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Protein Dynamics from NMR: The Slowly Relaxing Local Structure Analysis Compared
with Model-Free Analysis’

I. Introduction

NMR is currently the most powerful method for studying
protein dynamics at the residue levef. The commonly used
dynamic probe is thé’N—1H bond. The relaxation parameters
15N Ty, T, and™N—1{H} NOE are measured experimentally at
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I5N—1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional
method of data analysis is model-free (MF), where the global and loedd hotions are independent and

the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results
are typically field-dependent, and multifield data cannot be fit with standard fitting schemes. Cases where
known functional dynamics has not been detected by MF were identified by us and others. Recently we
applied to spin relaxation in proteins the slowly relaxing local structure (SRLS) approach, which accounts
rigorously for mode mixing and general features of local geometry. SRLS was shown to yield MF in appropriate
asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral
density. The MF formulas are often used outside of their validity ranges, allowing small data sets to be
force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of
force-fitting and its implications. It is shown that MF analysis force-fits the experimental data because mode
mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted
for. Combined multifield multitemperature data analyzed with the MF approach may lead to the detection of
incorrect phenomena, and conformational entropy derived from MF order parameters may be highly inaccurate.
On the other hand, fitting to more appropriate models can yield consistent physically insightful information.
This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental
data. As shown herein, the SRLS spectral densities comply with this requirement.

Three point ¥N Ty, T, and®N—{H} NOE) data acquired
at a single magnetic field, pertaining to structured regions of
the protein backbone, can be usually analyzed with optimization
(data fitting) methods using the original MF form§laFlexible
residues residing in loops and mobile domains required the
development of the extended MF form@ldhe latter features

one or several magnetic fields. Their expressions are given byj fast effective local motiong, associated with a generalized

the spectral densities(w), and the relevant magnetic interac-
tions (°N—1H dipolar and thé®N CSA)*5 The functions)(w)

squared order paramet&?, and a slow effective local motion,
7, associated with a generalized squared order parangger,

are determined by the dynamic model used, and the local All the modes are assumed to be independent,de> 1, Tm

geometry at the NH site.

The traditional method of data analysis is the model-free (MF)

approact—8 MF assumes that the global motion of the protein
(R® = 1/6r,) and local motion of the NH bond R- = 1/674)
are “independent” or “decoupled”, by virtue of the former being
much slower than the latter,{ > 7-). The local ordering is
measured by a squared generalized order paran$tend the

rate of local motion is evaluated by an effective correlation time,

> 15, andts > .

The MF order parameters, including the global motion
correlation timegn, are typically found to be field-dependent.
This means that combined multifield data sets cannot be fit with
standard fitting schemes unless some data are exclu8evll
anisotropies in the global diffusion tensor were found to have
a very large effect on the analys$fsNonnormal t-distribution
of NOEs was detected. The temperature-dependence of MF

7e. Both parameters represent mathematical properties of theorder parameters was found to be unduly sitaif. The local

spectral density. The local geometry is simplified, with the
ordering and magnetic tensor frames axial and collinear.
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motion was found to be practically independent of temperature
and/or experimentally measured viscodity!® contrary to
expectations based on typical activation energies for motions
in flexible molecules. In some cases experimental relaxation
parameters exceeded the extreme theoretical vatdéS€om-
bined analysis of NH bond dynamics and '€C* bond
dynamics yielded inconsistent resuts8We found that known
functional dynamics in adenylate kinase frdm coli is not
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detected with MF analysi€:20Similar observations were made to squared order parameters of 8@B95. Equation A4 of ref
by other workers in the field! 6, based on the wobble-in-a-cone model, is also appropriate for

These shortcomings are usually rationalized by invoking data relatingze to 7 and & provided the ordering is higH.
imperfection. Alternatively, the simplicity of the MF analysis We determined quantitatively over what range the conditions
may be the main underlying reason. This option can be testedR- > RC and &?)? ~ 1 apply by comparing SRLS and MF
by analyzing the same data with an improved version of the results?” The original MF formula often yields best-fit param-
theory, where the simplifying MF assumptions related to liquid eters that do not fulfill these requirements. These are cases where
dynamics and local geometry are no longer invoked. This was the experimental spectral density comprises mixed modes, which
accomplished by applying to spin relaxation in protérthe are incompatible with the simplified MF formul& andz. can
slowly relaxing local structure (SRLS) approach of Freed et no longer be associated with the relevant physical quantities.
al.23-25 which can be considered a generalized version of the Instead they just become fitting parameters, which have absorbed
MF approach. Rather than assuming mode independence, théhe discrepancies between the experimental and oversimplified
SRLS approach accounts rigorously for mode mixing through theoretical spectral densities. Moreover, we found that often the
a local potential. The latter represents the spatial restrictions symmetry of the local ordering at the-NH site is rhombic®
on N—H motion, which in the MF approach are expressed by In these cases the original MF formula is not a good approxima-
a squared generalized order parameter. Genuine axial andion to the experimental spectral density even wB&is high
rhombic order parameters are defined in SRLS in terms of the andR®/R- is small, because a single order parameter no longer
local potential. Unlike the MF approach, the SRLS approach suffices.
allows for a full range of time scale separations between the The extended MF formula was obtained in early work as a
local and global motions (e.g., they can be comparable). The perturbational expansion of the SRLS solution in rhombic local
magnitude, symmetry and orientation of the ordering, diffusion ordering in theR- > RC limit, 30 for a 9C tilt between an (axial)
and magnetic tensors are all allowed to vary. In general, SRLS magnetic frame and the main local ordering/local diffusion frame
features pure and mixed local and global dynamic modes. In (M).?” This means that the NH bond experiences fast diffusive
appropriate asymptotic limits it yields the “mode-independent” local motion in the presence of very small rhombic ordering
MF formulas. exerted by the immediate protein environment around, e.g., the

Experimental'>N relaxation data were subjected in parallel C,—C axis, or the N=C bond. The components of the
to SRLS (exact solution) and MF (asymptotic solution) analy- diffusion tensor aréR: = 1/6r- and R, = 1/6tk, and of the
sest®20.22.26.27Significant improvement on many of the issues ordering tensorS? andS;2 The protein surroundings reorient
mentioned above was obtained with SRLS analysis. The at a rateRC = 1/6r,, much slower tharR; and R5. The
goodness of fit was similar to, but the best-fit parameters extended MF formufawas offered to represent the scenario
significantly different from, the MF counterparts. Given that where the N-H bond experiences both fast and slow isotropic
the more general SRLS approach contains the MF formulas as|ocal motions with eigenvalues and squared order parameters
special cases, this indicates that the experimental data correspond/z; + 1/, andS?, and 1ts + 1/, andS2, respectively. These
to the general SRLS solution rather than the asymptotic MF motions are assumed to be decoupled from one another, and
solution. It also indicates that it is the simplicity of the MF  from the global motion, implying the conditions < 7s < 7.
approach, rather than experimental imperfections, that underlies|n practice, the extended MF formula is used when~ 7.
the inconsistencies mentioned above. That a similar quality of The coefficients of the local and global motion terms in the
fit can be obtained is related to the fitting process involving extended MF formula are formally expressible in terms3)¢
specific values of(w), which enter the expressions foy, T> and 22 However, the MF parameters are totally different in
and the NOE!® Different combinations of the requiret{w) implication from the SRLS parameters.
values can yield the same relaxation rates. The process whereby Typical best-fit values obtained with MF fitting of flexible
an oversimplified spectral density yields inaccurate best-fit protein residues ar@2 ~ 0.55,52 ~ 0.8, 7s ~ Tm and; < T,
parameters (which depend on the spedific) values) with good  yhich are just fitting parameters. This is implied by the presence
statistics is called “force-fitting™. of mixed modes which dominate the spectral density when

Let us point out the asymptotic nature of the MF approach. is on the order ofr,, (which is typically the case for flexible
The original MF formula represents the SRLS solution in the residues in proteins). It should be pointed out that even if the
Born—Oppenheimer (BO) limit defined big- > RC, where the perturbational conditions would prevail at the-N site, the
local motion, characterized by the re®e, can be treated for ~ MF physical picture would be puzzling, requiring two inde-
frozen global motion, measured by the r&e?”-28In this limit pendent isotropic but restricted local motions associated with
the total time correlation functioG(t), may be expressed within  different ordering scenario$S£ and S?) imposed by the very
a good approximation as the product of the time correlation same protein environment reorienting with correlation tipe
function for global motion,CS(t), and the time correlation  ~ 75 while being at the same time decoupled fresnOn the
function for local motion, C-(t). When CC(t) = other hand, an NH bond may reorient almost independently
exp(-t/rm) and the local ordering is high, then t&from the around ¢ ,—C" (i.e., mixed modes may be ignored) in the
MF analysis is a good approximation to the squared axial SRLS |imit where R- > RC when the restricting local potential is very
order parameteiS?)? and the effective local motion correlation  small. In this case the physical properties of axial local diffusion
time, 7, is given by the “renormalized” local motion correlation  and rhombic local ordering are properly described by the
time, 7ren.?” The concept of renormalization was used in early simplified spectral density given by eq 19 below.
work? to characterize significant reduction i = 1/6R- by The validity ranges of the MF formulas are illustrated in

strong local potentials. It was sho#nthat zen = 2 7-/cg, Figure 1a,b. The ordinates represent the logarithm of the time
where ¢; evaluates the strength of the local axial potentials scale separation between the global and local motions and the
(within the context of a general established potential fosee  apscissas represent squared order parameters. The original MF
below). Clearlyzien < - when cg is large. Typical values are  formula is applicable to a good approximation within the solid

cé = 10—40 (which is to be multiplied bksT) corresponding box on the right-hand side of Figure 1a. This range is often



8368 J. Phys. Chem. A, Vol. 110, No. 27, 2006

Allowed MF param.ranges: solid rectangles

Meirovitch et al.

U L a T I T | T I |
~ 05—
w5l
(<] Ll
= s
éu 2 i 2 H methyl side chain RY s> RC
r ORIG. BO limit - high axial ordering
25— MF CSA frame same as D frame
3 I 1 L | L 1
0 0.2 0.4 0.6 0.8 1
S 0 i T T T T T T T T 1
E 0.5 b 5
e 15N -1H backbone B
S . =
I3} L 4
S L o 1
50 F i
-Q 2 —y —
E EXT'D 1 RY(app) > RC
25k MF —|  Pert. limit - low perp. rhombic ordering
-4 CSA frame same as D frame
_3 1 | 1 I 1 I 1 |
0 0.2 0.4 A 0.6 0.8 1
(sh

Figure 1. Schematic illustration of the range of validity of the original (a) and the extended (b) model-free foriRuléR:) represents the

diffusion rate for isotropic global (local) motion. The solid rectangles delineate the valid ranges. The empty rectangles delineate the parameter
ranges where these formulas are typically applied in protein dynamics research. The conditions under which the MF formulas are valid are specified
on the right-hand side of (a) and (8}-(app)= 1/3(R; + R}).

exceeded in MF studies. We found that typical usage of the various effects mentioned above are estimated quantitatively.
original MF formula involves discrepancies on the order of Our general conclusions imply that the dynamic picture yielded
7—8% between the squared SRLS order parame®h?( and by MF analysis is often distorted. We show cases where
squared generalized MF order parame®&rimplied by limited qualitatively erroneous conclusions were drawn, fictitious
mode mixing effects, and by the simplified MF assumption that phenomena were detected, and known functional dynamics was
the 1>N—H dipolar and®N CSA magnetic frames are col- missed. Conformational entropy and other thermodynamic
linear?” If the effective correlation time for local motiome, is guantities derived from MF order paramef8rg® may be
taken to represent the bare correlation time for local motion, inaccurate. Reliable fitting occurs with the SRLS approach when
74, the latter will be underestimated five-, to 20-féldThe 2H the rhombicity of the local potential is accounted for and the
spin relaxation of side chain methyl groups is analyzed mainly local diffusion is allowed to be axial without limitations on the
with the original MF formula (e.g., refs 31 and 32). The ratioN = Ri/R-. At this level of complexity the SRLS spectral
parameter range covered by typical best-fit parameters is showndensity matches the integrity of currently available experimental
in Figure 1a by the rectangle labeletH methyl side chain”, data.
which clearly digresses from the solid box in this figure. Thus,
in this application the original MF formula is mostly used
outside of its validity range. The solid box in Figure 1b shows
the parameter range in which the extended MF formula is valid. 1. Slowly Relaxing Local Structure (SRLS) Model. The
In this case the abscissa represents both the agg)?(and fundamentals of the stochastic coupled rotator slowly relaxing
the rhombic, §2)2, squared order parameters, which are very local structure (SRLS) theory as applied to biomolecular
small. The rectangle labeled®N—H backbone” shows the  dynamics including protein NMR were outlined recerfihy>37
parameter range in which the extended MF formula is applied We summarize below key aspects. The various reference frames
in N—H bond dynamics studies. Here the abscissa representghat define the SRLS model, and their relation te M sites in
both S2 and S2. Clearly, in this application, the extended MF  proteins, are shown in Figure 2. A segment of the protein
formula is used outside of its validity range. We found that the backbone comprising the atomg',QN;, HN;, C_,;, O—; and
MF parameterss andS? exceed their formal SRLS analogues, C ,, the equilibrium positions of which are traditionally taken
5 and &?? up to 4-fold and 12-fold, respectively:20.22 to lie within the peptide plane defined by;,NHN;, C_, and
Significantly larger disagreements between the SRLS and MF Oy, is illustrated in Figure 2b. The orientation of the-N
approaches are expected when the SRLS analyses are carriebdond with respect to the magnetic field is modulated by its local
out allowing for rhombic potentials. lllustrative calculations motions and by the global motion of the protein. Thus, in the
based on a recently developed fitting scheme featuring rhombic SRLS model we are dealing with at least two dynamic modes
potentials are provided below. that we can represent by two bodies{N bond and protein)
Force-fitting will also occur with SRLS versions that are whose motions are coupled or mix&*For each motion two
oversimplified as compared to the experimental spectral densi-frames need to be introduced. The first is the local ordering/
ties. Therefore, investigating the mechanism of force-fitting with local diffusion frame, M, which is fixed in body 1 (in this case
the goal of elucidating the SRLS version, which satisfactorily the N—H bond) and is usually determined by its geometric shape
matches the experimental data as implied by their integrity, is in the context of its motionally restricting environment. The
important. This is the subject of the present study. It is shown second is the local director frame', @hose axes represent the
that the model-free approach force-fits the experimental data preferred orientation of the NH bond (Figure 2b) and which
because mode mixing, rhombic potentials and general featuress fixed within the protein framework. The motion of body 1 is
of local geometry are not accounted for. When possible, the coupled to, or mixed with, the motion of body 2 (in this case

