energy levels to highvalues. This scheme allows
- us to compute the dimer partition function and to determine

§ Lawrence Livermore National Laboratory. P ] el
'University of California. the equilibrium constant in the range 25000 K, which is
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compared to available experimental values. From the partition This results in a huge number of molecular basis states required
function, we can also evaluate the temperature dependence ofo converge the required energy levels. An obvious way to
different thermodynamic properties of the dimer. We conclude reduce this number is to separately perform the calculations for
by discussing some future directions to be investigated. each irreducible representation (IR) of the permutation
inversion group G of the dimer?® Second, as the symmetry-
adapted bases are still much too large (ovef &tates),
diagonalization was performed by the standard Lanczos algo-
rithm?” without reorthogonalization.

The actual bound states calculation was performed in two

Bound States Calculations

In this section, we briefly recall the (& 6)d adiabatic
approximation that we previously developed in order to
explicitly deal with the flexibility of the monomers (see ref 19 steps:
for a detailed description). The method employed to obtain (i) In the first one, one builds the Krylov spac#” =
converged eigenstates (Lanczos recursive scheme) in ultralargd |u,} 2‘:0
basis sets is then discussed. Using the VRT(MCY-5f) flexible
potential previously fitted to experimental resuflsye first BrialUn 0= (H 2)
consider the energy levels pattern in order to justify the N _ o
symmetric top approximation used later on. We then discuss Py repetitive actions of the Hamiltonian operator on a seed
the variation of the acceptor tunneling splitting as a function of Vector|uel] Diagonalization of the resulting tridiagonal Hamil-
the J andK quantum numbers. The observed behavior allows tonian matrixT (of size 3000 at most) leads to the eigenstates

- Tn,n) | unD_ Tn,n+1| Un,1|]

us to define an extrapolation scheme to very highalues,
which are needed in order to compute the equilibrium
constant.

A. (6 + 6)d Adiabatic Approximation. In the rigid ap-
proximation for the monomers, the molecular Hamiltonigh3s

R4 Hy +HY +

rot rot

H

rigid 2ung R yp?

V(7 QN QB) + ﬁ{f’ +i2- 23 (1)
AB

where

expressed in the Krylov space:

N
W 0= Clu0

n=

®3)

(i) In a second step, one performs an identical Lanczos scheme
using the same seed vectapand generatesn the flythe
eigenstates expressed in the initial molecular basis set

(4)

each time a new Lanczos vectpris produced. This two-
step procedure is required, as the molecular basis size is too

W 0= W HClu0d (n=0,..N)

* 7 is the distance between the centers of mass of the two |arge for the Lanczos vectors to be stored during the first pass.

monomers A and B, andag their reduced mass.

o Hﬁ,t andjX are respectively theigid rotational Hamilto-
nian and total angular momentum of monomer X=£XA, B).

e j = jA 4+ jB is the coupled internal rotational angular
momentum.

«J =j + L is the total angular momenturh (s the relative
angular momentum between the monomer centers of mass).

o« QX = (¢, 6%, ¥X) represents the Euler angles defining
the orientation of monomer X in the dimer body fixed (BF)
frame.

To deal with the flexibility of the monomers, we replace in
eq 1 the above rigid potentidl(o7, QA, QB) by its adiabatic
counterpartVad#, QA, QB) which takes into account the
variation of the intramolecular zero-point energy as a function
of the intermolecular geometry. More specificaliy,each point
of the six-dimensional grid associated to the intermolecular

coordinates, we solve for the ground-state energy of the

For the system considered here, 3000 recursions typically
ensures convergence of the lowest 150 bound states at a fixed
total angular momentum valukand for a given IR. Care must

be taken in removing ghosts and spurious eigenvéiifesm

the list obtained by diagonalization in the Krylov space.

