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We calculated highly excited states of the HFCO molecule, comparing results from two methods. In the first
method, Van Vleck perturbation theory is used to transform away all off-diagonal couplings except those
between nearly degenerate states. This perturbative transformation leads to a matrix representation where
eigenvalues are obtained with relatively small matrices. In the second method, variational eigenvalues are
obtained by combining the JacebiVilson approach with the block-Davidson scheme. The key ingredient
here is a prediagonalized-perturbative scheme applied to a subspace of a curvilinear normal-mode basis set.
Comparisons of the two methods provide a critical test of the less time-consuming perturbation theory. Two
different coordinate sets are used to test the sensitivity of the results to coordinate choice. Perturbation theory
also requires a polynomial fit to the potential. The implications of this restriction are investigated.

I. Introduction on an efficient basis set. One elegant and efficient way consists

. : : f performing a Taylor series development of the G matrix
High-resolut t des full Ived spectra ° > ma
of h:ghl;ee?)?clijt;:lnsilrs)fgrrzgsscl?fg2;% elipléélrisgggoi%ec a element of the KEO. Such an approach has been intensively

CFRsH.511 CHiOH 12 or GeHe 1335 to cite a few examples applied by Sibert and co-workers in canonical Van Vleck
1 1 . . 34 .
However, such accurate data cannot be fully understood usingPerturbation theory (CVPTf"** Recently, it has also been used

basic models. Consequently, quantum simulations are requiredb_y Ppuchan and co-workéFs_37 to calculate low-excited

to help analyze these accurate spectroscopic data. For thisvibrational spectrum ofllarge isolated or solvated molecules.
reason, considerable research has been carried out over the yeaf®' large amplitude motions, such a development might be less
to develop both better ab initio quantum methods for calculating efficient; in such a case, the exact KEO has to be used.
a potential energy surface (PES) and more efficient numerical Luckhaus® has shown that such complex KEOs can be

methods for solving the rovibrational S¢linger equation. The ~ €valuated exactly using the discrete variable representation
present study focuses on the latter. Prominent among these(DVR).**®Finally, an underlying pseudo-spectral scheme can
studies are several pioneering studies of the Light giéu§3, ~ help to apply such an intricate operator on a vector of the
to which this volume is dedicated. working basis set.

A crucial step in a variational calculation is the choice of We believe that the numerical methods used to calculate
coordinates that describe the atomic motion. The rectilinear rovibrational spectra should provide not only the eigenvalues
normal modes constitute the most popular set of coordinates tobut also the eigenstates or, at least, their main projections on
describe the motion of the atoms near the equilibrium geometry. some given states. This point is crucial if quantum simulations
At least two very interesting quantum codes (Multim&de® are to help with the assignment of experimental spectra.
and Convi¥® 28) using such a rectilinear description have been Unfortunately, the dimension of the direct-product basis set
developed to study moderately excited rovibrational spectra of dramatically increases both as the number of atoms increases
molecular systems. Such methods are based on a preliminaryand as the energy of the states to be calculated increases. For
variational self-consistent field (VSCE}>or vibrational mul- this reason, many numerical methods try to decrease the
ticonfigurational self-consistent field (VMCSC¥E)reatment of  gimension of the working basis set in which the rovibrational