Il. Theoretical Background.
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Figure 2. (a) Various reference frames which define the slowly relaxing local structure (SRLS) model: L, laboratory frame; C, global diffusion
frame associated with protein shapé; I6cal director frame associated with the stereochemistry of the local protein structure atltheitd; M,
local ordering/local diffusion frame fixed at the-NH bond; D, magnetid¢®N—H dipolar frame; CSA, magnetit®™ chemical shift anisotropy
frame. (b)Zp, Xp, Zu and Yy reside within the peptide plan&p lies along the N-H bond andYp is perpendicular to the peptide platfeThe
uniaxial local director €, assuming isotropic global diffusion) is taken to lie along éoilibrium C* ,—C axis. The main ordering axis is taken
along G',—C. This implies perpendicula¥y ordering with Sup = 101.3. “Nearly planarYu—Xu ordering determined previoushy, i.e.,
positive ordering along{y and almost no ordering alorig, (for brevity we will denote this ordering symmetry below as “nearly plafatXu
ordering/symmetry”), implieguo = 101.3 andymp = 90°. For high ordering thé&y axis is aligned preferentially alon@. The axesXcsa, Ycsa
and Zcsa (not shown) are defined to be aligned with the most shielded, (intermediate ¢,;) and least shieldeds¢s) components of théN
shielding tensor, respectivéfy(information on chemical shielding and local geometry for tHe-C* bond appears in ref 45). The polar angle
betweenZp andZcsa was set equal to 27in our study® Ycsa is perpendicular to the peptide plane (i.e., paralleYp*

the protein) by a local coupling or orienting potential that seeks follows. The laboratory L frame is space-fixed, both C arid C

to bring the N-H bond into alignment with the local director

are protein-fixed, and the M, B3N—H dipolar) and CSAN

frame. There are no limitations on the relative rates of motion CSA) frames are fixed with respect to the-N bond. The L
of the two bodies, or the symmetry and strength of the coupling frame is considered an inertial frame with respect to which all

potential.

The reorientation of the N-H; bond is restricted due to
limited bond oscillations, conformational reorientations about
the adjacent dihedral angle®( Wi-,), the crankshaft motion
(anticorrelated rotations abodt and Wi_,),3® nitrogen pyra-
midalization3® peptide-plane motion around*G—C/, etc.,

moving frames are defined. The M frame represents both the
local ordering and the local diffusion frame, which for conven-
ience are taken to be the same. The Euler an§gg are
modulated by the local motion and the global motion, whereas
the Euler angle®, ¢ are only affected by the latter. These angles
are referred to the fixed lab frame to properly describe the

and any interactions with the local environment. In general, these giffusion. The local ordering frame M tends to align with respect

processes imply effective Euler ang®gp = (omp, Smp, Ymb)
that define the relative orientation of the local ordering/local
diffusion frame, M, and the magneti®tN—H dipolar frame,
D (which lies along the NH bond). In particular, taking
C",—C! as the local director, 'C and as the main local
ordering/local diffusion axis, one haf along the instantaneous
orientation of the € ,—C axis (i.e., “Yu ordering”), and C
(i.e., Zc) along the equilibrium orientation of the’G—C
axis. In this cas&€yp = (0°, 101.3, 9C°). This geometry is
implicit in the 3D Gaussian axial fluctuations (GAF) maotfel
(the difference in the’yp values (180 in 3D GAF and 90 in
SRLS) is implied by the different definitions of th&, and Yy
axes). Similar values of2yp are obtained by replacing the

> ,—C" axis with the N—C* bond. The N-H bond experi-
ences an increasing orienting potential whgndeviates from
C'. The global motion of the protein (body 2) is frequently
approximated as that of a cylinder, with its long axis taken to
be thez-axis of the global diffusion (C) frame. For spherical
(or globular) proteins the C and @ames are the same.

la. GeometryThe various frames of the SRLS model, as
applied to amidé®N spin relaxation in proteins, are shown in
Figure 2a. A formal definition (as compared to the physically

to a local director C The relative orientations of M with respect
to C and C are defined bf2cm and Qcw, respectively. The
local director Cis tilted at Euler angle§2cc with respect to

the cage (i.e., protein) frame C (tilted with respect to the
laboratory frame at Euler angl€3,¢c). The Euler angle€2¢cc

are time-independent. It is reasonable to assume that only the
polar angleScc is important. Note tha€2 v involves the sum

of rotationsQ ¢ + Qcc + Qcm [here and in the following we
shall employ a shorthand notation for indicating sequences of
rotations; namely, for a generic rotatidd;,; = Q + Q,
resulting from first applying2; and thenQ2, we can write the
explicit relation among Wigner rotation matrices Bl5(Q12)

= SyD!,(Q1) DL, (Q2)]. The time dependence of the Euler
anglesQc is governed by the local orienting potential, which
couples the two modes of motiofhrough the time dependence
of Qcwm the locally reorienting N-H bond follows the slower
motion of the protein.

The magnetic!®N—!H dipolar tensor frame, D, and the
magnetict®N CSA tensor frame, CSA, are also shown in Figure
2a. The Euler angles specifying the rotation from M to D are
Qwmp, and the rotation from D to CSA is given I§y. The Euler

descriptive presentation given above) of the various frames anglesQyp andQ are time independent. The D frame is axially
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symmetric. If the M frame is also axially symmetric, th@gp
= (0, Bmp, 0), whereBwp is known as “diffusion tilt”.

The diffusion tensoiR- describing the rotational diffusion
properties of the probe (NH bond in this case) is diagonal in
M, whereas the diffusion tensd® describing the rotational
diffusion properties of the cage (protein in this case) is diagonal
in C. We start by assuming Smoluchowski dynamics for the
coupled set of orientational coordina®gy andQ ¢, according
to the slowly relaxing local structure approach. Namely,
system consists of two Brownian rotators (or “bodieshe
amide group and the rest of proteitinked by an interaction
potential that depends on their relative orientation. Their motions
are characterized by slow diffusive changes, controlled by
suitable rotational diffusion parameters. Formally, the diffusion
equation for the coupled system is given by

the

9 _
aP(X,t) = —T'P(Xt) (1)

whereX is a set of coordinates completely describing the system

X=(Qm,QLc)

I= :](QLM)RLPeqj(Qlel)Peq7l + :](QLC)cheqj(gl_c)Per;1

2
whereJ(Q.v) andJ(Q.¢) are the angular momentum operators
for the probe and the cage, respectively.

Changing to different coordinates is straighforwéfdyve
select the set defined fpcm andQ . The Euler angleS2cm
describe the orientation of the M frame fixed at the M bond
relative to the proteirfixed C frame and the Euler angle®| ¢
describe the Cframe orientation with respect to the lab frame
In the new coordinate frame one has

A = EQC’M'QLC') .
FAZ J(QC’MA)RLPqu(QC'M)APeq_l .
[3(Qcn) ~HR)RPJIQen) — HQL)IPeg  (3)

The Boltzmann distributiofPeq = exp[~U(Q.m)/ks T}/ [&Xp[—
U(Quw)/ksT]Uis defined with respect to the probe-cage interac-
tion potential given by

U cwm) _

KT cAD5 ARcw) +

U(QcM) COD2 O(QC M)

D5 —o(Qcw)] (4)

This represents the expansion in the full basis set of Wigner
rotation matrix elementf«m(Qcwm), with only lowest order,
i.e., L = 2, terms being preserved. The coefficie]ﬁt is a
measure of the orientational ordering of the-N bond with
respect to the local director wherea% measures the asym-
metry of the ordering around the director. Here we follow
historical convention by using = 2 terms as the leading terms,
rather tharL = 1. This is sufficient for many purposes, as we

have previously shown, because NMR involves second-rank

(i.e.,L = 2) magnetic tenso®.However, the SRLS theory can
readily be modified to include. = 1 terms. The current

approach is in the spirit of keeping the number of parameters

to a minimum.

The SRLS equation can be solved in terms of the time-
dependent distributioP(Qcm,R2Lc,t), which describes the
evolution in time and orientational space of the system.
Alternatively, it is convenient to directly calculate time cor-
relation  functions Cyy . (t) Dy *(Rum)lexp(Tt)| x

Meirovitch et al.

DﬂA’K'(QLM)Pqu which for proper values of the quantum
numbers],M,K,K’ determine the experimental NMR relaxation
rates. Actually, the FourierLaplace transforms OCR]A,KK'(t)
are needed, and they are obtained as the spectral densities at a
given frequencyw:
M — m? : =112
Jkie(@) = My *(Quw)l(iw + 1) |DM,K'(QLM)Pqu ®)
As stated here, the model has eleven parametefs:c
(potential parameterslx!' (probe diffusion = 1, 2, 3 principal
values), R (global diffusioni = 1, 2, 3 principal values) and
Qcc = (0ce,fecyyce) (global diffusion tilt angles). For the
sake of simplicity we shall limit our anaIyS|s to axial proﬂ?
=Ry = R; = R}, axial cageR} = Ry = RS = R =R},
andacc = ycc = 0. The orientation of the magnetlc tensors is
specified byQyp and Q (defined in Figure 2a). In the past
work!9.20.22.26.23ye made use of eq 2 involving v andQ,c.
In the present study we have used eq 3 invohghg andQcw.
The primary reason is that the use of the relative orientation of
the N—H bond in the protein specified by tl§eécy is the more
natural one in terms of conventional intuition. One can simply
think of the Euler angle®cw as just being modulated by the
local motion, wherea$2, ¢ is just modulated by the overall
tumbling of the protein. Also, as we have already noted, the
Qcwm are the natural coordinates for expressing the potential
energy given by eq 4. (This does, however, rendef thperator
somewhat more complicated.) Of course, the two forms are
mathematically equivalent. In ti@ frame, the global diffusion
tensor assumes the form

C

RS cos e + RS sin foe O
0
SR~ R) sin(ec)

S(RE — R) sin(bicc)

RS o

0 RSsin fec + Ry cos fec
(6)

The probe diffusion tensor is diagonal in the M frame. Note
that for fcc = 0 or RS = R the global diffusion tensor is
diagonal and invariant in both the C and ftames.

1b. Numerically Exact TreatmenWe address here the
problem of devising an efficient procedure for evaluating
numerically accurate spectral densities. We adopt a variational
scheme, based on a matrix vector representation of eq 5,
followed by an application of the Lanczos algorithm in its
standard form developed for Hermitian matrices. It is convenient
to express the generic correlation function as the linear
combination of normalized autocorrelation functions. Defining
2A ke = Dy + Dy, the spectral densities of the normal-
ized autocorrelation functions of interest are

Bk (Qu)Peq (i + 1) 7Y x
AM KK' (QLM)P 1/2mmAiA,KK'(QLM)|2Pqu (7)

and the generic spectral densities are

JSIKK(CU) =

[2(1+ 5K,K')jfn,KK'(w) - ij,KK(‘“) -

Ik (@)2[3] (72)
whereJ = 2 andM = 0 in our case. We use the shorthand

notation J] = 2J + 1. A numerical calculation is then performed
by choosing a basis set of functions, representing in matrix form

Im ki (w) =
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the transformed operatér = Peq 2 Pit’2, and evaluating eq

7 directly by employing a standard Lanczos approach. The latter
is reviewed here for completeness in accordance with the

standard technique of Moro and Fre8d?Let us suppose that
we are interested in calculating the Fouritaplace transform
of the normalized autocorrelation function of an observéoje
for a diffusive symmetrized (i.e., Hermitian) operaifoacting
on coordinate, in the formj(w) = [0f *Ped? (i + T) Y| 0fPeg/D
[f|?Pe) whereof = f — [P.{Jis the observable redefined to

J. Phys. Chem. A, Vol. 110, No. 27, 2008371
AR (@) = ZDi,o(sz'“)Frﬁ[jM,KK(w)] +

23 MPica(Q") Die o ] Ainec ()] (9)

where &2 stands for the real part. Note that for axial potentials
(c§ = 0) the second term goes to zero and we are left with
standard expressions. The coefficierﬁlso(QD) are readily
evaluated, WhereaBﬁyo(QCSA) can be calculated in terms of

yield an average value of zero. In the present case we consideig, . andQ, as in the expression

only rotational motion in an isotropic fluid, so the relevéife’

= 0. The Lanczos algorithm is a recursive procedure for
generating orthonormal functions that allow a tridiagonal matrix
representation of in terms of the coefficients,, n, which
form the main and secondary diagonal of the tridiagonal
symmetric matrixT, and the spectral density can be written in
the form of a continued fractiof:*?> The calculation of the
tridiagonal matrix elements can be carried out in finite precision
by working in the vector space obtained by projecting all the

Dﬁ,o(QCSA = ZD?L(QMD) DE,O(Q)

The spectral densities fof®N—IH dipolar and 1N CSA
autocorrelation are then obtained &8(w) = #[J5°(w)] and
Iw) = A[ISZANw)], respectively. The measurabléN
relaxation quantities!>N T;, T, and ™N—{'H} NOE are
calculated as functions aPP(w;) and J°(w;), with w; = 0,

functions and operators on a suitable set of orthonormal wy, wn, wy — wn andwy + wy, using standard expressions

functions|AL] One only needs to define the matrix operaidr,
and starting vector elements, given byl'; » = Q|T|A'0 v, =
(4|10 respectively.

for NMR spin relaxatiorf:> Note that due to the additional
symmetry relationjykk = ju—-k -k, only the nine distinct
COUples ((,K') = (_212)1 (_lvl)v (_112)7 (070)1 (011)1 (012)1 (1,1),

In the case under study the SRLS diffusion operator is given (1,2), (2,2) need to be considered. For dipolar autocorrelation

by eq 3 and the starting vector is given by

|110= Ak (Qu)Peg- TN i | Pog—=

2[‘]] J 12
TéKKAM,KK’(QLM)Peq

A natural choice for a set of orthonormal functions is the direct
product of normalized Wigner matrices. What is left is the
calculation of the matrix element$ ;- and the vector elements

(4|10 The algebraic intermediate steps are relatively straight-

forward and based on properties of the Wigner rotation matrices
angular momentum operators and spherical tensors; we skip th
technical details and list the resulting expressi#iig.28

1c. Obserables.To interpret!>N—'H dipolar and*>N CSA

autocorrelated relaxation rates, we only need spectral densities

with J = 2 andM = 0. Dependence updi,K' is slightly more
complex and is discussed in detail in the following section.
According to standard analysis for the motional narrowing
regime?3 we can define the observable spectral density for two
magnetic interactiong andv as the real part of the Fourier
Laplace transform of the correlation function of the second-
rank Wigner functions for the orientation of the magnetic tensors
in the laboratory frame (here,y = D or CSA, QP = Qup,
and QCSA = Qup + Q, cf. Figure 2a):

() = [ 'DE o TQ+Q (1) Da,o*[9V+9LM(0)(]g

and relying on standard properties of the Wigner functions, in
the form

Fiw) = [y Do'@Y Die Q) x
DD%/I,K*[QLM ] DfA,K'*[QLM (0)]0(8a)

On the basis of the symmetry relatioji,],KKv
(cf. eq 7a), we obtain

_
= Imkk

one has the explicit expression (denotipg = !f/z’{jS’KK'(w)]
for brevity)

JDD(w) = dcz)o(ﬂMD)Zjoo + Zdio(ﬁMD)Zjll +
205(Byp) 22 + 4d5oBuo) eolBu)ioz +
ZdElO(ﬂMD) dio(ﬂMD)j—ll + 2dazo(:[")rvn:) dgo(ﬂMD)j _2 (10)

with only six couplesK,K") = (0,0), (1,1), (2,2), (0,2),€1,1)
and (-2,2) involved.

