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An investigation into the kinetics of reaction between a diffusing particle and a system of two static spherical
sinks is presented. The backward diffusion equation is solved for the probability of reaction with each sink,
using both absorbing and radiation boundary conditions. The rate constants for each reaction are also calculated.
The reactivity of the sinks is shown to be subadditive, and if the sinks are asymmetric the less reactive sink
is more strongly affected by the competition. Competitive effects are found to be modeled adequately by
using effective reaction radii. The IRT method is shown to have serious defects for such a system because of
the correlation of the two sinks. An application to the reaction of OH radicals with thymidine is presented.

1. Introduction

The attack of free radicals on organic molecules is an area
of great importance in understanding the mechanisms of
radiation damage. In this respect, hydroxyl radicals formed by
the radiolysis of water are of most interest. The reactions of
hydroxyl radicals with organic molecules are generally rather
undiscriminating and are close to diffusion control.1 The
molecule attacked may contain several reactive sites, which may
be sufficiently close to one another for the concentration
gradients of the radicals around each site to overlap and interfere
with one another so that the reactivity of the sites is not additive.
In these circumstances, a curious effect has been observed
experimentally: the rate constants for OH attack on thymine
and deoxyribose are in a ratio of approximately 3:1,1 but when
the two moieties are linked in the molecule thymidine the ratio
becomes approximately 10:1.2 One interesting question that
arises is the extent to which this may be a diffusive competition
effect.

A simple model of this system would be two reactive spheres
linked together at a fixed separation, one representing the base
and the other representing the sugar. The diffusion of the radicals
relative to this bispherical system could then be analyzed
assuming that the spheres are fixed. This is a crude model of
the real thymidine system because both the base and the sugar
contain several reactive centers themselves and because the
rotational diffusion of the thymidine molecule is ignored.
However, the model does have the virtue of being analytically
tractable and can be used to investigate the possibility of
competition between the two moieties.

In this paper the steady-state diffusion kinetics are analyzed
for this model, with particular emphasis on working out which
sphere reacts first. The exact solutions are compared with the
predictions of the IRT (independent reaction times) model, in
which, for each radical, random reaction times are generated
independently for the two spheres from the known radical-
sphere distances. The IRT model has proven to be very accurate
in modeling competitive radical recombination reactions, where
all of the reactive radicals are mobile.

The aims of this study are to estimate the magnitude of the
competition effect as a function of the intersphere distance, to
investigate whether this competition can be described using the
IRT method, and to investigate whether the competition of partly
diffusion-controlled reactions is affected by the use of effective

reaction spheres, that is, by replacing a radiation boundary at a
realistic encounter distance with an absorbing boundary at a
smaller reaction distance and the same overall reactivity.

In Section 2 the backward diffusion equation with two
spherical sinks is set up and solved for the probability that a
diffusing particle will react with one sink before the other. The
problem is formulated and solved analytically in bispherical
coordinates, with totally absorbing boundaries and with partially
reflecting boundaries. Section 3 discusses the well-known
relationship between reaction probability and rate constant,
which can be combined with the results of Section 2 to give
rate constants for the reaction with either sink. Section 4 deals
with the special case of a reactive sphere in the presence of a
reactive or partially reflecting plane, which is a limiting case.
Section 5 applies the IRT approximation to the two-sphere
problem. Because of the relative simplicity of the model system,
the IRT method also gives an explicit analytic solution. In
Section 6 the two methods are applied to a variety of systems
and compared with one another. It is demonstrated that the IRT
method is not capable of dealing with the competition between
the two spheres. Finally, in Section 7 the results are applied to
thymidine to assess whether the competition between the base
and sugar moieties can explain the apparent anomaly in the
experimental rate constants.

2. General Solution for Two Fixed Spherical Sinks

The problem of the steady-state rate coefficient for diffusion-
controlled reaction of a species distributed homogeneously in
space with two fixed spherical sinks has been solved previously
by Samson and Deutch.3 Samson and Deutch consider the total
reactivity of the system of two spheres. However, it is of interest
to differentiate between the two spheres, especially where they
represent distinguishable chemical reaction sites, and for such
a system it is more convenient to start by considering the
different (but related) problem of a single radical diffusing in
the presence of two spherical sinks. This approach requires the
probability that the particle reacts with each of the sinks
separately as a function of its initial position. In the case of
diffusion-controlled reaction of the two spheres, a formal
solution to this problem has been presented by Sano.4

Suppose that the two sinks are labeled 1 and 2. The
probability of reacting with sphere 1 is the probability that the
particle reacts with sphere 1 before sphere 2 (if it would have
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reacted with sphere 2 at all). This probability obeys the steady-
state backward diffusion equation.5

in which the Laplacian operator differentiates with respect to
the initial coordinates of the particle.

The bispherical coordinate system is the natural coordinate
system for solving this problem.6 These are defined as follows:

The variableµ can take any real value. Surfaces of constant
µ are spheres of radiusa/|sinh µ|, centered at (0, 0,a coth µ).
In the limits µ f (∞ the isosurfaces shrink toward the fociz
) (a. The parametera is known as the interfocal distance.
The surfaceµ ) 0 is the xy plane. Any system of two
nonintersecting spheres can be arranged so that each spherical
boundary is a fixed value of the coordinateµ. The variableη
can take values between 0 andπ. Surfaces of constantη are
formed by rotating the positive part of a circle of radiusa/sin
η and center (0, 0,a cotη) about thez axis, together with its
reflection in thexy plane. All isosurfaces of the variableη
intersect on the circlex2 + y2 ) a2. The variableφ represents
the usual longitude angle, as in spherical polar coordinates.
Sections through typical isosurfaces ofµ andη have cylindrical
symmetry about thez axis, and sections of typical isosurfaces
taken through thexz plane are shown in Figure 1.

2.1. Transformation into Bispherical Coordinates.In the
first case to be considered, the two spherical sinks have the
same radius,b, and their centers are separated by a distanced
(d > 2b). The spheres are equidistant from the origin on thez
axis. Then the boundaries are atµ ) (cosh-1(d/2b) and the
interfocal distancea ) b sinh |µ|.

If the two spheres do not have the same radius, then the
interfocal distance,a, must be obtained by solution of the
equation

and thenµ1 ) sinh-1(a/b1) andµ2 ) -sinh-1(a/b2), whereb1

andb2 are the two sphere radii.
The permitted space for the diffusion is the whole of space

outside the spheres, this isµ2 < µ < µ1, 0 < η < π, and 0<
φ < 2π. Within this permitted space, a given initial position
can be converted to bispherical coordinates using

On the planez ) 0 (µ ) 0) due care must be taken to obtain
the correct limit forη.

2.2. Formal Solution. Following the transformationF )
xcoshµ-cosηP1, the Laplace equation in bispherical coordi-

nates is transformed to6

The separation of variables is standard and, taking into account
the cylindrical symmetry of the system around thez axis, the
general solution can be written

wherePn denotes the Legendre polynomials.
The arbitrary constantsAn and Bn must be found from the

boundary conditions. The next sections consider in turn various
boundary conditions of interest.

2.3. Totally Absorbing Boundaries.The simplest case to
solve is that of two totally absorbing boundaries and is of interest
because it describes the situation in which reaction with both
spheres is diffusion-controlled.

The appropriate boundary conditions are

∇0
2 P 1 ) 0 (1)

z ) a sinhµ
coshµ - cosη

(2)

x ) a sin η cosφ

coshµ - cosη
(3)

y ) a sin η sinφ

coshµ - cosη
(4)

d ) xa2 + b1
2 + xa2 + b2

2 (5)

µ ) tanh-1( 2az

x2 + y2 + z2 + a2) (6)

η ) cos-1(coshµ - a
z

sinhµ) (7)

φ ) tan-1(y/x) (8)

Figure 1. Section through thexz plane of the isosurfaces of the
bispherical coordinates. (a) Surfaces of constantµ, (b) surfaces of
constantη. The surfaces are obtained by rotating the section about the
z axis.