The Lanczos scheme can also be used to complltthe
energy levels up to dissociation. If one is only interested in the
energies, and not in the associated eigenstates, one can let step
(i) run for a very large number of iterations (up to 70 000 in
the present case) until all the bound energies are converged.
The modified QL algorithm of Wyatt and Scéttvas used when
only the eigenvalues were needed. Identification of spurious
eigenvalues can be efficiently realized by computing the error
norm

o, = [I(H = E)W,l (5)

intramolecular modes using the successive adiabatic reductionwithout actually requiring the knowledge of the eigenstaltgs

method of BaE and Light?223 The resulting Hamiltonian
operator will be denoted bl in the following. Such a (6+
6)d adiabatic approximation is justified by the high frequencies

but using a minor extension of the modified QL algoritBn.
C. Potential Energy Surface.In the calculations presented
here, we used the flexible VRT-MCYf potential energy surface

of these modes as compared to the intermolecular ones. In thispreviously fitted to experimerts

approximation, we also consider the intermolecular geometry

dependence of each monomer rotational constagts,, and
B, (entering the definition of théi’, + HZ, operators). This
adiabatic approximation allows us to recast the flexible mono-
mers calculation into a rigid one, which was shown to be
efficiently handled by the pseudo-spectral split Hamiltonian
method?425

B. Lanczos Calculation of Bound StatesTo compute the

equilibrium constant of the dimer in the 25800 K temperature

V(qu qB, 7, Q4 QB) = VJPTz(qA) + VJPTz(qB) +
V(Z)(qA, G 7, Q@ QF)

In the above expressiomg* stands for the three internal
coordinates of monomer X, andpr;refers to the JPT2 water
potential energy surface as fitted by Tennyson and collabora-
tors3! Only the two-body partv@(...) was fitted to known
microwave and far-infrared transitions. It must be recalled that

range, we have to consider all excited rovibrational states up tothe water dimer corresponds to a very flexible molecule, far

dissociation and highl values of the total angular momentum.

from the harmonic oscillator model. As a consequence, the zero-
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Figure 1. Rotational energy levels pattern of states associated to a
given v vibrational state. Each fork corresponds to levels split by
tunneling between the eight equivalent minima of the potential energy
surface. The quasi degeneracy observedfer 0 components results
from the water dimer being a nearly symmetric top.

point energy £600 cnt?) represents a significant fraction of
the binding energy[ ~ 1750 cnTl). The set of transitions
considered (up to 160 cm of excitation energy) thus allows
the fitting procedure to sample the lower half of the potential
well. In the fit, the binding energp. was also constrained to
the best converged theoretical value of 21 kJAéP available
at that time. It results in a dissociation energy valge~ 1230
cm™1, to be compared with the value 1070 chassociated to
the rigid VRT(ASP-W)Ill potential used in our previous
calculationst®

As the two-body term vanishes at large separatiof),
flexibility enforces the correct (free equilibrium) geometry for
the monomers near the dissociation limit. This effect is
particularly important for the OH distance involved in the
O—H-++O hydrogen bond, which changes from 0.968 A at the
equilibrium geometry of the dimer to the free equilibrium value
0.958 A. Although this effect might appear small, the zero-
point energy of the donor molecule changes accordingly from
4569 cnr! to 4634 cnTl.

All the calculations presented in this work have been
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exist because of zero nuclear spin statistics). This results from
the dimer being a quasi-symmetric top, as shown by the values
(in cm™1) of the rotational constants of the ground state

A=7.858, %(B +C)=0.187, %(B ~C)=3x10"

which leads to a symmetry parameter valkie= —0.9998
(prolate top). Henceforth, in our calculations, we will
resort to a symmetric top approximation which consists of
neglecting the R2J term in the expression (eq 1) of the
Hamiltonian.

As we are interested in computing the dimer spectrum at room
temperature, very higld values will be needed in order to
converge the rotational partition function. For such higlalues,
the bound states calculations cannot be performed, and one has
to resort to some extrapolation scheme, which will be presented
in the next section. The frequently usé&dhifting approxima-
tion3839is essentially a molecular version of the wavenumber
approximation of atomic physics. It considers the vibration and
rotation to be decoupled and expresses the vibratiotation
energyE, k as that of a prolate top

E,«=E,+BJJ+ 1)+ (A— B)K? (6)
in the case considered here. Such an approximation cannot be
directly used here, as each level is split into six sublevels due
to tunneling effects (see Figure 1). Furthermore, these splittings
strongly depend on th& value. Figure 2 displays both the
acceptor and donetracceptor splittings for the ground € 0)
state, as a function of andK, up toJ = 5.

