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This paper is concerned with the competition between recombination of a radical pair and radical attack on
targets such as macromolecules or nanoparticles in solution, which are large on the molecular scale. The
difference in scale between radicals and targets causes the kinetics to be transient over a long period. The
specific novel feature of the analysis is the effect of the initial spatial correlation of the radicals on the kinetics
of attack on the targets. The main results are (i) a simple modification of the Smoluchowski rate coefficient
for scavenging and (ii) the probability ofmultiplehits on the same target. Both effects arise from the clustering
of the radicals. The latter is of particular interest in radiation biology, because multiple hits result in complex
damage. The analysis is validated against results from random flights computer simulation; excellent agreement
is obtained.

1. Introduction

Clustering and complexity are important features of damage
caused by ionizing radiation. These features have their origin
in the physical structure of the radiation track. Most of the
energy of a high-energy electron, for example, is lost in
relatively small energy loss events,1 producing low-energy
secondary electrons that cause further damage close to the
location of the primary event. Each primary event results in a
cluster of molecular fragments, many of which are radicals.
These clusters have a spectrum of sizes, shapes and numbers
of fragments, whose detailed origin and characterization is a
subject of continuing investigation.2 In solution the radical
fragments diffuse and react with one another when they
encounter each other in the course of their Brownian motion.

We have developed an efficient modeling method, the IRT
(independent reaction times) method, that permits the simulation
of diffusion kinetics in the track. This technique has been
described in detail3,4 and has been successfully applied to the
modeling of radiation chemistry in water,5 and in unravelling
the short time recombination, which is mainly between frag-
ments in the same cluster, and longer time kinetics where cluster
overlap becomes important.5

Several important phenomena arise when radiolytic fragments
in solution attack larger entities, such as macromolecules,6

colloidal particles7 or surfaces.8 Important consequences of
radiolytic radical attack are damage to biomolecules such as
DNA,9 and the radiation enhancement of corrosion.10,11 In
particular, it has been recognized for some time that an important
feature of radiation damage to DNA from a biological point of
view is complexity of the damage, involving more than one
damaged site in proximity.12 Some of this complex damage
comes from the direct effect of the radiation, in which ionization
and excitation events take place within the target molecule, and
some arises indirectly through the attack of free radicalss
predominantly the OH radicalsgenerated by interaction of the
radiation with the surrounding water. It is difficult to distinguish
between these two processes, but the extent of the indirect effect
can be estimated by the addition of scavengers such as dimethyl
sulfoxide (DMSO), which may intercept the OH radicals before

they can diffuse to the DNA.13 The result of such experiments
is that, in a mammalian cell, about two-thirds of the damage
can be scavenged and may be inferred to arise from radical
attack.12

Complex indirect damage comes from multiple radical attacks
in spatially correlated locations. The temporal and spatial
correlation of the attacks arises because of the spatial correlation
of the initial locations of the radical fragments, which are born
from the same primary event of the radiation track. Experiments
can distinguish between single and some multiple attacks, for
example experiments on solutions of plasmid DNA, where it is
possible to distinguish single and double strand breaks.14

The essential problem of interest is therefore a small cluster
of free radicals generated close to a target that is large on the
molecular scale, such as a DNA molecule or a nanoparticle.
The free radicals diffuse and may react with one another, they
may attack the target, or they may do neither and escape. The
aim of this paper is to develop a theory for the diffusion kinetics
of a simple model system of this type. The theory must be
capable of dealing simultaneously with the transient nature of
both the radical recombination and the attack on the target
particle, and it must also be able to calculate the probability of
multiple hits. Although there have been several attempts to
formulate models in the past, mainly applied to DNA, none
fulfills all these requirements apart from direct computer
simulation of the random trajectories of the diffusing radicals.15-17

Milligan et al.13 have measured yields of single and double
strand breaks induced by theγ-irradiation of aqueous solutions
of plasmid DNA in the presence of the hydroxyl radical
scavenger DMSO. The competition for OH between DNA and
scavenger was analyzed by competition kinetics to infer a rate
coefficient for the OH+ DNA reaction. Although the competi-
tion plots with constant DMSO concentrations were essentially
straight lines, the inferred OH+ DNA rate coefficient was found
to vary strongly with the concentration of DMSO. The origin
of this variation is the transient nature of the scavenging
reaction: the OH+ DNA reaction must be described by a time-
dependent rate coefficient. According to the Smoluchowski
theory,18 the second-order rate coefficient for a diffusion-
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controlled reaction with a spherical target is as follows:

wherea is the reaction radius andD′ is the relative diffusion
coefficient of the two reacting species. The rate coefficient thus
decreases with time toward an asymptotic limit of 4πaD′. The
typical lifetime of the transient in the rate coefficient is
proportional to the square of the reaction radiusτ ∼ a2/D′. If
the target particle is much larger than the diffusing radical, as
is a DNA molecule or a nanoparticle, the transient will persist
to much longer times than for reactions between small molecules
and cannot be ignored. The dependence of the inferred OH+
DNA rate coefficient on target concentration is a consequence
of this time dependence.

Van Rijn et al.19 have addressed this problem by treating DNA
molecules as spheres of radiusa that react with OH radicals in
a diffusion-controlled manner. In this model, OH radicals are
generated uniformly in space with a constant production ratep
and are removed by bimolecular reaction with a scavenger
whose concentration is assumed to be homogeneous and
constant, and by reaction with the target particles. Following
the usual Smoluchowski approach, the motion of the radicals
is considered to be diffusive and to obey a diffusion equation
in a coordinate system centered on a single isolated target
molecule. Furthermore, the OH concentration profilec, built
up by these processes, is assumed to be stationary under steady-
state irradiation conditions, and is governed by the diffusion
equation

where r is the radial distance from the center of the typical
spherical target,D′ is the relative diffusion coefficient of the
OH radical and the target andσ is the pseudo-first-order rate
constant for scavenging (the scavenging capacity). With ap-
propriate boundary conditions, the solution of eq 2 is given by

wherec0 ) p/σ is the stationary OH bulk concentration, andL
) xD′/σ is the diffusion length, a measure of the distance
traversed by an OH radical, in the absence of DNA, before
capture by a scavenger. The reaction rate is obtained from eq 3
by means of Fick’s first law, giving the following expression
for the rate constant, which depends on scavenger concentration:

Although this expression for the inferred rate coefficient
represents an important improvement on simple competition
kinetics, the result does not take into account a number of
effects, notably the competition with radical recombination, but
also the competition of other target particles that may be in the
vicinity. The use of Smoluchowski theory assumes that the
targets are far enough apart (i.e., their concentration is suf-
ficiently low) that the radical concentration profile around any
one target is not perturbed by the presence of a neighboring
target.