∂
2F

∂µ2
+ 1

sin η
∂

∂η (sin η ∂F
∂η) + 1

sin2 η
∂

2F

∂φ
2

- 1
4

F ) 0 (9)

P1 ) x(coshµ - cosη) ∑
n)0

∞

(Ane
(n+1/2)µ +

Bne
-(n+1/2)µ) Pn(cosη) (10)

P1(µ1) ) 1 (11)
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The interpretation of these boundary conditions is that a particle
starting in contact with sink 1 is certain to hit sphere 1 before
sphere 2, and a particle starting in contact with sink 2 is certain
not to hit sink 1 before sink 2.

Substitutingµ ) µ1 into the general solution and using the
first boundary condition

But the LHS can also be expanded as a series of Legendre
polynomials, giving

Because the Legendre polynomials are linearly independent,
the coefficient of eachPn on the LHS must be equal to the
corresponding coefficient on the RHS, giving

Similarly, the other boundary condition gives the relationship

Solving for An andBn yields the solution

This solution has been obtained previously by Sano.4 The
probability of hitting sphere 2 before sphere 1 follows by
symmetry.

The probability that the particle hits one or other of the two
spheres isP 1 + P 2 and can also be found by solving the
backward equation with boundary values of 1 on both spheres.
The probability that the particle escapes without hitting either
sphere is 1- (P 1 + P 2).

2.4. Partially Reflecting Boundaries.2.4.1. Probability of
Reacting with Sphere 1 First.The probability of hitting sphere
1 first is found by solving eq 1 subject to the following boundary
conditions:7

whereV1 andV2 are the “reaction velocities” of spheres 1 and
2, respectively, andD is the diffusion coefficient of the OH
radical. The reaction velocity is a parameter that describes the
reactivity of each species in contact with the OH radical. The
natural units for such a parameter are those of velocity.8

Substituting the general solution (eq 10) into the first
boundary condition yields, after a certain amount of algebra

whereA andB are vectors with elementsAi andBi, i ) 0, 1, 2,
... S(µ, V) is an infinite tridiagonal matrix whose elements are

Similar working to the above leads from the second boundary
condition to the following relation between coefficients ofA
andB

where the vectorc has elementscn(µ, V) ) aVx2e-(n+1/2)µ, n
) 0, 1, 2, ...

Equations 20 and 24 may be combined into the following
single matrix equation whose solution yields the values of the
coefficientsAn andBn

VectorsA andB are found by solving this equation. Although
they are both infinite vectors, the general solution given by eq
10 converges quickly, and only the first 50 or so elements of
each vector are required to obtainP 1 to a high degree of
accuracy from any starting point of the diffusing radical.

2.4.2. Probability of Reacting with Sphere 2 First.The general
solution for P 1 given by eq 10 applies equally toP 2, the
probability of hitting sphere 2, with the different set of boundary
conditions

Comparison with equations 18 and 19 shows that the constants
An and Bn in the general solution (eq 10) may be found by
replacingµ1 by µ2, µ2 by µ1, V1 by -V2 andV2 by -V1 in matrix
eq 25 to yield the following matrix equation

Solving forA andB gives the required coefficients in the general
solution.

2.5. Mixed Boundary Types.Sections 2.3 and 2.4 show how
to determineP 1 and P 2 when both spheres have similar
boundary types, either both totally absorbing or both partially
absorbing. This Section considers a different situation in which
one of the spheres has a totally absorbing boundary and the
other has a partially reflecting boundary. Let sphere 1 (µ ) µ1

P1(µ2) ) 0 (12)

1

x(coshµ1 - cosη)

) ∑
n)0

∞

(Ane
(n+1/2)µ1 +

Bne
-(n+1/2)µ1) Pn(cosη) (13)

x2 ∑
n)0

∞

e-(n+1/2)|µ1|Pn(cosη) ) ∑
n)0

∞

(Ane
(n+1/2)µ1 +

Bne
-(n+1/2)µ1) Pn(cosη) (14)

x2e-(n+1/2)|µ1| ) Ane
(n+1/2)µ1 + Bne

-(n+1/2)µ1 (15)

0 ) Ane
(n+1/2)µ2 + Bne

-(n+1/2)µ2 (16)

P1 ) x2(coshµ - cosη)

∑
n)0

∞

e-(n+1/2)µ1

sinh((n +
1

2)(µ - µ2))
sinh((n +

1

2)(µ1 - µ2))
Pn(cosη) (17)

D(∇P 1)µ2
) V2P 1(µ2) (18)

D(∇P 1)µ1
) V1(1 - P 1(µ1)) (19)

S(µ2, V2)A - S(- µ2, - V2)B ) 0 (20)

Sn,n-1(µ, V) ) e(n+1/2)µ[- D
2

ne-µ] n ) 1, 2, 3 ... (21)

Sn,n+1(µ, V) ) e(n+1/2)µ[- D
2

(n + 1)eµ] n ) 0, 1, 2 ...
(22)

Sn,n(µ, V) ) e(n+1/2)µ[D2 sinhµ + D(n + 1
2)coshµ - aV]

n ) 0, 1, 2 ... (23)

S(µ1, - V1)A - S(- µ1, V1)B ) c (24)

(S(µ2, V2) -S(-µ2, -V2)
S(µ1, -V1) -S(-µ1, V1) )(AB ) ) (0c(µ1, V1) ) (25)

D(∇P 2)µ1
) -V1P 2(µ1) (26)

D(∇P 2)µ2
) -V2(1 - P 2(µ2)) (27)

(S(µ1, -V1) -S(-µ1, V1)
S(µ2, V2) -S(-µ2, - V2) )(AB ) ) (0c(µ2, - V2) ) (28)
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> 0) have an absorbing boundary and sphere 2 (µ ) µ2 < 0)
have a partially reflecting boundary with characteristic velocity
V2.

2.5.1. Probability of Reacting with Sphere 1 First.As before,
P1 is defined to be the probability of hitting sphere 1 first.

The boundary conditions are

The first boundary condition leads to the following relation-
ship between the constantsAn andBn in the general solution.

The second boundary condition is identical to that given in
eq 18 of Section 2.4.1. and employing the notation of that
Section, leads to the following relationship betweenAn andBn

Combining eqs 31 and 32 into a single matrix equation

whereJ(µ) is a diagonal matrix with elements

I is the identity matrix, andd is a vector defined as

Solving eq 33 forA andB yields the constantsAn andBn in
the general solution forP 1.

2.5.2. Probability of Reacting with Sphere 2 First.In a very
similar way the coefficients in the solution forP2 obey the
equations

3. Rate Constant Evaluation

Having obtained expressions for the probability of reacting
with either sphere, starting from any given point outside the
spheres, it is necessary to work out how to translate these results
into rate constants.

Consider first the general situation in which a static particle,
A, is surrounded in a region of volumeV by a sea of reactive
particles B of uniform concentrationc. The time-dependent rate
constant is defined in the usual way as

whereΩ(t) represents the time-dependent survival probability
of A. Assuming that the number of B’s in the volumeV has a
Poisson distribution, then it is well-known that9-12 the survival
probability of A is given by

whereW(r , t) is the probability that a geminate AB pair with a

B particle at initial position vectorr will have reacted by time
t. Combining eqs 37 and 38, the following expression for the
rate constant is obtained:

Using the backward diffusion equation, we can write this
equation as

whereD is the diffusion coefficient of a B particle. Applying
Gauss’s theorem, this volume integral is equivalent to the surface
integral

where Sa is the surface of particle A. Thesteady-staterate
constant is given by

whereWA(r ) is the probability that a particle B, which is initially
at the point with position vectorr , eVer reacts with A. No
assumption has been made about the shape of the surface of A,
and the ensuing analysis is made easier by recognizing that,
because the system is in a steady state, eq 42 may equivalently
be written as

where Sc is any closed surface (for simplicity, a sphere)
containing A. Now, imagine a sphere of radiusb (b < c) which
also completely encloses A, then

whereWb(r ,r ′) is the probability that a particle with position
vectorr outside a sphere of radiusb first hits that sphere at the
point with position vectorr ′.