One can see from this figure that the acceptor splitting values
(boldface figures) strongly depend ¢hin the bottom of the
spectrum and then tend to stabilize at higher values.dfhe
donor—acceptor splittings show a similar pattern, although the
variation is smoother. However, both splittings do not depend
on J for a fixedK value. Despite the strong variation of these
splitting values, one can make use of the relation given by eq
6 for the center of each fork, defined as

E = [EA)) + E@) + EA)) + EAD] (7)

where the ( j) indices can take the values (1, 2) or (2, 1). In
Figure 2, the numbers in brackets on te= 0 row report the
difference E,jo — E,oo, Which obeys theBJJ + 1) law.
Similarly, the numbers in parentheses appearing orkthe0
rows report the differencg,;x — E,j0 which follows the A —
B)K? law. Although only displayed for the ground state, one
finds the same pattern for all vibrational states.

E. Extrapolation to High J Values. To build a data basis
for energy extrapolation to highvalues,all the bound energy

performed with the same basis set as that used for fitting the levels up to dissociation were calculated for all IRs,Joalues

flexible dimer potential? namely, (i) a Wigner basis set up to
j = 10 on each monomer and (ii) an initial radial basis set of
16 sine functions spanning the box 42 % < 10 (bohr),
contracted to 9 grid points by means of the HEG proceétité.

D. Energy Level Patterns.For differentk > 0 values up to

0, 1, ..., 5, and for associatdd values 0, 1, ...J. Actually,
only the A[, A], A;, A,, and E representations were
considered folK > 0 values. Because of the symmetric top
approximation previously invoked, the,BB,, and E energy
levels are degenerate with the, AA;, and E, respec-

J = 5, we have computed the energy levels associated totively. One can then estimate the energy of an arbitrary
different IRs. It appears that all these levels are quasi-doubly (y, J, K, T) energy level according to a modifie#ishifting

degenerate according to the following associations
{A1/B1}, {A3/B;} {E'/E}

exemplified in Figure 1 (actually, thejBenergy levels do not

approximation

EEJK = E£J0K0+ BEJKJ(J +1) - BEJOKO‘]O(‘]O +1)+
(Alz:JK - BI;JK)KZ - (AgJDKo - Blz:JOKO)KOZ (8)



5414 J. Phys. Chem. A, Vol. 110, No. 16, 2006

B,
- 0.61

Ay

11.8 [0

Bt

1
0.60 N
L A]
J=0

Bl /AT

0.60
Af/Br
.0 (74)

— /At
0.46 B2 /A2
LA /Bf

e rv—

A
T 0.61

By

11.8 [0.37]

X 0.60

- -1

J=1

&
<
=

11.8 [1.1]

Bt

1
0.60 .
L A]
J=2

By /A3
0.32
Ay /Bf
6 (72.6)

B /AT

F—o—=

024
Al /Bl
—_B/Ay
0.45

AT /By
.6 (324)
B; /A3

F—o—

0.32

A3 /B
___Bf/A7
0.60

Af /By
0 (74)
——B; /A7
0.46
A4, /By
A}
—0.60

F—r—

Bf

11.8 [2.2]

X 0.60
B,
J=3

By /AT
0.26
L___A;/Bf
5.7 (128.8)
B /AT

0.20

Af /By
By /A
0.32
L__A;/Bf
5.6 (72.6)
By JAT

024
AY/B;

—_Bi/A
0.45

Af /By
9.6 (32.4)
B; /A3

0.32

A3 /By
___Bi/A7
0.60

Af /By
0 (74)
——B; /A7
0.46
A4, /By
By
—10.60

F—w—

Ay

11.8 [3.7]

Bt

Y060 '
L 4f
J=4

____Af/By
1.40
LB /AT
.0 (200.1)
——A$ /By
0.21
—BJ/A;
By /A
0.26

L 4;/Bf
.7 (128.8)
—— B /AT

ol

F—o—

0.21
At /By

By /A3

0.32
L___A5/Bf
.6 (72.6)
B /AT

F—o—>

0.24 B
Al/By

Bl /A

0.45

At /By
.6 (32.4)
B; /A3

F—o—

0.32

A /BS
____Bi/AY
0.60

Af/By
.0 (7.4)
—— B; /AT
0.47
—A;/Bf
_AF

— 0.60

F—w—

Bf

11.8 [5.6]

— Al_
¥ 0.60

By
J=5

Scribano et al.