Mark et al.20 addressed the problem of competition between
targets by adding an extra term to eq 2, representing the rate at
which radicals are consumed by other targets in the neighbor-

hood of the one being considered. In addition, rather than assume
that the reaction between OH and DNA is fully diffusion
controlled, Mark et al. used a radiation boundary condition. An
alternative method, by modifying the outer boundary condition
to allow for the presence of other particles, was suggested by
Verberne.21

Although these treatments have identified some of the
important problems that arise when radicals attack large targets,
the problems of most interest have not been addressed. In
particular, even though the treatment is applied under steady-
state radiolysis, the radicals are created in clusters, and so each
target may be hit by more than one radical from the same cluster.
This feature must depend strongly on the clustering of the
radicals. Because complexity of damage is of great interest in
radiation biology, it is important that theory can deal with the
possibility of multiple hits and spatial correlations; a treatment
that assumes the initial distribution of radicals to be homoge-
neous in space is unlikely to be able to do this. In previous
work the only effects of clustering considered have been
modifications of the radical yield to allow for the radical
recombination kinetics, which is also determined by the cluster-
ing. For example, Verberne21 used an empirical formula derived
by Warman, Asmus and Schuler22 for the transient OH radical
yield.

This paper presents a first attempt to develop a consistent
theory that deals with both these points. A simple model is used,
in which two identical radicals are produced in close proximity
to one another in a sea of large spherical target particles,
assumed to be homogeneously distributed throughout the
solution. The radicals are given the characteristics of OH radicals
(diffusion coefficient, etc.) and the larger particles are assumed
to be spherical for simplicity. Because the diffusion coefficient
is inversely related to the hydrodynamic radius of the particle,
large target particles diffuse much more slowly than small
radicals and are assumed to be stationary on the time scale of
the recombination kinetics.

The radicals may react either by recombination with one
another or by reacting with the target particles. No additional
scavenger has been included, and all reactions are considered
to be diffusion controlled. Another important assumption of the
current model is that a target particle may react with several
radicals without change in size or reactivity. Thus, it is assumed
that the rate parameters for reaction between a radical and a
target is not affected by any previous attack on the same target,
at least on the time scale of the kinetics considered.

Although this model may seem crude, especially when applied
to DNA, on the time scales involved, the detailed structure of
the target is relatively unimportant. The competition between
the many reactive sites on the surface means that they cannot
be considered in isolation, and it is not wholly unreasonable to
treat the target particle as a single entity. Of course, in a study
of the accessibility and competition of different reactive sites,
a much more detailed model would be necessary. This has only
been attempted in computer simulations so far.15,17,23

The recombination between the radicals and the attack on
the target particles are both assumed to be diffusion controlled.
This assumption is also less crude than it may seem. The OH
+ OH reaction is known to be close to diffusion control at
ambient temperatures,24 and OH reactions with stable molecules
are often fast. The closeness of a reaction to diffusion control
may be measured by the dimensionless parameterVa/D′, where
D′ is the relative diffusion coefficient,a the encounter distance
and V is a parameter with the dimensions of velocity that
measures the reactivity of the surface. For molecules with similar

k ) 4πaD′{1 + a

xπD′t} (1)

D′{d2c

dr2
+ 2

r
dc
dr} + p - σc ) 0 r g a (2)

c(r) ) c0{1 - a
r

exp(-(r - a)/L)} (3)

k′DNA ) 4πaD′(1 + a
L) (4)
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reactivitiesV, the larger the encounter distance the closer the
reaction is to diffusion control, because when the target is large,
successive re-encounters are much more likely within the time
scale of the transient than for a small target where the radical
is more likely to escape. Because each encounter is equally likely
to lead to reaction, escape following an encounter is much less
likely for a large target than for a small one.

Section 3 presents a highly simplified model of the kinetics
of the model system based on the time-dependent geminate
survival probability and a competing transient reaction with
target particles. This model uses normal homogeneous kinetics
for the reactions with the target molecules. Both radical decay
and the decay of unattacked target particles are compared with
the results from random flights (Brownian dynamics) simula-
tions. This oversimplified kinetic model fails because it cannot
deal with the problem of multiple hits, motivating a more
detailed analysis of the radical attack.

In section 4 a new theory is formulated that takes into account
the correlation between the initial location of the radicals in
modeling the radical attack on a target particle. In this section
the radical attack on the target is considered in isolation; i.e.,
the radicals are clustered but are not permitted to recombine
with one another. The mathematical formulation is based on
the IRT method, which is exact for this model system. Even in
the absence of the competing recombination reaction the spatial
correlation is found to have an important effect on the kinetics
of radical attack.

In section 5 the reaction scheme is extended to include radical
recombination. The IRT method is an approximation for this
system, but it does permit the analysis of the effect of correlation
between the initial locations of the radicals. The results are
compared with Monte Carlo random flights simulations and the
agreement is found to be excellent, indicating that the multiple
hit problem can be treated adequately in terms of correlations
in the initial distribution of particles.

2. Random Flights Simulation

The approximations in the main part of this paper are assessed
by comparison with Monte Carlo random flights simulations
of the trajectories of the diffusing particles. These simulations
provide a method of solving the multibody diffusion problem
to any required degree of accuracy by judicious choice of time
steps and number of realizations. Considerable efforts have been
made to develop this type of simulation, with particular reference
to boundary behavior, which have been discussed elsewhere.25-28

Thus only a brief discussion is given here together with any
alterations to the general method relevant to the application.

