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Competitive Diffusion-Influenced Reaction of a Reactive Particle with Two Static Sinks
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An investigation into the kinetics of reaction between a diffusing particle and a system of two static spherical
sinks is presented. The backward diffusion equation is solved for the probability of reaction with each sink,
using both absorbing and radiation boundary conditions. The rate constants for each reaction are also calculated.
The reactivity of the sinks is shown to be subadditive, and if the sinks are asymmetric the less reactive sink
is more strongly affected by the competition. Competitive effects are found to be modeled adequately by
using effective reaction radii. The IRT method is shown to have serious defects for such a system because of
the correlation of the two sinks. An application to the reaction of OH radicals with thymidine is presented.

1. Introduction reaction spheres, that is, by replacing a radiation boundary at a
realistic encounter distance with an absorbing boundary at a
smaller reaction distance and the same overall reactivity.

In Section 2 the backward diffusion equation with two
spherical sinks is set up and solved for the probability that a
diffusing particle will react with one sink before the other. The

The attack of free radicals on organic molecules is an area
of great importance in understanding the mechanisms of
radiation damage. In this respect, hydroxyl radicals formed by
the radiolysis of water are of most interest. The reactions of

hydroxyl radicals with organic molecules are generally rather ) - A .
y y g g y problem is formulated and solved analytically in bispherical

undiscriminating and are close to diffusion controlhe X . . . . .
molecule attacked may contain several reactive sites, which maycoordmates, with to_tally abso_r bing bogndanes and with partially
reflecting boundaries. Section 3 discusses the well-known

be sufficiently close to one another for the concentration lationship b . babili d
gradients of the radicals around each site to overlap and interfere’©'ationship between reaction probability and rate constant,

with one another so that the reactivity of the sites is not additive. which can be combined W'.th th? res_ults OT Sectlon_ 2 10 give
In these circumstances, a curious effect has been observed@t€ constants for the reaction V\.”th either S'.nk' Section 4 deals
experimentally: the rate constants for OH attack on thymine With the special case of a reactive sphere in the presence of a

and deoxyribose are in a ratio of approximately Bhljt when reac'give or partﬁally reflecting plang, Wh.iCh is a limiting case.
the two moieties are linked in the molecule thymidine the ratio Section 5 applies the IRT approximation to the two-sphere

becomes approximately 10210ne interesting question that problem. Because of the relative simplicity of the model system,

arises is the extent to which this may be a diffusive competition the I.RT method also gives an expllcn analytlg solution. In
effect. Section 6 the two methods are applied to a variety of systems

A simple model of this system would be two reactive spheres and compared with one another. It is demonstrated that the IRT

linked together at a fixed separation, one representing the basénethOd is not capable of dealing with the competition between

and the other representing the sugar. The diffusion of the radicalsthe two spheres. Finally, in Section 7 the results are applied to

relative to this bispherical system could then be analyzed thy(;mdme to agstgss Whetherlthe (t:k(])mpetltlon kt)etween lth? btz?]se
assuming that the spheres are fixed. This is a crude model ofaNd sugar molelies can expiain the apparent anomaly In the

the real thymidine system because both the base and the Sugagxpenmental rate constants.
contain several reactive centers themselves and because th
rotational diffusion of the thymidine molecule is ignored.
However, the model does have the virtue of being analytically  The problem of the steady-state rate coefficient for diffusion-
tractable and can be used to investigate the possibility of controlled reaction of a species distributed homogeneously in
competition between the two moieties. space with two fixed spherical sinks has been solved previously
In this paper the steady-state diffusion kinetics are analyzed by Samson and DeutéfSamson and Deutch consider the total
for this model, with particular emphasis on working out which reactivity of the system of two spheres. However, it is of interest
sphere reacts first. The exact solutions are compared with theto differentiate between the two spheres, especially where they
predictions of the IRT (independent reaction times) model, in represent distinguishable chemical reaction sites, and for such
which, for each radical, random reaction times are generateda system it is more convenient to start by considering the
independently for the two spheres from the known radical different (but related) problem of a single radical diffusing in
sphere distances. The IRT model has proven to be very accuratehe presence of two spherical sinks. This approach requires the
in modeling competitive radical recombination reactions, where probability that the particle reacts with each of the sinks
all of the reactive radicals are mobile. separately as a function of its initial position. In the case of
The aims of this study are to estimate the magnitude of the diffusion-controlled reaction of the two spheres, a formal
competition effect as a function of the intersphere distance, to solution to this problem has been presented by Sano.
investigate whether this competition can be described using the Suppose that the two sinks are labeled 1 and 2. The
IRT method, and to investigate whether the competition of partly probability of reacting with sphere 1 is the probability that the
diffusion-controlled reactions is affected by the use of effective particle reacts with sphere 1 before sphere 2 (if it would have

5, General Solution for Two Fixed Spherical Sinks

10.1021/jp0568881 CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/17/2006
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reacted with sphere 2 at all). This probability obeys the steady-
state backward diffusion equatién.

Vi £, =0 (1)
in which the Laplacian operator differentiates with respect to
the initial coordinates of the particle.

The bispherical coordinate system is the natural coordinate
system for solving this problefThese are defined as follows:

___asinhu
coshu — cosny 2)
_ _asiny cos¢ 3)
coshu — cosy
asiny sing )

- coshu — cosy

The variableu can take any real value. Surfaces of constant
u are spheres of radiwg|sinh u|, centered at (0, Ga cothu).
In the limitsu — =+ the isosurfaces shrink toward the fari
= ta. The parametea is known as the interfocal distance.
The surfaceu = 0 is the xy plane. Any system of two

nonintersecting spheres can be arranged so that each spherical

boundary is a fixed value of the coordinate The variabley
can take values between 0 and Surfaces of constant are
formed by rotating the positive part of a circle of radafsin
n and center (0, Oa coty) about thez axis, together with its
reflection in thexy plane. All isosurfaces of the variablg
intersect on the circle? + y2 = a2 The variablep represents
the usual longitude angle, as in spherical polar coordinates.
Sections through typical isosurfacesuiofindn have cylindrical
symmetry about the axis, and sections of typical isosurfaces
taken through thez plane are shown in Figure 1.

2.1. Transformation into Bispherical Coordinates.In the
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first case to be considered, the two spherical sinks have theFigure 1. Section through thexz plane of the isosurfaces of the

same radiush, and their centers are separated by a distahce
(d > 2b). The spheres are equidistant from the origin onzhe
axis. Then the boundaries areat= +cosh(d/2b) and the
interfocal distance = b sinh |u|.

If the two spheres do not have the same radius, then the
interfocal distancea, must be obtained by solution of the
equation

d= /& + b+ & + 12 ©)
and theru, = sinh(a/b;) andu, = —sinh1(a/by), whereb;
andb, are the two sphere radii.

The permitted space for the diffusion is the whole of space
outside the spheres, thisgs < 4 < u1, 0 <5 < m, and 0<
¢ < 2. Within this permitted space, a given initial position
can be converted to bispherical coordinates using

o222
#=tanh (x2+y2+22+a2) ©
n= cos’l(coshpt - g Sinhﬂ) ()
¢ = tan ‘(y/x) (8)

On the planez = 0 (u = 0) due care must be taken to obtain
the correct limit fory.
2.2. Formal Solution. Following the transformatiorr =

v/ costu—co9.74, the Laplace equation in bispherical coordi-

bispherical coordinates. (a) Surfaces of consantb) surfaces of
constanty. The surfaces are obtained by rotating the section about the
Z axis.

nates is transformed %o

(sinn

The separation of variables is standard and, taking into account
the cylindrical symmetry of the system around thaxis, the
general solution can be written

%, = y/(coshu — cosy) Z) (A2 4
£

B.e ") P (cosy) (10)

1 ¥F 1

sinf n a¢> 4

°F

Buz

1 0

siny oy

%) F=0 (9)

an

whereP,, denotes the Legendre polynomials.

The arbitrary constant8,, and B, must be found from the
boundary conditions. The next sections consider in turn various
boundary conditions of interest.