A convenient measure of the orientational ordering of the
N—H bond is provided by the order parametef?

dD5o(Qem)Tand S? = iy Qcwm) + Di_(Qcwm)L) which are

related to the orienting potential (eq 4), herméandcﬁ, via the
ensemble averages:

DD(Z)n(QC'M)DZ fdQC'M th)n(QC'M) X

eXp[_U(QC'M)]/fdQcM exp[-u(Qcy)] (11)

One may convert to Cartesian ordering tensor components
according to

S, =S Sy=(3287 -8l §,= (V3257 + )2

Note thatSy + Sy + S, = 0.

In case of zero potentiat; = ¢5 = 0, and axial diffusion,
the solution of the diffusion equation associated with the time
evolution operator features three distinct eigenvalues:

1hy = 6R5 + KR — RY)

whereR: = 1/(6r)) andR5 = 1/(6r) = 1/(6t0). Only diagonal
jk(w) = jkk(w) terms are nonzero and they can be calculated
analytically as Lorentzian spectral densities, each defined by
width 1hx. When the ordering potential is axially symmetric,
cg =0, c§ = 0, again only diagonal terms survive, but they are
given by infinite sums of Lorenzian spectral densities, which
are defined in terms of eigenvalues; bf the diffusion operator,
and weighing factorsg, such that

for K=0,1,2 (12
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CuiTi
) = § ——— (13)
m 1+ a)zriz

The eigenvalues t/represent modes of motion of the system,

Meirovitch et al.

relaxation®® If the equilibrium orientations of°N;—!H;
and **c* ,—'%C_, are assumed to reside within the peptide
plane, then the functiongy (w) for N—H bond dynamics can
also be used to treat*cC' bond dynamics. A different local
geometry, specific to the €-C' bond, determines th&(w)

in accordance with the parameter range considered. Note thafunctions, and different magnetic interactions enter the calcula-

although in principle the number of terms in eq 13 is infinite,
in practice a finite number of terms is sufficient for numerical
convergence of the solution. Finally, when the local ordering
potential is rhombiccg =0, cg = 0, both diagonajk(w) and

nondiagonajkk(w) terms are different from zero and need to

tion of thel3C-related relaxation rates measured experimentally.
2. Model-Free Approach. A brief summary of the model-

free approach, as formulated by its developers, is outlined below.
2a. Original MF Spectral Densit§” The basic premise is

that the global motion of the protein is much slower than the

be evaluated explicitly according to expressions analogous tolocal motions of the N-H bond. Consequently, the global and

eq 13.

Details of the implementation of the SRLS model in a data
fitting scheme featuring axial potentials and isotropic global
diffusion were outlined previouskz For practical reasons this

fitting scheme is based on precalculated 2D grids of spectral

densitiesjk(w). The coordinates of these grids aﬁeand RC.
The structural parametefip and ywp are used to assemble
JPP(w) out of jk(w). The set of free variables include§ RC
and Bvp. The angleyyp was fixed at 99 on the basis of
stereochemical considerations, &> R (in analogy with
the MF requirement that; > 1) was imposed. This scheme is
computationally as fast as the commonly used MF fitting
schemed647

local motions are “independent”, and the total time correlation
function, C(t), can be expressed as

C(t) = C(t) C*(t) (14)

The global motion is assumed to be isotropic, witA(t) =
exp(—t/tm). CH(t) is given by

C'(t) =S+ (1 — S) exp(-t/z,) (15)
wherer, is the effective correlation time for local motion defined
as the area o€'(t) divided by (1— &), andte < . The

paramete®, which represents the plateau valuedh(t) at long
times (t> tg), is taken as the square of a generalized order

We developed recently a fitting scheme where the functions parameter. This definition & (eqs 14-16 of ref 6) involves

jkk'(w) are calculated on the fly. In this case the set of free
variables includesy, ¢5, R:/RE, RS and Bup. Clearly the local
potential is allowed to be rhombic and the local diffusion, axial.
For high rhombic potentials and sm&¥/R- values this scheme

is currently rather demanding computationally and efforts to
improve its efficiency are underway. A number of conditions
can be employed, however, to simplify the analysis. If the local
geometry is assumed to be known, as in the 3D GAF m¥del,
Amp can be fixed (e.g., at 108 If the symmetry of the local
ordering is knowngy/cs can be fixed. Note that in the SRLS
approach the global diffusion rateS, is determined in the same

the spherical harmonic functions of rank 2, wher€gt) at
shorter times is given in terms of the Legendre polynomial of
rank 2 (eq 12 of ref 6). All of the equations cited involve the
equilibrium probability distribution functionPeq2cm) Where

C denotes the local director fixed in the protein (called
“molecular axis” in ref 6), and M the local diffusion frame (taken
in the MF analysis to lie along the-NH bond). Equation 12 of
ref 6 featuresPe(0,6cm,0) (Pe(d) In the notation of ref 6),
whereas eqs 116 of ref 6 featureéPe(0,Scm,ycm) (Ped0.9)

in the notation of ref 6). Thus, there is inconsistency in the
symmetry of Ct(t) at short and long times, implied by M

fitting process as the site-specific parameters, as is appropriateconsidered axial in eq 12 and rhombic in eqs-16.

when the modeRC andR- are “mixed”. The next stage will be
to allow the global diffusion tensor to be axially symmetric.
This requires a complex fitting scheme where Rtetensor is

Fourier transformation of eq 14 with eq 15 inserted@(t)
yields

global whereas all the other parameters are local. Instead of a J(@) = S7/(1 + 0’r,)) + (1 — /(1 + 0’77 (16)

single variable for global motiorR°, three variablesR(app)
= 152RE + R, R{/RS and e will be featured. Note that

RC and R°(app) define the time scale separation between the

where 1te = 1/te + 1llt.
2b. Original MF Formula as SRLS Asymptotewas shown

global and local motions as rates are given in the SRLS model in early work? that in the limit whereR- > RC the following

in units of Re.
When the local potential is taken to be axially symmetric in
the SRLS model, then formal (but not necessarily physical)

analogies with the MF formulas can be established. In this case

equation is valid in the perturbation limit, i.éqr very small
local ordering

(@) =

the number of formally analogous free parameters, hence the (Skz)z[tm/(l + wzrmz) +@- ($<2)2)1K/(1 + werz)] a7

minimum number of data points required, is the same in the

SRLS and MF analyséd.Model-free data fitting was carried
out in this study with the computer programs Modelfree*®.0
and Dynamicg’

Thus, the spectral densitigigx(w) (jkx(w) for rhombic
potentials) are the building blocks for a given dynamic model

with 7« given by eq 1252 denotes the principal values of the
ordering tensor in irreducible tensor notation (wh&reé= 0).
When the symmetry of the local potential/local ordering is axial,
thenS? is zero. In this casp(w) is the same as eq 16 wit

= (S92 andte = 70, Whereas théx-o(w) functions are given

relative to the local diffusion frame, and the spectral densities by /(1 + w2r3).48

J¥(w) are the building blocks for a specific geometric imple-
mentation of this dynamic model relative to the frames of the
magnetic tensors. The measurable quantitiesP46), X(wn),
HKwn), F(wuton) andF(wy—wn). Together with the magnetic

The functionCy(t) corresponding tgo(w) is shown by the
dashed curve in Figure 3a, with the plateau value giverSg)?(
and the decay to it byg = 1/6R-. The final decay ofCy(t) to
zero is given byr, = 1/6RC. However, the local ordering at an

interactions they determine the experimentally measured relax-N—H bond is never as low as required by the perturbation limit
ation rates according to standard expressions for NMR spin in the local ordering, but rather quite high. Using the full SRLS
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14T a quantityS, taken as the square of a generalized order parameter,
co § is in actual fact an approximation t&#)? when the time scale
L separation between the global and local motions is large enough,
0 - T and the ordering high enough for the solution for the local
iTo motion to be given solely in terms of thg},,. When &?? is
a2 : not very high, additional local motion eigenmo.de's emerge. Their
0.01 1 presence requires a more complex description of how the
) correlation functions of th®y, relate to the eigenmodes of a
14 rotor in a fairly restricted (even static) potential. Quantitative
52 ks b evaluations of validity ranges appear in ref 26.
§2 - sgs} \ & 'I;he order paramete®? is obtained in terms ob/kgT =
L —f:OngcosﬁCM) on the bas!s oﬁeq(ﬂCM) O exp(.—U/kB'D (eq 4
S7@) i 0 T, with ¢; = 0, and eq 11). _leeW|se_, conformat|on_al entropy (or
s @)Zsz(p) | ity any other thermodynamic quantity based ) is obtained
T 0ol o 1 automatically in SRLS analysis. In the MF analysis the form

of the axial local potential has to be guessed and its strength

Figure 3. (a) Time correlation function(t), corresponding tgy(w) derived from&? to calculate thermodynamic properties, notably

of eq 17 (and eq 16 applied in the perturbation limit) wig?? — 0

and to/tm < 1 (dashed curve). Time correlation functioft), residual configurational entropy. This is appropriate only when
corresponding to eq 16 witt&?)2 ~ 0.8 andrdtm < 1 (solid curve). S is a good approximation taS5§)?; i.e., when the conditions

(b) Time correlation functionC(t), corresponding to eq 20 (and eq 19  specified in the previous paragraph are fulfilled. Because this
applied in the perturbation limit) with§?)* — 0 and &7)* — 0 (§° ~ is often not the case the MF-derived residual configurational

0.25 andS? ~ 0) andrto, 72 < Tm (7, Ts < Tm) (dashed curve). Time P ; ol
correlation functionC(t), corresponding to eq 19 as applied to treat entropy is likely to be inaccurate. The form of the potential is

flexible residues in proteins witG? ~ 0.75, ~ 0.55,7Jt; ~ 10 and clearly ambiguous. As pointed.out ir) the previoqs paragra'ph,
7T << 1 (solid curve). The index “p” stands for “perturbational limit”. other forms may not be compatible with the (physical) meaning

The abscissas in (a) and (b) are given in units'éf,. Note thatze of 7e as given by eq 18, which can complicate their interpreta-
andz are significantly smaller than displayed (for visibility), as they  tion. In the SRLS approach the potential given by eq 4 represents
represent renormalized correlation times. the leading terms in a complete expansion, and the parameters

) ] ) . varied are the potential coefficients. The latter procedure is a
solution we showed in previous wdfkthat for high enough general one.

(%)% and low enoughR%/R- (see ref 26 for quantitative For high rhombic ordering there is no analytical expression
evaluation of validity ranges) eq 16 is valid wigf ~ (&?)? for C(t), so the ensuing spectral density, even in Rie> RC
and the initial decay o€o(t) given by (BO) limit, requires the full SRLS solution. We found that the
actual local potential at NH sites in proteins is rhombic. Note
Tinitial = Te™ Tron = 2To/Co (18) that in SRLS analysis the conformational entropy can still be

calculated on the basis #q using the rhombic form of the
wheretenis the renormalized correlation time for local mot#Sn. potential (eq 4) With:é and cﬁ determined with data fitting.

The parameter 1#6., is the rate at which the distribution of For rigid residues, where the fast local fluctuations at the
orientations is restored to equilibrium when a spin-bearing N—H site can be considered harmonic, rhombic local ordering
particle reorients rapidly in the presence afteong orienting can be treated with the 3D GAF mod€IThe local geometry
potential?®4% 7., is reduced significantly relative tao, in is predetermined in 3D GAF by selectingC-C* as the

accordance with the strengtbé, and symmetry, of the local  principal ordering axisZ), with x perpendicular to it within the
potential. The expression given by eq 18 is valid in the SRLS peptide plane. Contrary to the 3D GAF model, the SRLS
approach in the limit wher& > RC when the local potential ~ approach is applicable to arbitrary local geometry and arbitrary
is axial and high” In this case eq 16 is a good approximation rates of local motiod2=2> Rhombic symmetry of the local

of the SRLS solution withS representing %22 and e ordering is outside the scope of the MF treatment. Taking the
representingen. The time correlation function corresponding D and>N CSA frames collinear in the MF approach introduces
to eq 16 is shown by the solid curve in Figure 3a. further inaccuracies (see below).