In the simulation, time is discretized in such a way that small
steps are taken if the particles are close together but larger steps
may be taken if there is little chance of an encounter. At each
time step,δt, a particle takes a random flight sampled from a
spherical normal distribution with mean zero and variance 2Dδt
in each direction. Suitable modifications may be made to allow
for interparticle forces if necessary. If two particles encounter
each other duringδt, a reaction is counted. An encounter is
determined in two ways: either the two particles are found to
be within the encounter distance of each other at the end of the
time step, in which case an encounter must have occurred, or
the survival probability is calculated for each pair of particles
conditional on their relative separations at the start and end of
the time step.27 The simulation continues until all reactions have
taken place or until a given cutoff time has elapsed. The whole
process is repeated many times (at least 104, typically 105)
allowing time-dependent reaction probabilities to be accumu-

lated. The statistical significance of the result depends on the
number of realizations.

For the current application, a number of target particles are
positioned at random in a cubic cell of edge 103 nm. Two
radicals are located at the center of the cell a few angstroms
apart. The radical trajectories were followed, as outlined above,
using a diffusion coefficient of 2.8× 10-9 m2 s-1 (a value
appropriate for OH). The target particles were assumed to be
much larger than the radicals, and consequently their diffusion
coefficients were so much smaller that they were assumed to
remain stationary. An encounter between two radicals was
assumed to occur at a distance of 0.13 nm. The encounter
distance between a radical and a target was set at 50 nm.

The values chosen for the above parameters were based on
the experiment of Milligan,13 in which the kinetics of the
reaction between the OH radical and pUC18 plasmid DNA
(2686 base pairs) was investigated. The cubic cell size was
chosen so that over the lifetime of the simulation (10µs) the
root-mean-square distance traversed by the radical (x6Dt) was
significantly less than the distance to the cell boundary. This
means that it is unlikely in any given realization that the radical
would pass through the cell wall. However, a periodic boundary
condition was also applied to account for the rare occasions
when a radical does diffuse out of the cube.

3. Homogeneous Theory

This section outlines an attempt to apply “normal” diffusion
kinetics to this system, using the Smoluchowski time-dependent
rate coefficient for the reactions of radicals with target particles,
and a time-dependent rate coefficient for recombination derived
from the survival probability of a radical pair in the absence of
competition. In the case of a single radical pair the time-
dependent geminate survival probabilityΩ(t) is well-known;
however, for larger clusters it is envisaged that a simulated decay
might be used, or alternatively the radical decay could be
described by an approximate parametric form, such as that of
Hummel29,30 and Warman et al.22 for track kinetics.

The radical recombination rate in the absence of traps is
described using a time-dependent rate coefficient

Equivalently, the concentration of surviving radicals [R] obeys
the transient rate equation

showing thatλ(t) is effectively a time-dependent rate coefficient
for the recombination of radicals in the absence of additional
scavenger.

A simple description of the competition kinetics is sum-
marized in the following scheme.

In this scheme D represents target particles that have not yet
been hit by a radical, and E represents target particles that have

λ(t) ) -
d(ln Ω(t))

dt
(5)

d[R]
dt

) -λ(t)[R] (6)

R + R98
λ(t)

RR (7)

R + D98
kD(t)

E (8)

R + E98
kD(t)

(9)
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been hit by one or more radicals. The same rate coefficient is
used for both.

For convenience the concentrations are denoted as follows:
[R] ) x, [D] ) y. [E] ) y0 - y. The rate coefficientkD is
assumed to be the Smoluchowski time-dependent rate coefficient
for reaction between a radical and a target,18 given bykD ) k(1
+ γ/xt), where the steady-state rate constantk is 4πaD′, andγ
) a/xπD′, a being the reaction radius andD′ the relative
diffusion coefficient.

It follows from the kinetic scheme that the radical concentra-
tion obeys the rate equation

which has the solution

and can be evaluated explicitly.
The rate equation for the concentration of virgin target

particles is

The formal solution of eq 12 is

This integral may be obtained numerically becausex(t) is known
from eq 11.

The analysis described here was evaluated for an initial
concentration of target particles of 0.166µmol dm-3. For
plasmid pUC18 DNA, this corresponds to a nucleotide con-
centration of approximately 0.9 mmol dm-3, which is within
the experimentally accessible range.13 In the first runs the
radical-radical encounter distance was set to zero so that the
only permitted reaction for the radicals was attack of the targets.
Figure 1 shows the time variation of the expectation number of
radical reactions and the expectation number of targets that have
reacted, normalized for a radical pair.

These results immediately bring out an important defect in
this kinetic model. Figure 1 shows that in this model the number
of targets reacted is essentially the same as the number of
radicals scavenged. If the radicals start close to one another,
the number of targets that have reacted should be less than the
number of radical-target reactions because of the possibility
that both radicals may have hit the same target. For comparison,
the results generated by the random flights simulation method
described in section 2 are also shown. The interesting point to
note is that, although the number of radical-target reactions
predicted by normal kinetics agrees well at all times with the
simulation, the analysis seems to overestimate the number of
targets that have reacted.

The essential problem with this simple kinetics scheme is
that the treatment of scavenging is unable to account for effects
arising from the correlation of the radical positions, notably the
possibility of multiple hits on the same particle. On the other
hand, the simulation explicitly models the positions and
trajectories of the diffusing radicals, so that if a pair is generated
close to a target there is a significant probability that both
radicals will react with it. In such cases, the number of targets
that have reacted will be smaller than the number of radical
reactions. In the simple kinetic model of this section the radical-
target distances are implicitly assumed to be independent, and
therefore the probability of the two radicals hitting the same
target in an infinite sea of targets is effectively zero.

In a second set of tests, recombination of radicals was
permitted to occur in competition with scavenging. The results
are shown in Figure 2 together with those from the computer
simulation. Once again, and for the same reasons, the formula-
tion correctly predicts the time variation of the number of radical
reactions while overestimating the number of targets that have
reacted.

In sections 4 and 5, a new formulation is developed to
describe the time variation of the number of radical reactions
as well as the number of targets that have reacted for both the
case in which recombination is not allowed (section 4) and that
in which it is allowed (section 4). These will also be compared
with the simulation results.