Combining eqs 43 and 44, the steady-state rate constant is
given by

Changing the order of integration

It is a standard result of electrostatics13 that

and hence

This equation provides the link between the calculation of a
probability and the evaluation of the rate constant for reaction
with one of the two spheres. An imaginary sphere of radiusb
is constructed to surround the two reactive spheres. The

P 1(µ1) ) 1 (29)

D(∇P 1)µ2
) V2P 1(µ2) (30)

x2 ) Ane
(2n+1)µ1 + Bn (31)

S(µ2, V2)A - S(- µ2, -V2)B ) 0 (32)

(S(µ2, V2) -S(-µ2, -V2)
J(µ1) I )(AB ) ) (0d ) (33)

Jn,n(µ) ) e(2n+1)µ n ) 0, 1, 2, ... (34)

dn ) x2 n ) 0, 1, 2 ... (35)

(J(µ1) I
S(µ2, -V2) -S(-µ2, V2) )(AB ) ) (0c(µ2, - V2) ) (36)

k(t) ) - 1
c

d
dt

(ln Ω(t)) (37)

Ω(t) ) exp(-c∫V
W(r , t) dr ) (38)

k(t) ) ∫V

∂W
∂t

dr (39)

k(t) ) D∫V
∇2W dr (40)

k(t) ) - D∫∇W dSa (41)

k ) -D∫∇WA dSa (42)

k ) -D∫rε Sc
∇rWA dSc (43)

WA(r ) ) ∫r′ε Sb
Wb(r ,r ′)WA(r ′) dr ′ (44)

k ) -D∫rε Sc
∇r∫r′ε Sb

Wb(r ,r ′) Wa(r ′) dr ′ dSc (45)

k ) -D∫r′ε Sb
Wa(r ′)∫rε Sc

∇rWb(r ,r ′) dSc dr ′ (46)

Wb(r ,r ′) ) r 2 - b2

4πb|r ′ - r |3
(47)

k ) D
b∫r′ε Sb

WA(r ′) dr ′ (48)
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probability of reacting with a particular sphere starting from a
given point on the large sphere is found using the methods
derived in Section 2. The integral around the surface of the
enclosing sphere is evaluated numerically to provide an estimate
of the steady-state rate constant for reaction with the reactive
sphere.

The interpretation of this equation is that it represents the
rate constant for hitting the large sphere times the probability
that a diffusing radical started at a random point on the surface
of the sphere hits the target (the first hit position on the sphere
is distributed uniformly).

4. One Spherical Sink and One Plane

Having solved the diffusion equation for two static spheres,
the related problem of a static sphere close to a plane is now
considered. The competition for a diffusing particle between a
plane and a sphere could have applications in, for example,
corrosion. There is a choice of two methods for solving the
problem: (1) use the results of Section 2 withµ2 ) 0 so that
the second sphere is infinitely large and effectively becomes
thexzplane or (2) employ themethod of images. Each method
will be considered in turn.

4.1. Limiting Case of Two Spheres.The probability of
reaction with either the sphere or the plane may be calculated
in precisely the same manner as described in Section 2 but with
the provision thatµ2 ) 0. However, the calculation of a steady-
state rate constant is meaningless in this case because no steady
state is ever reached when one of the reacting surfaces is of
infinite extent, and it is obviously not possible to find an
enclosing surface.

If the sphere and plane are both absorbing, eq 17 may be
used withµ2 ) 0 to find the probability of hitting the sphere.
Hence

Similarly, P p, the probability of hitting the plane first may be
obtained by substitutingµ2 ) 0 into the solution forP 2 from
Section 2.3 to give

Both of these series are absolutely convergent. However,
although eq 49 converges quickly for all values ofµ, the same
is not true for eq 50, which converges slowly, its terms changing
sign in a slow oscillation. The convergence is slowest for starting
points close to the plane. However, the reactive particle cannot
escape completely; that is, it must react with either the plane
or the sphere. It therefore follows that the probability of hitting

the plane is simply given by 1- P s. The proof of this is as
follows. Adding equations 49 and 50 and simplifying

Using the generating function of Legendre polynomials, this
simplifies to

It is also possible to accelerate the convergence of the slowly
converging series by a number of methods.14,15 However, it is
not necessary to use any of these because of the rapidly
converging series for the complement.

The same method can be applied to the case where one or
both boundaries are partly reflecting. Again, the series for the
probability of reaction with the sphere converges much faster
than that for the plane, but the latter probability is simply the
complement of the former.

4.2. Method of Images.The method of images provides a
simple alternative way of approaching the same problem and
is examined in this Section for two different boundary types.

4.2.1. Absorbing Sphere and Plane.Suppose the absorbing
sphereµ ) µ1 has its center on thez axis. The planez ) 0 is
also an absorbing boundary. A reactive particle is placed
somewhere in the region of space between the plane and the
surface of the sphere. To find the probability that the diffusing
particle reacts with the sphere, a second sphere (animagesphere)
of equal radius to the first is placed behind the plane with its
center on thez axis and with bispherical coordinateµ ) -µ1.
The absorbing plane is now removed to leave the two identical
absorbing spheres.

The probability of hitting each sphere is found using the
methods described in Section 2.3. Now, any trajectory that ends
on the image sphere must have passed through the planez ) 0.
However, the trajectories that end on the object sphere divide
into two classes: those that pass throughz ) 0 and those that
hit the sphere before passing throughz ) 0. By symmetry, the
probability that a trajectory passing throughz ) 0 subsequently
hits the object sphere is the same as the probability that it hits
the image sphere. Hence, the probability of hitting the object
sphere without passing through the planez ) 0, and hence the
probability of hitting the sphere when the absorbing planez )
0 has been replaced, is given by

Because the reactive particle must eventually hit either the plane
or the sphere, the probability of hitting the plane is given by 1
- Psphere.

4.2.2. Absorbing Sphere and Reflecting Plane.If the planez
) 0 is totally reflecting, then the probability of hitting the
absorbing sphere is increased. Again an image sphere of equal
radius to the object sphere is introduced on the other side of
the plane. Now, any trajectory that passes throughz ) 0 and
hits the image sphere would, in the presence of the reflecting
plane have reflected off the plane and hit the object sphere.
Thus, the probability of hitting the sphere when in the presence
of the reflecting plane is given by

P s + P p ) x2(coshµ - cosη) ∑
n)0

∞

e-(n+1/2)µ Pn(cosη)

(51)

P s + P p )
x2(coshµ - cosη)e-µ/2

x1 - 2e-µ cosη + e-2µ
) 1 (52)

Psphere) Pobject- Pimage (53)

Psphere) Pobject+ Pimage (54)

Ps ) x2(coshµ - cosη) ∑
n)0

∞

e-(n+1/2)µ1

sinh((n +
1

2)µ)
sinh((n +

1

2)µ1)
Pn(cosη) (49)

Pp ) x2(coshµ - cosη) ∑
n)0

∞
sinh((n +

1

2)(µ1 - µ))
sinh((n +

1

2)µ1)
Pn(cosη) (50)
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Pobject and Pimage correspond toP 1 and P 2 in Section 2.3.
Clearly, the probability of reaction with the plane is zero.