The range of validity of eq 16 depends a® and the 2c. Single-Exponential Approximatior,, and the Effect of

experimental uncertainties. It can be determined by comparing Additional Local Motion Eigenmode# was shown in early

MF results with SRLS results. For example, we showed work that a single exponent, with time constagtis a good

previously that forrm = 15 ns and typical experimental errors, approximation for the multiexponential time correlation function

eq 16 may be considered valid wh&h= 0.8 andt/t, < 0.01 of the wobble-in-a-cone mod&!:>! Moreover, an analytical

(ref 27). When these conditions are fulfilled (see belo®), formula which relatese to S and the wobbling rateD,,, was

and 7e are physically meaningful. Otherwise they become developed? This result is based on the assumption that eq 14

parametrizing entities. is valid, which implies the neglect of additional local motion
When& is high, the anglgcw is restricted to small values;  eigenmodes. Table 1 shows the SRLS eigenvalues (and corre-

hence the cosine squared potential of the cone model is a goodsponding weights) which contribute ©(t) for a time scale

approximation toU/kgT = —CCZ)P(COS Bcw), whereP, denotes separationt:/r, = 0.01 and potential strength decreasing from

the Legendre polynomial of rank 2. This represents the first ¢z = 20 ($?? = 0.901) toc; = 4 ((S?)? = 0.507). As a

term of eq 4. In this case. determined with the wobble-in-a-  benchmark we show the eigenvalues and associated weights

cone model agrees withen, the wobbling rateD,, of the cone  when a single local motion eigenmode prevails. These include

model representRE andD; = Rﬁ — o, Other models, such as 1/t (column 3) and ©?)? (column 1) for the global motion,

the Woessner model, or jumps between symmetry-relatecPsites, and ltwen (column 2, calculated with eq 18) and {1 (%?9)?)

yield 7e values, which can disagree withe, (eq 18). The (numbers in parentheses in column 6) for the local motion.
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TABLE 1: SRLS Eigenvalues 1t (1/t-) of the Global
Motion Mode Term (the Main Local Motion Term, i.e., the
Largest 1/(i) Value of Eq 13 with Weight Near (1 — (S9)?),
and Associated Weights wk (wtt), as a Function ofc}

in Units of kgT (and Corresponding (&?)? Values) Calculated
for tt/t,, = 0.02

E(SP) Uten lhm w1t wit b WM o4
20(0.901) 60 006 0903 585 0093(0.099) 04
10(0.803) 30 0.06 0.800 27.9 0.172(0.197) 28
8(0.754) 24 006 0757 21.6 0202(0.246) 4.1
6(0671) 18 006 0676 154 0.239(0.329) 85
4(0507) 12 006 0512 100 0.294(0.493) 19.4

aThe eigenvalues are given in units®f;, hence - = 6 and 1ty
= (tt/tm x 6). The parameter 1L, represents the renormalized local
motion eigenvalue calculated with eq P8The numbers in parentheses
show (1— ($??). ¢ The percent deviation of the correlation function
for local motion from its solelyDk,,-determined single-local-motion-
eigenmode form (see above).

Column 7 shows the percent deviation of the correlation function
for local motion from its solelyDy,,-determined single-local-
motion-eigenmode form (see above). Namely, for each value
of cg the numbers in column 7 (in fractional units) have to be
added to wt (numbers without parenthesis) and“vit obtain

the total weight of 1.

It can be seen that for & ¢; < 20 the global motion
eigenvalue is given by 44, = 0.06 and its weight, Wt is given
within a good approximation by§?)2. The main local motion
eigenvalue, I+, decreases relative tordd, with decreasings.

The difference is 2.5% forg?)?2 = 0.901 € = 20), 10% for
(S92 = 0.803 € = 10) and 16.7% for%?)2 = 0.507 € =
4). The deviation of the correlation function for local motion
from its solely Dy,y-determined single-local-motion-eigen-
mode form is 0.4% wheng?)? = 0.901, 2.8% when{?)? =
0.803, and 19.4% whergf)? = 0.507. A typical &?)? value
for rigid N—H bonds is 0.8, implying 10% error iy calculated

with the cone model and 2.8% error in assuming that the weight

of the local motion term is (+ (S?)9). This implies 3.1% error

in &, which should be taken into consideration when the

accuracy and precision & are estimated in MF studié&!3

The estimates given above are based on direct calculation. Whe

< is determined with data fitting, the errors can be larger.
The time scale separation between the global and local

motions is evaluated in MF studies on the basis of #fe,

ratio, which is substantially smaller than the true meastire,

Tm, and which is¥-dependent. For example, fo¥/r, = 0.01

the ratioze/tm is 0.002 for &?)? = 0.8 (5 = 10) and 0.003 for

(39?2 = 0.75 & = 7.9). As noted above, for L/z, > 0.01

mixed modes (see below) contribute significantly to the spectral

density. Tables 2 and 3 show the effectbfr,, exceeding 0.01

for (3?2 assuming the values of 0.75 and 0.8. The numbers in

parentheses are the values corresponding to an “accurate” MF,

formula wherex = ($?)2 andte = Tren It can be seen that the
errors are significant forg/ty, values that might be considered

in MF analyses as representing large time scale separations. For

example, although the true time scale separatioh/ig, = 0.01,

the MF analysis would repoet/t,, = 0.02 (0.025) as the time
scale separation for§@®)? = 0.8 (0.75). A 5.3% (6.8%)
contribution of additional local motion eigenmodes implies in
this case an increase inand a decrease in Wtas shown in
Tables 2 and 3. As pointed out above, the error in the
compromise value d& determined by data fitting may be larger

Meirovitch et al.

TABLE 2: Eigenvalue (1/r,,) and Weight (wt€) of the Global
Motion, Eigenvalue (1£%) and Weight (wt-) of the Main
Local Motion Mode, and Contribution of Additional Local
I\/ILotion Eigenmodes Modes @) to C(t) as a Function of

TH TR

Htm 1/tm wtC 1/ witt wWMM % T
0.01 0.06 (0.06) 0.805(0.803) 27.9 (30.0) 0.172 (0.2) 2.8 0.002
0.030 0.18(0.18) 0.813 28.5 167 3.3 0.006
0.050 0.29 (0.30) 0.819 29.1 0.161 39 0.01
0.100 0.55(0.60) 0.833 30.7 0.147 53 0.02
0.200 1.00 (1.20) 0.858 33.8 0.119 8.1 0.04

aThe last column showsJ/ry, corresponding ta‘/z, in column 1
(eq 18). An axial potential with coefficiemﬁ = 10, corresponding to
(99)?% = 0.8, was used. The terms in parenthesis represent the case in
which the local motion is given by the eigenvalue.d/and the weight
1 — (99?3, and the global motion by the eigenvaluer,l&and the
weight (&?)2.

TABLE 3: Same as for Table 2 Exceptcﬁ =7.9,
Corresponding to (S92 = 0.75, Was Used

T 1/tm witC 1/7t wit WM 0% 7d/Tm

0.01 0.06 (0.06) 0.755 (0.75) 21.30 (23.7) 0.234(0.25) 1.6 0.003
0.030 0.18(0.18) 0.763 21.81 0.201 4.9 0.008
0.050 0.29 (0.30) 0.770 22.32 0.196 54 0.013
0.100 0.55 (0.60) 0.788 23.61 0.182 6.8 0.025
0.200 1.00 (1.20) 0.818 26.23 0.158 9.2 0.051

and by simultaneouslyS?)? being lower, andr/zn,, being
higher, than the relevant threshold values.

2d. Extended MF Formuld When eq 16 cannot fit the
experimental data, the extended MF spectral density, given by

Jo) = S*[S2 1/ + 0’r,)) + (1 = S/
1+ 0’t/H] + A - SH /A + 0’r'?) (19)

has been used. The parametgris taken as the effective
correlation time for the fast local motiong as the effective
correlation time for the slow local motion, ar®? and §2 as
squared generalized order parameters associated with these
motions. 1#f = 1/ts + 1/tm and 1ts = 1/ts + 1/t No effort

r{'s made to define any geometric relationships between the axes

of fast and slow local motions. Although eq 19 requires that
< 15 < 11, In practice this formula is used whenis on the
order of rp,.

2e Extended MF Formula as a SRLS Asymptéte shown
previously, an expression similar to eq 19 was obtained in early
work as a perturbational expansion of the SRLS solution in
rhombic local ordering in th& > RC limit for Sup = 0° (ref
30). Let us reiterate the basics of this derivatidi?(w) is given
by eq 10, the function§,) are given by eq 13, and setting
Bwp = 90° implies A = (1.5 cog Bup — 0.5¢ = 0.25,B = 3
cog Bump Sir? Bup = 0 andC = 0.75 sirt fup = 0.75 A, B
andC representd5y)?, 2(d3,)? and 2(12,)2, respectively, where
“d” denotes reduced Wigner rotation matrix elements). The
function J°P(w) is then given by

IPP(w) =[0.25@&%)? + 0.75 )7, /(1 + w’r,) +
0.25[1— ($)% 1/(1 + w’ry) + 0.75[1— (S,
1+ w’?) (20)

Assuming that)(w) = J°P(w) = J°Yw), eq 20 is formally

than the estimates of Tables 2 and 3, which are based on direcanalogous to the extended MF fornftfaq 19) withzs formally

calculations. Further inaccuracies will be implied by the MF
assumption that the dipolar adtN CSA frames are collinear,

equivalent toro, 71 to 72, and the squared generalized order
parametersS? and S?, related to §2)2 and §&?)? as
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2 - 2y2 TABLE 4: Squared Axial (($?)?) and Rhombic ((S,?)?)
S 0.25+0.755,) (1) SRLS Order Parameters in Irreducible Tensor Notation,
Formally Equivalent Order Parameters (S, Sy and S, in
and Cartesian Tensor Notation, and Corresponding Squared
Generalized MF Order Parameters &2 and S#, Based on
Eqgs 21 and 22}

G G (S (S ¥ ¥ Sk S %
The equivalence outlined above is only formal. Equation 19is 2 3 0.008 0.327 0.50 0.50 0.306—0.394 0.088
a physically vague mathematical formula whereas eq 20 is a aThe coefficientsc; andcs determine the potentidl/keT in terms

physically precise geometric model based on the SRLS theory. ¢\ nich S7 andS? are defined (eq 11).
Note also that other SRLS models, such as one featuring an

add_ltlonal mode c_>f |nterna}l motion, would yield the form of eq andS?). The simplification to isotropic local motion is certainly
19 in a perturbational limit. o not justified for the restricted slow motioms, asts ~ . It is

For 7, 75 < 7y (representing th&® > R limit) and very ot reasonable to have no geometric relationship whatsoever
low axial local ordering &?)” — 0 and §°)” —~ 0) one obtains  ayyyeen the fast and slow local motions. The very same

2 2~ . . X ) ;
S 0.25 .and_SS 0 whgn €qs 2,1 gnd 22 are used. The (internal) protein environment cannot exert multiple different
corresponding time correlation function is shown by the dashed \oqtrictions on the same body. The global motiog) cannot

curve in Figure 3b. However, this(t) function is never used 400 ¢ on the same time scale as the slow local motigrand
to analyze N-H bond dynamics in proteins becauge the local 5t the same time not lead to mixed modes. A restricted motion
ordering at the N-H site is significantly higher tha&? ~ 0.25 can be nearly “decoupled” from the slowly relaxing environ-

and §? — 0, andzs is on the order ofry rather than being  ent \which exerts the spatial restrictions, only when these
much sma_ller tha"”?' A typ|_cal parameter set ob_talned with processes occur on very different time scalﬁ‘;lRE > 1) and
gﬂonE;nf'{Sllsofzrje;(lbf ;%ildggsw |r(1) F;f;)g?rl]ré;fwggggh_l};e the ordering &? and S?) is so small that it constitutes a
corres,pson ding tir;e n::(;rrela:i'on func.ti () is show.n b‘y the perturbqtlon on the free motion, or so _Iarge that the local motion
solid curve in Figure 3b. Table 5 of ref 23 (where the SRLS correla}tlon tlme.s become renormalized by .the strong local
) potential. Only in these cases can mode mixing be ignored.

m&?rr]y Zasmti’ﬁetn fut”ril dtier\rl]emp?rd)l SQOI\:VfS ﬂugngtﬁﬁitga mode Accounting for the correct local geometifip on the order of
g dominates the ime correfation functio - s 90° in the present case), one may use the analytical function

and t_he ordering is%?)? ~ 0.55_(_corre_spond|ng 10 N_4'4)' given by eq 20, which is assembled from the simplified functions
In this case thg spgctral densities given by eq 13 instead (.)ij((U) given by eq 17. In this case eq 20 describes properly an
spectral densities given by eq 17 are to be used. For rhombicayia)y diffusing N—H bond in the presence of a weak rhombic

ordering no(tj onlyt; diagongl te(;(mji((wi), but 3"?’0 Cross-tern;s, potential. Note that even in this limit the global and local modes
Jkie(w), need to be considered(w) obtained fromjx(w) an are only nearly “independent” because the ter8&)(zk)/

jkk by frame transformations (as determined by the specific 2 Lo - L
local geometry) are therefore intricate functions. In the MF .(1 + o)), K = 0 and 2, actually represents statistical
interdependenc®.

formulation J(w) = JPP(w) = J°Yw) is the Fourier transform ) _ . :
A numerical example, which illustrates the distorted picture

of the simple function shown by the solid line in Figure 3b, . ! .
with the plateau values determined §f and S = S2S2, and obtained by using the extended MF formula outside the
' perturbation limit, is shown in Table 4.