the working basis set in order to reduce its dimension thereby Hamiltonian is diagonalized. A VSCE? or VMCSCRS
allowing the study of large systems. Calculations with rectilinear tyeatment helps this decrease by defining a more adapted basis
coordinates can be extremely hard to converge for highly excited sot The CVPT methdd applies an efficient perturbative
states. In such a case, a curvilinear description has to be adoptedyeatment to drastically decrease the dimension of the basis set
However, the kinetic energy operator (KEO) expression can be i, \yhich the Hamiltonian is diagonalized. This method will be
intricate and it can be difficult to evaluate the results of it acting jascribed in section IV. Pouchan and co-worked select an
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approach with a perturbative treatment. A great number of purely investigate the nature of the energy flow in HFE®! a global
variational methods have been developed that use sophisticatedES has been calculated by Kato and co-wofRecsdescribe
methods to extract highly excited states from a huge primitive both geometries near equilibrium and the dissociation path of
basis set. In such a case, a popular method is the Lanczoghis molecule HFCG~ HF + CO. They built a global analytical
algorithm?2° As the convergence of the Lanczos scheme becomesPES for the ground state using about 4000 ab initio points
very slow for the denser part of the spectrum, that is, at higher computed at the RHF/MP2 level. The form of this PES is not
energies, spectral Lanczos algoritdfitan greatly improve the ~ adapted to the CVPT method. We therefore fit the PES in a
convergence. This consists of using, in the Lanczos recursions,polynomial form. The error generated by this fit is estimated
another operator f{) whose spectrum is strongly dilated around and discussed. This point is germane because any analytical
some reference energy. Such an approach is effiéigftout PES is fitted: this step always introduces some error which is
is CPU time-consuming because computirig)f(s in general not usually quantified. Consequently, this molecule is a good
very expensive if the state density increases. Recently, Huangcandidate to test different methods for calculating either
and Carrington proposed the P¥8Tpreconditioned inexact ~ combination modef, ..., vs[or highly excited overtoneswill
spectral transform) method that uses an iterative linear solver The outline of this article is as follows. In section II, we
to compute approximate Lanczos vectors; the resulting Hamil- present the HFCO system and the two sets of coordinates used
tonian matrix is diagonalized in this basis set. This approach to describe its internal deformation. These two sets of coordi-
has been combined with several preconditiorief8.These nates are identical for in-plane geometries, but differ for out-
preconditioners include a phase space optimization DVR, an of-plane geometries. In section I, the variational JW method
optimal separation basis, and Wyatt preconditioning. Bian and coupled to an efficient Davidson scheme is reviewed and applied
Poirier's established the great accuracy and efficiency of this to HFCO. In section IV, CVPT is applied to HFCO. Section V
very sophisticated approach by computing highly excited is devoted to the analysis of the error generated by the two
vibrational bands of HOCI. Lee and Light proposed an interest- polynomial fits of the PES. The spectra obtained with both the
ing algorithm that uses an energy selected basis set combinedVPT method and the JW variational approach are compared
with an iterative solution to calculate the eigenvalues and in section VI. The sensitivity of the results to coordinate choice
eigenvectors of highly excited triatomfésand tetra-atomicé is also discussed. Section VII concludes and gives some
Several groups have also established the great utility of methodsPerspectives.