2.3. Totally Absorbing Boundaries. The simplest case to
solve is that of two totally absorbing boundaries and is of interest
because it describes the situation in which reaction with both
spheres is diffusion-controlled.

The appropriate boundary conditions are

Ay =1 (11)
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PFuy) =0 (12) Substituting the general solution (eq 10) into the first
boundary condition yields, after a certain amount of algebra
The interpretation of these boundary conditions is that a particle

starting in contact with sink 1 is certain to hit sphere 1 before S(uz v)A — S(— pp — v)B=0 (20)
sphere 2, and a particle starting in contact with sink 2 is certain
not to hit sink 1 before sink 2. whereA andB are vectors with elements andB;, i =0, 1, 2,

Substitutingu = w4 into the general solution and using the ... S(u, v) is an infinite tridiagonal matrix whose elements are
first boundary condition

Sunalit, ) = e<“+1’2)“[— % el n=1,2,3.. (1)

1 _ i ( Ane(n+1/2)u1 +
y/(coshu, — cosy) ™ S, ) = €72 Bn 1)6,#] n=012..

B.e "3 P (cosy) (13) (22)

But the LHS can also be expanded as a series of Legendresn (, v) = &m12K
polynomials, giving e

%sinh,u + D(n + %)COShﬂ —av
n=0,1,2.. (23)

V2 20 e MAIp (cosy) = Z) (A "2k 4 Similar working to the above leads from the second boundary
n= n= condition to the following relation between coefficients Af
B.e "3 p (cosy) (14) andB

Because the Legendre polynomials are linearly independent, S(uy, — v)A = S(—uy, v)B=c (24)
the coefficient of eachP, on the LHS must be equal to the
corresponding coefficient on the RHS, giving where the vectoc has elements,(u, v) = avy/2e(12x
=0,1,2,..
V2e Rl = p M2 | g o (M2 (15) Equations 20 and 24 may be combined into the following

single matrix equation whose solution yields the values of the
Similarly, the other boundary condition gives the relationship coefficientsA, and B,

0= Ane(n+l/2)uz + Bnef(n+1/2)uz (16) Sy, v5)  —S(—pts, _Uz))(A) _ (O ) -
S(uy, —v1) —S(—uq, v1) J\BJ  \Clug, v9) (25)

VectorsA andB are found by solving this equation. Although

Solving for A, and B, yields the solution

P = «/Z(Coshu — cosy) they are both infinite vectors, the general solution given by eq
1 10 converges quickly, and only the first 50 or so elements of
"((n"‘—)(ll — Uy) each vector are required to obtairf; to a high degree of
> (N 1/2) accuracy from any starting point of the diffusing radical.

solution for &?1 given by eq 10 applies equally t@°, the

Zo 1 P.(cosn) (17) 2.4.2. Probability of Reacting with Sphere 2 FirEhe general
- sinr((n + —)cul - m)) n for 73 ¢ 0 applie
probability of hitting sphere 2, with the different set of boundary

conditions
This solution has been obtained previously by Saridie
probability of hitting sphere 2 before sphere 1 follows by D(V-‘fz)ﬂ = —, P(uy) (26)
symmetry. !
The probability that the particle hits one or other of the two D(V—'@)z),uz = —u)(1 — P, (u,)) (27)

spheres is?1 + ¢, and can also be found by solving the

backward equation with boundary values of 1 on both spheres.C . ith . 18 and 19 sh hat th

The probability that the particle escapes without hitting either omparison with equations 18 an shows that the constants

sphere is 1— (1 + ). An anq B, in the general solution (eq 10) may pe foun_d by
2.4. Partially Reflecting Boundaries.2.4.1. Probability of repl2a5c|ngu.1 ?é//‘ﬁ /tfz ﬁy”.l’ v1 by —v; andw, by =y in matrix

Reacting with Sphere 1 Firsthe probability of hitting sphere eq 25 to yield the following matrix equation

1 first is found by solving eq 1 subject to the following boundary

conditions? S(uq, —vy) —S(—py, vy) Al_(o (28)

, _ Sz v) =S~y — ) \B Cluz, — o)
D(V-Wl)yz = v (1) (18)

) Solving forA andB gives the required coefficients in the general
D(VL),, = (1 — 24 (uy)) (19)  solution.
2.5. Mixed Boundary Types.Sections 2.3 and 2.4 show how

wherev; and v, are the “reaction velocities” of spheres 1 and to determine<’; and &, when both spheres have similar
2, respectively, and is the diffusion coefficient of the OH  boundary types, either both totally absorbing or both partially
radical. The reaction velocity is a parameter that describes theabsorbing. This Section considers a different situation in which
reactivity of each species in contact with the OH radical. The one of the spheres has a totally absorbing boundary and the
natural units for such a parameter are those of veldcity. other has a partially reflecting boundary. Let spherg ¥(u1
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> 0) have an absorbing boundary and spherg 2(u, < 0)

have a partially reflecting boundary with characteristic velocity

V2.
2.5.1. Probability of Reacting with Sphere 1 Fir8s before,
4 is defined to be the probability of hitting sphere 1 first.
The boundary conditions are

Pyu) =1 (29)

D(VLY),, = v271(u,) (30)

The first boundary condition leads to the following relation-

ship between the constamg and By, in the general solution.

V2=Ag?mn 4 (31)

The second boundary condition is identical to that given in
eq 18 of Section 2.4.1. and employing the notation of that

Section, leads to the following relationship betwegrandB,
St v)A = S(— 5, —v)B =0 (32)

Combining eqgs 31 and 32 into a single matrix equation

Sug vo) —S(—uy —vy) \[A) _ [0
W) )(B)‘(d) (33)

whereJ(u) is a diagonal matrix with elements
Jo) =€ n=0,1,2, .. (34)
| is the identity matrix, andl is a vector defined as
d=+v2 n=0,1,2.. (35)
Solving eq 33 forA andB yields the constants,, andBy in
the general solution for?;.
2.5.2. Probability of Reacting with Sphere 2 Firkt.a very

similar way the coefficients in the solution farz obey the
equations

J(uy) I Al _|[O
Sy, —vy) —S(—y, Uz))(B) B (C(!‘z- - Uz)) (36)

3. Rate Constant Evaluation
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B particle at initial position vector will have reacted by time
t. Combining eqs 37 and 38, the following expression for the
rate constant is obtained:

_
k(t) = v 3t dr (39)
Using the backward diffusion equation, we can write this

equation as
k(t) =D [ V’Wadr (40)

whereD is the diffusion coefficient ba B particle. Applying
Gauss's theorem, this volume integral is equivalent to the surface
integral

k(ty=—D fVwWds, (41)

where S, is the surface of particle A. Theteady-staterate
constant is given by

k=-D [VW, dS, (42)

whereW,(r) is the probability that a particle B, which is initially

at the point with position vector, ever reacts with A. No
assumption has been made about the shape of the surface of A,
and the ensuing analysis is made easier by recognizing that,
because the system is in a steady state, eq 42 may equivalently
be written as

k=-D [ VW, ds, (43)

where & is any closed surface (for simplicity, a sphere)
containing A. Now, imagine a sphere of radlugh < c) which
also completely encloses A, then

Wa(r) = . QWhrF)Wi(r") ar (44)

whereWy(r ') is the probability that a particle with position
vectorr outside a sphere of radilsfirst hits that sphere at the
point with position vector'.

Combining egs 43 and 44, the steady-state rate constant is
given by

Having obtained expressions for the probability of reacting k= _DL/:G scvrj;rf SDWb(r,r') W(r') dr' dS;  (45)

with either sphere, starting from any given point outside the
spheres, it is necessary to work out how to translate these result$hanging the order of integration
into rate constants.