the step between them monitored &y Therefore, when force-
fitting is successful, i.e., the statistical requirements are fulfiled, ~ The coefficientsc; = 2 andc; = 3 represent rhombi¥y
this can be only accomplished with highly inaccurate best-fit ordering with “nearly planaiYy—Xu" symmetry, which we
parameters that constitute parametrizing entities. The latter arefound previously to prevail at the NH site?® This symmetry
field-dependent because parametrization by force-fitting dependsis reflected clearly in the principal valueS,, Sy and S, of
on whichJ(w) values are to be reproduced. The fitting of larger the Cartesian tensor. In irreducible tensor notation oneSifas
data sets obtained by combining multifield data is likely to fail = 0.089 andS,* = 0.572 (Table 4 shows the squared values of
when standard fitting schemes are used. The trends in the value$? and $?, which appear in eq 20). The corresponding MF
of the best-fit parameters upon changing environmental condi- Parameters aré? = 0.50 and$* = 0.50. The physical picture
tions such as temperature and complex formation are devoid ofof two independent isotropic local motions of the-N bond
physica| meaning and may show abrupt ChangeS, which are notaSSOCiated with Squared generalized order parameters (inCiden-
associated with genuine physical phenomena. These featureally) equal to 0.5 is certainly different from the physical picture
are illustrated below. associated with an axial\H bond diffusing in a well-defined
The extended MF formula is based on the theory of moments, rhombic local potential associated with a well-defined ordering
which is a mathematical approach that ignores physical detailstensor with its Yy axis aligned preferentially along the
for convenience. The physical principles underlying NMR spin C" ;—C{* axis (or the N—C* bond).
relaxation in locally orienting environments have been set forth  In practice a reduced form of eq 19, wheteis set equal to
previously>?2The important structural/electronic/charge-related zero, is used in MF studies. The reason for this simplification
information one can extract when the restrictions on the local is that standard MF fitting schemes can typically only fit three-
motion are properly treated as potentials or ordering tensorspoint single-field data sets, precluding the variationroés a
have been illustrated amply in the literature (e.g., ref 52b). free parameter in addition 82, S% andzs. Values ofS? are
Within the scope of these established approaches the solutiortypically in the range of 0.80.9. The weight of the last term
offered by the extended MF formula to-NH bond motion in of eq 19 is (1— $9). Hence a 26-:10% contribution is being
proteins is physically not reasonable. The very same entity (theignored when the reduced extended MF formula is used,
cylindrical N—H bond) cannot be involved in two separate implying further inaccuracies in the best-fit parameters. This
motions that are isotropic (as manifested by the scalar quantitiescan also be realized by noticing that formally the reduced
7s andts) and at the same time restricted (as manifeste@&by  extended MF formula is given b{w) = S3jo(w), wherejo(w)

S%=(§% - 0.25)8% + 0.25G6,)%S? (22)
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= S/l + 0%rnd) + (1 — SA1/(A + w?s?) has the form experimentally relevant situations within the scope of rigorous
of the K = 0 perturbational expansion (eq 17) featuring the formal frameworks. The computational burden is greater than
squared order paramet8&f and local motional correlation time  that of the analytical model-free formulation.

7¢. This is analogous tdP°(w) = Ajk(0) in the SRLS analysis, The SRLS model features such a framework. It is based on
with theK = 1 and 2 terms set equal to zero in eq 10. We call a Smoluchowski equation representing the rotational reorienta-
this form of JPP(w) (and ensuing®“(w)) “combination 5”, in tion of two interacting rotors (bodied}:?* SRLS analysis was

analogy with model 5 in the MF treatment (the term “combina- applied earlier to molecular probes in complex fluids and ESR
tion” is used instead of “model” because the hierarchy consists spin relaxation in biomacromolecul&s?>Recently, we applied
of different parameter combinations within the scope of the same the SRLS approach to NMR spin relaxation in protéf?8:22.26.27

model). SettingBji(w) = Cj2(w) = 0 in eq 10 was initially In this application the two rotors are represented by the locally
considered justified on the basis of the relatiRh > RE reorienting spin-bearing moiety (e.g., the-N bond), and the

(implicit in the 2D-grid-based calculation®)which is analogous  globally reorienting protein. The global and local motions are
to 7s > 77 in MF analysis. described at the diffusive level, hence characterized by two

The fact that the coefficier is returned by the fitting scheme  distinct diffusion tensors. The coupling potential, which ex-
as 0.8-0.9 instead of unity means that in the presence of presses the spatial restrictions imposed by the immediate protein
significant mode mixing th&j;(w) term will still contribute to ~ surroundings at the site of the motion of the probe, depends on
JPP(w) even thoughR: > R-. This has been verified by us the mutual orientation of the coupled rotors. The physical tensors
with relevant calculation® Although SRLS combination 5is ~ May be asymmetric, and features of general local geometry are
certainly a better spectral density than MF model 5, because@ccommodated. Obviously mode-coupling is accounted for
SRLSjo(w) accounts for mode mixing whereas Niffw) does rigorously.
not, it still misses 16:20% contributions, to be absorbed by Results of the SRLS analysis were compared with MF results.
the best-fit parameters. As shown below, a consistent physicalThe SRLS approach is clearly the generalization of the MF
picture is only obtained with rhombic instead of axial ordering, approach, yielding the latter in asymptotic limits. We found that

and arbitrary instead of very high local diffusion anisotropy, the MF formulas are poor approximations of the experimental
R%/RE- spectral density. On the other hand, the SRLS solution appears

to match the integrity of currently available experimental data.

The practical problem with the SRLS model is computational
efficiency, as in some cases the (numerical) calculation of the
SRLS spectral densities is significantly more demanding than
the instantaneous calculation of the simple analytical MF
its general form?324 It turned out that (1) the original MF formulas. Otherwise the SRLS and MF fitting schemes are

formula is given by the SRLS solution in the BO limit and the Similar. In our first implementation of the SRLS model in a

extended MF formula is given by the perturbational SRLS fitting scheme, we precalculated 2D grids of spectral density
expansion of ref 30, (2) NH bond dynamics exceeds the values that were then used as look-up tables. This program is
perturbation limits and in most cases the BO limit, (3) mode- comparable in speed with the MF programs and is operated in
coupling and general features of local geometry, ignored in both "€ same way. The best-fit parameters are formally (but not
limits, are important, and (4) MF analysis does not stop at the Physically) analogous to the parameters of the extended MF
stage of parametrization but proceeds by interpreting the formula. The deficiencies of this scheme are that (1) the global

parametrizing quantities in terms of physical quantities (order Motion is isotropic and determined separately from the local
parameters, correlation times) inherent to the general SRLSMoton (similar to the MF strategy) and (2) the symmetry of

model. This justifies the assessments associated with thethe local restrictions is axial, as in MF analysis. We found that
detrimental implications of interpreting the MF parameters in these limitations must be eliminated. To this end we developed
terms of physical quantities. recently a fitting program for SRLS where the generic spectral

3. Practical Implementation of the Theoretical Premises densities (eq 13) are calculated on the fly. In terms of operating

of SRLS and MF Analyses.The basic idea underlying the MF it the iny extra requirement on the part of the user is 1o
approach is to reproduce the spectral density assuming statisticafetermIne a truncation parameter that controls the number of

independence (decoupling) between the mobility of the probe erms that .need to be taken !ntp accoun@ for convergence of the
and the mobility of the proteifr-® This requires large time scale solution (given by eq 13 or similar equations). Several trial and

separation between these motions. On the basis of the theoryerror calculations carried out for typical cases suffice. Some

. X . aspects of this program are still under development. It is
e e APECEd hat 1 efr il b Erought 0 complto shrty
the parameters obtained by data fitfiy are interpreted within atwhich time th.'s general f'tt'n.g scheme_vv_|ll be made available
the scope of specific models. The MF formulas only agree with to the communlt_y. The 2D-_gnd-based fitting schem“e, as W‘?”
the high symmetry forms of the various physical SRLS as and the 2D grids, are available upon request. The “Theoretical

" . Background” section of this paper comprises all the information
guantities featured, and they accommodate only simplified local needed for ab initio broarammin
geometry, besides requiring mode-decoupling. Hence the usage Prog 9-

of the MF approach is prone to overextension.

A different but related idea is to envision the overall system
to be composed of two bodies, probe and protein, with mobilities 1. SRLS versus MF Analysis in the Asymptotict- — 0
coupled by a phenomenological potential energy function. An Limit. 1la. Geometric Effectdd — CSA Frame Transformation
established set of dynamic variables is modulated according toWhent, is very small, the second term in the MF formula (eq
an explicit model, typically based on stochastic operators. 16) can be ignored, yielding the so-called MF “model 1”. In
Contrary to the MF approach there is no pretence for generatingthis limit the difference between SRLS and MF approaches
a universal tool. Instead, there is an attempt to treat the consists solely of the D-CSA transformation carried out in the

In summary, the mathematical model-free formulas were
introduced as parametrizing spectral densfi€sndependently,
the stochastic SRLS model has been developed first in the
perturbation limit for certain simplified geometrié&?*8in the
BO limit for axial ordering and isotropic local motigiand in

I1l. Results and Discussion
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TABLE 5: Results of Fitting with SRLS Combination 1 and
MF Model 1 the Experimental Data of Eight VHHS
Residues Fit with Model 1 by Vugymeyster et ak!2

SRLS MF SRLS MF NOE
res (S92 & % diff  y2 22 % err %Dmax
45 0.842 0.804(0.803)—4.5 6.44 17(17) 21 14
49 0.853 0.817(0.815)—4.2 2.1 22(22) 1.9 0.0
57 0.887 0.847(0.845)—4.5 6.6 17(1.8) 22 21
58 0.908 0.869(0.860)—4.3 34.0 15.5(20.0) 22 7.7
59 0.898 0.855(0.853)—4.8 19.0 12.6(14.2) 2.4 35
60 0.849 0.810(0.810)—4.6 27.0 18.7(19.0) 3.3 16.0
69 0.853 0.815(0.814)—4.5 156 7.7(7.9) 22 45
71 0.841 0.803(0.803)-4.5 120 3.1(3.3) 19 3.1

aSquared SRLS order parametei?2)?, obtained from the best-fit
c2 values using eq 4 witt? = 0, and eq 11, and best-fit M& values,
are shown. The corresponding values are also given. The data in
parentheses were obtained with the SRLS program wheréNkeH
dipolar and'>N CSA tensors were set deliberately collinear. % diff is
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and largerd®Y(w) values than their correct SRLS counterparts.
Note the significantly different values dPP(0) andJPP(wny)
versusJC¢(0) and J°(wy) in the SRLS analysis, implied by
carrying out the D-to-CSA frame transformation. Also note that
(with one exception) the experimental NOE exceeds the
maximum NOE as shown by B« > 0 (Table 5). This feature
will be discussed below in detail.

1b. Local Motion EffectsThe!*N relaxation data of 21 VHHS
residues were fit by Vugmeyster et'alwith model 2, where
the complete original MF formula (eq 16) is used. We subjected
15 out of 21 residues to SRLS analysis using combination 2,
and we repeated the calculations of Vugmeyster ét ating
the same computer program (Modelfree 4.0). The average results
obtained for the squared order parameters and the assoﬁated
values are shown in Table 7 under the heading “model 2”. For
comparison the average results of Table 5, includhﬁg
corresponding to the squared order parameters, are also shown

the percent difference between the MF and SRLS squared orderynder the heading “model 1”.

parameters divided by the SRLS value. The last two columns show
the experimental NOE error and the percent difference Oj¥%ay)
between the experimental NOE and the maximum NOE obtained for a
rigid sphere.

SRLS calculation and omitted implicitly in the MF calculation.
The implications of this approximation are illustrated below
using the experimental data obtained at 295 K, 11.7 T, by
Vugmeyster et al! for eight out of the 35 residues of the villin
headpiece helical subdomain (VHHS) that were analyzed with
MF model 1.7, = 2.5 ns was determined on the basiS¢fT,
ratios>3 We subjected these data to MF model 1 analysis using
the program Modelfree 44, and to SRLS combination 1
analysis using our current fitting scheme operated for axial
potentials?2 From MF S we calculateds using eq 4 withc; =

0, and eq 11. In the SRLS calculations we varigdand
calculated $2)2 using eq 4 withc = 0, and eq 11. The results
are shown in Table 5.

The data in parentheses, obtained by setting D and C
deliberately collinear in the fitting program for SRLS, ar
practically identical with the corresponding MF data. This
indicates that the two programs perform identically when the
D and CSA frames coincide. Thus, the differences between

The differences featured by the “model 1” SRLS and MF
results stem solely from the geometric B CSA frame
transformation. The differences featured by the “model 2” SRLS
and MF results stem from the B CSA frame transformation,
and from the effect of additional local motion eigenmodes on
the form of the local motion correlation function, accounted
for in SRLS and ignored in MF. SRLS yieldéd'/r,[0= 0.1
whereas MF yieldedty/r[= 0.02 (data not shown). # would
be derived fronre according to eq 18, then the MF time scale
separation would have been 0.09, which is close to its SRLS
counterpart (differing by only 10%).

Table 7 shows tha® overestimates3?)2 by nearly 7% in
model 2 and underestimates it by approximately 4.5% in model
1. As already mentioned, this has implications for the precision
of MF £ Most importantly, it affects the accuracy of
thermodynamic parameters calculated from potentials derived
from MF $2.33-36 The coefficientc; of the general form of the

g Potential (eq 4 withcg = 0) is very sensitive to changes in
e (S°)?when &?)?is high, as shown in Figure 4 which is the

graphical representation of eq 4 wicﬁ = 0. Because of the
asymptotic form of the $?)? versusc; curve as §&)? — 1,
relatively small uncertainty ing?)? implies large uncertainty

corresponding data in columns 2 and 3 are due solely to thein ;. For example, in Table 5 th&@)? errors cover the range

D-to-CSA frame transformation, which was carried out for a
tilt angle 6 =17° (ref 3) in the SRLS analysis and omitted
implicitly in the MF analysis. Underestimation o&#)? by the

MF calculation on the order of 4.5% is not negligible given
that currently reported precision # is, in some cases, on the
order of 1% (ref 11) and the precision in the average value of
<, on the order of 0.2% (ref 13). The error # has severe
implications for conformational entropy calculations (see below).
Recently,§ = 21.4 was determined with an extensive ubiquitin
data seb* The larger angl® implies even greater inaccuracies
than shown in Table 5.