based on the Davidson algorithtrio extract eigenvalues and

eigenvectors from a huge basis 565 One of these approaches |l Choice of Coordinates

is discussed in section IIl. Since the choice of coordinates can strongly influence the
In this paper, we will compare two methods: they are the convergence of both variatiof&hnd perturbative calculatiod,

perturbative CVP?° method and the JacobWilson (JWJ2-55 in this study, we will obtain results for two sets of coordinates.

variational approach. In the first method, eigenvalues are A comparison of the results will allow us to evaluate the
obtained via the Van Vleck perturbation theory which is used influence of the choice of coordinates on the efficiency of the
to transform away all off-diagonal coupling except those methods. In general, it is desirable to develop methods for
between degenerate states. This perturbative transformation leadsolving the nuclear Schdinger equation that are not overly
to a matrix representation where eigenvalues are obtained withdependent on the choice of the set of coordinates. One wants
relatively small matrices. Such an approach has been successto develop methods that are flexible enough that they will work
fully applied to compute vibrational spectra of a large variety for an entire family of coordinates in order to describe a large
of molecules, HCO?2° CF,;,3! CH30H,%2 and CxH (X = Br, variety of systems in an optimal way. Although the two sets of
F)33:34to cite a few examples. In the second method, variational coordinates used in this study differ only for out-of-plane
eigenvalues and eigenvectors are obtained by combining thegeometries, this difference leads to notable differences in the
JW approach with the block-Davidson schete® The key couplings between the coordinates.
ingredient is a prediagonalized scheme applied to a subspace The first set of coordinates is the polyspherlca%penerated
of curvilinear normal-mode basis functions. These two strateglesby the three vectorB; = CO, R, = CF, andR; = CH. In this
are totally different, and for this reason, it is interesting to parametrization, which has recently been revie@éd,the
compare the results obtained by them. Moreover, the origins of system is described by the spherical coordina®s, ¢i) of
the inaccuracies of these two methods are expected to bethe three vectors Ri = 1, 2, 3) in a coordinate system with
different, so these two methods can be complementary. the C atom at the origin, the O atom on the positiaxis, and
These two methods are applied to HFCO, a good candidatethe F atom lying in thexzplane withx > 0. It results in the
for testing the efficiency of the two methods for at least two following internal coordinates: three radial coordinatBsd,
reasons. First, this system is of interest because the energy flowRcr, Rer), two in-plane coordinateg{ = JHCO, ¥, = OFCO),
is found to be strongly state specific when the out-of-plane mode and one dihedral coordinate= ¢;. We also denote the first
is highly excited. In their stimulated emission pumping experi- Set as thep set, to distinguish it from the second set, theet,
ments of the unimolecular dissociation of HFCO into HF  previously used by Burleigh et al. to study®D 3 Here, the
CO, Choi and Moor& 3 were able to assign (®y, 0, 0, 0,ng, C atom is at the origin, but the O atom lies on the positive
J, Ko, Ko) levels forns = 14, 16, 18, and 20 well above the x-axis. The vectorsCF and CH are parametrized by their
dissociation threshold. Moore and co-workers suggest that IVR spherical coordinatesRtr, ocr, Scr, Ren, dcn, Sch) measured
in this system cannot be explained by statistical theories: theyin a coordinate system such thatr = acy = 6. The o set
consider that the energy flow through this molecule from the consists of three radial coordinateR:6, Rcr, Rcn) and three
initially excited out-of-plane mode is highly selective. Sophis- angular coordinateg¢n, Scr, 0)- The in-plane coordinates are
ticated quantum numerical simulations are required to explain similar in these two parametrizations for planar geometries,
why the G=0 stretching modeg) and the C-H out-of-plane while the out-of-plane coordinateg &ndo) are different. For
mode ) seem to be decoupled from the other modes when instance,¢ is set tosr while J is equal tos/2 for the planar
the excitation energy in the out-of-plane mode is large. To equilibrium geometry.
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TABLE 1: Experimental Fundamental Frequencies of use of this underlying pseudo-spectral scheme increases the CPU
HFCO Expressed in cnt* time and the memory required.
mode  frequency (cnt) symmetry description An efficient Davidsof® scheme is employed to calculate the
1 2081 X CH stretch eigenvectors and eigenvalues of the systértP The accuracy
2 1837 A CO stretch of this method is controlled during the iterative Davidson process
3 1347 A HCO bend by evaluating the residud|(H — Ew)Ww|| where Ev, W)
4 1065 A CF stretch denote the estimated energy and eigenvector obtainedMfter
5 662 A FCO bend - . . . .
6 1011 A out-of-plane bend Davidson iterations, respectively. We have established else-

wheré+55 that the residual is a measure of the quality of the
We use the global PES developed by Kato and co-wofers. eigenvector and eigenenergy obtained, even for highly excited
The normal-mode frequencies obtained with this PES are overtone$® To obtain accurate results, eigenvectors and
provided in Table 1. These frequencies will aid in the prediction eigenenergies are considered as converged when their residual
of the kinds of resonances that can occur for this molecule. is smaller or equal than 1 crh It results in an accuracy better
than about 0.1 cri for energies smaller than 8000 cin
[ll. Variational Jacobi —Wilson Method Coupled with a Consequently, the unique origin of the inaccuracy of this
Davidson Scheme variational method comes from the finite dimension of the
The recently developed JW method has been applied toWorking basis set.
HFCO54 As the full details of this method are given by The calculation of statef#y, ..., ss[such that; < 3 has been
Leforestier et als3 we will only outline the key points here. ~ Obtained in a basis set containing all the zero-order statgs,
Starting from a description with a set of six polyspherical ”gm' whose zero-order exgltatlpn energy was smaller than
coordinate$!2denoted{q,, n =1, ..., § corresponding to a Emax'(|v1, ..., ) = 28 000 cn* while the quantum numbef
Jacobi vector parametrization of the systéf a set of was §mal|er or equal to 10. It results in a Workl'ng basis
cursilinear normal coordinates, denoté@., o = 1, ..., §, is containing ak_)out 100 000 states and the use of a grld of about
introduced to calculate the excitation vibrational spectrum. These 18 < 10° points. For combination statgs, ..., veCwith one

curzilinear normal coordinates are provided by the FG method du@ntum number equal to four and for overtones staes a
of Wilson 64 that is specific basis set has been built to improve the accuracy of the