5. Independent Reaction Times Approximation

The independent reaction times (IRT) approximation is a
central approximation of the theory of multibody diffusion
kinetics that enables explicit solutions to be obtained. This
approximation is implicit in the Smoluchowski theory of the
diffusion-controlled rate coefficient. It has also proved very
successful in systems containing small clusters of reactive
particles, such as radiation tracks.16-19 Because some exact
solutions are now available for three particles, in the case where
two of the particles are stationary, it is of interest to use them
to test the IRT approximation for systems of this type. These
are likely to be the worst possible cases for the approximation
because the two fixed sinks ensure that correlations between
the interparticle distances persist throughout the evolution of
the system.

The first case considered is that of full diffusion-controlled
reaction for both sinks, and subsequently the case of partially
diffusion-controlled reaction will be dealt with.

5.1. Full Diffusion Control. If the particle has an initial
position where the distances to the two spheres (of radiib1 and
b2) are r1 and r2, respectively, then according to the IRT
approximation the probability that sphere 1 is hit before sphere
2 is given by the integral

wheref is the density of the time for the particle to hit sphere
1 in the absence of sphere 2, and 1- F is the probability that
the particle has not yet hit sphere 2 by timet in the absence of
sphere 1.

Making the change of variableu ) t-1/2 brings this integral
into a standard form20

An equivalent expression for the probability of hitting sphere 2
before sphere 1 follows by symmetry.

5.2. Partial Diffusion-Control. The well-known distribution
function of the reaction time for a partially diffusion-controlled
reaction with a spherical sink7,21can be expressed as a function
of two dimensionless variables, both of which depend on time

wherer is the initial separation of the pair,a is the encounter
distance,ka is the finite rate coefficient for reaction on encounter
(radiation boundary condition), andkD is the steady-state

Smoluchowski rate constant; the two dimensionless variables
are

and

The method of Section 5.1 for finding the probability of
reacting with either sphere is impractical to use in this case
because of the difficulty of finding an explicit form for the
integral. Instead, the IRT simulation method is employed to
evaluate the integral by a Monte Carlo method.

A random reaction time is generated for reaction with each
of the two spheres to find the probability that a diffusing particle
started at some point reacts with sphere 1. In each case the time
is generated from the geminate reaction time distribution
function, that is, ignoring the presence of the other sphere. If
the time for reaction with sphere 1 is smaller than that for sphere
2, then the particle reacts with sphere 1, and vice versa. If both
reaction times are infinite, then the particle escapes. The process
is repeated many times (typically 100 000) to simulate the
probability with acceptable random error. This procedure must
be repeated for every starting position of the diffusing particle.

The method for generating a random time for reaction with
a sphere will be described in a separate paper. The trajectory
can be decomposed into two parts. The first part is the diffusion
of the particle up to the time at which the sphere is hit for the
first time. The second part is the trajectory from the first hit to
the reaction. The reaction time is the sum of the times that the
particle spends on each part of the trajectory.

Generating the time to the first hit on the sink is straightfor-
ward. The required probability distribution function is given
by

and the hit time can therefore be generated from this distribution
by the inversion method, as for fully diffusion controlled
reactions.22

Once a hit has occurred, the distribution function of the time
from the hit to the reaction is obtained by substitutingr ) a in
eq 59

Times are sampled from this probability distribution by an
exact composition method, which is summarized as follows.

1. Generate a uniform random numberU1 between 0 and 1.
2. If U1 is greater thanka/(ka + kD) then reaction never takes

place.
3. Otherwise generate a normally distributed random variable

with mean 0 and standard deviationx2. Let Y be the absolute
value of this random variable.

4. Generate a second uniform random numberU2, and letX
) -(ln U2)/Y. This procedure generates an exponentially
distributed random variable with mean 1/Y.

5. Let T ) (Xa)2/D′. T is a random variable with the desired
probability distribution function.

P 1
IRT ) ∫0

∞
f (r1, b1, t)(1 - F(r2, b2, t)) dt (55)

f (r1, b1, t) )
b1

x4π Dt3

r1 - b1

r1
e-(r1-b1)2/4Dt (56)

F(r2, b2, t) )
b2

r2
erfc (r2 - b2

x4Dt ) (57)

P 1
IRT )

b1

r1
(1 +

b2

r2
(2
π

tan-1(r2 - b2

r1 - b1
) - 1)) (58)

W(r, t) ) a
r

ka

ka + kD
{erfc(y) - ex2+2xyerfc (x + y)} (59)

y ) r - a

x4D′t
(60)

x )
(ka + kD)xD′t

kDa
(61)

F(r, a, t) ) a
r

erfc
r - a

x4Dt
(62)

W(a, t) )
ka

ka + kD
{1 - ex2

erfc(x)} (63)
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The proof of this algorithm will be presented elsewhere. The
algorithm is straightforward to program, and it has the great
attraction of being an exact representation. Previous methods
relied on the numerical inversion of the distribution function.23

6. Results

The key objective of this paper is to investigate the effect of
competition between two proximal reactive species, or reactive
sites on the same species, for a diffusing reactive particle. Each
reactive site is modeled as a sphere so that the system is tractable
to an analytic treatment. The first stage is to calculate the
probability of reaction with each sphere as a function of the
starting point of the diffusing particle. The next stage is to
translate these probabilities into a rate constant for each sphere.
This will permit quantification of the extent to which one sphere
shields reactivity from the other.

6.1. Reaction Probabilities.6.1.1. Exact Solutions.Consider
two static spheres whose centers are on thez axis; the origin
lies at a convenient point between the two spheres. The sphere
in the positive region of thez axis will be referred to as sphere
1 and the other as sphere 2. A diffusing particle may react with
either sphere. One or both spheres may be assigned an absorbing
boundary or, alternatively, each sphere may have a finite reaction
rate on encounter with this particle. The probability of reaction
with a particular sphere may be calculated from the exact
solutions in Section 2, or subject to the IRT approximation, as
described in Section 5.

As a first example, consider the case of two fully absorbing
spheres of equal size, whose centers are separated by three
spherical diameters. Because of the cylindrical symmetry of the
problem it is only necessary to consider diffusing particles
started in thexz plane. Figure 2 shows a contour plot of the
probability of reaction with sphere 1. In agreement with
intuition, it is seen that as the starting position of the particle
approaches the surface of sphere 1 the probability approaches
1. However, as the starting position approaches the surface of
sphere 2, the probability of reacting with sphere 1 approaches
zero. Figure 3 shows the probability of hittingeither sphere,
the complement of the escape probability. The symmetry seen
in the plot reflects the fact that the spheres are identical. There
is a vast amount of information contained in these figures, far
more than is detectable experimentally. The connection with
experiment is made by translating the probabilities into a rate
constant by the method described above in Section 3. Results
for rate constants are discussed in Section 6.2. below.

A second example concerns the case of an absorbing sphere
in the vicinity of an absorbing plane. The sphere has its center
on the positivez axis and the plane is the surfacez ) 0. A
reactive particle starts its journey in some region of thexzplane
outside the sphere and with positivezcoordinate. Figure 4 shows
a contour plot of the probability that the diffusing particle reacts
with the sphere (rather than the plane) as a function of its starting
position. The calculations were carried out using the method
described in Section 4. As expected, the plot is symmetric about
the z axis, and the probability approaches unity as the starting
position of the diffusing particle approaches the sphere. The
probability distribution shown here cannot be developed into a
steady-state rate constant for reaction with either surface. This
is because the concentration distribution around the plane is
purely transient. Because the sphere is close to the surface of
the plane, no steady state can develop around the sphere.

Before looking at rate constant calculations for two spheres
of finite reactivity, it is important to assess the accuracy of the
IRT approximation when applied to the problem of two static
sinks.

6.1.2. Comparison of IRT Calculations with Exact Solutions.
The IRT method of calculating reaction probabilities has been
described in Section 5. It is an approximate method, and it is
of interest to see whether it can be used to good approximation
in a system comprising two static sinks. The critical approxima-

Figure 2. Contour plot of the probability of hitting sphere 1 in a system
of two identical absorbing spheres separated by three diameters.