The MF treatment is clearly force-fitting the experimental
data yielding$® and correspondingﬁ values that are too low.
Table 6 illustrates this using the experimental data of residue
49 of VHHS. Back-calculate@®N T;, T, and*N—{1H} NOE
relaxation parameters obtained with the best-fit SRLS and MF

between—4.5% and+6.8% whereas the? errors cover the
range between-23% and+20%. Note that these large errors
in the strength of the potential, hence in the probability
distribution functionPeq = exp(—U/ksT), stem solely from the
geometric effect of omitting the D-to-CSA frame transformation.
Significantly larger inaccuracies are implied by also disregarding
in the MF treatment the possibility that the correlation function
for local motion has a more complex form implied by the
presence of additional eigenmodes, and oversimplifying the
symmetry of the local ordering.

As discussed above, the effective correlation timetypically
reported in MF studies as a “correlation time for local motion”,
is actually a composite, approximately given bylzé (eq 18).
For& = 0.8, 0.9 and 0.95, correspondingd@;z 10, 20 and
40, respectively, the parametrris 5, 10 and 20 times smaller
thantt = 1/6R". The ratiore/tm grossly overestimates what is

order parameters of Table 5 are shown in Table 6a aside theconsidered to represent the time scale separation between the

experimental data. Table 6b shows the specifio) values
associated with the back-calculatég T» and NOE data of

rate of global reorientatiorRC) and the rate of local reorientation
(RY) (note that 1#, and 1t. are global motion mode and main

Table 6a. It can be seen that the MF spectral density can fit thelocal motion mode eigenvalues, respectively, whergas=
experimental data as well as the SRLS spectral density (Tablel/6r, andR- = 1/67- are “bare” diffusion constants for global

6a) by compensation of the individud(w) values (Table 6b).
In particular, the MF approach yields small#®(w) values

and local motion, respectively). This may lead to inclusion
of nonrigid residues into data sets used to determjnéom
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TABLE 6
(a) Experimental and Back-Calculated SRLS and ¥ T, T, and**N—{*H} NOE Values
Obtained with the Best-Fit Squared Order Parameters Shown in Table 5 for Residue 49
T1, ms To, ms NOE
exp 381.2+6.1 2515+ 3.1 0.565+ 0.011
SRLS 387.8 250.9 0.5533
MF 386.7 2495 0.5758
(b) J(w) Values forw = 0, wn, oy + wn, wn @ndwy — wy for
Dipolar Autocorrelation anéPN CSA Autocorrelatioh
input output
(%2)2 C(Z) JDD(O) JDD(CUN) JDD(Q)H+(IJN) JDD((UH) JDD((UH-LUN) \]CC(O) JCC(Q)N)
SRLS: 0.853 13.5 0.854 0.523 0.0168 0.0130 0.0113 0.651 0.398
MF: 0.817 10.8 0.817 0.500 0.0161 0.0130 0.0108 0.817 0.500

21n this table, and in all of the tables and figures below whBteT, and NOE were calculated, we us€l CSA of o — oo = —170 ppm,rnu
=1.02 A (e.g., ref 11) an@ = 17° (ref 3).> The cg values (and the corresponding?)? values from Table 5) used in these calculations are given
under the heading “inputz, = 2.5 ns was used. The units dfw) are ns.

TABLE 7: Average ¢ and Corresponding (S,)? Best-Fit

SRLS Parameters and Averages? and Correspondingcﬁ
MF Best-Fit Parameters

model 1 model 2
SRLS MF % diff  SRLS MF % difft
(99?2 0.87 0.83 —4.5 0.73 0.78 +6.8
0[2) 15.4 11.7 —23 7.5 9.0 +20

a% diff represents 100« [Param(MF)— Param(SRLS)]/Param-
(SRLS).

—————1r————7

(82)?
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0.4

0.2
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10 20 30 40 50

c?,
Figure 4. Squared order paramete®?)? as a function of the potential

coefficient,c2 (in units ofksT) determined with eq 4 witle? = 0, and
eq 11.

T1/T»,5% and improper usage of the reduced spectral defisiy
and model-independéftapproaches that are only valid when
the local motion correlation timet, is very fast. It was observed
by several authot$ 16 thatz, is nearly invariant as a function
of temperature. This is not surprising becaugsél rL/cg, with

400 600
To»ps

800 150
Figure 5. N T, T, and NOE calculated with SRLSP(w) was
calculated according to eq 10, adtf(w) as explained after eq 9) and
MF (eq 16) formulas form = 5 ns, 11.7 and 18.8 T, as a function of
- = 10 = 1/6R- (left, SRLS) and corresponding = Zro/cg (right,
MF). The potential coefficienc3 = 13.2, corresponding toS@)? =
0.85, was used.

to 1000 ps (curves on the left). The corresponding MF effective
local motion correlation timege = 27-/c5 = 7 1/6.6, is varied
from O to 150 ps (curves on the right). The global motion
correlation times are,, = 5 and 15 ns, and the magnetic fields
are 11.7 and 18.8 T. For fixet}, the parametet’ (z¢) is in
direct proportion to the time scale separatidfrm (t¢/tm). The
SRLS and MF relaxation parameters in Figures 5 and 7 were
calculated using the same physical input (te,= 1/6R- in
SRLS andz. = Zr'-/cé in MF calculations, with all the other
parameters the same). It can be seen clearly that all the SRLS
relaxation parameters depend significantlyrbhr, in ways that
differ for low and high fields and small and large proteins (or
high and low temperatures). On the other hand, in the parameter

both the numerator and the denominator decreasing with range considered, the M andT, values vary to a small extent

increasing temperature. Thoughmay exhibit Arrhenius-type
temperature dependenag,might not.

1c. General Considerationsllustrative simulated SRLS and
MF T,, T> and NOE values are shown in Figures&for the

parameter range where the original MF formula is typically

applied. High ordering &?? = 0.85) and large time scale
separationy/tm = 0.015 whenty, = 5 ns, andrg/t, = 0.005
whenty, = 15 ns) were used. In Figures 5 ancd:ozﬂs fixed at
13.2, corresponding t&@)? = 0.85. In the SRLS calculations
the local motion correlation time!t = 1/6R*, is varied from 0

as a function otd/tm, whereas the MF NOEs vary significantly
in ways which differ from the variations in the SRLS NOEs.
Table 8 shows the percent difference betwedn, /T, and
NOE shown in Figures 5 and 7 calculated with the SRLS
approach for' = 495 ps and the MF approach far= 75 ps.
These data illustrate clearly the field dependence of the best-fit
MF parameters. In this example, the features that are likely to
yield different results at different fields are the opposite trends
in the 1T, discrepancy between SRLS and MF data at 11.7
and 18.8 T forr, = 5 ns, and the very large field-dependence
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Figure 6. 1N Ty, T, and NOE calculated with SRLS and MF formulas ~ Figure 8. 15N Ty, T, and NOE calculated fot,, = 15 ns, 11.7 and
for tm = 5 ns, 11.7 and 18.8 T, as a function of the squared order 18.8 T, as a function of the squared order paramefg? (left, SRLS),
parameter, $2)? (left, SRLS) and the generalized squared or&r, and the generalized squared ordé&#, (right, MF). The potential
(right, MF). The potential coefﬁcienté = 13.2, corresponding to coefficientcﬁ = 13.2, corresponding td&f)? = 0.85, was usedy =
(S?)? = 0.85, was usedp = 75 ps in the SRLS and. = 75 ps in the 75 ps in the SRLS and. = 75 ps in the MF calculations were used.
MF calculations were used.

TABLE 8: Percent Difference ((varue — varsgris)/Varsris),

2000 — __SRLS . : . MF . Where “var” represents 1/T;, 1/T, or NOE from Figures 5
N ! ! and 7 for - = 495 ps and the Corresponding Value of, =
21600\ 1851 ] 1600~ T TTme—— - . 75 pg
<1200 TTemmm T == L - % diff versus SRLS 1, 1/s 1, 1/s NOE
g0l ey WIT ] e 5ns,11.7T +0.8 —-6.2 -4.3
VL LU N U U A (—— L — 5ns,18.8T -1.3 -5.2 -6.8
F 1 15ns,11.7T —-5.9 0.0 —-4.8

15ns,188T —18.2 +4.4 —16.7

aThe potential coefficient = 13.2 (&?)? = 0.8) was used. The
Tm values and the magnetic field strengths are given in the table.

data dominated by mode-coupling, are used in this context, the

implications can be detrimental, as shown in section 5d.
Figures 5 and 7 show that SRLS relaxation rates calculated

with - agree reasonably with MF relaxation rates calculated

with 7o = 274/c; for 7+ < 200 whenr, = 5 ns, and forrt <

100 ps whenry, = 15 ns. On the other hand, whea = -

0 200 400 600 800 1000
To.ps Te, ps

Figure 7. N Ty, T, and NOE calculated forn, = 15 ns, 11.7 and .
18.8 T, as a function of- = 7o = 1/6R" (left, SRLS) and corresponding (Figures 6 and 8) the agreement betweenThand T, values

7e = 20Jc2 (right, MF). The potential coefficient? = 13.2, corre- is reasonable (because in the MF approackand T, depend
sponding to §?2 = 0.85, was used. only to a small extent ome; see Figures 5 and 7) but the NOEs
differ significantly. This is precisely the empirical observation
of the NOE discrepancy fotn, = 15 ns. Clearly, fitting of that motivated the development of the extended MF forfhula
combined multifield data is expected to be problematic and in commonly used in its reduced version. In the reduced extended
most cases impossible with MF analysis, as often encounteredMF formula a slow effective correlation times, adjusts the

in practice. NOE, whereas a scaling fact®?, adjusts IT; and 1T,. This
Another feature illustrated in Table 8 is the field-dependence is related intimately to the “mode-independent” form of this
of the deviation of the MFT4/T; value from the SRLS\/T, formula, with 7, affecting predominantly the global motion
value implying field-dependent, values, as often encountered term, s affecting exclusively the local motion term, and neither
in MF analyses. affecting the weights of these terms. On the other hand, in the

The relaxation parameters shown in Figures 5 and 7 were SRLS approach the motional rates and the potential coefficients
calculated with the proper analogy between SRLS and MF local determine the weights of the various modes contributing to the

motion correlation times; i.e., SRL& corresponds to Mk spectral density, and the eigenvalues of the solution differ from
= ZrLlcé. The relaxation parameters shown in Figures 6 and 8 the pure “mode-independent” eigenvaluesnland 1t-. The
were calculated with the improper analogy, i.e., SRItShe MF parametrization of the spectral density impairs statistical
same as MR.. This is done to show how misleading it is to properties of genuine fitting. For example, Vugmeyster ét al.
considerte as representing a bare (i.e., B local motion reported on a nonnormaidistribution in NOE values back-

correlation time, although Lipari and Sz&hodicated that this calculated using best-fit MF parameters obtained with models
guantity is a composite. For example, one expects Arrhenius-1 and 2.

type temperature dependencergfand obtains typically near 1d. 7, Determination In MF analysis the determination of
temperature independence. Within the scope of the wobble-in-the global diffusion tensét is implicitly based on the “Bora
a-cone modet, depends oDy, and & (ref 6). The physical Oppenheimer” type approximation inherent in factor@(g) into
parameter is the wobbling ratBy,. If s andS?, obtained from CL(t) CE(t) (eq 14). WhenCC(t) = exp(—t/ty), i.e., when the
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Figure 9. %2 probability distribution as a function of the global motion ~ 7o/Zm = 0.45,fup = 16.3 andN = R/R; = 916. The high-frequency
correlation time calculated with SRLS combination 1 (blue) and MF €gion is shown in panel (@), and the low-frequency region in panel
model 1 (red) for residue 45 of VHHS. The MF calculations used the (b).

same spectral densities as the SRLS calculations, except that the frame listi . fh . ith whi b |
transformation D-to-CSA was omitted. realistic estimate of the precision with whick can be currently

determined in the BO limit for axial local ordering. Precision
protein is spherical, an@.(t) is given by the first term of eq estimates of 0.2% (ref 15) are highly overrated. As shown in
16 (model 1, whera' = 0), then derivingzy, from T/T; is _Figure 9, about 4% accuracy can be gained by using the SRLS
appropriate in SRLS studies, but in MF studies it is as inaccurate Instead of the MF approach.
as implied by the omission of the D-to-CSA frame transforma- _ 2- SRLS versus MF Analysis in the Mode Mixing Regime.
tion. The various filtering procedures devised to extract from One of the greatest benefits of SRLS analysis lies in the

the complete data set the subset usedRfodeterminatiof? do treatment of flexible residues where mode mixing dominates
not eliminate data that correspond to the original MF formula the spectral density, as a consequence of local and global
(eq 16) (“model 2", whera" = 0). The high sensitivity ta* motions occurring on similar time scales. Allowing for rhombic
of T, and T, for small proteins (Figure 5), and, for large local orderlng, shown previously to prevail at the-N bond?®
proteins (Figure 7), indicates that significant errors will be and accounting for general features of local geom®rs,
introduced by including “model 2" data in the processRSf constitute an additional significant advantages over MF analysis.

determination. Whe@C(t) corresponds to axial global diffusion ~ AS pointed out previoust}-*’and mentioned above, the reduced
and/orCL(t) corresponds to eq 19, the full SRLS time correlation €xtended MF formula is formally equivalentd8®(w) = Ajo(w),
function is to be used. Very precisg, values were reported ~ With SRLS fitting yielding typicallyA ~ §? ~ 0.8-0.9. This
recently by an MF study whereC(t) was used in the fitting spect_ral density is inaccurate, among others, because a term that
process, WitlCS(t) corresponding to axial global diffusion and contributes 16-20% has been omitted. Let us illustrate this
CL(t) given by eq 16 or 19. For the reasons outlined above the guantitatively. The value of = (1.5 co$ fyp — 0.5f = 0.8
accuracy and precision of these results should be re-assesseds obtained foriyp = 15.#, andA = 0.9 is obtained fofiwp

As shown below, when axial potentials are used model 1 is = 10.7. The values oB = 3 sir? fwp cos fvp (C = 0.75
often selected instead of model 2 by force-fitting, yielding Sin* Awp) corresponding to these angles are 0.20 (0.004) and
unduly high &??2 values. This has been documented in the 0.1 (0.0009), respectively is clearly not very small, bujs-
literature by a recent SRLS application to nitroxide-labeled (@) could become negligible if(w) were much smaller than
biomacromolecules that showed force-fitting by use of model jo(@), in view of the imposed condition th&; > R, This is
1 on a set of synthetic data corresponding to model 2, which not borne out by the SRLS analysis of the experiment, because
generated%?)? values that are too high ang values that are  if it were, the fitting scheme would have returnéd= 1,
too low25 The discrepancies increase with increasing magnetic corresponding tofyp = 0°. By analogy, the validity of
field.25 These are precisely the trends observed with MF ‘reducing” the extended MF formula, based on the condition
analyses: highe® and lowerz, are obtained at higher fields  thatzs > , is not borne out by the experiment, because if it
(e.g., see ref 64 cited in section 5d below). were, the MF fitting scheme would have returrgél= 1.