variational calculation. For instance, in calculating the out-of-
6 plane |nvg[] a third parameter has been introduced: the
Q=Y L, ‘g, 1) maximum allowed excitation energy in the in-plane modes
n= (EmaX(lv1, ..., vsD)), in order to allow a larger energy in the out-
of plane mode. These overtones sta@s;[] have been obtained
This method combines the simplici§f>5of the exact KEO in a basis set such th&ma(|v1, .., v60) aNdEma(| 01, .., v50)
expressed in terms of polyspherical coordinates with the were set to 35500 and 25 500 cin respectively, while the
efficiency of the Wilson normal-mode approach. in-plane quantum numbers(i = 1, ..., 5) were smaller or equal
Our corresponding basis functions are eigenfunctions of six tg g, |t results in a 150 000 state basis set adapted to compute
uncoupled harmonic oscillators describing the curvilinear normal states with large excitation in mode 6. Consequently, the JW
coordinates. This normal-mode basis can be refined further by method coupled to a Davidson scheme has been used to calculate
including the diagonal anharmonicities.Specifically, the gl the overtones statesviJassociated with energies smaller
molecular basis se® is thus spanned by the product functions than 8000 cm® and all the combination statesy, ..., ve0l

|va, ..., vel3 Whereu; corresponds to the occupation number of  associated with energies smaller than 7000tand such that

the anharmonic oscillator describing the normal-mQieThis vi < 4. For these states, we can consider that the error of the
basis(4 is restricted by an energy cutoff variational energies near 3000 and 7000 &tis smaller than
o 0 0.1 cnt! and about 3 cmt, respectively. The comparison with
If Evl...va < Enax (lvg, -0 v60) the perturbative calculation is limited to these states, that is,
combination states witly < 4 and overtones states, because
lvg, oy Usﬁ €P (2 we are able to estimate the accuracy of the energies provided

by this variational method. This is important because these

One can also impose some constraimg & Ni) on the variational energies will be compared to perturbative energies
maximum occupation number of each mode. To selectively provided by CVPT.
study one state or a series of coupled states, one can define a .
more specific basis set. For instance, highly excited overtones!V- CVPT Perturbative Theory
of the out-of-planeénvs[{n < 10) have been recently calculated The application of Van Vleck perturbation theory to the
by adding a second energy criterion limiting the energy in the HFCO presents three challenges. First, the molecule dissociates
in-plane modes. This allows us to use a more adapted workingat relatively low energy, and one expects the perturbation theory
basis set. to fail as one approaches this energy. Second, in contrast to

A pertinent feature of the method is the presence of an our recent work on SCgf8the normal-mode frequencies, given
underlying pseudo-spectral scheme, allowing very large mo- in Table 1, are such that there is no easily identifiable polyad
lecular basis sets to be used by meardirefictiterative methods. structure. This structure is essential if one is to construct a block-
That is, one defines a 6D grid;, subject to an energy cutoff:  diagonal Hamiltonian and thereby reduce the dimensionality of
Qia X ... x Qg € if Va1 < Eg. By using a grid cutoff larger ~ the Hamiltonian. Nonetheless, perturbation theory can be used
than the basis cutof§g = 7Ema(|v1, ..., vsl} (7 > 1), one can to “precondition” the Hamiltonian so that the Hamiltonian matrix
enforce dealiasin. For the calculations presented below, we can be diagonalized using a relatively small basis set. Third,
have used an value of 1.2. The presence of this pseudo-spectral the potential needs to be reexpressed as a Taylor series
scheme allows one to use any kind of PES expression. Thisexpansion in the normal coordinates in order to implement the
constitutes an central advantage of this method. However, theVan Vleck transformations.



Vibrational Spectrum of HFCO

TABLE 2: List of Resonances that Are Included in the
Perturbative Hamiltonian K
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In this approach, we also use curvilinear normal coordinates
(cf. eq 1). Here, the Hamiltonian, with volume element
dQidQ,:-+, takes the simple form

H=2P'GP +V/(Q) +V(Q) ®)
where the components &farePy = —if0/dQx, the momentum

conjugate tdx. TheG-matrix elements an®'(Q) are expanded

in a Taylor series about the equilibrium configuration through
sixth and fourth order, respectively, using standard analytical
expressions for these ter¥fsThe Hamiltonian is expanded as

N
H= ZOAKH"‘)
k=

where/ is the perturbation parameter. The potential and kinetic
terms of the ordek + 2 are included irH®, and theV'(Q)
terms of the ordek are included inH®. This Hamiltonian is
subsequently expressed in terms of harmonic oscillator raising
and lowering operators.