Figure 3. Contour plot of the probability of hitting either sphere in a
system of two identical absorbing spheres separated by three diameters.

Figure 4. Contour plot of the probability of reaction with an absorbing
sphere in the presence of an absorbing plane.
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tion of the IRT method as applied here should be emphasized:
no account is taken of the spatial correlation of the two sinks
except through their initial distances from the diffusing particle.

To test the IRT approximation, we performed IRT probability
calculations for the system of two reactive spheres described
in the Section above. Figure 5 shows the ratio of the total
reaction probabilities obtained by the IRT method to those
obtained by the exact method. It is apparent that the IRT method
overestimates the total reaction probability for virtually all
starting positions considered. The relative error, typically 10%,
increases as the initial distance from the two spheres increases.
The exception to this general conclusion is in the region of space
between the two spheres, where the reaction probability is
slightly underestimated.

An explanation for these contrasting features follows. The
IRT method takes account of the initial distance of the diffusing
particle from each of the two static sinks; however, it does not
take account of their precise relative positions and effectively
calculates an average reaction probability over all possible
configurations of the two spheres consistent with the initial
distances. The configurations in which the two sinks are close
together only constitute a small and atypical part of this average.
Of all the possible relative positions of the two sinks conditional
on these distances, the configuration in which they are side by
side presents the greatest possibility for escape for a particle
starting a very long way from both particles. This is because
trajectories that make for sphere 1 from a large distance are
also heading in the direction of sphere 2 and vice versa. By
ignoring the strong positive correlation of the two distances as
the particle diffuses, the IRT method leads to an overestimate
of the reaction probability. The same argument can be applied,
but with diminishing importance, as the particle starting position
approaches the two spheres. However, if the particle starts in
the region between the two spheres, the situation is reversed:
the actual configuration now represents the worst possible case
for escape for the given distances, and as the particle diffuses
the two distances are negatively correlated. The same argument
explains why the IRT method underestimates the total reaction
probability.

Figure 6 shows the ratio of the probabilities of hitting sphere
1, as calculated by both methods. In the region around sphere
1 the IRT method gives a good estimate of the probabilityP 1,
whereas for initial positions close to sphere 2 there are
significant errors: between the spheres this is an underestimate

of P 1, whereas on the far side of sphere 2 there is a large
overestimate.

To make sense of the inaccuracies, Figure 7 focuses on a
section of the contour plot taken along thez axis. It is observed
that as the initial position of the particle approaches sphere 2
from the left the ratio increases significantly. This is easy to
understand because, from a position on the far side of sphere 2
and close to its surface, a large number of trajectories that would
end up on sphere 1 in the absence of sphere 2 will actually be
intercepted by sphere 2 first. Because the IRT method does not
recognize the correlation between the positions of the two sinks,
it overestimates the probability of hitting sphere 1. The closer
to sphere 2 the reactive particle starts its journey, the larger the
overestimate. In contrast, as the initial position of the particle
approaches sphere 1 from the right, the ratio decreases toward
1. The explanation is that the closer the particle starts to sphere
1 the less likely it is to hit sphere 2 first because many
trajectories that would strike sphere 2 in the absence of sphere
1 are blocked by sphere 1. The IRT result is less affected than
in the previous case because the distance to sphere 1 is much

Figure 5. Contour plot of the ratio of the IRT to the exact reaction
probability for reaction with either sphere in a system of two identical
absorbing spheres separated by three diameters.

Figure 6. Contour plot of the ratio of the IRT to exact probabilities
of hitting sphere 1 in a system of two identical absorbing spheres
separated by three diameters.

Figure 7. Section of Figure 6 along thez axis. The abscissa is thez
coordinate in units of the sphere diameter.
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shorter than the distance to sphere 2 and so in the IRT method
most of the trajectories hit sphere 1 first. In the limit where the
particle starts in contact with sphere 1 it is trivial thatP 1 ) 1
in both methods. Of course, this is all superimposed on a
background overstatement of both probabilities because of an
underestimate of the escape probability.

In the region of thezaxis between the two spheres, the shape
of the ratio is more difficult to justify. However, some insight
may be gained from analysis of the similar but simpler case of
one-dimensional diffusion between two barriers, which may be
found in the appendix.

6.2. Rates.In Section 3, it was shown how to determine a
rate constant for reaction of a diffusing particle with either
sphere in a system comprising two static proximal spheres. The
method is summarized in eq 48.

The importance of the rate constant is that it provides the
most convenient link with experiment. In this Section, the
method described in the paragraph above is used to evaluate a
rate constant for reaction with each sphere. Various boundary
types and relative sizes of spheres are considered. Of particular
interest is the variation of the rate constant for reaction with a
given sphere with the separation of the spheres. Also of interest
is the extent to which the relative sizes of two identical spheres
affects the ratio of their rate constants.

6.2.1. Two Identical Absorbing Spheres.First two identical
absorbing spheres are considered. Figure 8 indicates the rate
constant for hitting sphere 1 as a function of the separation
between the spheres. This is plotted as a ratio with respect to
the rate constant for reaction with a single isolated sphere of
the same radius. The total rate constant for the whole system is
twice that for hitting each individual sphere. This result agrees
with the predictions of Samson and Deutch;3 in fact, it is
straightforward to prove thatP 1 + P 2 is identical to the
concentration distribution derived by Samson and Deutch. When
the spheres are almost touching, the rate constant for reaction
with each sphere is some 25% lower than that of an isolated
sphere of the same size. A substantial reduction is to be expected
because the second sphere acts to protect the first from many
of the trajectories that would otherwise react with it. As the
separation increases, there is a corresponding increase in the

rate constant for hitting each sphere because the protective effect
of the neighboring sphere diminishes. Once the separation
reaches 15 spherical diameters, the rate constant is only about
3% less than that of the isolated sphere. The effect of
competition beyond this distance is negligible.

6.2.2. Two Spheres of Different ReactiVities. This Section
considers competition between two spheres of different reac-
tivities. The example considered is one in which sphere 1 is
twice as reactive as sphere 2 when each sphere is in isolation.
In the example, the difference in reactivity is accounted for in
either of two ways: in the first, both spheres have totally
absorbing boundaries and the radius of sphere 1 is twice the
radius of sphere 2; in the second, both spheres have partially
absorbing boundaries and are of equal size but their reaction
velocities are assigned in such a way that sphere 1 has twice
the reactivity of sphere 2. In the latter case, the parameters are
chosen so that each sphere has the same reactivity as the
corresponding sphere in the totally absorbing treatment. Figure
9 shows, for each case, the reactivity of each sphere as a
percentage of its reactivity in isolation, expressed as a function
of the separation between the spheres. It is evident that the
competition effect is essentially independent of whether the
difference in reactivity is modeled using a reactivity parameter
and a realistic radius or diffusion control with an effective radius.
The only differences arise at very small separations between
the spheres because the effective spheres can be unphysically
close to one another.

At all separations there is a reduction in reactivity of each
sphere, which diminishes as the separation increases. The
reactivity of the less reactive sphere is more affected by the
presence of the other sphere. This result can be interpreted in
terms of the diffusing particle “bouncing off” or missing the
less reactive sphere and being picked up by the more reactive
sphere before it returns. Figure 10 shows the variation of the
ratio of rate constants with separation. At very short separations

Figure 8. Reduction in relative reactivity of a sphere by competition
from a second sphere in a system of two identical absorbing spheres.

Figure 9. Reduction in reactivity of two spheres relative to the
reactivity of each sphere in isolation. Sphere 1 is twice as reactive as
sphere 2 when each sphere is in isolation. This difference in reactivity
is accounted for in either of two ways: in the first, both spheres are
the same size and have partially absorbing boundaries with reactivity
parameters chosen such that sphere 1 is twice as reactive as sphere 2;
in the second, both spheres have totally absorbing boundaries and sphere
1 has twice the radius of sphere 2.
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the ratio is significantly greater than the limit at infinite
separation, which is two. At separations greater than about 15
spherical diameters, the effect of competition is minimal.