We found that a useful method for estimating the precision ~ The values ofi(w) andjz(w) are, indeed, much smaller than
of T is to first determine it fronTy/T ratios (desirably acquired  jo(w) values for allw values wherR; > Rr, in the absence of
at low magnetic fields) of combination 1 fits, where — 0, mode mixing The presence of mode mixing invalidates the
and then scan the vicinity of this value. lllustrative calculations relationsji(w) < jo(w) andjx(w) < jo(w) in the highw regime.
were carried out for residue 45 of VHHS acquired at 11.7 T, This is illustrated in Figure 10, where we show the SRLS
295 K, fit by Vugmeyster et ait with MF model 1. TheTy/ functionsjk(w) calculated using as input the best-fit parameters
T-derivedry, value is 2.5 nsy? values obtained as a function ~ obtained by fitting with the SRLS theory theN relaxation data
of 7 within a £0.5 ns range centered &t = 2.5 ns, using of residue 124 of RNase H, acquired at 11.7 T, 300 K. This
SRLS (black curve) and MF (red curve) approaches are shownresidue pertains to the flexible loop/ss and was fit previously
in Figure 9. Let us assume thg? = 10 is the threshold  with model 5 by Mandel et & It can be seen that in the low-
(Vugmeyster et al! sety? = 25 as threshold for the site-specific ~ frequency regiornio(w) > ji(w) and jx(w). However, in the
fitting). It can be seen that in both cases practically identical frequency range comprising thevalues relevant for the NOE
(S9)? () values are obtained far, within a range of 5-6% (o + on and oy — on) the ji(w) values exceed the
from the 2.58 (2.50) ns minimum. We believe that this is a correspondingo(w) andjz(w) values. Clearly even thﬁLl >
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TABLE 9
(a) Best-FitT1, T, and NOE Values Corresponding to the Best-Fit
Parameters Shown in Table 9b under the Heading “iffput”
Ti, ms To, ms NOE
exp 633.8+ 10.1 112.3+ 3.1 0.5343+ 0.031
SRLS 633.8 112.3 0.5344
MF 633.8 112.3 0.5343
(b) Best-FitJ(w) Values Corresponding to the Best-Fit Parameters Listed
under the Heading “input”, Used To Calculate the Data of Tabte 9a
input output
C(Z) (SJZ)Z ﬂMD RC JDD(O) JDD((UN) JDD(wH+wN) JDD(CUH) JDD(a)H*(IJN) \]CC(O) JCC((UN)
SRLS 3.01 0.368 16.6 0.470 2.61 0.318 1.09 0.0093 0.0081 1.96 0.241
MF 10.2 0.806 15.0 0.114 2.48 0.303 1.08 0.0087 0.0074 2.48 0.303
(c) Significantly Contributing SRLS Eigenvalues and Associated Weights,
and Corresponding “Independent” MF Eigenvalues and Associated Weights
SRLS MF
eigenvalue 2.13 10.12 24.52 14.13 0.678 6
weight 0.61 0.325 0.042 0.019 0.652 0.157

aThe »2 values were practically zero for both SRLS and MF calculatiéf$he SRLS input set include’® = 0.47 ¢~ = 4.36 ns,z, = 9.28

ns)),c; = 3.04 (&)? = 0.37) andBwp = 16.6 (formally S> = 0.770).N =

Ri/R5 was fixed at the value of 1000. The MF input set includgs,

= 0.114,¢5 = 10.2 derived frons? = 0.806 (eqs 4 and 11§ = 0.809 andr; = 0. The formally22” analogous SRLS parameters & c3, A
= (P2(cosfBwp)))? and Rh > RE respectively. The units af(w) are ns.° The eigenvalues are given in units Rf; hence the “independent” local

motion eigenvalue is 6.

RE (or s > 7y in MF studies) the ternBji(w) cannot be

which are clearly different in the SRLS and MF analyses. Thus,

ignored in eq 10 when mode mixing is important. For the very a fictitious physical situation characterized by MF eigenvalues
same reason eq 19 is further impaired when its last term is and weights ofC(t) and best-fit parameters d{w) obtained

omitted.

In principle, settingBji(w) andCj2(w) equal to zero implies
theSmp = 0° geometry, which correspondsAo= 1. In practice,
the fitting schemes return& = 1, indicating that force-fitting
has occurred. Theyp = 90° geometry (which is approximately
correct as the angle between-N and G ,—C" is 101.3)
corresponds té = 0.25,B = 0 andC = 0.75. As shown below,
this materializes by fitting when the potential is allowed to be
rhombic andR;/R; is allowed to be arbitrary instead of being
forced to be very high.

In the perturbation limit the ordering is very small. Motion
aboutzy, is prohibited physically as theNH bond is attached
to the protein backbone. The highly plausible local diffusion/
local ordering axes £,—C* and N—C* are tilted at ap-
proximately 90 from the N-H bond. Therefore, thup =
90° geometry is actually implied in this limit. Outside the
perturbation limit,Zy, may betilted with respect to the NH
bond. To assign physical meaning to the tenBbr we will

assume, on the basis of stereochemical considerations, that th

Puvp = 90° is preserved in the general case.

with force-fitting can reproduce technically very well the
experimental data.

Note that the weights of the local and global motion terms
in Table 9c, yielded by the reduced extended MF formula (eq
19 with the last term set equal to zero), do not sum up to unity.
There is no requirement in the MF fitting schemes for
normalization in the so-called “model 5”, which uses this
formula. This is yet another aspect of the MF treatment that
implies force-fitting of the experimental data. Additional confu-
sion with regard to what the parametgrepresents is implied
by the phenomenon of renormalization, which is important when
the local potential is high. Because soi&g values are low
and others are high, this complicates further the comparison
among thers values of different N-H sites. Finally, confor-
mational entropy is often calculated fra#hinstead ofS2. The
parametes? is formally equivalent to%?)?, whereass’ taken
asS%S2includes the paramet&?, which is formally analogous
to a geometric factor,Rp(cos Bwp))2.2? S2 is highly inac-
gurate}??022S is qualitatively problematic.

We conclude this section by discussing the liit R;/R5

The experimental data of residue 124 of RNase H are further > 1, which is the analogue of the MF restrictiog> 7. The
used for illustrative purposes as follows. They are shown in I«(@) functions in Figure 10 were obtained with~ 1000. We

Table 9a along with the NMR relaxation data back-calculated Show in Figure 11 SRL§(w) functions obtained wittN = 1.

with MF and SRLS formulas using the best-fit parameters (given EXcept for the value oR, the parameters used to calculate the
in Table 9b) obtained with the respective fitting processes. Figure 11 functionsRC = 71/, = 0.57,¢; = 4.04 (&2 =
Clearly both SRLS and MF approaches reproduce the experi-0.51),up = 20° andR; > Rp) are quite similar to those used
mental data. The specifif{w) values entering the expressions to calculate the Figure 10 functions. It can be seen that for a
for Ty, T, and NOE are shown in Table 9b. It can be seen that small time scale separatiomb(rm = 0.57), moderate ordering
the MF approach can fit the experimental data as well as the (($?)? = 0.51) and thegwp = 20° geometry, the functions(w)

SRLS approach, but this requires that the relevaifw) values
be underestimated, and the releviif{w) values overestimated.
This is a clear example of force-fitting. The different best-fit

andj,(w) are comparable in magnitudejifw) over the entire
range ofw values wherN = 1 (Figure 11). On the other hand,
jo(w) > j1(w), j2(w) in the low-frequency regime, wherejgéo)

parameters can be further rationalized by examining Table 9c, > jo(w), j2(w) in the high-frequency regime whé&h> 1 (Figure
where we show the dominant eigenvalues and their weights, 10). Thus, the paramet& affects the analysis significantly.
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Figure 11. SRLS spectral densitigg(w) obtained Withcg = 4.04
(S92 = 0.51),75/tm = 0.57,up = 20° andR:/R5 > 1 (blue curves).
Reduced extended MF spectral density calculated &fth= 0.51,5°

= 0.68 andzs/tm = 0.57 (red curve). The coefficients of the SRLS
jk(w) functions shown in the expression #(w) are 0.68, 0.31 and
0.01 forK = 0, 1, 2, respectively.

The restriction to high = R\/R5 was imposed in our first
fitting scheme for SRLS (ref 22) for practical reasoﬁ#.and
RE represent the principal values of the diffusion tensor of
“body 17, i.e., the N-H bond. The inequalityR/Rr, > 1 is
clearly a simplifying approximation. As shown below, only by
removing this restriction, and allowing for rhombic potentials,
is a consistent physical picture obtained with data fitting. In
the SRLS approach the principal values of the local diffusion
tensor comprise information on physically meaningful variations
among the various NH sites (examples of such variations
among nitroxide-labeled sites in proteins appear in ref 37). This
information is lost when the restriction thit> 1, whereby
R; is forced to be in the extreme motional narrowing limit, is
imposed.

Within the scope of theformal (definitely not physical)
analogy between SRLS and MR:/R5 > 1 in the SRLS
model corresponds ta/t; > 1 in the MF model. Based on the
results presented below, which indicate tRARE > 1 is not
to be imposed, the mathematical MF inequalityrs > 1
constitutes an inappropriate oversimplification.

For comparison we also show in Figure 11 the reduced

Meirovitch et al.

Yu

Zy
Figure 12. Schematic illustration of high “nearly planafy—>Xw
ordering” prevailing at the NH site, with Yy as main ordering axis.
The M frame denotes the rhombic local ordering/local diffusion frame.
Yw lies along the instantaneous orientation of ttfe, €C” axis (or the
Ni—C" bond).Xy lies along the symmetry axis of the lone pair of the
nitrogen. TheC frame denotes the uniaxial local director frame with
Zc along the equilibrium orientation of the’G—C axis (or the N—

C{* bond). Within the scope of high ordering, is aligned preferen-
tially along theC axis.

Large errors in the strength of the potentidlkgT =
—cSPz(cos pwvp) are illustrated in Table 7 in the best-case
scenario wher& is determined with models 1 or 2. As pointed
out above, the errors inS are significantly larger than the
errors in due to the functional form of theS{?)? versusc)
dependence for highS§?)? values (Figure 4). Table 7 shows
that within the context of model 1 (or combination 1) the
potential coefficient oﬁg) derived from$ MF analysisunder-
estimateshe SRLS potential coefficient on average by 23%,
whereas in the context of model 2 (or combination 2) the
potential coefficient derived fror8 MF analysisoverestimates
the SRLS potential coefficient on average by 20%. Much larger
inaccuracies in the potential underlying the calculation of
configurational entropy are expected in the extended MF regime,
where MFS? and SRLS &?)? differ by factors of 3-4 (refs
19, 20, and 22). When the local potential is rhombic, as it turns
out to be at the N-H site2® MF studies cannot provide the
equilibrium probability distribution functionPeq = exp(—U/
ksT), because only one parameter is available whereas a rhombic
potential is defined by at least two coefficients, implying two

extended MF spectral density obtained with the analogous order parameters.

parameterszs/tm = 0.57,52 = 0.51,52=0.68 G2 = A =
1.5 cog(20°) — 0.5) andzy = 0 (red curve). This function is
clearly a poor approximation ai’°(w) assembled according
to eq 10 from thejk(w) functions of Figure 11, with the
coefficientsA = 0.68,B = 0.31 andC = 0.01, corresponding
to themp = 20° geometry. This illustrates clearly the limited
capabilities of the MF approach, which cannot reproduce
physical situations wherg:/R5 ~ 1.

3. Conformational Entropy Derived in MF Analysis from

Contrary to MF studies, in the SRLS approach the general
rhombic form of the potential is implicit in the theory and its
coefficients ¢2 and c3) can be obtained directly with data
fitting. The SRLS theory also emphasizes the relevance of the
Euler anglesQcum. Peg and therefore the thermodynamic
guantities, are obtained straightforwardly in SRLS. Order
parameters are thus not required to infer the potential to derive
conformational entropy. They can be calculated independently,
if so desired, using eqs 4 and 11.