Figure 2. Representation of the ground state< 0) rotational manifold up td = 5. For sake of clarity, the Estates are not reported. Boldface
figures indicate the acceptor tunneling splittings, while detamceptor splittings appear between eaéﬁBﬁf pair. The values in square brackets
give theE,; — E.o0 energy difference between the centers of the forks (eq 7), and numbers in parentheses ré&pgrt-the, ;o energy change.

whereI" stands for the IR, and, and K, refer to actually
calculated ¢, Jo, Ko, I') energy levels as shown in Figure 3.
More specifically, one considers the three different situations, rotational constants as the eigenvalues of the averaged inertia
depending on the value &:
K = 0: JandJ, must be of the same parity as the IRs alternate
with J (see Figure 1).
1 < K < 5: One then decreases th&alue until matching a
calculated ¢, Jo, K, T') level.
K > 5: In this case, one has to decrease bothkhend J
values according to Figure 3.
One important point to be considered concerns the a priori function of their energies. The first plot displays thesalues
(v, J, K, T') dependence of thé and B rotational con-
stants entering eq 8. To assess it, we calculated the lowestthe second one corresponds to the equivalent values figed
150 bound state¥’”, for AT, A7, A7, A,, and E IRs, for

tensor

mC= Wl 1!, 0

at 3 andJ varying from 3 to 5.

Jvalues 0, 1, ..., 5, and for associatédvalues 0, 1, ...J.
Using the eigenfunctions, one can compute the associated

9)

Figure 4 represents, for the; Bstates, the variation witi of
the A constant and the variation withof the B constant, as a

for J fixed at the value of 3 an# varying from O to 3, while
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Figure 3. Scheme used to extrapolate energies to Wighlues: All

the bound states appearing in the lower left rectanffle<(J < 5)
have been computed and serve &s K,) reference states to be used
in eq 8. The left arrows indicate the successive modifications brought
to the original quantum numberkand K until a reference state is
reached.

Dependence With Energyhese data allowed us to perform

a linear regression of the constants
r _.r I
Ak = ay + byE

and a similar expression fd. ;.. These expressions are used
to extrapolate the constants at higher energies (150).

Dependence with Kt will be shown in the next section (see
Table 2) thatk-values less than or equal to 5 contribute more
than 90% to the total partition function beloiv= 350 K. One
can then expect that using f&r > 5 the values corresponding
toK=5

r r
Avsk=5 = A k=5

will bring minor errors. This approximation is comforted by
the fact that the averaged values (lines displayed oi\thex
vs E graph) tend to coalesce at high energies.

Dependence with As high values o (up to 70) are required

to converge the partition function at room temperature, one can

wonder whether the centrifugal distortion changes significantly
the B rotational constant used in eq 8. It will be shown in the

next section (see Table 3) that this effect only introduces
negligible errors in the evaluation of the partition function for

the temperatures considered.

Equilibrium Constant

The equilibrium constant is defined from the canonical
expression

J. Phys. Chem. A, Vol. 110, No. 16, 2008415
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andJ varying from 3 to 5. The lines correspond to a linear fit of these
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KP(T)_ 2k /103 ;LMS

Pwm

(10)

where D and M stand, respectively, for the dimer and the
monomer, andix = h/y/2emyKT represents the thermal de
Broglie wavelength. The monomer rovibrational partition func-
tion QU, was taken from Harris et &l who fit their calcula-
tions to a polynomial ifT. The exponential termPekT accounts
for the difference in the dimeMy = —Dg) and monomers\{y
= 0) zeros of vibrational energies.

A. Dimer Partition Function Q0. The dimer rovibrational
partition functionQ0, reads as

1
QM = 1—6 Zgrgzgj exp(—E; 5 /kT) (11)

where the factorgr, given in Table 1, account for both space
and nuclear spin degeneracies. The normalization faétg) (
appearing in front of eq 11 is to comply with the convention
used by Harris et &P for the definition of the monomer partition
function which affects weights o, and'/, to ortho and para
states, respectively.

Before presenting theKy(T) value as computed from
eq 10, let us consider the behavior of the dimer partition function
Q\E,’R as a function of temperature. Figure 5 represents the
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TABLE 2: Probabilities of the Different K Values Entering
the Rovibrational Partition Function for Temperatures 250
and 350 K

P(K) K=0 K=1 K=2 K=3 K=4 K=5 K>5

T=250K 0.128 0.242 0.208 0.162 0.114 0.071 0.075
T=350K 0.118 0.224 0.198 0.161 0.120 0.081 0.098

TABLE 3: Comparison between Exact Partial Partition
Functions (eq 14) and Results Obtained from Extrapolated