4. Two Radical Analysis without Recombination

4.1. Number of Radicals Reacted.This section introduces
an idealized model of the scavenging rate for a pair of identical
radicals that recognizes the correlation between the initial

Figure 1. Normal kinetics applied to two radicals in a sea of scavengers
compared with random flights simulation. Recombination of radicals
is explicitly excluded. The following parameters were applied: radical
separation, 5 Å; scavenger concentration, 10-10 Å-3; radical diffusion
coefficient, 0.28 Å2 ps-1; radical-target encounter distance, 500 Å.

dx
dt

) -λx - kDxy - kDx(y0 - y) ) -x(λ + kDy0) (10)

x ) x0e
-∫λdte-kDy0dt ) x0Ω(t) exp[-y0k(t + 2γxt)] (11)

dy
dt

) -kDxy ) -k(1 + γ
xt)xy (12)

y(t) ) y(t0) exp[- ∫t0

t
k(1 + γ

xt)x dt] (13)

Figure 2. Normal kinetics applied to two radicals in a sea of scavengers
compared with random flights simulation. Recombination of radicals
is included. Refer to Figure 1 for parameter values.
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positions of the radicals. Additional complications that arise
from the competition with recombination are initially removed;
these will be considered in the next section. One additional
simplification is made, that the radicals are the same distance
from each spherical target. This simplification is obviously
limiting but may be justified because the typical initial radical-
radical distance will generally be much smaller than the distance
to the center of the target. In addition, the simulations can be
used to test the approximation and indicate that reactions with
the target particles are insensitive to the initial radical-radical
distance, as long as the radicals are close to one another. The
results are be shown later in Figures 3 and 4. This assumption
renders the mathematics of the model and its results much
simpler. A fuller analysis, in which this approximation is lifted,
will be presented in a subsequent paper.

We start by considering a system that consists of two radicals
initially located at points equidistant from the center of a sphere
of radiusR in which is placed a single target molecule at a
random position, sampled from a uniform distribution within
the sphere. The possibility of radical recombination is ignored
and the variablesT1 andT2 are defined to be the times at which
radical 1 and radical 2 react with the target particle, respectively.
The joint probability distribution function for these two random
times is denotedQ(t,u) ≡ P(T1>t,T2>u). In the following the

symbol P represents the probability of some event, and the
symbolP is a probability density.

In spherical polar coordinates the functionQ(t, u) has the
explicit form (using the known solution for the geminate survival
probability in three dimensions):31-34

where the variable of integrationr is the radical-target separa-
tion, V is the volume of the sphere,a is the reaction radius for
reaction between radical and target andD′ is the relative
diffusion coefficient. The radicals are assumed to diffuse
independently of one another. If the target is stationary, this
equation is exact within the diffusion equation formalism.

If V is very large, it is permissible to take the limitR f ∞ in
all terms of the integral except for the constant term in the
integrand. This is possible because of the asymptotic properties
of the complementary error function, which guarantee that the
error is exponentially small. The explicit solution of eq 14 is
then

The most important new feature of the formulation is already
present in this equation forQ: the two reaction times are not
independent; they are correlated with one another. This cor-
relation must now be carried through to a system with an
arbitrary number of scavengers using the IRT approximation.

If there areN scavengers in the sphere, independently and
identically distributed (i.e., each scavenger is assumed to have
a constant probability density in the sphere and the position of
a scavenger is assumed to be unaffected by the positions of
any others), then the probability of radical 1 surviving to time
t and radical 2 surviving to timeu (ignoring recombination) is
Q(t,u)N, i.e.

The interpretation of this equation is that for radical 1 to survive
to time t and radical 2 to timeu the inequality definingQ must
be obeyed separately for each of theN targets. Note that the
pair of correlated distances between the two radicals and each
target have been assumed to be identical; however, because the
targets have been assumed to be stationary, this is the only
additional approximation at this point. It is important to realize
that although the two reaction times with a given target are not
independent, the pair of reaction times with one target are
assumed to be independent of the pair of reaction times with
any other target, and each pair of reaction times has the same
probability distribution because of the uniform distribution of
targets.

To introduce the concentration of targets, it is supposed that
the number of targets in the sphere is Poisson distributed with
meancV wherec is the target concentration. This assumption
is good for dilute solutions. Hence

It is now convenient to change the notation, by defining

Figure 3. New model applied to two radicals in a sea of scavengers
compared with random flights simulation. Recombination of radicals
is excluded. Refer to Figure 1 for parameter values.

Figure 4. New model applied to two radicals in a sea of scavengers
compared with random flights simulation. Recombination of radicals
is included. Refer to Figure 1 for parameter values.

Q(t,u) )
4π
V∫a

R
r2(1 - a

r
erfc[ r - a

x4D′t])(1 - a
r

erfc[ r - a

x4D′u]) dr (14)

Q(t,u) ) 1 - 4πa3

3V
- 4πaD′

V
(t + u) - 8πa2

V xD′(t+u)
π

(15)

P(T1>t,T2>u|N) ) Q(t,u)N (16)

P(T1>t,T2>u) ) ∑
N)0

∞ (cV)N

N!
e-cVQ(t,u)N ) e-cV(1-Q(t,u)) (17)
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and noting thatV(t+u) has the dimensions of volume and is
a function of one time variable,t + u. Equation 17 now be-
comes

We now consider the number of radicals remaining as a function
of time. For both radicals to survive to timet, an event whose
probability is denotedP2, it is necessary that bothT1 > t and
T2 > t. Hence

For one radical only to remain, probabilityP1, we require either
T1 < t, T2 > t or T1 > t, T2 < t. By symmetry, these events
have equal probabilities. They may be found by considering
the density ofT1 joint with the probability thatT2 > u, denoted
loosely

Integrating overt we obtain

Hence, substitutingu ) t,

by symmetry the probabilityP(T1>t,T2<t) has the same value,
hence,

For no radicals to remain, probabilityP0, it is necessary that
both T1 < t andT2 < t. First consider the density thatT2 ) u
joint with the probability thatT1 < t, obtained by differentiation
of eq 22

integrating overu, and settingu ) t,

Now zero-time reactions must be considered; these occur when
the two radicals are generated in a location overlapping one of
the targets, corresponding in this simple model to the direct
effect. Because the radicals have been assumed to be equidistant
from each target at time zero, either both react or none reacts.
The expression forP2 (P2(0) ) e-cV(0)) automatically includes
this effect, but it has not yet been included inP0, which has

been obtained by integrating over reactions that take place at
times t > 0. P0 must be increased by 1- e-cV(0) to allow for
this effect. Thus,

The system of probabilities is now normalized.
4.2. Number of Radicals Remaining.The expectation

number of radicals remaining is given by

The expectation number of radicals that have reacted is therefore
given by 2(1- e-cV(t)). The analytic result shown for the mean
number of radicals having reacted by timet is identical to that
obtained from the simple kinetic analysis in section 3 and is in
good agreement with the random flights simulations, as il-
lustrated in Figure 3.