Consider first the general situation in which a static particle, k= —D!/;,ESbWa(r')j:G ScVer(r,r’) ds, dr’ (46)
A, is surrounded in a region of voluméby a sea of reactive
particles B of uniform concentratian The time-dependent rate
constant is defined in the usual way as

It is a standard result of electrostatitthat

2 2
r—b
1d W(r 1) = ———— 47
0= maw (37 R “n
whereQ(t) represents the time-dependent survival probability nd hence
of A. Assuming that the number of B’s in the volurivehas a D
Poisson distribution, then it is well-known tfat? the survival k= E.fr’s s W, (r') dr’ (48)

probability of A is given by
This equation provides the link between the calculation of a
probability and the evaluation of the rate constant for reaction
with one of the two spheres. An imaginary sphere of rathus

is constructed to surround the two reactive spheres. The

Q(t) = exp(=c [, W(r, 1) dr) (38)

whereW(r, t) is the probability that a geminate AB pair with a
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probability of reacting with a particular sphere starting from a the plane is simply given by + .. The proof of this is as
given point on the large sphere is found using the methods follows. Adding equations 49 and 50 and simplifying
derived in Section 2. The integral around the surface of the
enclosing sphere is evaluated numerically to provide an estimate o .
of the stgeagy-state rate constant for regctiorri with the reactive st %= ‘/Z(Cosh" —cosy) ) e AP (cosy)
sphere. "~ (51)
The interpretation of this equation is that it represents the
rate constant for hitting the large sphere times the probability
that a diffusing radical started at a random point on the surface
of the sphere hits the target (the first hit position on the sphere \/2 2
is distributed uniformly). Pt L= (coshu — cosp)e =1 (52)

1—2e*cosy+e *

Using the generating function of Legendre polynomials, this
simplifies to

4. One Spherical Sink and One Plane
It is also possible to accelerate the convergence of the slowly
HaVing solved the diffusion equation for two static Sphel'es, Converging series by a number of methéd¥ However, itis
the related problem of a static sphere close to a plane is NnoWnot necessary to use any of these because of the rapidly
considered. The competition for a diffusing particle between a converging series for the complement.
plane and a sphere could have applications in, for example, The same method can be applied to the case where one or
corrosion. There is a choice of two methods for solving the both boundaries are partly reflecting. Again, the series for the
problem: (1) use the results of Section 2 with= 0 so that probability of reaction with the sphere converges much faster
the second sphere is infinitely large and effectively becomes than that for the plane, but the latter probability is simply the
thexzplane or (2) employ thenethod of imagesEach method ~ complement of the former.
will be considered in turn. 4.2. Method of Images.The method of images provides a
simple alternative way of approaching the same problem and
dis examined in this Section for two different boundary types.
4.2.1. Absorbing Sphere and Plarfguppose the absorbing
sphereu = u1 has its center on theaxis. The plang = 0 is
é\lso an absorbing boundary. A reactive particle is placed
rs\émewhere in the region of space between the plane and the
surface of the sphere. To find the probability that the diffusing

4.1. Limiting Case of Two Spheres.The probability of
reaction with either the sphere or the plane may be calculate
in precisely the same manner as described in Section 2 but with
the provision that:, = 0. However, the calculation of a steady-
state rate constant is meaningless in this case because no stea
state is ever reached when one of the reacting surfaces is o

g‘;ggzmegxfunéés;d it is obviously not possible to find an particle reacts with the s_phe_re, a second spher'm(agespher_e) _
’ of equal radius to the first is placed behind the plane with its
If the sphere and plane are both absorbing, eq 17 may becenter on the axis and with bispherical coordinate= —pu;.
used withu, = 0 to find the probability of hitting the sphere.  The absorbing plane is now removed to leave the two identical

Hence absorbing spheres.
The probability of hitting each sphere is found using the
) 1 methods described in Section 2.3. Now, any trajectory that ends
- sm%((n + ‘)M) on the image sphere must have passed through the ptarte
P= \/2(coshu —cosy) § e (M2 However, the trajectories that end on the object sphere divide

hit the sphere before passing througis 0. By symmetry, the
probability that a trajectory passing througk 0 subsequently
Pn(cosn) (49) hits the object sphere is the same as the probability that it hits
) the image sphere. Hence, the probability of hitting the object
Similarly, %, the probability of hitting the plane first may be  sphere without passing through the plare 0, and hence the
obtained by substituting, = 0 into the solution for’?; from probability of hitting the sphere when the absorbing plare

s . 1 into two classes: those that pass throagh 0 and those that
sinf{{n+ —)u,

Section 2.3 to give 0 has been replaced, is given by
i sin}'((n + %—)(‘ul _ ,Lt)) '(/é;pherez fﬁ’object_ '(//'i’mage (53)
? — _ Because the reactive particle must eventually hit either the plane
9 =4/2(cos cos
P \/ (coshy ) £ . 1 or the sphere, the probability of hitting the plane is given by 1
sinf|n+ 5 Uy - f/fsphere

4.2.2. Absorbing Sphere and Reflecting Pldifithe planez
= 0 is totally reflecting, then the probability of hitting the
absorbing sphere is increased. Again an image sphere of equal
radius to the object sphere is introduced on the other side of
Both of these series are absolutely convergent. However, the plane. Now, any trajectory that passes thromgh 0 and
although eq 49 converges quickly for all valuesuothe same hits the image sphere would, in the presence of the reflecting
is not true for eq 50, which converges slowly, its terms changing plane have reflected off the plane and hit the object sphere.
sign in a slow oscillation. The convergence is slowest for starting Thus, the probability of hitting the sphere when in the presence
points close to the plane. However, the reactive particle cannotof the reflecting plane is given by
escape completely; that is, it must react with either the plane i ) )
or the sphere. It therefore follows that the probability of hitting Zipners= Loviect T Limage (54)

P.(cosy) (50)
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Fobject and Fimage correspond ta’; and 5 in Section 2.3. Smoluchowski rate constant; the two dimensionless variables

Clearly, the probability of reaction with the plane is zero. are

5. Independent Reaction Times Approximation y= r-a (60)
v4D't

The independent reaction times (IRT) approximation is a
central approximation of the theory of multibody diffusion and
kinetics that enables explicit solutions to be obtained. This

approximation is implicit in the Smoluchowski theory of the (k, + kD)«/D_'t

diffusion-controlled rate coefficient. It has also proved very X:T (61)
successful in systems containing small clusters of reactive

particles, such as radiation tracks® Because some exact  The method of Section 5.1 for finding the probability of

solutions are now available for three particles, in the case wherergacting with either sphere is impractical to use in this case

two of the particles are stationary, it is of interest to use them pacause of the difficulty of finding an explicit form for the

to test the IRT approximation for systems of this type. These jptegral. Instead, the IRT simulation method is employed to
are likely to be the worst possible cases for the approximation eyaluate the integral by a Monte Carlo method.

because the two fixed sinks ensure that correlations between A random reaction time is generated for reaction with each
the interparticle distances persist throughout the evolution of of the two spheres to find the probability that a diffusing particle
the system. started at some point reacts with sphere 1. In each case the time
The first case considered is that of full diffusion-controlled is generated from the geminate reaction time distribution
reaction for both sinks, and subsequently the case of partially function, that is, ignoring the presence of the other sphere. If

diffusion-controlled reaction will be dealt with. the time for reaction with sphere 1 is smaller than that for sphere
5.1. Full Diffusion Control. If the particle has an initial 2, then the particle reacts with sphere 1, and vice versa. If both
position where the distances to the two spheres (of adind reaction times are infinite, then the particle escapes. The process

is repeated many times (typically 100 000) to simulate the
probability with acceptable random error. This procedure must
be repeated for every starting position of the diffusing particle.
The method for generating a random time for reaction with
RT o a sphere will be described in a separate paper. The trajectory
PTT= [T, by (1= F(ry, by ) dt - (55) can be decomposed into two parts. The first part is the diffusion
of the patrticle up to the time at which the sphere is hit for the

wheref is the density of the time for the particle to hit sphere first time. The second part is the trajectory from the first hit to
1 in the absence of sphere 2, ané-F is the probability that ~ the reaction. The reaction time is the sum of the times that the

the particle has not yet hit sphere 2 by tiirie the absence of ~ Particle spends on each part of the trajectory. ,
Generating the time to the first hit on the sink is straightfor-

b,) are r; and r,, respectively, then according to the IRT
approximation the probability that sphere 1 is hit before sphere
2 is given by the integral

sphere 1. ) © RPN > SH ARl
ward. The required probability distribution function is given
b
(ry by ) = b, r,—b o (1—b)?4Dt (56) y
» by, — _
4z D 1 Fr,a t) = 2erfc =2 (62)
b b r V4Dt
2 -0
F(ra by, ) = T, erfc( /2Dt ) (67) and the hit time can therefore be generated from this distribution
by the inversion method, as for fully diffusion controlled
reactions??