300 = Energy Levels and Rotational Constants, forT = 300 K2
I QUW=30,K,A)) K=0 K=2 K=4 K=6
| exact 19.73 35.99 32.66 28.62
i approximated 19.52 35.42 32.03 28.27

a2 These values do not take into account Melegeneracy.

levels actually exist and correspond to resonances, i.e., quasi-
bound states, which will decay in the continuum. Many years
ago, Smith! discussed how to deal with such states: In the
calculation of the partition function, these states should be
weighted according to their lifetimes. As these quantities would
necessitate enormous calculations for their determirf&tare

to the size of the system considered here, we chose to ignore
all quasi-bound states. As a consequence, the calculation of the
partition functionQUg will be limited to energy levelsE!
located below the dissociation thresh@lgl We will, however,
discuss below the possible influence of these quasi-bound states
in the equilibrium constant values. It should also be noted that
another type of quasi-bound states exist, which cannot be
obtained in our present calculations, namely, Feschbach reso-
nances, where part of the total energy (larger tia) is
temporarily trapped in modes perpendicular to the dissociation
coordinate.

Table 2 displays the probabilities associated to diffetent
values contributing to the partition function for temperatures
Figure 5. Boltzmann-averaged densities of staég, T) = p(E) x = 250 and 350 K. One can check tHatvalues less than or
e BXT (number of rovibrational states per c#for temperature§ = equal to 5, for which energy levels were actually computed,
223 and 373 K. The curve at temperature 273 K can be fitted to the comprise more than 90% of the partition function. Conversely,
form p(E, T) = A-E>e”®XT, whereA = 1.054 10° ands = 2.52. the extrapolated-levels K > 6) comprise less than 10% of
the function.

In the preceding section, the possible effect of centrifugal
distortion (a decrease of thgrotational constant with respect

Energy (em’)

TABLE 1: Symmetry Dependent Factors Accounting for
Both Space and Nuclear Spin Degeneracies

+A— +/A— +/p— +IE—
lg;r 'i“l/Al ’gzlAZ 22/ B, g [E to J) was evoked. To assess this effect, we performed a series
of calculations for the valug@ = 30, still retaining the symmetric
Boltzmann averaged density of states top approximation. Namely, in eq 1, we replaced iheperator
by the valueJ(J + 1) (usingJ = 30) and computed all A
B(E, T) = p(E) g BT (12) bound energy levels fok-values 0, 2, 4, and 6. In doing so,

we explicitly take into account the centrifugal distortion term

wherep(E) corresponds to the standard density of states (i.e., J(J + 1)/2uag%?. From these energies, one can compute the
number of rovibrational states per unit energy). The partition partial partition functions defined as

function QD is related top(E, T) according to
b ] Q*(I=30,K, A}) =y expENisou/kT)  (14)
Qlk = J, ™ B(E T) dE (13) ’
(ignoring the M degeneracy). The equivalent approximate
Figure 5 shows that, whilg(E, T) converges for energies  quantity Q2(J = 30, K, Af) can be obtained from energy
below Dg at T = 200 K, at higher temperatures there is an levels extrapolated according to eq 8. A comparison of these
increasing fraction of the weighted density extending beyond two sets of values, calculated fér= 300 K, is shown in Table
the dissociation threshold. The occurrence of energies greater3 and reveals that the error coming from extrapolated energy
than Dy can be easily understood within theshifting ap- levels is on the order of 2% at most.
proximation. In this approximation, the total energy is defined  B. Equilibrium Constant. Figure 6 presents the calculated
as the sum of the vibrational and rotational contributionsvA ( equilibrium constanKy(T) in the range 276400 K, with and
Jo, Ko, T') calculated energy level can thus be dressed by a without the contribution of quasi-bound states. In the former
rotational energy (see eq 8) large enough for the extrapolatedcase, as the associated lifetimes are not known, these resonance
energyEfJK to lie in the dissociation continuum. This feature is  states are affected by weight only determined by the Boltzmann
not an artifact of the extrapolation scheme: Such high energy factor e kT, On this figure are also represented the following:
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Figure 6. Calculated equilibrium constat,(T) in the range 276
400 K, with (- - -) and without ) the contribution of pseudo-bound
states and comparison to different experimental d@gavéaluesKy(T)

= —(B — bo)/RT extracted from the second virial coefficient data of
Harvey and Lemmof® neglecting the excluded voluntg, or (O) using
the value 38.5 cffmol as estimated by Curtiss et &.(x) direct
measurement of dimer concentration in the atmosphefe=aR92 K

by Pfeilsticker et al® (a) expressionKy(T) = 0.0293(e"™ — 1)/T
(atnrt) (e = Do = 3.27 kcal/mol) fitted by Evans and Vaitlao
thermochemical dataf]) results based on the thermal conductivity of
steam experiments of Curtiss et &I(> — ) our previous calculation's,
based on the rigid VRT(ASP-W)III potential; estimation by Ptashnik

et al!®from high-spectral-resolution pure water vapor absorption spectra

using either the CKD-2.4%) or Ma and Tipping ) continuum models.