4.3. Ordered Reaction Times.The exact agreement with
normal kinetics despite the correlation in the initial positions
of the two radicals is necessary because the two radicals diffuse
independently of one another. In the absence of recombination,
each radical will react with a stationary target with a rate given
by the Smoluchowski theory. Themarginaldistributions of the
two radical-target reaction times are therefore the same as given
in section 3. However, the two reaction times in the new
formulation are not independent of one another, which is the
point of departure from the theory of section 3.

The lack of independence is shown clearly by considering
the ordered reaction times. The first reaction removes the sys-
tem from the state containing two radicals, and the proba-
bility distribution of the first reaction time is therefore given
by P2 ) exp(-cV(2t)). If the two reaction times were inde-
pendent, this would be exp(-2cV(t)). Comparing the two
exponents,

The first term corresponds to zero-time reaction, and it is evident
that 2V(0) in the second expression is twice as large as it should
be. The assumption of independence overestimates the chance
of zero-time reaction because, even if one radical survives, it
gives the other radical a chance to react, whereas in the model
system, if one radical survives zero-time reaction the other must
do so as well.

The second term corresponds to the normal Smoluchowski
steady-state rate constant, which operates in the limit of long
times when all memory of any initial proximity to the target
has been wiped out, either by reaction or by diffusion. At long
times all memory of the initial correlation between the radicals
will be lost, and so it is not a surprise that this term is common
to the two formulations.

The third term is much more interesting, however, because
this represents the transient in the rate coefficient that arises
from the tendency of the radicals generated close to the target
to react quickly, before the steady state is achieved. In the new
formulation this term is a factor ofx2 smaller than Smolu-
chowski, suggesting that the effect of the correlation in initial
positions is to reduce the transient term in the Smoluchowski
rate coefficient for the first reaction by a factor ofx2; i.e., the

V(t+u) ) V(1 - Q(t,u)) )
4
3
πa3 + 4πaD′(t+u) + 8a2xπD′(t+u) (18)

P(T1>t,T2>u) ) e-cV(t+u) (19)

P2 ) e-cV(2t) (20)

P(T1)t,T2>u) ) - ∂

∂t
e-cV(t+u)

) c
∂V
∂t

e-cV(t+u) (21)

P(T1<t,T2>u) ) -∫0

t ∂

∂t′e
-cV(t′+u) dt′

) e-cV(u) - e-cV(t+u) (22)

P(T1<t,T2>t) ) e-cV(t) - e-cV(2t) (23)

P1 ) 2(e-cV(t) - e-cV(2t)) (24)

P(T1<t,T2)u) ) - ∂

∂u
(e-cV(u) - e-cV(t+u)) (25)

P(T1<t,T2<u) ) e-cV(0) - e-cV(t) - e-cV(u) + e-cV(t+u) (26)

P(T1<t,T2<t) ) e-cV(0) - 2e-cV(t) + e-cV(2t) (27)

P0 ) 1 - 2e-cV(t) + e-cV(2t) (28)

2P2 + P1 ) 2e-cV(t) (29)

V(2t) ) 4
3

πa3 + 8πaD′t + 8a2x2πDt (30)

2V(t) ) 8
3

πa3 + 8πaD′t + 16a2xπDt (31)
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rate coefficient for the first reaction should be

The result of eq 30 is particularly interesting for a number of
reasons. A similar result, which arises simply from the small-
number statistical weighting, was reported some time ago for
steady-state scavenging.35 This paper shows that the use ofV(2t)
also applies when the scavenging rate coefficient is time-
dependent, giving the reduction in the transient term observed
in eq 32. In addition, the rate coefficient for the first scavenging
also controls the total scavenging yield in this simple system,
because once one radical has been scavenged, the only possible
fate for the other radical is also to be scavenged.

The first radical-target reaction is slower than predicted by
Smoluchowski theory because, if one radical is initially far from
the nearest target, the other radical must also be, whereas the
assumption of independence essentially gives it a second chance
to be close to a target. This is a more subtle version of the effect
already remarked for the zero time reaction. (Conversely, if one
radical is close to the nearest target, the other is too; however,
the probability distribution for the nearest radical-target distance
varies asr2 so that the correlation in large separations is more
important.)

Given that the first reaction is slower than that predicted on
the assumption of independence, but that the radical decay is
identical, the second radical-target reaction must be faster than
predicted by Smoluchowski theory. This is indeed the case, and
the difference arises because if the first reaction takes place in
the transient, the second radical will still be nearby (on the scale
of the target). The second radical is then much more likely to
react with the same target as the first radical than would
be expected if the two reaction times were independent, and
this will take place faster than diffusion to a second possible
target. The theory must therefore be capable of distinguishing
a second reaction with the same target from a reaction with a
different target. In other words, once both radicals have reacted,
have they both reacted with the same target or with different
targets? This question does not arise with normal scavenging,
because reaction generally modifies the scavenger so that it is
no longer reactive, but it is an important problem for targets
such as DNA, where complexity of damage needs to be modeled
correctly.

4.4. Number of Targets Hit.The number of targets that have
reacted is not the same as the number of radicals that have
reacted because sometimes both radicals hit the same target. It
is therefore necessary to find the probabilities of hitting the same
target and different targets separately.

The joint density ofT1 andT2 is

whereV is a function oft + u. The concentration dependence
of the two terms in this equation suggests that the first term
corresponds to the reaction of both radicals with the same
scavenger, whereas the second term corresponds to reaction with
different scavengers.