Making the change of variable = t=12 brings this integral
into a standard forA?

w;RT:f—l(HE(Z tanl(rz - bz) - )) (59)

Once a hit has occurred, the distribution function of the time
from the hit to the reaction is obtained by substitutirg a in
eq 59

1 ro\7 r,—by

Wa, t) = {1— e erfcK)} (63)

Ka
kKt ko
An equivalent expression for the probability of hitting sphere 2
before sphere 1 follows by symmetry. Times are sampled from this probability distribution by an
5.2. Partial Diffusion-Control. The well-known distribution ~ €xact composition method, which is summarized as follows.

function of the reaction time for a partially diffusion-controlled - Generate a uniform random numiér between 0 and 1.
reaction with a spherical sifiR can be expressed as a function  2- If Ut is greater thaikd/(ka + ko) then reaction never takes

of two dimensionless variables, both of which depend on time place.

3. Otherwise generate a normally distributed random variable
a k , with mean 0 and standard deviatief2. Let Y be the absolute
W(r, t) = Fm{erfc(y) — & ™erfc (x+y)} (59)  value of this random variable.
4. Generate a second uniform random numbgrand letX

= —(In Uy)/Y. This procedure generates an exponentially
wherer is the initial separation of the paig, is the encounter  distributed random variable with meany1/
distanceks is the finite rate coefficient for reaction on encounter 5. LetT = (Xa)D'. T is a random variable with the desired
(radiation boundary condition), ankb is the steady-state  probability distribution function.
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Figure 2. Contour plot of the probability of hitting sphere 1 in a system Figure 3. Contour plot of the probability of hitting either sphere in a
of two identical absorbing spheres separated by three diameters. system of two identical absorbing spheres separated by three diameters.

The proof of this algorithm will be presented elsewhere. The
algorithm is straightforward to program, and it has the great
attraction of being an exact representation. Previous methods
relied on the numerical inversion of the distribution functfén.

6. Results

The key objective of this paper is to investigate the effect of
competition between two proximal reactive species, or reactive
sites on the same species, for a diffusing reactive particle. Each
reactive site is modeled as a sphere so that the system is tractable
to an analytic treatment. The first stage is to calculate the
probability of reaction with each sphere as a function of the
starting point of the diffusing particle. The next stage is to
translate these probabilities into a rate constant for each sphere.
This will permit quantification of the extent to which one sphere
shields reactivity from the other.

6.1. Reaction Probabilities.6.1.1. Exact Solution€onsider
two static spheres whose centers are onzthgis; the origin
lies at a convenient point between the two spheres. The spher

in the positive region of the axis will be referred to as sphere .
e . . A second example concerns the case of an absorbing sphere
1 and the other as sphere 2. A diffusing particle may react with . L . .
in the vicinity of an absorbing plane. The sphere has its center

either sphere. One or both spheres may be a55|gneql an absor.blngn the positivez axis and the plane is the surfage= 0. A
boundary or, alternatively, each sphere may have a finite reaction

rate on encounter with this particle. The probability of reaction :)i?gité\;etﬁsglcrirsgg:lsdIfziggurg;{ix/lgosoc;gﬁz;; gllgin Snamapé?lrc])?/vs
with a particular sphere may be calculated from the exact b b -9

solutions in Section 2, or subject to the IRT approximation, as \?vi(t:r? r:rtlour pr:Otr ofrtht?lprr?rt]) ar?ltl;]ty tk;a:]the d'm]fS'nngti pr?rtlfcilte rt?[a::tﬁ
described in Section 5. e sphere (rather than the plane) as a function of its starting

As a first example, consider the case of two fully absorbing position. The calculations were carried out using the method

spheres of equal size, whose centers are separated by thre escrib_ed in Section 4. As_e_xpected, the plot i_s symmetric ab_out
spherical diameters. Because of the cylindrical symmetry of the (N€ 2 axis, and th? prpbablllty_ approaches unity as the starting
problem it is only necessary to consider diffusing particles position of the diffusing particle approaches the sphere. The

started in thexz plane. Figure 2 shows a contour plot of the probability distribution shown here cannot be_developed intog
probability of reaction with sphere 1. In agreement with steady-state rate constant for reaction _W|th either surface. Th_|s
intuition, it is seen that as the starting position of the particle s because _the concentration d'St”bUt_'On around the plane is
approaches the surface of sphere 1 the probability approache?urely transient. Because the sphere is close to the surface of
1. However, as the starting position approaches the surface ofthe plane, no _steady state can develop around the sphere.
sphere 2, the probability of reacting with sphere 1 approaches Before looking at rate constant calculations for two spheres
zero. Figure 3 shows the probability of hittiregther sphere, of finite reactivity, it is important to assess the accuracy of the
the complement of the escape probability. The symmetry seen!RT approximation when applied to the problem of two static
in the plot reflects the fact that the spheres are identical. ThereSinks.

is a vast amount of information contained in these figures, far  6.1.2. Comparison of IRT Calculations with Exact Solutions.
more than is detectable experimentally. The connection with The IRT method of calculating reaction probabilities has been
experiment is made by translating the probabilities into a rate described in Section 5. It is an approximate method, and it is
constant by the method described above in Section 3. Resultsof interest to see whether it can be used to good approximation
for rate constants are discussed in Section 6.2. below. in a system comprising two static sinks. The critical approxima-

Figure 4. Contour plot of the probability of reaction with an absorbing
esphere in the presence of an absorbing plane.
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Figure 5. Contour plot of the ratio of the IRT to the exact reaction Figure 6. Contour plot of the ratio of the IRT to exact probabilities
probability for reaction with either sphere in a system of two identical of hitting sphere 1 in a system of two identical absorbing spheres
absorbing spheres separated by three diameters. separated by three diameters.

tion of the IRT method as applied here should be emphasized: 169
no account is taken of the spatial correlation of the two sinks ]
except through their initial distances from the diffusing particle. 154
To test the IRT approximation, we performed IRT probability .
calculations for the system of two reactive spheres described 14 4
in the Section above. Figure 5 shows the ratio of the total .
reaction probabilities obtained by the IRT method to those 134
obtained by the exact method. It is apparent that the IRT methodt ]
overestimates the total reaction probability for virtually all &
starting positions considered. The relative error, typically 10%,
increases as the initial distance from the two spheres increase
The exception to this general conclusion is in the region of space
between the two spheres, where the reaction probability is ] /
slightly underestimated. 104
An explanation for these contrasting features follows. The ]
IRT method takes account of the initial distance of the diffusing 09 ~
particle from each of the two static sinks; however, it does not -
take account of their precise relative positions and effectively 08
calculates an average reaction probability over all possible -
configurations of the two spheres consistent with the initial 6 5 4 3 2 4 0 1 2 3 4 5 6
distances. The configurations in which the two sinks are close 2ld
together only constitute a small and atypical part of this average. gigyre 7. section of Figure 6 along theaxis. The abscissa is the
Of all the possible relative positions of the two sinks conditional coordinate in units of the sphere diameter.
on these distances, the configuration in which they are side by
side presents the greatest possibility for escape for a particleof <#;, whereas on the far side of sphere 2 there is a large
starting a very long way from both particles. This is because overestimate.
trajectories that make for sphere 1 from a large distance are To make sense of the inaccuracies, Figure 7 focuses on a
also heading in the direction of sphere 2 and vice versa. By section of the contour plot taken along thaxis. It is observed
ignoring the strong positive correlation of the two distances as that as the initial position of the particle approaches sphere 2
the particle diffuses, the IRT method leads to an overestimate from the left the ratio increases significantly. This is easy to
of the reaction probability. The same argument can be applied, understand because, from a position on the far side of sphere 2
but with diminishing importance, as the particle starting position and close to its surface, a large number of trajectories that would
approaches the two spheres. However, if the particle starts inend up on sphere 1 in the absence of sphere 2 will actually be
the region between the two spheres, the situation is reversedintercepted by sphere 2 first. Because the IRT method does not
the actual configuration now represents the worst possible caserecognize the correlation between the positions of the two sinks,
for escape for the given distances, and as the particle diffusesit overestimates the probability of hitting sphere 1. The closer
the two distances are negatively correlated. The same argumento sphere 2 the reactive particle starts its journey, the larger the
explains why the IRT method underestimates the total reaction overestimate. In contrast, as the initial position of the particle
probability. approaches sphere 1 from the right, the ratio decreases toward
Figure 6 shows the ratio of the probabilities of hitting sphere 1. The explanation is that the closer the particle starts to sphere
1, as calculated by both methods. In the region around spherel the less likely it is to hit sphere 2 first because many
1 the IRT method gives a good estimate of the probahility trajectories that would strike sphere 2 in the absence of sphere
whereas for initial positions close to sphere 2 there are 1 are blocked by sphere 1. The IRT result is less affected than
significant errors: between the spheres this is an underestimaten the previous case because the distance to sphere 1 is much
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Figure 8. Reduction in relative reactivity of a sphere by competiton Figure 9. Reduction in reactivity of two spheres relative to the