6.2.3. One Absorbing Sphere and One Reflecting Sphere.This
Section considers how the rate constant for reaction between
the diffusing particle and a totally absorbing sphere is affected
by the presence of a totally reflecting adjacent sphere. Figure
11 shows that there is only a slight reduction in the reactivity
of the reactive sphere when a reflecting sphere of the same size
is almost touching. Beyond a few spherical diameters, the rate
constant returns to its value for the isolated sphere. This small
effect might be surprising because one would have expected

the unreactive sphere to shield the reactive one; however, it
also reflects trajectories into the reactive sphere, and these effects
largely cancel out. This has an important implication where a
molecule has a reactive site and unreactive sites. The position
of the unreactive site would seem to have little effect on the
rate constant for reaction at the active site.

6.2.4. Rate Constants from the IRT Method.Although the
IRT method has obviously not proved successful in describing
the probabilities of reaction with sphere 1 before sphere 2, it is
of interest to test whether the IRT method can give any insight
into the competition effect. This is for two reasons: first, the
IRT method is often easier to analyze and simulate than the
full solution; second, the normal formulation of the rate constant
depends on the assumption that the diffusing particles diffuse
independently in the frame of reference of the sinks (the
independent pairs approximation). The IRT rate constant for
reaction with sphere 1 is obtained from the IRT approximation
for P 1 averaged over a virtual sphere in the same way as was
done for the analytic solution forP 1, described in Section 3.

This calculation is subject to a severe problem. Although the
rate constant obtained from the analytic solution forP 1 is
independent of the radius of the virtual sphere, the IRT rate
constant is not, as shown in Figure 12. The value obtained for
the IRT rate constant decreases as the radius of the virtual sphere
is increased and seems to approach a limiting value.

Notwithstanding this problem, it is possible to estimate the
required IRT rate constant with some choice of sufficiently large
virtual sphere, and when this is done the ratio of the rate
constantsk1/k2 does not show any of the competitive effect of
the full solution, as illustrated in Figure 12.

It is concluded, therefore, that the IRT method does not
recognize the important competition effect that arises when two
reactive sites are close to one another and, furthermore, the
calculation of a rate constant from analysis of the rate of first

Figure 10. Ratio of reactivity of sphere 1 to sphere 2 as a function of
separation. Sphere 1 is twice as reactive as sphere 2 when each sphere
is in isolation. This difference in reactivity is accounted for in either
of two ways: in the first, both spheres are the same size and have
partially absorbing boundaries with reactivity parameters chosen such
that sphere 1 is twice as reactive as sphere 2; in the second, both spheres
have totally absorbing boundaries and sphere 1 has twice the radius of
sphere 2.

Figure 11. Reduction in relative reactivity of a sphere in the
neighborhood of a second unreactive sphere of the same size.

Figure 12. Ratio of rate constants for reaction with sphere 1 to reaction
with sphere 2 as a function of the separation of the spheres. The reaction
radii for sphere 1 and sphere 2 are 0.40 and 0.20 nm, respectively;
both spheres are totally absorbing. The results using the exact solution,
eq 17, are independent ofb, the radius of the virtual sphere used in the
calculation.
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hitting a virtual sphere and the IRT reaction probability averaged
over that sphere is subject to systematic error.

7. Thymidine Application

This Section describes an application of the work presented
in this paper. The molecule of interest is the nucleoside
thymidine, which consists of a 2′-deoxyribose sugar ring bonded
at C-1′ to N-1 of a thymine base. If an aqueous solution of
thymidine is irradiated, then the thymine base and the sugar
ring of the molecule compete for hydroxyl radicals produced
in the irradiation process. The reaction with thymine occurs
predominantly by addition at the C5-C6 double bond.24 OH
radicals react with 2′-deoxyribose by abstraction of carbon-
bonded H atoms. There are eight of these on the sugar ring,
and the selectivity of this reaction is low. The experimental ratio
of the rate constants for reaction of OH radicals with the thymine
moiety to reaction with the sugar has been found to be about
10:1.2 By way of comparison, the rate constants for hydroxyl
radical reaction with free thymine in water and that with free
2′-deoxyribose are 6.4× 109 dm3 mol-1 s-1 and 2.5× 109

dm3 mol-1 s-1, respectively, giving a ratio of approximately
2.6:1.1 This Section investigates the extent to which the dramatic
difference between the two ratios may be accounted for in terms
of competition between the base and the sugar for OH radicals.
The two reactive moieties are modeled as proximal static
spherical sinks whose separation and individual radii are
determined using crystallographic data.

The first step is to calculate effective reaction radii for both
the sugar and the base because it is necessary to factor out the
effect of the different diffusion coefficients of the two species.
The effective radius may be defined through the equation

wherek is the rate constant for reaction with OH andD′ is the

relative diffusion coefficient, that is, the sum of the diffusion
coefficients of OH and either the base or sugar. The diffusion
coefficient of the OH radical at 25°C was taken to be 2.8×
10-9 m2 s-1,25 and that of thymine was estimated at 25°C from
the literature value26 at 30 °C using the Stokes-Einstein
relationship: a value of 9.5× 10-10 m2 s-1 was obtained. We
were unable to find a literature value for the diffusion coefficient
of 2′-deoxyribose, but took as an approximation the diffusion
coefficient ofD-glucose at 25°C, that is 6.7× 10-10 m2 s-1.26

Using these diffusion coefficients in eq 64 together with the
rate constants shown above, the following values were calculated
for the effective reaction radii: thymine, 0.225 nm; 2′-
deoxyribose, 0.095 nm. The ratio of effective radii of thymine
to 2′-deoxyribose is therefore 2.4:1. The small difference
between this and the ratio of rate coefficients is entirely due to
the different diffusion coefficients of the thymine and the sugar.

The question is whether the ratio of attack by OH at each of
these two species when bonded together in thymidine remains
close to the value of 2.4:1 or whether the effects of competition
increase the ratio toward the experimentally determined ratio
of 10:1.

7.1. Analytic Investigation. Using the method of Section
2.3, thymine and deoxyribose were modeled as totally absorbing
spheres of radii 0.225 and 0.095 nm, respectively. In accordance
with the crystallographic data for thymidine,27 their centers were
placed 0.36 nm apart, being the distance between the center of
the C5-C6 bond of thymine and the centroid of deoxyribose.
Using the method of Section 3, a rate constant was found for
each of the two reactive sites on thymidine and their ratio was
found to be 4.2:1 in favor of thymine, showing that the
competitive effect results in a substantial increase of this ratio.

The same investigation was carried out on the assumption
that the reaction of OH with thymine is fully diffusion-controlled
but that that with deoxyribose is partially diffusion-controlled.
The method of Section 2.5 was used with a radius for thymine
of 0.225 nm and for deoxyribose a radius of 0.135 nm and a
reaction velocity of 61 m s-1 were assumed. The radius chosen
for deoxyribose is the largest value consistent with the crystal-
lographic data where the two spheres do not overlap because
the bispherical coordinate system does not permit overlap of
spheres of constantµ. The reaction velocity relates the effective
radius to the actual radius through the equation8

The velocity of 61 m s-1 assigned to the reaction between the
OH radical and deoxyribose ensures that eq 65 leads to the
correct effective radius for free deoxyribose, 0.095 nm. The ratio
of effective radii for thymine and deoxyribose in thymidine was
found to be 4.1:1 by this method, very similar to the situation
where effective radii were used.