This claim may be justified as follows. The joint probability
density that radical 1 reacts at timet and radical 2 at timeu
with the sametarget is given by

In the first equality of eq 34, the second derivative represents
the joint density of the two reaction times with a given target.
The factorQN-1 represents the probability that no other target
is hit by radical 1 beforet or by radical 2 beforeu. The factor
of N is the number of ways of choosing one target fromN. The
final term is the Poisson probability for the number of targets
in the volume.

The joint probability density that radical 1 reacts at timet
and radical 2 at timeu with a different target is given by

In the first equality of eq 34, the first factor is the probability
density for radical 1 to react with a particular target at timet
joint with radical 2 not hitting this target before timeu. The
second factor is a similar density for radical 2 to hit a different
target. The third factor is the probability that the remainingN
- 2 targets are not hit by radical 1 beforet or by radical 2
beforeu. The factor ofN(N - 1) is the number of ways of
choosing the two targets to be hit, and the final term is the
Poisson distribution, as before.

We are now in a position to calculate the probabilities of
hitting the same target twice and different targets by timet.

The expression given in eq 36 includes the possibility of zero-
time reaction.

Although the sum of these two terms is given by eq 28, the
two terms separately must be found by numerical integration.
It is not necessary, however, to perform the whole two-
dimensional integral numerically. In both cases the integrand
is a function of the single variablet′ + u. Hence it is necessary
to find integrals of the general form

With the change of variablex ) t′ + u, integrals of the form
shown in eq 38 are easily transformed to single integrals of the
form

which are more efficient to evaluate numerically.

kcorr ) 4πaD′(1 + a

x2πD′t) (32)

p(t,u) ) ∂
2

∂t∂u
e-cV(t+u) ) -c

∂
2V

∂t∂u
e-cV(t+u) + c2∂V

∂t
∂V
∂u

e-cV(t+u)

(33)

psame(t,u) ) ∑
N)1

∞ ∂
2Q

∂t∂u
(t,u)Q(t,u)N-1Ne-cV

(cV)N

N!

) cV
∂

2Q
∂t∂u

(t,u)e-cV(1-Q)

) -c
∂

2V
∂t∂u

e-cV(t+u) (34)

pdiff(t,u) )

∑
N)2

∞ ∂Q

∂t1
(t1,u)|t1)t

∂Q

∂t2
(t,t2)|t2)u Q(t,u)N-2 N(N-1)e-cV

(cV)N

N!

) (cV)2∂Q
∂t

(t,u)
∂Q
∂u

(t,u)e-cV(1-Q)

) c2∂V
∂t

∂V
∂u

e-cV(t+u) (35)

Psame(t) ) 1 - e-cV(0) - ∫0

t∫0

t
c

∂
2V

∂t′∂u
e-cV(t ′+u) dt′ du (36)

Pdiff(t) ) ∫0

t∫0

t
c2∂V

∂t′
∂V
∂u

e-cV(t′+u) dt′ du (37)

∫0

t∫0

t
f (t′+u) dt′ du (38)

∫0

2t
xf (x) dx - 2∫t

2t
(x - t)f (x) dx (39)
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The long time limits of these probabilities, however, may be
found analytically to be

The expectation number of targets that have reacted at time
t is given byP1 + Psame+ 2Pdiff . Figure 3 shows a comparison
between the time dependence of the predicted number of targets
that have reacted and the number observed in the simulation.
The two plots are in very good agreement, implying that the
new theory has correctly identified the most important correla-
tion missing from the simple kinetic description of this model
system.

In the next section, this analysis is repeated with the more
realistic stipulation that recombination of radicals is allowed.

5. Two Radical Analysis with Recombination

The situation where radical scavenging by targets competes
with radical recombination is more complicated, because it is
necessary to start with the joint probability distribution of the
recombination time and the two times at which each target
would have been hit by the two diffusing radicals. This joint
distribution must be constructed from the IRT approximation,
in which the recombination time is assumed to be independent
of the scavenging times and depends only on the initial
separation of the two radicals. As in the last section, the
scavenging is treated as if the two radicals were equidistant from
each target.

5.1. Number of Radicals Reacted.As before, the expected
number of radicals remaining as a function of time is determined
from the probabilities of all the possible states of the system.
The probability of both radicals remaining is given by

The first term in eq 42 represents the probability of both radicals
surviving reaction with the targets, whereas the second term,
Ω(t), is the probability that the radicals have survived recom-
bination.

Equation 42 makes the assumption that the recombination
time is independent of the time for reaction of each radical with
a target. This is not actually the case. However, as discussed
earlier, previous workers3,36,37have shown that errors made by
this assumption of independent reaction times leads to insig-
nificant errors in the overall kinetics of the system, and this
will be verified by simulation later in this section (Figure 4).

We now considerP1, the probability that only one radical
remains. Such a state can only be produced by reaction with a
target because recombination necessarily removes both radicals.
With the random time for recombinationTR and the times for
the two radicals to react with targetsT1 and T2, respectively,
the required probability is for the event that one and only one
of the two radicals has been scavenged. This event requires one
of the two scavenging times to be less thant, the other to be
greater thant and the recombination time to be greater than the
time at which the first scavenging occurred.

By symmetry, the two terms on the right-hand side are equal,
hence

First consider the more general function of three variables

Differentiating with respect tot gives a density forT1 jointly
with the distributions ofT2 andTR.

where the prime denotes differentiation with respect to the
argument. Demanding that no recombination occur before the
scavenging time (i.e., settings ) t) and integrating from 0 to
the current timet,

Finally setu ) t to obtain

Now considerP0, the probability that no radicals remain.
Either the radicals have recombined or they have both reacted
with targets, and in the latter case they may have reacted with
the same target or with different targets.

Denoting the density of the recombination time by

the first term in eq 49 is

and the second term is

in which it has been assumed thatT2 < T1 and the factor of 2
accommodates the caseT2 > T1.