from a second sphere in a system of two identical absorbing spheres.Féactivity of each sphere in isolation. Sphere 1 is twice as reactive as
sphere 2 when each sphere is in isolation. This difference in reactivity

. . is accounted for in either of two ways: in the first, both spheres are
shorter than the distance to sphere 2 and so in the IRT memOd[he same size and have partially absorbing boundaries with reactivity

most of the trajectories hit sphere 1 first. In the limit where the parameters chosen such that sphere 1 is twice as reactive as sphere 2;
particle starts in contact with sphere 1 it is trivial thay = 1 in the second, both spheres have totally absorbing boundaries and sphere
in both methods. Of course, this is all superimposed on a 1 has twice the radius of sphere 2.
background overstatement of both probabilities because of an
underestimate of the escape probability. rate constant for hitting each sphere because the protective effect
In the region of the axis between the two spheres, the shape Of the neighboring sphere diminishes. Once the separation
of the ratio is more difficult to justify. However, some insight reaches 15 spherical diameters, the rate constant is only about
may be gained from analysis of the similar but simpler case of 3% less than that of the isolated sphere. The effect of
one-dimensional diffusion between two barriers, which may be competition beyond this distance is negligible.
found in the appendix. 6.2.2. Two Spheres of Different Reaittes. This Section
6.2. Rates.In Section 3, it was shown how to determine a considers competition between two spheres of different reac-
rate constant for reaction of a diffusing particle with either tivities. The example considered is one in which sphere 1 is
sphere in a system comprising two static proximal spheres. Thetwice as reactive as sphere 2 when each sphere is in isolation.
method is summarized in eq 48. In the example, the difference in reactivity is accounted for in
The importance of the rate constant is that it provides the either of two ways: in the first, both spheres have totally
most convenient link with experiment. In this Section, the absorbing boundaries and the radius of sphere 1 is twice the
method described in the paragraph above is used to evaluate #adius of sphere 2; in the second, both spheres have partially
rate constant for reaction with each sphere. Various boundaryabsorbing boundaries and are of equal size but their reaction
types and relative sizes of spheres are considered. Of particulavelocities are assigned in such a way that sphere 1 has twice
interest is the variation of the rate constant for reaction with a the reactivity of sphere 2. In the latter case, the parameters are
given sphere with the separation of the spheres. Also of interestchosen so that each sphere has the same reactivity as the
is the extent to which the relative sizes of two identical spheres corresponding sphere in the totally absorbing treatment. Figure
affects the ratio of their rate constants. 9 shows, for each case, the reactivity of each sphere as a
6.2.1. Two Identical Absorbing Spherésrst two identical percentage of its reactivity in isolation, expressed as a function
absorbing spheres are considered. Figure 8 indicates the rat®f the separation between the spheres. It is evident that the
constant for hitting sphere 1 as a function of the separation competition effect is essentially independent of whether the
between the spheres. This is plotted as a ratio with respect todifference in reactivity is modeled using a reactivity parameter
the rate constant for reaction with a single isolated sphere of and a realistic radius or diffusion control with an effective radius.
the same radius. The total rate constant for the whole system isThe only differences arise at very small separations between
twice that for hitting each individual sphere. This result agrees the spheres because the effective spheres can be unphysically
with the predictions of Samson and Deufim fact, it is close to one another.
straightforward to prove that?; + ¢, is identical to the At all separations there is a reduction in reactivity of each
concentration distribution derived by Samson and Deutch. When sphere, which diminishes as the separation increases. The
the spheres are almost touching, the rate constant for reactiorreactivity of the less reactive sphere is more affected by the
with each sphere is some 25% lower than that of an isolated presence of the other sphere. This result can be interpreted in
sphere of the same size. A substantial reduction is to be expectederms of the diffusing particle “bouncing off” or missing the
because the second sphere acts to protect the first from manyess reactive sphere and being picked up by the more reactive
of the trajectories that would otherwise react with it. As the sphere before it returns. Figure 10 shows the variation of the
separation increases, there is a corresponding increase in theatio of rate constants with separation. At very short separations
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Figure 10. Ratio of reactivity of sphere 1 to sphere 2 as a function of 0.6 0.8 1.0 1.2 1.4 16 18 20 22
separation. Sphere 1 is twice as reactive as sphere 2 when each sphere separation of spheres / nm

is in isolation. This difference in reactivity is accounted for in either . . ) .
of two ways: in the first, both spheres are the same size and have Figure 12. Ratio of rate constants for reaction with sphere 1 to reaction

partially absorbing boundaries with reactivity parameters chosen such With sphere 2 as a function of the separation of the spheres. The reaction
that sphere 1 is twice as reactive as sphere 2; in the second, both spherd@dii for sphere 1 and sphere 2 are 0.40 and 0.20 nm, respectively;
have totally absorbing boundaries and sphere 1 has twice the radius ofooth spheres are totally absorbing. The results using the exact solution,

sphere 2. eq 17, are independent bfthe radius of the virtual sphere used in the
calculation.
100.0
1 the unreactive sphere to shield the reactive one; however, it
99.5 also reflects trajectories into the reactive sphere, and these effects
largely cancel out. This has an important implication where a
2 990 molecule has a reactive site and unreactive sites. The position
% ) of the unreactive site would seem to have little effect on the
s rate constant for reaction at the active site.
% 9859 6.2.4. Rate Constants from the IRT Methédthough the
% IRT method has obviously not proved successful in describing
& 98.04 the probabilities of reaction with sphere 1 before sphere 2, it is
;5, 1 of interest to test whether the IRT method can give any insight
Q 975- into the competition effect. This is for two reasons: first, the
§ IRT method is often easier to analyze and simulate than the
5 full solution; second, the normal formulation of the rate constant
S 970 ' :
o depends on the assumption that the diffusing particles diffuse
independently in the frame of reference of the sinks (the
9654 independent pairs approximation). The IRT rate constant for
reaction with sphere 1 is obtained from the IRT approximation
96.0 — — — — — 1 for <2, averaged over a virtual sphere in the same way as was
1.0 15 20 25 3.0 35 done for the analytic solution fa#?;, described in Section 3.
Separation / sphere diameter This calculation is subject to a severe problem. Although the
Figure 11. Reduction in relative reactivity of a sphere in the rate constant obtained from the analytic solution @4 is
neighborhood of a second unreactive sphere of the same size. independent of the radius of the virtual sphere, the IRT rate

constant is not, as shown in Figure 12. The value obtained for

the ratio is significantly greater than the limit at infinite . -
separation, which is two. At separations greater than about 15_the IRT rate constant decreases as the radius of the virtual sphere

spherical diameters, the effect of competition is minimal. IS mcregsed an_d seems to apprqagh a I'm_'t'ng valug.