It is apparent from the above discussion that arguments based
on the competition of the two reactive moieties in thymidine
do not completely explain the dramatic favoring of the OH-
thymine reaction over the OH-sugar reaction in thymidine.
However, it does account for some of the increase, suggesting
a rise in the ratio from 2.4:1 to just over 4:1. It should be
remarked, though, that had it been possible to analyze the case
where the spheres representing thymine and deoxyribose
overlap, a ratio closer to the experimental value of 10:1 might
have been found. The crystallographic data reveals that a more
appropriate model would be one where the imaginary spheres
enclosing each of the two reactive moieties overlap and are
truncated where they meet. This system could be solved exactly

Figure 13. Monte Carlo simulated reaction probabilities for thymine
and deoxyribose as components of thymidine. Two methods of treating
reactivity are compared. In both methods, thymine is assigned a radius
of 2.25 Å and an absorbing boundary. In method 1, deoxyribose is
assigned an absorbing boundary with an effective radius of 0.95 Å; in
method 2, it is assigned a realistic radius of 1.35 Å with a partially
absorbing boundary and a reaction velocity of 0.61 Å ps-1. The
horizontal lines are the long-time-limit analytic solutions using a two-
sphere model for thymidine.

k ) 4π aeff D′ (64)

aeff ) a
1 + D′/Va

(65)
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using the toroidal coordinate system because this allows for a
degree of overlap between the reactive spheres. Work is in
progress.

It might also be more appropriate to model the reactive sites
on the deoxyribose separately. This cannot be done within the
bispherical coordinate system because it requires eight spheres.
More detailed models such as this may, however, be amenable
to simulation by the Monte Carlo random flights method.

7.2. Simulation Method.This Section describes the random
flights simulation of the reaction between an OH radical and
an aqueous solution of thymidine, to deduce a rate constant for
reaction with either the sugar or the base. The details of the
simulation method have been discussed elsewhere,17,28-30 and
only a brief discussion is given here.

An OH radical is placed at a random point on the surface of
a virtual sphere that completely encloses the thymidine molecule.
The diffusion of the radical in the aqueous medium containing
the thymidine molecule is simulated by identifying its location
at a sequence of time steps. The distance traversed in each of
three mutually orthogonal directions in time stepδt is a random
number drawn from a spherical normal distribution with mean
zero and variance 2Dδt. If the OH radical encounters a reactive
sphere duringδt, then a reaction is counted. Encounter is
determined in two ways: either the radical is found to overlap
with an atom at the end of the time step or the probability is
calculated for the radical to have reacted during the time step,
even though there is no overlap at the end of the time step.29

The simulation continues until the OH radical has reacted or
until a given cutoff time has elapsed. The whole process is
repeated several thousand times allowing time-dependent reac-
tion probabilities to be calculated. At each new realization, the
OH radical starts at a different random point on the surface of
the virtual sphere. In this way the probability of reacting with
each moiety is averaged over the virtual sphere. The rate
constants for reaction with both the sugar ring and the thymine
base are then calculated in accordance with the method of
Section 3.

The same system has been simulated to verify the analytical
results described above. The simulation has the added advantage
of giving a time-dependent reaction probability. Figure 13 shows
the time-dependent reaction probabilities from such a simulation,
together with the asymptotic limits calculated using the analytic
methods described in Section 2. Figure 13 shows the system
modeled with two absorbing spheres with effective radii, and
with two realistic spheres, as discussed above, with a partially
absorbing boundary condition. It can be seen that the time
dependence in these two models is very similar.

Although the analysis described in this paper can only be
performed for two nonintersecting spherical sinks, simulations
are not limited in this way, and it is clearly of interest to
investigate whether the competition effect is enhanced by
considering the reactivity of the two moieties at a finer level.
For this purpose each atom in deoxyribose is modeled as a
sphere of appropriate size whose center is in accordance with
the crystallographic data. The encounter radius of a sphere is
assumed to be the sum of the covalent radius of the atom and
half the OH-OH encounter distance. The latter was obtained
using the rate constant for the combination of two OH radicals
using eq 64. In addition, a sphere of radius 0.225 nm is placed
at the center of the C5-C6 bond to represent the reactive part
of the thymine molecule. Unreactive atoms can either be ignored
or included explicitly. If the radical encounters an unreactive
atom duringδt, then it is reflected from that atom using a
standard procedure.23

The reaction velocity of each reactive (carbon-bonded) H
atom in deoxyribose was found by a method oftrial and
improVement. The simulation was carried out on deoxyribose
alone (i.e., ignoring thymine) using the appropriate reaction radii.
Each reactive H atom was assumed to have the same reaction
velocity, and a realistic velocity was assigned. The simulation
was run with this trial velocity, and a rate constant for the OH
reaction with deoxyribose was calculated on the basis of the
results. This was compared with the experimental rate constant.
The simulation was repeated with a different trial velocity in
order to better reproduce the known rate constant. Further

Figure 14. Monte Carlo simulated time-dependent reaction prob-
abilities of thymine and deoxyribose as components of thymidine using
an atomistic model. Two methods of treating unreactive atoms are
compared: in method 1, unreactive atoms of deoxyribose are excluded;
in method 2, unreactive atoms are included. The horizontal lines are
the long-time-limit analytic solutions using a two-sphere model for
thymidine.

Figure 15. One-dimensional diffusion of a particle starting atX ) x
with absorbing boundaries atX ) 0 andX ) 1. The plot shows the
probability of hitting the upper boundary first calculated by (1) the
IRT method and (2) the exact method.
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simulations were run using other trials until the simulated rate
constant was arbitrarily close to the experimental value. The
reaction velocity assigned using this method was 7 m s-1 when
all atoms of deoxyribose were included and 3.6 m s-1 when
only the reactive atoms were included.

This model is obviously still crude and could be refined
further. For example, it is known that the reactive C-H bonds
in deoxyguanosine have substantially different bond dissociation
energies,31 and this will clearly have an effect on the appropriate
reaction velocities. In addition, in the thymine moiety there is
significant preference for attack on C5 rather than C6 or H
abstraction.32

The results of these simulations are shown in Figure 14. The
yield of reactions with deoxyribose is not dependent on whether
the unreactive atoms are included in the simulation, and the
exact result for the two-sphere model is acceptable for this yield.
However, there is more variation in the yield of reaction with
the thymine moiety. Including the unreactive atoms reduces the
yield of this reaction. Presumably the thymine is being shielded
by the umbrella of the sugar molecule. The ratio of the reactivity
of the two moieties is 3.5 when the unreactive atoms are
included and 3.8 when they are not. Agreement with experiment
is worse for these more detailed models than for the simple
two-sphere model.

The simulation method can also be applied to the two-sphere
model where the spheres intersect. However, this application
raises new technical difficulties because of the intersection of
the boundaries. In particular, it is necessary to develop an
unbiased method of estimating which sphere is attacked when
it is possible to attack both in the same time-step of the
simulation. This is never a problem with nonintersecting targets
because it is always possible to make the step small enough
that it only has a significant probability of attack on one sphere.
Work on this boundary problem is in progress and we hope to
report an efficient method shortly.

It seems clear that there is an important competition effect
between the sugar and the thymine but that this is not sufficient
to explain the large preference for thymine in the experiments.

8. Conclusions

This paper has presented an exact solution for the probability
that a diffusing particle will hit one sphere before another in a
system containing two fixed spherical sinks. The solutions have
been presented for the case of totally absorbing spheres, using
a Smoluchowski boundary condition, and for partially reflecting
spheres using a radiation (elastic) boundary condition. Solutions
for the steady-state rate constants for hitting either sphere have
also been investigated. In addition, the applicability of the IRT
method to such systems has been tested.