(i) the results, at high temperatures, based on the thermal

conductivity of steam experiments of Curtiss et?(ji) the
values extracted from the relatitn

KT = — (B — by/RT

where B(T) is the second virial coefficient as determined by
Harvey and Lemma from vaporization data (the above
relation was used by either neglecting the excluded volbgne
or using the value 38.5 ciimol as estimated by Curtiss et'8),

(iii) the direct measurement of dimer concentration in the
atmosphere af = 292 K by Pfeilsticker et al® by means of
atmospheric long path absorption of the third overtone of the
bound OH stretching mode QHcombined with line strength
calculated by Low and Kjaergaatti(iv) the expression

ee/ kT

K(T) ~ 0.0293,#1 (atriY)

wheree = Dg = 3.27 kcal/mol, fitted by Evans and Vaitito
thermochemical data, (v) our previous reskiltsased on the
rigid VRT(ASP-W)III potential, and (vi) the values, at temper-
atures 299 and 342 K, estimated by Ptashnik &t ftom high-

spectral-resolution pure water vapor absorption spectra. The two
sets of values correspond to using the CKD-2.4 or the Ma and

Tipping continuum models, respectively.
One can note a definite improvement in the newly calculated
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TABLE 4: Rovibrational Partition Functions QU (x1079),
Excluding the Spin-Degeneracy Factoigr, Associated to the
Different IR I's for the Two TemperaturesT = 270 and 400
K. All Nondegenerate IRs Roughly Contribute to the Same
Amount, While the Degenerate Oness* Contribute Twice as
Much Because of the Double Occurrence of These Former
States (see Figure 1)

QUrx10% AT A A} A, B B, E' E

T=270K 1.013 0.980 0.971 0.998 1.011 0.979 1.981 1.981
T=400K 3.839 3.739 3.681 3.765 3.835 3.740 7.510 7.510

energy-level splitting dependence upon Kxwalue. The close
agreements between our results and the recent estimation of
Ptashnik et al® comforts their conclusion that water dimer
absorption is most probably included partly in the modern CKD
continuum model.

C. Approximate Partition Function. When calculating the
partition function (eq 11), one can actually restrict the summa-
tion to a single IR: Table 4 reveals that, excluding the spin
degeneracy factorgr, they all contribute the same amount

Q\D/E(T) = ;QJ exp(_Ezr;JK/ kT)

except for the degenerate spedigsandE™. In fact, Figure 1
shows thatE* states occur twice as frequently compared to
nondegenerate ones. One can thus write the total partition
function QD5 (T) according to

QM) = 32 QA (m

where the factor 32 results from the summation over the spin
degeneracies and counting the degenerate sgetimgce. This
property, which was not actually used in the calculations
presented here, can reduce by 1 order of magnitude the
numerical effort needed to compute the partition function.

D. Thermodynamic Properties. The close agreement be-
tween our calculated equilibrium constaii,(T) and the
available experimental data allows us to derive thermodynamical
guantities from the partition functiot¥.In doing so, we assume
that the dimer behaves like a perfect gas, which is consistent
with the way the partition function was calculated (water dimer
without any exterior interaction).

The simplest way to estimate the Gibbs free energy for the
dimerization process is to use the relatid®°(T) = —RT In
K°(T). The dimerization enthalpxH°(T) is calculated from the
equationAH®(T) = Hp — 2Hy where®

P R«
HX—RT(Z—i—TdTInQ)

One can then extract the dimerization entrap$’(T) from
AS(T) = [AH°(T) — AG°(T))/T. Finally, the heat capaci@y(T)
of the dimer is given by

d

_pf® 2d D
Cp(T)_R(erdTT dTInQ)

values, with respect to all the experimental data either observed

or derived from the second virial coefficient, as compared to
our previous calculation$ While it is difficult to ascertain the

and Cy(T) = Cy(T) — R. The resulting curves are shown in
Figure 7 and have been fitted to a quadratic expressitrbT

actual reasons for this, because of many differences in the two+ cT? (valid in the range 196390 K), the coefficients being
sets of calculations, it seems probable that the new extrapolationgiven in Table 5.