The Van Vleck transformations are accomplished via a
succession of unitary transformations

(4)

T, = exp(iZ[{s¥, 1} (5)
applied to the original Hamiltonian to give
K=TyT,T;H (6)

where theS¥ are chosen such th#t has the desired form.
Normally, one attempts to transform tokasuch that, when
written as a matrix, it is block-diagonal. Given the low symmetry
and distribution of normal-mode frequencies, this approach was
not successful. In a recent study of CiifRamesh et &
defined several polyad numbers and then retained all coupling

terms that conserve any one of the polyad numbers. Here, we

pursue a closely related approach; we transfétreo that it
only includes diagonal contributions and a select set of resonanc
interactions. Equivalently, the perturbative results are obtained
by transforming away all nonresonance terms in the Hamilto-
nian. Specifically, a resonance term is defined as any term that
couples two states whose absolute difference in zero-order
energies

E’—ES=1Y Avo (7)

is less than or equal to an energy cutbff(k) wherek is the
order of the coupling terms. Hete are the harmonic frequen-

€
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Figure 1. Select 2D equipotential contour plots in @¥pet and (b}

set of coordinates. The coordinafes, rs, re} are extension coordinates
corresponding t¢ch, Scr 0} for the d set and{ 4, 9, ¢} for the ¢

set, respectively. The fit to the Kato potential is shown on the left; the
difference between the potential and the corresponding polynomial fit
is plotted on the right. On left-hand side, the contour lines are placed
at 4000, 8000, ..., 20 000 cry and on the right-hand side, they are
placed at-200, —100, 100, and 200 cm.

includes a list of the resonances that arise at third and fourth
order in the coupling. The first resonance of Table 2 describes
the w1 =~ w2 + w4 resonance condition. Consequently, terms
of the form ajaj a} (as well as their higher order analogues
such asajaa)aja)al) are included in the transformed
HamiltonianK.

The Kato potential is not in a form that is amenable to CVPT.
More generally, a factorized form of the Hamiltonian (i.l.,
e [ikeee £5(Q)) is required by many efficient numerical
methods such as CVPP,multiconfiguration time dependent
Hartree (MCTDH)/! and VMSCF scheme®.Such expressions
significantly reduce the core memory required and allow one
to study larger and more excited systems. However, a global
PES which is not given in a factorized form has to be fitted to
be used by these methods. Here, it must be reexpressed as a
polynomial expansion in the normal coordinates. In principle,
this is straightforward, however in practice it presents several
numerical challenges. One needs high-order polynomial expan-
sions to have a faithful representation of the potential up to
8000 cnT! above the zero-point energy.

A standard way to improve the convergence of the expansion
is to carry out the expansions in internal coordinates using
Simons-Parr—Finlan coordinateg; = reiri/(ri + rej) to describe

cies. The cutoff values we have used are 350, 105, 60, 50, andthe stretches. Here,andr,; are the stretch extension coordinate

15 cnrt respectively folk = 3—7. These cutoff values lead to
35 resonance terms in the transformed Hamiltonian. Table 2

and equilibrium bond length, respectively. Even with this
coordinate choice, to achieve the necessary accuracy, our
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: ; ; Figure 3. Difference between eighth- and sixth-order perturbative
potential expansions include select terms up to tenth order forenergies,E(eighth order)— E(sixth order) plotted as a function of

both theg ando sets of CoorQInates. . ~ E(eighth order) with energies expressed in“émhen the PES is fit

In an attempt to determine the Taylor series expansion with (a) thed set and (b) the set of coordinates. Hereg denotes the
coefficients, we found that we could only reliably calculate up quantum number of mode 6, that is, the out-of-plane mode.
to sixth-order derivatives. Above this order, numerical instabili- o o ) )
ties lead to fluctuations in the values of the derivatives obtained  The significant feature to note in Figure 2 is thatig,’ is
via finite differentiation, regardless of the number of points used. increased in increments of 500 chthe energy to which the
The higher order contributions to the potential were determined €igenvalues are converged increases by almost 500. drhis
via least-squares fitting oAV, where AV is the difference is an ideal situation for any variational calculation; it is the result
between the full potential and our sixth-order expansion of it. Of @ basis set where the only couplings are those between nearly
The Taylor series expansion of the potential includes up to four- degenerate states. Similar convergence was found by Ramesh

body terms. The least-squares fit expansion includes only one-€t al. for CHR.%3 o
body terms. Having verified the convergence of the variational part of