When the spheres are close to one another, an important
competition effect has been found in which each sphere shields
reactivity from the other; that is, the effective reactivity of each
sphere is reduced by the proximity of the other sphere. One
important result is that the reactivity of the total system is less
than the sum of the reactivities of the two spheres in isolation.
This is potentially an important consideration when comparing
the reactivities of two proximate moieties in the same molecule.
When the two spheres have different intrinsic reactivities, the
less reactive sphere is affected more by the competition than
the more reactive sphere. This competition effect is not
significantly affected by the use of “effective” reaction radii to
allow for deviations from full diffusion control.

The IRT method was found not to recognize this competitive
effect at all and so cannot be considered reliable for systems

that contain two proximate reactive centers, either for the total
reaction rate or for its division between the centers. In addition,
the rate constants obtained by the IRT method were found to
depend on the radius of the virtual sphere used in the calculation.

The analysis was applied to thymidine, where the differentia-
tion between the reactivities of the sugar and the base to OH
radicals is much more pronounced than would be expected from
the published rate constants for OH+ thymine and OH+
deoxyribose. It was found that although the competition effect
does result in a substantial increase of the relative reactivity of
the base, this was not sufficient to explain the whole experi-
mentally observed effect. Because of the simplicity of the two-
sphere model a more realistic model of thymidine was also
considered using Monte Carlo random flights simulations, but
a similar and slightly worse result was obtained.

The analysis in this paper is limited to two nonoverlapping
spheres because of the coordinate system used, and in addition
it ignores any possible rotational motion of the entity containing
the reactive sinks. Further work is in progress to relax these
approximations.

Appendix: One-Dimensional IRT versus Exact Analysis

Section 6.1.2. discussed the accuracy of the IRT method in
calculating the probability of a diffusing particle hitting one
absorbing sphere before the other from a point outside. The
results for a particle initially at a point along the line of centers
and between the spheres were presented, and the ratio between
the probability as calculated by the IRT method and the exact
solution was calculated. To facilitate an understanding of this
ratio when the particle starts at a point between the two spheres,
the simpler problem of one-dimensional diffusion is considered
here. Although it is unlikely that a radical can be generated
between the two targets in a molecule such as thymidine, if the
sinks are on a larger scale, such as the strands of a DNA
molecule, or even two planes, such behavior might be of interest.

Consider a diffusing particle confined to thex axis whose
position at time zero isX ) x, wherea < x < b. There are
absorbing boundaries atX ) a andX ) b. The probability that
the particle hits the boundary atX ) b before that atX ) a is
required. The calculation is first carried out using the IRT
method. In this approximation, the first passage times to hita
andb are generated independent of one another but conditional
on the distances from the initial position to each boundary, and
the decision about which boundary is hit first depends only on
which of these times is smaller. This is equivalent to starting
two independent trajectories simultaneously from the pointx.
One of these targets the boundary atX ) a and may be killed
only upon reaching this point regardless of whether it hitsb
first; the other targets the boundary atX ) b and, likewise, is
killed at no other point. According to the IRT methodology,
whichever trajectory reaches its target first registers a hit at that
boundary.

Consider first the trajectory that targets the boundary atx )
b. Let Tb be the time at which it hits this boundary for the first
time, then the probability distribution function forTb is

The density of the time at which this boundary is hit is the
time derivative of the distribution function is as follows:

P(Tb < tb) ) erfc( b - x

x4Dtb) (66)

p(tb) ) b - x

x4π Dtb
3
e-(b-x)2/4Dtb (67)
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There are equivalent equations for the distribution function and
density function of the time at which the boundary atX ) a is
first hit by its trajectory. The IRT probability that the boundary
at X ) b is hit first is therefore given by

By making the substitution

the integral becomes

With the substitutiony ) (x - a)u, this becomes

The integral is now in a standard form whose solution20 is

The exact solution is trivially found by solving the steady-
state backward equation with appropriate boundary conditions
to give

Figure 15 shows the IRT and exact solutions when the
boundaries are ata ) 0 andb ) 1. It is seen that the IRT method
overestimates the probability of hittingb first if the particle starts
nearerb thana but underestimates the same probability if the
particle starts nearera thanb. Figure 16 shows the ratio of the
IRT solution to the exact solution. This is very similar in
behavior to the three-dimensional equivalent in Figure 7.

To justify, in a physical sense, the shape of the IRT curve in
Figure 16, consideration has been given to every permutation
of hitting points and times in which two independent trajectories
may evolve for a diffusing particle that starts at a point between
a andb. Each trajectory will ultimately hit both boundaries and
so there are four first hitting times, two for each trajectory. The
graphs in Figure 17 illustrate every possible ordering of these
hitting times; increasing time is designated by the downward
direction. There are 12 possible permutations, and these are
illustrated in Figure 17.

In the exact analysis, each of the two trajectories registers a
hit on eithera or b, depending on which of these two boundaries
is hit first. In the IRT method, whichever trajectory reaches its
own target first registers a hit on that target; the other trajectory
is then ignored in the analysis. Earlier hits on the wrong
boundary are also ignored. Thus, for example, the first permuta-
tion registers two hits ona by the exact method because each
trajectory hitsa before it hitsb. The IRT method registers a
single hit ona or a single hit onb depending on which of the
two trajectories is designated as beinga-seeking and which as
b-seeking because one trajectory hits botha andb before the

other hits anything. The labeling beneath each permutation in
Figure 17 shows how each is interpreted by, first, the exact
analysis and, second, by the IRT method with each possible
labeling of the two trajectories.

It is of interest that in all but four of the permutations, the
two interpretations are identical. Of the remaining four, numbers
1 and 10 overstate the number of hits onb in the IRT analysis
while numbers 6 and 8 understate this number. Whether the
IRT method overestimates or underestimates the probability of

P(Ta > Tb) ) ∫0

∞ b - x

x4π Dtb
3
e-(b-x)2/4Dtb erf ( x- a

x4Dtb) dtb

(68)

u ) 1

x4Dtb

P(Ta > Tb) )
2(b - x)

xπ
∫0

∞
e-(b-x)2u2

erf((x - a)u) du

(69)

P(Ta > Tb) )
2(b - x)

xπ(x - a)
∫0

∞
e-(b-x)2y2/(x-a)2

(1 - erfcy) dy

(70)

P(Ta > Tb) ) 2
π

tan-1 x - a
b - x

(71)

P(Ta > Tb) ) x - a
b - a

(72)

Figure 16. One-dimensional diffusion of a particle starting atX ) x
with absorbing boundaries atX ) 0 andX ) 1. The plot shows the
ratio of the IRT solution to the exact solution for the probability of
hitting the upper boundary first.

Figure 17. Scheme showing all possible ways in which two indepen-
dent trajectories may develop in time from a starting point three-quarters
of the way along the line between two absorbing boundaries ata and
b. The first pair of letters beneath each figure shows the allocation of
hits according to the exact method; the second pair shows the IRT
interpretation.
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hitting b first depends on the relative likelihood of these four
permutations.

This problem was addressed by simulating the evolution of
two independent trajectories starting simultaneously at a point
three-quarters of the way along thex axis from a to b. The
simulation generates a random time for each trajectory to hit
either boundary for the first time and then a subsequent random
time to hit the other boundary starting from the first. It then
records the order in which boundaries were first hit by each of
the pair of trajectories. The simulation was repeated 1 million
times and the relative number of occasions each permutation
arose was determined. Numbers 9, 10, 11, and 12 accounted
for 83% of all permutations. In particular, number 10 accounted
for 14%, while numbers 8, 6, and 1 accounted for 2%, 3%, and
less than 1%, respectively. Thus, the overriding consideration
is the overstatement of the number of hits onb when the
sequence of events illustrated in permutation 10 occurs. This
confirms that the IRT method overestimates the probability of
hitting boundaryb when the particle starts at a point three-
quarters of the way towardb on the straight line betweena and
b.

By symmetry, for a particle starting closer toa than b the
IRT method will overestimate hits ona because of the large
fraction of trajectories of type 6.
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