scheme played a significant role: We explicitly considered all
the bound energy levels, up to dissociation, Joralues 0, 1,
.. 5K =0, ...,J), which allowed us to take into account the

It can be seen from Figure 7 that the quadratic law is
particularly well obeyed by the Gibbs functi@xG°(T), associ-
ated to a standard deviation= 6.78 Jmol~%. Using theKy(T)
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Figure 7. Thermodynamical quantitiedG°, AH°®, AS’, and C,

calculated from the partition functio@p. These curves are fitted to
quadratic expressiors + bT + cT?, the coefficients being given in

Table 5.

TABLE 5: Quadratic Expression a + bT + cT?, Valid in the
Range 196-390 K, of the Thermodynamic Quantities

a b c
AGP(kJmol?) —14.977 6.0065¢< 102 4.9618x 10°°
AHC (kJmol™?) —-17.191 15663« 102 —7.6546x 1072

—1.0858x 1074
4.934% 104

A (FKtmol?) —69.5
Co(FKLmol?)  116.78

—3.4328
—4.1744

= exp(—AG°/RT)/p° relation for the dimerization constant, one
can determine the corresponding interpolating formula for this

constant

K(T)=e " exp{— %_— F%T) (atm ™)

Scribano et al.

Fitting directly ourKy(T) results to this formula leads to the
expression

Ku(T) =
4.7856x 10 * exp(1851.097 — 5.10485x 10 °T) (atm %)

Discussion

In this work, we improved upon our previous estimatfon
of the equilibrium constark(T) by performing more extensive
calculations of the bound energy levels: All of them, up to
dissociation, were determined for total angular momentum
valuesJ = 0, ..., 5 andK-values O, ...J. Furthermore, we
devised an extrapolation scheme to higldevalues, which
explicitly takes into account the variation witk of both the
acceptor and the doneacceptor tunneling splittings. Also, we
employed a flexible potential energy surface, previously fitted
to spectroscopical data, which leads to a better description of
highly excited states. An interesting extension of our calculations
concerns the estimation of thermodynamical quantities and their
fitted analytical expressions to a quadratic form over the range
190-390 K. In particular, it is shown that the frequent
assumption of isothermicity foAH° and AS’ is not well-
supported by our results.

In any calculation of the dimer partition function, the
dissociation energy valu®, plays an essential role, as it
contributes through the exponential terRY'e which is on the
order of~300 at room temperature. Consequently, a change of
50 cnt! in the value ofDg (=1234 cn! for our flexible
potential) results in a change of 26% of the equilibrium constant
Ku(T) at this temperature. Unfortunately, an accurate experi-
mental value foD, does not exist, and all present estimatféns
contain uncertainties much larger than 50¢mn view of the
most recent ab initio calculations performed on the water
dimer?” one can estimate that our present surface slightly
overestimates th®, value, which would result in a small
decrease in the calculatéq, values at lower temperature.

One difficult problem encountered in our calculations, and
still unresolved, concerns the quantitative role of quasi-bound
states or resonances. In principle, the correct way to handle those
states has been shown by Sritivho related the partition
function to the collision lifetime matrix in a quantum exact
formulation. Similarly, Vigasif#4° has investigated the effect
of such resonant states on the collision-induced absorption by
means of classical statistical mechanics. It has been argued by
Schenter et &P that such resonances could changethealues
by as much as 2 orders of magnitude, on the basis of a simplistic
water dimer model. Our present results, which bracket the
experimental values available depending on whether one takes
into account the resonance states or not, show that the effect of
such states cannot be so dramatic in the case of the water dimer.
One way to estimate this effect would consist of taking into
account the lifetimes in an approximate way by means of the
microscopic dissociation rate constdgE, J) such as in the
RRKM?®! or the statistical adiabatic channel model of Quack
and Troe?253 Indeed, the required ingredients for computing
this rate, namely, the density of states associated to some
transition-state geometry?*, could easily be obtained within
our formulation. To conclude this discussion on the possible
role of resonance states, it should be kept in mind that their
effects are designed to be limited in the temperature range 200
300 K (see Figure 5), which is the one relevant to atmospheric
processes.
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