6.2.3. One Absorbing Sphere and One Reflecting Sphki. Notwithstanding this problem, it is possible to estimate the
Section considers how the rate constant for reaction betweenreduired IRT rate constant with some choice of sufficiently large
the diffusing particle and a totally absorbing sphere is affected Virtual sphere, and when this is done the ratio of the rate
by the presence of a totally reflecting adjacent sphere. Figure constantsa/k, does not show any of the competitive effect of
11 shows that there is only a slight reduction in the reactivity the full solution, as illustrated in Figure 12.
of the reactive sphere when a reflecting sphere of the same size It is concluded, therefore, that the IRT method does not
is almost touching. Beyond a few spherical diameters, the rate recognize the important competition effect that arises when two
constant returns to its value for the isolated sphere. This smallreactive sites are close to one another and, furthermore, the
effect might be surprising because one would have expectedcalculation of a rate constant from analysis of the rate of first
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relative diffusion coefficient, that is, the sum of the diffusion
coefficients of OH and either the base or sugar. The diffusion
coefficient of the OH radical at 25C was taken to be 2.&
107° m? s71,25 and that of thymine was estimated atZ5from
the literature vall®® at 30 °C using the StokesEinstein
relationship: a value of 9.5 1071° m? s™! was obtained. We
were unable to find a literature value for the diffusion coefficient
of 2'-deoxyribose, but took as an approximation the diffusion
coefficient ofp-glucose at 25C, that is 6.7x 10719 m?2 571,26
Using these diffusion coefficients in eq 64 together with the
rate constants shown above, the following values were calculated
for the effective reaction radii: thymine, 0.225 nm;- 2
deoxyribose, 0.095 nm. The ratio of effective radii of thymine
to 2-deoxyribose is therefore 2.4:1. The small difference
between this and the ratio of rate coefficients is entirely due to
the different diffusion coefficients of the thymine and the sugar.

The question is whether the ratio of attack by OH at each of
these two species when bonded together in thymidine remains
close to the value of 2.4:1 or whether the effects of competition
increase the ratio toward the experimentally determined ratio
of 10:1.

7.1. Analytic Investigation. Using the method of Section

and deoxyribose as components of thymidine. Two methods of treating 2.3, thymine and deoxyribose were modeled as totally absorbing
reactivity are compared. In both methods, thymine is assigned a radiusspheres of radii 0.225 and 0.095 nm, respectively. In accordance

of 2.25 A and an absorbing boundary. In method 1, deoxyribose is
assigned an absorbing boundary with an effective radius of 0.95 A; in
method 2, it is assigned a realistic radius of 1.35 A with a partially
absorbing boundary and a reaction velocity of 0.61 AlpsThe
horizontal lines are the long-time-limit analytic solutions using a two-
sphere model for thymidine.

hitting a virtual sphere and the IRT reaction probability averaged
over that sphere is subject to systematic error.

7. Thymidine Application

with the crystallographic data for thymididétheir centers were
placed 0.36 nm apart, being the distance between the center of
the C5-C6 bond of thymine and the centroid of deoxyribose.
Using the method of Section 3, a rate constant was found for
each of the two reactive sites on thymidine and their ratio was
found to be 4.2:1 in favor of thymine, showing that the
competitive effect results in a substantial increase of this ratio.
The same investigation was carried out on the assumption
that the reaction of OH with thymine is fully diffusion-controlled
but that that with deoxyribose is partially diffusion-controlled.

This Section describes an application of the work presented The method of Section 2.5 was used with a radius for thymine

in this paper. The molecule of interest is the nucleoside
thymidine, which consists of d-2leoxyribose sugar ring bonded
at C-I to N-1 of a thymine base. If an aqueous solution of

of 0.225 nm and for deoxyribose a radius of 0.135 nm and a
reaction velocity of 61 mst were assumed. The radius chosen
for deoxyribose is the largest value consistent with the crystal-

thymidine is irradiated, then the thymine base and the sugar!ographic data where the two spheres do not overlap because

ring of the molecule compete for hydroxyl radicals produced
in the irradiation process. The reaction with thymine occurs
predominantly by addition at the &6 double bond4 OH
radicals react with 2deoxyribose by abstraction of carbon-

bonded H atoms. There are eight of these on the sugar ring,

and the selectivity of this reaction is low. The experimental ratio
of the rate constants for reaction of OH radicals with the thymine

the bispherical coordinate system does not permit overlap of
spheres of constapt The reaction velocity relates the effective
radius to the actual radius through the equdtion

a

%t~ 11 D'va (65)

moiety to reaction with the sugar has been found to be about The velocity of 61 m s* assigned to the reaction between the

10:12 By way of comparison, the rate constants for hydroxyl
radical reaction with free thymine in water and that with free
2'-deoxyribose are 6.4 10° dm® mol™! st and 2.5x 10°
dm® mol~! s71, respectively, giving a ratio of approximately
2.6:11 This Section investigates the extent to which the dramatic

difference between the two ratios may be accounted for in terms

OH radical and deoxyribose ensures that eq 65 leads to the
correct effective radius for free deoxyribose, 0.095 nm. The ratio
of effective radii for thymine and deoxyribose in thymidine was
found to be 4.1:1 by this method, very similar to the situation
where effective radii were used.

It is apparent from the above discussion that arguments based

of competition between the base and the sugar for OH radicals.On the competition of the two reactive moieties in thymidine

The two reactive moieties are modeled as proximal static
spherical sinks whose separation and individual radii are
determined using crystallographic data.

The first step is to calculate effective reaction radii for both

do not completely explain the dramatic favoring of the ©H
thymine reaction over the OHsugar reaction in thymidine.
However, it does account for some of the increase, suggesting
a rise in the ratio from 2.4:1 to just over 4:1. It should be

the sugar and the base because it is necessary to factor out thEémarked, though, that had it been possible to analyze the case

effect of the different diffusion coefficients of the two species.
The effective radius may be defined through the equation
k=4mr aD’' (64)

wherek is the rate constant for reaction with OH abdis the

where the spheres representing thymine and deoxyribose
overlap, a ratio closer to the experimental value of 10:1 might

have been found. The crystallographic data reveals that a more
appropriate model would be one where the imaginary spheres
enclosing each of the two reactive moieties overlap and are
truncated where they meet. This system could be solved exactly
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using the toroidal coordinate system because this allows for a 0.35
degree of overlap between the reactive spheres. Work is in o e e e e e

progress. 030 SIS
It might also be more appropriate to model the reactive sites e e
on the deoxyribose separately. This cannot be done within the | ,7 .- -
bispherical coordinate system because it requires eight spheresz  0.254 7 L7
More detailed models such as this may, however, be amenable§ | _/'/ ’
to simulation by the Monte Carlo random flights method. 8 020l ,.',
7.2. Simulation Method. This Section describes the random ' s, '_____Thymine - method 1
flights simulation of the reaction between an OH radical and % ,.',' - - - Thymine - method 2
an aqueous solution of thymidine, to deduce a rate constant for § 015+ K Deoxyribose - method 1
reaction with either the sugar or the base. The details of the & ] .,," -+ - -Deoxyribose - method 2
simulation method have been discussed elsewHéfe3 and 010 K - =-== Asymptotic limits

only a brief discussion is given here.