The second term may be simplified by changing the order of
integration:

which simplifies further to

This expression forP0 has been obtained by integrating over
the densities of the scavenging time, which do not include the

P1 ) 2P(T1<t,T2>t,TR>T1) (44)

P(T1>t,T2>u,TR>s) ) e-cV(t+u)Ω(s) (45)

P(T1 ) t,T2>u,TR>s) ) - ∂

∂t
e-cV(t+u)Ω(s)

) cV′(t + u)e-cV(t+u)Ω(s) (46)

P(T1<t,T2>u,TR>T1) ) ∫0

t
cV′(t′+u)-cV(t+u) Ω(t′) dt′ (47)

P1(t) ) 2P(T1<t,T2>t,TR>T1) )

2∫0

t
cV′(t′+t)e-cV(t'+t) Ω(t′) dt′ (48)

P0 ) P(TR<t,min(T1,T2)>TR) + P(T1,T2<t,TR>min(T1,T2))
(49)

ω(t) ) - d
dt

Ω(t) (50)

P(TR<t,min(T1,T2)>TR) ) ∫0

t
ω(s)e-cV(2s) ds (51)

P(T1,T2<t,TR>min(T1,T2)) )

2∫0

t∫0

t ∂
2

∂t1∂t2
e-cV(t1+t2)Ω(t2) dt2 dt1 (52)

P0 ) ∫0

t
ω(s)e-cV(2s) ds + 2∫0

t
Ω(t2)∫t2

t ∂

∂t1

∂

∂t2
e-cV(t1+t2) dt1 dt2

(53)

P0 )

-2∫0

t
Ω(t2)cV′(t+t2)e

-cV(t+t2) dt2 + e-cV(0) - Ω(t)e-cV(2t) (54)

Psame(∞) ) 1 - e-4πa3c/3 + e-4πa3c/3e4ca3
erfc(x4ca3) (40)

Pdiff(∞) ) e-4πa3c/3 - e-4πa3c/3e4ca3
erfc(x4ca3) (41)

P2(t) ) e-cV(2t)Ω(t) (42)

P1(t) ) P(T1<t,T2>t,TR>T1) + P(T1>t,T2<t,TR>T2) (43)
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point at zero. Thus it is necessary to add the probability that
the two radicals are scavenged at zero time, i.e., 1- e-cV(0).
Thus

Having obtained expressions forP0, P1 andP2, the expectation
number of radicals that have reacted by timet is evaluated as
2P0 + P1. The time-dependence of this expectation is shown in
Figure 4 together with the corresponding simulation results. The
agreement is excellent.

5.2. Number of Targets Reacted.As in the last section, the
probability of hitting the same target or different targets is first
considered. Following eqs 47 and 48,

These integrals must be evaluated numerically. However, as in
the last section, it is not necessary to evaluate the whole two-
dimensional integral numerically. Both integrals have the form

With the substitutionx ) t1 + t2, it can be shown that each
integral is equivalent to the following pair of one-dimensional
integrals, which may be evaluated numerically with greater
efficiency

whereG(x) ) ∫0
xΩ(t) dt. It may be necessary to create a table

of values ofG, which corresponds to the integral of the survival
probability. However, if the initial distance between the radicals
is fixed, or if a parametric form of the radical decay is used,
this integral may be evaluated explicitly.

Once the single integrals in eq 59 have been evaluated
numerically, the expectation number of targets that have reacted
at any time may be evaluated asP1 + 2Pdiff + Psame. Figure 4
shows the time dependence of this number and its comparison
with computer simulation. The agreement is excellent, indicating
that the additional assumptions that the recombination time is
independent of the times to hit the targets, and that the
scavenging is treated as if the radicals are effectively coincident
at time zero, do not seriously affect the kinetics.

6. Discussion

The modified version of diffusion kinetics based on the IRT
method presented in the last two sections is in good agreement
with the results of the random flights simulations reported here.
The novel feature of the analysis is the application of the
independent pairs approximationafter the initial configuration
is laid down, i.e., with all the initial correlations between the
interparticle distances present. The simple kinetic scheme of
section 3 makes the independence assumption earlier in the
analysis, and so loses track of these initial correlations. The
good agreement between the new theory and simulation implies
that these correlations between distances in the initial distribution
are the most important correlations, at least as far as the kinetics
are concerned.

The theory permits the derivation of an explicit time-
dependent rate coefficient for the first radical attack, given in

eq 32, which is very similar to the Smoluchowski theory except
that the transient part of the rate coefficient has been reduced
by a factor ofx2 by the correlation between the two radical-
target distances. The same rate coefficient applies whether there
is geminate recombination or not. The second radical attack
cannot be described by a time-dependent rate coefficient, partly
because its rate depends on when the first attack took place,
but the theory gives a solution for the kinetics of the second
attack that can be evaluated by a simple numerical integration.

At this point, we address what appears to be a major
shortcoming of the analysis: it has effectively been assumed
that the radicals start from a coincident position (equidistant
from each target). This has been done to simplify the analysis.
Although this assumption appears extreme, it is only a potential
problem on the time scale of the geminate recombination, which
is generally faster than the attack on the target. The simulation
results presented in Figures 1-4 are for a system in which the
radicals are not coincident but are initially located a fixed
distance apart (5 Å). The initial separation of the radicals has
no significant effect on the kinetics of attack on target particles
as long as the separation is small relative to the scale of the
largest particle.

This work is a first attempt at addressing the problem of the
kinetics of multiple hits. The system addressed in this paper,
comprising two identical geminate radicals, is very simple. There
are not many experimental examples of such systems, although
there are some, for example, the photolysis of hydrogen
peroxide. For application in real radiation chemical systems it
will be very important to extend this work to larger clusters.
The analysis presented here can be applied to any spur
containing two identical radicals, regardless of its other contents,
for example, spurs arising from the dissociation of two water
molecules, which contain two OH radicals. Before larger
numbers can be dealt with, further development is necessary.
We have already done some work to generalize the approach
to noncoincident radicals, to chemical scavengers, which are
removed by reaction (as opposed to macromolecular scavengers,
which are not), and to larger clusters of radicals. We expect to
report this work in a future publication. Most spurs in low LET
radiation chemistry are sufficiently spatially extended5 that the
effects described here will be rather small. However, in the
tracks of high LET radiation, radicals are clustered more closely
and in larger numbers. We expect the correlation effects
described here to be much more important for these large
clusters. There are indications that scavenging yields in heavy
ion tracks are lower than predicted by models using conventional
scavenging rate coefficients, for example for the Fricke dosim-
eter,38 and the correlation effects described here could be the
origin of these anomalies. If corrections of the type described
in this paper can be found for these larger systems, they will
be very useful in improving the analysis of the chemistry of
heavy ion tracks.