Figure 1 shows equipotential energy contours for our fit the calculation, we can now test the convergence with respect

potentials for the (ap set and (b)p set. Also shown are the to the order of the perturbation theory. In Figure 3, we plot the
differences between the fit potential and the Kato potential. The difference between eighth- and sixth-order results as a function
results for the plots with respect to other coordinates show ©f €xcitation energies. One can see that the convergence is good
qualitatively similar agreement. The plots clearly show that the UP to 7000 cm* of excitation for both the set of coordinates
two-body contribution to the fit potential is in excellent 2and the polyspherical coordinates, with the convergence being
agreement with the Kato potential for energies up to at least Slightly better for the former. Focusing on just the overtone states
12 000 cntl. Results for thep andd sets, although different, shown in Figure 4, we see that_at sllghtly higher energies the
do not appear to differ in the extent of the potential coupling. discrepancy between the coordinates is greater with the poly-
Further tests of the agreement will come from comparison of SPherical results having(eighth order)- E(sixth order) values
variational results obtained for the Kato surface and the fits to lmost as large as 90 crhfor the overtone of the out-of-plane
this surface which are described in the following section. bend.

To obtain eigenvalues associated with the potentials just
described, we carry out the perturbative transformations and
then diagonalize the Hamiltonian in an appropriate basis set In this section, we further examine the quality of our fits of
¢8. Our Hamiltonian allows for most of the plausible resonance the Kato potentia¥® It is essential to quantify the accuracy of
interactions and is, therefore, not block-diagonal. As in the a fit. An easy way to do this is to plot the differences between
variational calculation,23 is restricted by the energy cutoff the two surfaces. Such an analysis is not so trivial when the
described by eq 2. We check for convergence by increasingnumber of degrees of freedom increases. One can readily
the energyEma? and observing how the eigenvalues change. compare 2D slices as we have done in Figure 1. It is, however,

V. Effect of the PES Fit on the Accuracy of the Spectrum
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The top and bottom panels use the fits obtained with¢tlaad o sets

of the coordinates. The energies are provided by the JW variational

method, and only statés, ..., vsdsuch that; < 4 are included in the

comparison.

Table 3 provides the main projections of these eigenstates onto

not easy from the comparison to estimate the consequence othe working basis set. This table demonstrates that the descrip-

small differences on excitation energies and on the eigenstates
For this reason, we will estimate the error generated by the
polynomial fit by comparing eigenvalues and eigenvectors for

the surfaces.

The excitation vibrational spectrum has been computed with
the JW method described in section Il with three different
PESs: the original global one developed by Kétwhich
constitutes in this study the reference PES and the fitted
expressions of this reference PES by using either the poly-
spherical set (the set) or thed set of coordinates.

Figure 5 represents the error in the energies 'oftates| v,

..., vglIsuch thaty; < 4 generated by the fit using either the
set or 6 set of coordinates; Figure 6 provides the same
information for the A overtones statelsw;Cup to 8000 crm.
First, it is remarkable that these rather simple fits provide
accurate energies for states with small excitation in the out-of-
plane mode and even for highly excited overtones of the in-
plane modes. The only significant errors are observed for state
with large excitation in the out-of-plane modes.

Focusing specifically on these states, we compare expressions

of the eigenstates associated with the fifth and seventh out-of-
plane overtones. In Table 3, we compare expansion coefficients
Cu...ss TOr select wave functions describing the out-of-plane
bending motion.

Inve= Z Cpporgl1s AL (8)

tion of the overtone states is similar for all three PESs used.
This result is crucial; it shows that our fitted PES, which
provides energies with errors larger than the average level
spacing, provides a reasonably correct description of the
eigenstates. That means, for instance, that the dynamical
behavior, that is, the vibrational energy flow through the
molecule, should be very similar whatever the PES used up to
8000 cm! of excitation energy.

VI. Comparison of CVPT Perturbative and JW
Variational Results

The excitation spectrum obtained after a sixth- or eighth-
order perturbative treatment is now compared to the spectrum
obtained with the variational JW method. This comparison
allows us to quantify the accuracy of the spectrum obtained
with CVPT. One has to remember that the error of the
variational calculation generated by the finite dimension of the

“basis set can be estimated to 0.1 érfor energies near 3000

cm~1 and less than about 3 cthnear 8000 cmt. It should be
possible to improve this accuracy by performing a specific
calculation in an ideally adapted basis for the 300 states
calculated in this study. However, such an accuracy is sufficient
because the inherent error of the PES for highly excited energies
is larger than this quantity.