An OH radical is placed at a random point on the surface of
a virtual sphere that completely encloses the thymidine molecule. 0.05+
The diffusion of the radical in the aqueous medium containing
the thymidine molecule is simulated by identifying its location
at a sequence of time steps. The distance traversed in each of L L B S | 5
three mutually orthogonal directions in time stips a random
number drawn from a spherical normal distribution with mean
zero and vqriance[?ét. If the OH- radi.cal encounters a reactivg abilities of thymine and deoxyribose as components of thymidine using
Sphere_ d““f‘gét’ then a r_eactlon IS C_oun'Fed. Encounter is an atomistic model. Two methods of treating unreactive atoms are
determined in two ways: either the radical is found to overlap compared: in method 1, unreactive atoms of deoxyribose are excluded;
with an atom at the end of the time step or the probability iS in method 2, unreactive atoms are included. The horizontal lines are
calculated for the radical to have reacted during the time step, the long-time-limit analytic solutions using a two-sphere model for
even though there is no overlap at the end of the time %tep. thymidine.
The simulation continues until the OH radical has reacted or
until a given cutoff time has elapsed. The whole process is
repeated several thousand times allowing time-dependent reac-
tion probabilities to be calculated. At each new realization, the
OH radical starts at a different random point on the surface of g |
the virtual sphere. In this way the probability of reacting with
each moiety is averaged over the virtual sphere. The rate
constants for reaction with both the sugar ring and the thymine
base are then calculated in accordance with the method of o064
Section 3.

The same system has been simulated to verify the analytical
results described above. The simulation has the added advantage
of giving a time-dependent reaction probability. Figure 13 shows &
the time-dependent reaction probabilities from such a simulation,
together with the asymptotic limits calculated using the analytic
methods described in Section 2. Figure 13 shows the system
modeled with two absorbing spheres with effective radii, and
with two realistic spheres, as discussed above, with a partially 1 )
absorbing boundary condition. It can be seen that the time .
dependence in these two models is very similar. 004, ; . I . : . |

Although the analysis described in this paper can only be 0.0 0.2 0.4 0.6 0.8 1.0
performed for two nonintersecting spherical sinks, simulations X
are not limited in this way, and it is clearly of interest to Figure 15. One-dimensional diffusion of a particle starting¥at= x
investigate whether the competition effect is enhanced by with absorbing boundaries & = 0 andX = 1. The plot shows the
considering the reactivity of the two moieties at a finer level. probability of hitting the upper boundary first calculated by (1) the
For this purpose each atom in deoxyribose is modeled as a/RT method and (2) the exact method.
sphere of appropriate size whose center is in accordance with The reaction velocity of each reactive (carbon-bonded) H
the crystallographic data. The encounter radius of a sphere isatom in deoxyribose was found by a method taal and
assumed to be the sum of the covalent radius of the atom andimprovement The simulation was carried out on deoxyribose
half the OH-OH encounter distance. The latter was obtained alone (i.e., ignoring thymine) using the appropriate reaction radii.
using the rate constant for the combination of two OH radicals Each reactive H atom was assumed to have the same reaction
using eq 64. In addition, a sphere of radius 0.225 nm is placed velocity, and a realistic velocity was assigned. The simulation
at the center of the C5C6 bond to represent the reactive part was run with this trial velocity, and a rate constant for the OH
of the thymine molecule. Unreactive atoms can either be ignored reaction with deoxyribose was calculated on the basis of the
or included explicitly. If the radical encounters an unreactive results. This was compared with the experimental rate constant.
atom duringot, then it is reflected from that atom using a The simulation was repeated with a different trial velocity in
standard procedurg. order to better reproduce the known rate constant. Further

Log (time/ps)
Figure 14. Monte Carlo simulated time-dependent reaction prob-
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simulations were run using other trials until the simulated rate that contain two proximate reactive centers, either for the total
constant was arbitrarily close to the experimental value. The reaction rate or for its division between the centers. In addition,

reaction velocity assigned using this methodswamn s when the rate constants obtained by the IRT method were found to
all atoms of deoxyribose were included and 3.6 ™ when depend on the radius of the virtual sphere used in the calculation.
only the reactive atoms were included. The analysis was applied to thymidine, where the differentia-

This model is obviously still crude and could be refined tion between the reactivities of the sugar and the base to OH
further. For example, it is known that the reactive i bonds radicals is much more pronounced than would be expected from
in deoxyguanosine have substantially different bond dissociationthe published rate constants for OH thymine and OH+
energies! and this will clearly have an effect on the appropriate deoxyribose. It was found that although the competition effect
reaction velocities. In addition, in the thymine moiety there is does result in a substantial increase of the relative reactivity of
significant preference for attack on C5 rather than C6 or H the base, this was not sufficient to explain the whole experi-
abstractior?? mentally observed effect. Because of the simplicity of the two-

The results of these simulations are shown in Figure 14. The sphere model a more realistic model of thymidine was also
yield of reactions with deoxyribose is not dependent on whether considered using Monte Carlo random flights simulations, but
the unreactive atoms are included in the simulation, and the a similar and slightly worse result was obtained.
exact result for the two-sphere model is acceptable for this yield.  The analysis in this paper is limited to two nonoverlapping
However, there is more variation in the yield of reaction with spheres because of the coordinate system used, and in addition
the thymine moiety. Including the unreactive atoms reduces the it ignores any possible rotational motion of the entity containing
yield of this reaction. Presumably the thymine is being shielded the reactive sinks. Further work is in progress to relax these
by the umbrella of the sugar molecule. The ratio of the reactivity approximations.
of the two moieties is 3.5 when the unreactive atoms are
included and 3.8 when they are not. Agreement with experiment APpendix: One-Dimensional IRT versus Exact Analysis

is worse for these more detailed models than for the simple  gection 6.1.2. discussed the accuracy of the IRT method in
two-sphere model. calculating the probability of a diffusing particle hitting one

The simulation method can also be applied to the two-sphere apsorbing sphere before the other from a point outside. The
model where the spheres intersect. However, this applicationresults for a particle initially at a point along the line of centers
raises new technical difficulties because of the intersection of and between the spheres were presented, and the ratio between
the boundaries. In particular, it is necessary to develop an the probability as calculated by the IRT method and the exact
unbiased method of estimating which sphere is attacked whenspjution was calculated. To facilitate an understanding of this
it is possible to attack both in the same time-step of the ratio when the particle starts at a point between the two spheres,
simulation. This is never a problem with nonintersecting targets the simpler problem of one-dimensional diffusion is considered
because it is always possible to make the step small enoughhere. Although it is unlikely that a radical can be generated
that it only has a significant probability of attack on one sphere. petween the two targets in a molecule such as thymidine, if the
Work on this boundary problem is in progress and we hope to sinks are on a larger scale, such as the strands of a DNA
report an efficient method shortly. molecule, or even two planes, such behavior might be of interest.

It seems clear that there is an important competition effect  Consider a diffusing particle confined to tixeaxis whose
between the sugar and the thymine but that this is not sufficient position at time zero i = x, wherea < x < b. There are
to explain the large preference for thymine in the experiments. absorbing boundaries %t= a andX = b. The probability that

the particle hits the boundary Zt= b before that aX = a is

8. Conclusions required. The calculation is first carried out using the IRT
method. In this approximation, the first passage times tahit
andb are generated independent of one another but conditional
on the distances from the initial position to each boundary, and
he decision about which boundary is hit first depends only on

This paper has presented an exact solution for the probability
that a diffusing particle will hit one sphere before another in a
system containing two fixed spherical sinks. The solutions have

been presented for the case of totally absorbing spheres, usin hich of th " . ler. This i ivalent to starti
a Smoluchowski boundary condition, and for partially reflecting Ich of these umes Is smaller. 1hiS IS equivaient o starting
two independent trajectories simultaneously from the peint

spheres using a radiation (elastic) boundary condition. Solutions !
for the steady-state rate constants for hitting either sphere haveOne of these targets the boundaryxat- a and may be killed

also been investigated. In addition, the applicability of the IRT qnly. upon reaching this point regardiess of Wh_ethef it b_its
method to such systems has been tested. first; the other targets the boundary>at= b and, likewise, is

When the spheres are close to one another, an importantk'”ed at no other point. According to the IRT methodology,

competition effect has been found in which each sphere shields\ghid:jever trajectory reaches its target first registers a hit at that
reactivity from the other; that is, the effective reactivity of each ogn a_ré/. first th . h he bound

sphre i educed b the'prosimity of e otnr sphre: One , COTST IS e ety bt e e byt
important result is that the reactivity of the total system is less t'. thb th bability distribution functi fcry .

than the sum of the reactivities of the two spheres in isolation. Ime, then the probability distribution function 1dp 1S