Acknowledgment. We acknowledge the financial support
of EPSRC for this research.

References and Notes

(1) Pimblott, S. M.; Mozumder, A.J. Phys. Chem.1991, 95, 7291.
(2) Pimblott, S. M.; Green, N. J. B.Res. Chem. Kinet.1995, 3, 117.
(3) Clifford, P.; Green, N. J. B.; Pilling, M. J.J. Phys. Chem.1982,

86, 1318.
(4) Green, N. J. B.; Pilling, M. J.; Pimblott, S. M.; Clifford, P.J. Phys.

Chem.1990, 94, 251.
(5) Pimblott, S. M.; LaVerne, J. A.J. Phys. Chem.1997, 101, 5828.
(6) Bolton, C. E.; Green, N. J. B; Harris, R.; Pimblott, S. M.J. Phys.

Chem. A1998, 102, 730.

P0 ) 1 - Ω(t)e-cV(2t) - 2∫0

t
Ω(t2)cV′(t+t2)e

-cV(t+t2) dt2 (55)

Psame) -2c∫0

t∫0

t1V′′(t1+t2)e
-cV(t1+t2)Ω(t2) dt2 dt1 (56)

Pdiff ) 2c2∫0

t∫0

t1[V′(t1+t2)]
2e-cV(t1+t2)Ω(t2) dt2 dt1 (57)

P ) ∫0

t∫0

t1f (t1+t2) Ω(t2) dt2 dt1 (58)

P ) ∫0

2t
f (x) G(x/2) dx - ∫t

2t
f (x) G(x-t) dx (59)

6120 J. Phys. Chem. A, Vol. 110, No. 18, 2006 Bluett and Green



(7) Lawless, D.; Serpone, N.; Meisel, D.J. Phys. Chem.1991, 95, 5166.
(8) Green, N. J. B.; Spencer-Smith, R. D.J. Phys. Chem.1996, 100,

13561.
(9) von Sonntag C.The Chemical Basis of Radiation Biology; Taylor

and Francis: London, 1987.
(10) Lillard, R. S.; Pile, D. L.; Butt, D. P.J. Nucl. Mater.2000, 278,

277.
(11) Christensen, H.; Sunder, S.Nucl. Technol.2000, 131, 102.
(12) Ward, J. F. InThe Early Effects of Radiation on DNA; Springer-

Verlag: Berlin, 1990.
(13) Milligan, J. R.; Wu, C. C. L.; Ng, J. Y-Y.; Aguilera, J. A.; Ward,

J. F.Radiat. Res.1996, 146, 510.
(14) Milligan, J. R.; Aguilera, J. A.; Ward, J. F.Radiat. Res.1993, 133,

151.
(15) Begusova, M.; Spotheim-Maurizot M.; Sy D.; Michalik, V.;

Charlier, M.J. Biomol. Struct. Dynam.2001, 19, 141.
(16) Nikjoo, H.; Bolton, C. E.; Watanabe, R.; Terrissol, M.; O’Neill,

P.; Goodhead, D. T.Radiat. Prot. Dosim.2002, 99, 77.
(17) Zaider, M.; Brenner, D. J.Radiat. Res.1984, 100, 245.
(18) von Smoluchowski, M.Z. Phys. Chem.1917, 92, 129.
(19) van Rijn, K.; Mayer, T.; Blok, J.; Verberne, J. B.; Roman, H.Int.

J. Radiat. Biol.1985, 47, 309-317.
(20) Mark, F.; Becker, U.; Herak, J. N.; Schulte-Frohlinde, D.Radiat.

EnViron. Biophys.1989, 28, 81.
(21) Verberne, J. B. A Pulse Radiolysis Study of the Electron Reaction

with DNA in Aqueous Solution and Ice. Ph.D. Thesis, Vrije Universiteit te
Amsterdam, 1981.

(22) Warman, J. M.; Asmus, K.-D.; Schuler, R. H.J. Phys. Chem.1969,
73, 931.

(23) Holley, W. R.; Chatterjee, A.Radiat. Res.1996, 145, 188.
(24) Elliot, A. J.; McCracken, D. R.; Buxton, G. V.; Wood, N. D.J.

Chem. Soc. Faraday Trans.1990, 86, 1539.
(25) Clifford, P.; Green, N. J. B.; Pilling, M. J.J. Phys. Chem.1985,

89, 925.
(26) Green, N. J. B.; Oldfield, M. J.; Pilling, M. J.; Pimblott, S. M.J.

Chem. Soc., Faraday Trans. 11986, 82, 2673.
(27) Green, N. J. B.Mol. Phys.1988, 65, 1399.
(28) Green, N. J. B.; Pilling, M. J.; Pimblott, S. M.Radiat. Phys. Chem.

1989, 34, 105.
(29) Hummel, A.J. Chem. Phys.1968, 48, 3268.
(30) Hummel, A.J. Chem. Phys.1968, 49, 4840.
(31) Clifford, P.; Green, N. J. B.; Pilling, M. J.J. Phys. Chem.1982,

86, 1322.
(32) Clifford, P.; Green, N. J. B; Pilling, M. J.; Pimblott, S. M.J. Phys.

Chem.1987, 91, 4417.
(33) Green, N. J. B.; Pimblott, S. M.J. Phys. Chem.1989, 93, 5462.
(34) Pimblott, S. M.; Pilling, M. J.; Green, N. J. B.Radiat. Phys. Chem.

1991, 37, 377.
(35) Green, N. J. B.; Pimblott, S. M.Mol. Phys.1991, 74, 811.
(36) Green, N. J. B.; Pilling, M. J.; Pimblott, S. M.; Clifford, P.J. Phys.

Chem.1989, 93, 8025.
(37) Pimblott, S. M.; Green, N. J. B.J. Phys. Chem.1992, 96, 9338.
(38) Pimblott, S. M.; LaVerne, J. A.J. Phys. Chem. A2002, 106,

9420.

Scavenging and Recombination in Macromolecules J. Phys. Chem. A, Vol. 110, No. 18, 20066121