We first focus on the spectrum obtained with the PES fitted
with the d-set of coordinates. Figure 7 compares the variational
energies of combination statelgy( ..., vg[lwith »; < 4) with



5426 J. Phys. Chem. A, Vol. 110, No. 16, 2006 lung et al.
(a) & Set (a) & Set
70 e B L B B W71 71— L
2 60F 8 i - =
m < mode 3 overtones = o
& 50 |4 modedovertones N S 5t
- <+ mode 5 overtones = L
QL * mode 6 overtones R=1
£ 40r - =
& Z
& 301 . g oor
- f g |
= 20} - s |
E S &
2 o} * — %o O )
) ] !
Mook + a0 o paro + A 120 469 I
5] [ 1
ol ol . .l
1001000 2000 3000 4000 5000 6000 7000 8000 0 10002000 3000 4000 5000 6000 7000
Excitation Energy (cm']) Excitation Energies (cm )
(b) Polyspherical Set (b) & Set
L4 o e e e LB E ) W77 7T 1
10 OV S 1 o max 1
S 60F [S ke 1 = F°
4] < mode 3 overtones = max
%5 501 |5 medesovetones 1 R D ]
§ % mode 6 overtones < A Viax 4
S 40 s g ]
ial Z
0 m 0,
& 30 % y ~
A 5 |
oy o L
£ ) 5 I
T o %o Of
S L * | sl
o a2 a
0F + 4% oB P+ o + By +7+ F 0o
L (m] 4 [ 1
T Y Y P E Y R
- e . 0 1000 2000 3000 4000 5000 6000 7000
100 1000 2000 3000 4000 5000 6000 7000 8000

Excitation Energy (cm'l)

o . -1
Excitation Energies (cm )

Figure 7. Energy difference BEcvpt — Evariationa) €Xpressed in cmt
for |vs, ..., vs0such thaty; < 4 when the PES is fit with thé set of
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Figure 6. Energy differenceHoriginaires— Eriteared €Xpressed in cri

for A’ overtone stategw;l] The top and bottom panels use the fits
obtained with thed and ¢ sets of the coordinates, respectively. The
energies are provided by the JW variational method.

the CVPT value is more accurate because a variational calcula-
tion in a larger basis should provide slightly smaller energies.

than 0. 15 for the Overtones|6vgand |8v6|ZIExpressed in the

Zero-Order Working Basis Set of Eq &

It is not a rule but is usually observed when the state is not too

state original PES o fit polyspherical fit strongly coupled to another via an anharmonic resonance. When
66 E—60184 E = 60084 E=5991 24 the CVPT energy is slightly I_ar_ger than the_,' variational energy,
0.17/6400 0.17]640 0.171640 one can assume that the variational value is more accurate. This
0.77|6609 0.77|6609 0.7716609 latter case does not occur often (few points correspond to this
0.144,650 0.164,650 0.15|4,6509 case). Consequently, the accuracy of the energies provided by
g'iglglgﬁg g'igiglgﬁg g'gg:glgﬁg CVPT is impressive. One can also notice that the differences
. 104 . 104 . 104 P . .
0,281,640 0,281,640 0.27|1,6,09 b_etvx_/gen the _varlathnal and perturbative energies are not
0.15]1,660 0.15]1,660 0.15]1,66(9 significant: this error is smaller than the error generated by the
8vs E=7984.9 E = 7958.65 E=7917.52 inherent inaccuracy of a PES.
0.25|6s0 0.241660 0.25|660 Figure 8 focuses on overtones states up to 8000cithis
8-‘15‘7”28?@ 8'?:31'2%@ 8'613??18?@ figure reveals that the in-plane overtones are very accurately
174,66 164,65 164,65 obtained after sixth-order treatment and show slow convergence
0.24|3,6501 0.25|3,650 0.25]3,6sM . . L : .
0.202:66[% 0.22 2,669 0.26 2,660 of highly excited out-of-place overtones. This is consistent with
0.30]1166 0.29]11661 0.28]1,650 Figure 2 which shows that the convergence of the perturbative
0.15]1,650 0.15]1,650 0.15]1,650 treatment is slow for states with large excitation in the out-of-