This is potentially an important consideration when comparing b— x
the reactivities of two proximate moieties in the same molecule. P(T, <t) = erfc( ) (66)
When the two spheres have different intrinsic reactivities, the /4D,

less reactive sphere is affected more by the competition than
the more reactive sphere. This competition effect is not
significantly affected by the use of “effective” reaction radii to

The density of the time at which this boundary is hit is the
time derivative of the distribution function is as follows:

allow for deviations from full diffusion control. b—x )
. . . t ) — —e—(b—X) /4Dty (67)
The IRT method was found not to recognize this competitive p(t, 3
effect at all and so cannot be considered reliable for systems y4r Dt,
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There are equivalent equations for the distribution functionand 1.2
density function of the time at which the boundaryXat a is

first hit by its trajectory. The IRT probability that the boundary

at X = b is hit first is therefore given by

P(T,> T, = j; “ ﬁe_(b_x)zﬂlDtb erf( X— a) dt,

\/ 47 Dt3 V4D,

68
(68) 3
By making the substitution b
[
o
y= L 2
4Dt, 8

the integral becomes

2 b - 00 242
P(T, > Tp) = 202X = g 09 lerf((x — ayu) d
JT

(69)
" [ " [ " [ " ] ’
With the substitutiory = (x — a)u, this becomes 006 02 o4 o8  os 1
20— X o hw2x—a? X
P(Ta> T) =——— j(; g O0VIa (1 — erfey) dy Figure 16. One-dimensional diffusion of a particle startingXat= x
\/;(X —a) with absorbing boundaries & = 0 andX = 1. The plot shows the
(70) ratio of the IRT solution to the exact solution for the probability of
hitting the upper boundary first.

The integral is now in a standard form whose solitda

2
X—a

B

P(T,>T,) = % tan *

1
71
b— (1) \
The exact solution is trivially found by solving the steady- N\
state backward equation with appropriate boundary conditions

to give

4%
"'V

4
a aa a a
8

2 3

bb a b

jO)
T
[O)
T
[O)
[V)

aa a b
X—a
b—a

P(Ta> Ty) = (72)

-

5

Figure 15 shows the IRT and exact solutions when the
boundaries are @= 0 andb = 1. It is seen that the IRT method
overestimates the probability of hittitmfirst if the particle starts
nearerb thana but underestimates the same probability if the 3 5D
particle starts nearexrthanb. Figure 16 shows the ratio of the
IRT solution to the exact solution. This is very similar in 9 12
behavior to the three-dimensional equivalent in Figure 7. \\

To justify, in a physical sense, the shape of the IRT curve in /\
Figure 16, consideration has been given to every permutation //
of hitting points and times in which two independent trajectories
may evolve for a diffusing particle that starts at a point between / /
a andb. Each trajectory will ultimately hit both boundaries and ab a ab b b pb b b
so there are four first hitting times, two for each trajectory. The Figure 17. Scheme showing all possible ways in which two indepen-
graphs in Figure 17 illustrate every possible ordering of these dent trajectories may develop in time from a starting point three-quarters

hitting ti 2 ing ti is desi ted by the d d of the way along the line between two absorbing boundariesasid
Iting tmes; Increasing ume IS designated by the downward y, The first pair of letters beneath each figure shows the allocation of

direction. There are 12 possible permutations, and these areits according to the exact method; the second pair shows the IRT
illustrated in Figure 17. interpretation.

In the exact analysis, each of the two trajectories registers a

hit on eithera or b, depending on which of these two boundaries giher hits anything. The labeling beneath each permutation in
is hit first. In the IRT method, whichever trajectory reaches its Figure 17 shows how each is interpreted by, first, the exact

own target first registers a hit on that target, t_he other trajectory analysis and, second, by the IRT method with each possible
is then ignored in the analysis. Earlier hits on the wrong labeling of the two trajectories

boundary are also ignored. Thus, for example, the first permuta- . i . .
tion registers two hits oA by the exact method because each It is of interest that in all but four of the permutatlons, the
trajectory hitsa before it hitsb. The IRT method registers a  two interpretations are identical. Of the remaining four, numbers
single hit ona or a single hit orb depending on which of the 1 and 10 overstate the number of hitslom the IRT analysis
two trajectories is designated as bemgeeking and which as  while numbers 6 and 8 understate this number. Whether the
b-seeking because one trajectory hits batandb before the IRT method overestimates or underestimates the probability of

Q)| /
a$>< >°’
® 1

O

O]
-_—
A

o

AN
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hitting b first depends on the relative likelihood of these four (5) Karlin, S.; Taylor, H. MA Second Course in Stochastic Processes
permutations. Academic Press: New York, 1981.

. . . . 6) Morse, P. M.; Feshbach, HVethods of Theoretical Physics
This problem was addressed by simulating the evolution of Mcér;W_Hi”: New York, 1953; pp 665 f, 1298 ff. vl

two independent trajectories starting simultaneously at a point  (7) Collins; F. C.; Kimball, G. EJ. Colloid Sci.1949 4, 425.
three-quarters of the way along theaxis froma to b. The (8) Green, N. J. BMol. Phys.1986 58, 145.

simulation generates a random time for each trajectory to hit (% gtggéﬁ’gr%é]hgr';‘Ksrtlirs‘?'fg'tﬁgégggmég_'yﬂ%a 48, 2402.

either boundary for the first time and then a subsequent random  (11) Tachiya, M.Radiat. Phys. Chen1983 21, 167.
time to hit the other boundary starting from the first. It then  (12) Green, N. J. BChem. Phys. Lettl984 107, 485.
records the order in which boundaries were first hit by each of Préig-) cB>|xef§rr]deyigBé3I" Bleaney, Eelectricity and MagnetismClarendon
the pair of trajectori_es. The simulation was repeated 1 milliqn (14) Yennie, D. R.; Ravenhall, D. G.; Wilson, R. Rhys. Re. 1954
times and the relative number of occasions each permutationgs, 500. ‘ _
arose was determined. Numbers 9, 10, 11, and 12 accounted 83 (":'If?‘fffdya GF; HGD'UETQS”S SBe“gS_I?'afe'\r/‘ldg” g,’eﬁ:ttoéfo,\;dlég“g-

0 . . ifford, P.; Green, N. J. B.; Pilling, M. J.; Pimblott, S. M.; Burns,
for 83% of a!l permutations. In particular, number 10 accounted \\, "c 5 chem. Soc., Faraday Trans.1984 80, 1313.
for 14%, while numbers 8, 6, and 1 accounted for 2%, 3%, and  (17) Green, N. J. B.; Oldfield, M. J.; Pilling, M. J.; Pimblott, S. B.
less than 1%, respectively. Thus, the overriding consideration Chem. Soc., Faraday Trans.1D86 82, 2673. )
is the overstatement of the number of hits brwhen the ch(lg)lgsggegi%sji B.; Pilling, M. J.; Pimblott, S. M.; Clifford, &.Phys.

. . . . em. ) .

sequence of events illustrated in permutation 10 occurs. This "~ (19) Pimblott, S. M.; LaVerne, J. Al. Phys. Chem1997, 101, 5828.
confirms that the IRT method overestimates the probability of  (20) Gradshteyn, I. S.; Ryzhik, I. MTable of Integrals, Series, and
hitting boundaryb when the particle starts at a point three- Products Academic Press: New York, 1980.

- . (21) Rice, S. A.Comprehengie Chemical Kinetigsvol. 25; Elsevier:
quarters of the way towardon the straight line betweenand Amsterdam. 1985.

b. (22) Clifford, P.; Green, N. J. B.; Pilling, M. J. Phys. Chem1982
By symmetry, for a particle starting closer &othanb the 86, 1322.

: ; ; (23) Pimblott, S. M.; Green, N. J. Bl. Phys. Chem1992 96, 9338.
IRT method WIII ov_erestlmate hits oa because of the large (24) von Sonntag CThe Chemical Basis of Radiation Biolqghaylor
fraction of trajectories of type 6. and Francis, London, 1987.

(25) Laverne, J. A.; Pimblott, S. MJ. Phys. Chem1991, 95, 3196.
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