@ Absolute values are given since the signs cannot be compared. Here! plane mode. However, the result obtained after an eighth-order

we use the notation, for exampld;6s[M to represent the stat6, 0, 0,

1,0, g9

perturbative treatment is satisfactory.
One can now focus on the spectrum obtained with the fit
performed with the polyspherical coordinates (cf. Figures 9 and

the perturbative energies obtained with a sixth- and eighth-order 10). CVPT converges more slowly with thjsset of coordinates.
perturbative treatment, respectively. These results demonstratdt is not trivial to predict why the) set of coordinates seems to
that the CVPT convergence is excellent. The quality of the be more adapted to describe this system. One possible reason
spectrum obtained is very good even after the sixth-order IS that the singularities inherent in using normal coordinates
perturbative treatment. The main disagreement between the sixttPccur at lower energies for theset than the set. Specifically,

and eighth orders is obtained for states with large excitation in the out-of-planep coordinate is ill-defined iCOx CH=0or

the out-of-plane mode. When the energy obtained by CVPT is CO x CF = 0, while thed set is defined even when the atoms
slightly smaller than the variational energy, one can think that are collinear. In either coordinate set, however, an eighth-order
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Figure 8. Energy difference Ecvpr — Eyariationa) €Xpressed in crt Figure 9. Energy difference Ecvpt — Evariationa) €Xpressed in cmt
for the overtones statesy;Clup to 8000 cm?* when the PES is fit with for |vy, ..., vsOdsuch thaty; < 4 when the PES is fit with the set of
the 6 set of coordinates. The states are labeled by the sy Yi coordinates: (a) CVPT results at sixth order and (b) CVPT results at
vi: (@) CVPT results at sixth order and (b) CVPT results at eighth eighth order.

order.
polyads of states; second, there is a relatively low dissociation
treatment provides an excellent spectrum when the out-of-planeenergy. Nonetheless, the agreement found here is similar to the
mode is not too excited. results obtained by Ribeifdin a preliminary study devoted to
In summary, the above comparisons demonstrate the greati2CO and using the PES fitted by Sibert and co-workers with
accuracy of the CVPT approach up to 8000¢énCVPT results CVPT20 In that study, it was demonstrated that the energies
are least accurate for states with a large excitation in the out- provided by the JW method always converge to the CVPT value
of-plane mode. For these states, the convergence is slower withup to 9500 crm. However, HCO is a rather simple system to
the polyspherical set of coordinates. This point is consistent with treat by CVPT because polyads of states are easy to define and
Figure 4 which reveals that the convergence of the perturbative dissociation occurs at higher energies. Consequently, the HFCO
treatment is slower for states with large excitation in mode 6. system studied here provides a more rigorous test of the method
than earlier studied systems where comparisons were made to
VII. Conclusion and Perspectives variational results.
This study examined the error that is introduced when
This study has quantified the accuracy of eigenvalues obtainedworking with a PES that has been fit to a polynomial form;
via the perturbative CVPT method by comparing them to those this being a requirement of CVPT. To quantify this error, we
obtained with the variational JW method. The results demon- Compared variational results from the JW method for a g|oba|
strate the great accuracy of CVPT for calculating both combina- syrface and fits to this surface. We found that the error generated
tion states and overtones states up to 8000'c@VPT is almost by the polynomial fit is very limited and smaller than the
always faster than a variational method and as accurate for ajnherent inaccuracy of a PES for all the states moderately excited
moderately excited part of the spectrum. A notable caveat is in the out-of-plane mode. The out-of-plane mode should require
that one must compare successively higher orders of the more attention and a more sophisticated fit. We also noted that
perturbation theory and test for convergence. It is important to the basis set expansion coefficients of the eigenstates describing
mention that the labels of the states studied are nearly identicalthe highly excited out-of-plane overtones are not very sensitive
for the two methods even while strong anharmonic resonancestg the accuracy of the fit. This point is important and reveals
couple multiple zero-order states. This point is not trivial because that the fitted expressions correctly represent the main intermode
the space in which the Hamiltonian is diagonalized is different couplings for this system. This trend has also been observed in
in these two methods. a recent study using the MCTDH meth&d* a method that
HFCO was chosen for this study because this molecule is, aalso requires a fit to the PES in order to provide the time
priori, not ideally suited to treatment by CVPT. First, it is not  evolution of wave packets. It has been shown recently that the
possible to define a quantum numbér= ZiG:l civi to define energy flow through the system is not very sensitive to the
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