2. In recent years squared generalized MF order parameters 4. Rhombic Symmetry of the Local Potential/Local
have been used extensively to derive thermodynamic quantities,Ordering. 4a. Rhombicity of the Local Ordering and the Axiality

notably configurational entrop$?-2¢ The logic behind this
approach is as followsS is determined with data fitting.
Subsequently, it is assumed thBgq is axially symmetric.

of the Global DiffusionA very large effect on the analysis not
accounted for in MF analysis is the rhombicity of the potential
U(Qcwm)/ksT. This is illustrated below in quantitative terms. The

Thereby the squared generalized order parameter becomes théorm of the potential depends on the symmetry of local diffusion/
square of an axial order parameter. This enables the derivationlocal ordering frame, M, and the symmetry of the local director
of the strength of an axial potentiathe form of which must frame, C. In the SRLS approach the local director is taken to
be guessedbased on equations similar to our eq 11. Because be uniaxial for simplicity but the M frame is in general allowed
the MF approach is an SRLS asymptote, the potential form given to be rhombic. We found previously that the particular rhombic
by eq 4 (withc set equal to zero) is appropriate. Employing symmetry of the M frame is of the “nearly pland—Xu"
other potential form® 36 may increase the inaccuracy in the type?2® Figure 12 illustrates these frames in the context of the
configurational entropy derived from the already inaccute  stereochemistry of the peptide plane. Thexis is considered
value. to lie along the equilibrium £,—C* axis. The main ordering
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TABLE 10: Percent Difference [var(axial) — var(rhombic)}/ TABLE 12: Potential Coefficients c3 and c3 (Eq 4) and

var(axial) x 100 between'*N T, T, and NOE Calculated Corresponding Principal Values of the Ordering Tensor in
with 7,, = 15 ns,R¢ = 0.01, and an Axial (:S =8 and Spherical Tensor Notation,S2 and S;? (Eq 11),
c3 = 0) or a Rhombic (c3 = 8 and ¢ = 4) PotentiaP and in Cartesian Notation, According to Sy = (1/2)v/3/25,2 —
11.7T 1417 18.8T 0.55% Syy = —(1/2)v'3/2S* — 0.557 S,,= S* @
T, -2.4 -1.0 +1.5 g S? S? S Sy S,
To —-7.6 7.5 —-7.6
2 0 +0.440 0.000 —-0.220 —0.220 +0.440
NOE +3L6 +39.3 +46.3 2 2 40265 +0368 +0.093 —0.358 -+0.265
a Calculations are shown for magnetic fields of 11.7, 14.1and 188 2  2.45 +0.188 +0.460 +0.188 —0.376 +0.188
T. 2 3 +0.088 +0.572 +0.306 —0.394 +0.088
2 4 —0.082 +0.750 +0.500 —0.418 —0.082
TABLE 11: Percent Difference [var(fcc=0°) — 2 6 —0.183 +0.878 +0.739 —0.446 —0.293

var(fcc=90)]/var(fcc=0°) x 100 between>N Ty, T, and ) ] )
NOE Calculated with 7.,(app) = 15 ns,RS(app) = 0.01, an aNote that reversing the sign of will cause the values & and

Axial Potential Given by ¢3 = 8, ficc: = 0° and a Global Syy to be exchanged.
Diffusion Anisotropy of R{/RS =1 or 1.2

local director frame, C and the (axial) global diffusion frame,

1177 1417 188T C. The effect illustrated in Table 11 is small relative to the large
Ty +7.4 +7.1 +6.1 effect of moderate potential rhombicity on the NOE illustrated
LZOE :2-2 :g-g :?1'(2) in Table 10. It is very likely that in many cases the rhombicity

of the ordering tensol$, was absorbed in the MF analyses by
2 Calculations are shown for magnetic fields of 11.7, 14.1 and 18.8 introducing RC axiality, in particular when the total time
T. correlation function,C(t), rather than the time correlation
function for global motionC<(t), was used to determingC.
axis, Yu, is parallel to the instantaneous orientation of the |n the former caséN Ty, T, and 5N—{*H} NOE enter the
C,—C axis. Zy is perpendicular tofy within the peptide  analysis, whereas in the latter case of§ly T, and T, enter the
plane andXy is perpendicular to bothyy and Zy, i.e., analysis.
perpendicular to the peptide plane. The aXiglies along the
symmetry axis of the lone electron pair of the nitrogen, assigning
clear meaning to the “nearly plangy—Xw ordering” symmetry,
where |Syl, ISyl > |S4, Sy > 0 and|S,| is slightly larger
than|Syl. In the original MF formula, and in the extended MF
formula as presented by its developers, C lies implicitly along
the equilibrium N-H orientation. In a high ordering scenario
the implied motion around NH is not viable. On the other
hand, motion around {C,—C?, is definitely viable. Note that
taking the local director to lie along the:G—C/* axis within a
presumed rigid peptide plane sets the arfijle close to 90
for the N—H bond and close to“Ofor the C—C® bond. the data feature rhombic potentials.

The rr}ombicity IOf t_he local orderri1ng tenS(S_’,, ils cr)]utsid_e _the It should be noted that in general all the parameters entering
scope of MF analysis. Because the potential rhombicity was o J¥(w) functions, including the global diffusion tensor, are

shown with SRLS to affect the analysis significarthit must to be determined in the same fittin
) g process. The separate
be absorbed by the best-fit MF parameters. We showed determination oR® in the MF approach is implied by the mode-

i " .
previously® that the_c_onfprmauonal ethange paramelRey, independence concept, the applicability of which teflbond
can absorls rhombicity in the data fitting process. Another dynamics we challenge herein

likely candidate, in particular in the BO limit where mode ) , . . .
mixing is limited, isRC axiality, as explored below. 4b. “Nearly Planar ¥;—Xy" Rhombic OrderingAs pointed
The large effe’ct of the s rr;metr of the local potential on out above, the “nearly planaf, —Xy" ordering symmetry with
the anal gis is illustrated )i/n TabI)t; 10 which s‘r)wows NMR Ywu as the main ordering axis represents realistic stereochemical
relaxatiox rates calculated f&€ = 0.01, fup = 0°, 7m = 15 and electronic properties of the-NH site in proteins. Let us
ns and axial or rhombic potentials .on ’thhéDorder’ofrI:w In investigate this symmetry in further detail. For convenience we
: 2 _ 2L :
the axial case we utiIizedS = 8 ((S9)? = 0.754), whereas in ;Jhse C%_ 2, and a"OWCfZ to '“Crf‘i‘se from 0 to 6, scanning
. . ! ereby over a range of symmetries.
the rhombic case we utilizedf = 8 andc = 4. These latter y g v . :
Table 12 shows potential coefficients and corresponding

values represent moderate rhombicity, correspondin ; - ;
S)/Si= 2.6% whereS, = —0.382 SZ _ _0_4%4 an(%ioi ordering tensor components in spherical tensor nota8gmsnd

0.836 are the principal values of the corresponding Cartesian>> @nd in Cartesian tensor notatio§y, Sy and S The
ordering tensor. As shown in Table 10, potential (or ordering) numerical values of thg Czarte5|an tensor compgnents. indicate
rhombicity affects the NOE to a very large extent, amounting clearly that the entry witlt; = 0 represents positive axidl

to 31.6% (46.3%) difference from the axial case at 11.7 T (18.8 Ordering; the entry witft; = 2.45 represents negative axi4l

T). The parameters used in Table 10 for the axial potential caseordering; the entry witft; = 3 represents rhombic negativg

are also used in Table 11 to illustrate the effect of global ordering with “nearly plana¥y—Xy symmetry”; the entry with
diffusion axiality with RY/RS = 1.2, which is a typical value ~ C; = 4 represents positive rhombiy ordering with “nearly

for globular proteing? “%diff” denotes the percent difference  planarXy—Yw symmetry”; the entr;cﬁ = 6 represents positive
between corresponding variables calculated With = 0° and Xm ordering and substantial negatiYg ordering. The angle
Bce = 90°, whereficc denotes the angle between the (uniaxial) yvwp was fixed in the calculations of this study, and all our

The data shown in Table 11 were obtained for a time scale
separation of 0.01, which is quite large, and a potential strength
of cg = 8, which corresponds to the relatively high ordering of
(S92 = 0.754. In this parameter range the effect of additional
local motion eigenmodes on the correlation function is not very
large2” However, not accounting for it, and oversimplifying the
local geometry, render the MF-basédandT; values inaccurate
by 7% and 9%, respectively. Interestingly, the field dependence
of these discrepancies is small. This indicates that in those cases
where MF analysis yields significantly field-dependenvalues
either mode mixing is pervasive in the experimental data or
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Figure 13. Functiongk(w) = jkk(w) (a) andjk(w) = jkk(w) andjkx (@)
(b, c) calculated foR® = 0.001, ands; andc as depicted in (a)(c).
The potential coefficients correspond to axial symmetry Wgth: 15
(a), and “nearly planaYy—Xy symmetry” withc2 = 2 andc? = 3 (b)
andci = 2 andci = 3.25 (c). The black, red and green curves
represent the functiorjg(w) with K = 0, 1, 2, respectively. The blue,
yellow and indigo curves in (b) and (c) represent the functjeki$w)
with KK’ = (2,0)= (0,2),KK’' = (2,—2) = (—2,2) andKK' = (1,—1)
= (—1,1), respectively. The NMR relaxation rates were calculated for
Buo equal to 0 (a) or 90 (b, ¢),7m = 5.5 ns and a magnetic field of
11.7 T. Note that fopimp = 90° the contributing cross-terms include
jaolw) = joow) andjz-2(w) = j-2ow)).

previous studies, at 90in agreement with stereochemical
considerations (Figure 2b).

The high sensitivity of the analysis to the symmetry of the
local ordering (local potential) is illustrated in Figure 13. We
show the functiong«k-(w) for all the relevant combinations of
quantum numberk andK’, as determined by the symmetry of
the local potential. The potential is axial in Figure 13a, wﬁh
= 1.5, and of the “nearly planary—Xw ordering” type in
Figures 13b @3 = 2 andc5 = 3) and 13c ¢ = 2 andc; =
3.25). To calculate thik(w) functions, we use®® = 0.001,
and to further calculat&;, T, and NOE, we usefiyp = 0° in
Figure 13a an@yp = 90° in Figure 13b,c, and the value of,
= 5.5ns.

There are significant differences between the axial and
rhombic potential scenarios. First of all, rhombic symmetry
requires the cross ternsa(w) = j—22(w), j20(w) = jox(w) and
ji—1(w) = j_11(w) in addition to the diagonal termg(w), j1(w)
and jo(w) required for axial symmetry. The corresponding
relaxation rates of Figure 13a,b differ significantly, illustrating
the importance of the symmetry of the potential and the local
geometry. The NOE generated with the rhombic potential given
by ¢3 = 2 andc3 = 3.25 (Figure 13c) can also be reproduced
with an axial potential given byg = 1.5 (Figure 13a) (with all
the other input parameters being the same). HoweMeand
T, differ substantially indicating that a completely different set
of input parameters featuring an axial potential would be
required to reproduce satisfactorily thg T, and NOE of Figure
13c. This illustrates force-fitting, with Figure 13c representing
“model” experimental data. Parts b and ¢ of Figure 13 show
that the NMR relaxation rates are altered substantially when
the rhombicity of the potential changes moderately. Thus, an
8% increase incy/c implies a 53% increase in the NOE,
pointing out the very high sensitivity of the analysis to the
precise form of the local potential.

The examples shown in Figure 13 pertain to the large time
scale separation regime where mode mixing is limited. The
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Figure 14. 5T;, T, and*>N—{H} NOE calculated with, = 6.1 ns,
RC = 0.5 and a magnetic field of 11.7 T. Isotrof® andfup = 0°
were used in (a}(c), and axialR- with N = R;/R5 = 10 andfup =
90° were used in (dy(f). The potential used was given h:ﬁ =2,
with the rhombic coefficientc?, varied from 0 to 6.

effect of potential symmetry on the experimental variables for
R¢ = 0.5, where mode mixing is important, is illustrated in
Figure 14. The other parameters used inclugde= 6.1 ns and
5 = 2. IsotropicR- (N = 1) andfwp = 0° were used in Figure
1l4a—c, and axialR- (with N = 10) andBwp = 90° were used
in Figure 14d-f. The rhombic potential coefficients, was
varied from 0 to 6. Positive axialy ordering corresponds to
2 = 0 (S, = 0.440,Sx = Sy = —0.220), negativeYy
corresponds t@; = 2.45 Gy = —0.376,S« = Sy = 0.188),
“nearly planarYy—Xy ordering” with Yy as main (negative)
ordering axis corresponds t6 = 3 (S« = 0.306, Sy =
—0.394 ands,,= 0.088), and rhombiXy ordering corresponds
to ¢5 = 6 (S« = 0.629,S,y = —0.446 andS,, = —0.184).

The “nearly planalYy—Xu” ordering symmetry withyy as
the main (but negative) ordering axis, which correspond:% to
=2 andcg = 3, has unique features. F@pp = 0° the NOE
and T, assume their maximum values, wher@asassumes its
minimum value for this symmetry. Fg#yp = 90°, T, goes
through a shallow minimum, whereds and the NOE exhibit
maximum slope for this symmetry in thé range shown.
Particularly noteworthy is the fact that the NOE is significantly
higher when the symmetry of the local potential is rhombic
instead of axialBy analogy with Figure 14he maximum NOE
corresponding to rhombic “nearly planary—Xy ordering”
is expected to be higher than the maximum NOE corresponding
to axial ordering of similar magnitudel’his turns out to be an
important issue, discussed below in detail.

5. Examples of Misleading Force-Fitting with MF Analy-
sis. 5a. “Missing’ Contribution to'5N 1/T,. Lee and Wand,
who carried out a comprehensive MF analysis of multifield
ubiquitin data acquired at 300 K, reported on an apparently
missing contribution to T7, that led to largery, values despite
having allowed for variations in th&N CSA interaction. Only
whenT, was excluded from the analysis was the expected value
of Ty = 4.1 ns recovered. As shown in Figure 5, fgr=5 ns
mixed modes contribute to T/ significantly already forre on
the order of 20 ps fo& = 0.85. Quantitative estimates given
in Table 8 show that even when the contribution of mixed modes
is relatively small, the 1I,’'s obtained with MF analysis are
5—6% lower than the T7%’s obtained with SRLS analysis.
Smaller time scale separation and lower ordering, which imply
larger effects of additional eigenmodes for local motion on the
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Figure 15. Experimental NOEs of the ribonuclease binase acquired
at 11.7 and 18.8 T, 303 K. The horizontal lines show the maximum
NOE for 6.1 ns (11.7 T) and 5.5 ns (18.8 T), with the global motion
correlation times determined on the basislefT, ratios.

correlation functions, will increase further the difference between
1/T, obtained with SRLS and T obtained with the MF
approach. The data shown in Table 8 were obtained with axial
potentials. For rhombic potentials theTddifferences will be
significantly larger because the SRLS and MF approaches differ,
in general, to a larger extent when the potential is rhombic in
SRLS and axial in MF (e.g., see Table 10).

Because MF analysis does not account for either mode mixing
or potential rhombicity, the only way to render the fitting
feasible is to excludd, from the analysi8.SRLS-based data
fitting with rhombic potentials and arbitrai§;/R5 is expected
to provide insightful fitting of complete multifield data from
ubiquitin and other proteins.

5b. Low Performance of the NH Bond as Dynamic Probe
The commonly used probe for studying protein backbone
dynamics is the NH bond. The experimental autocorrelated
relaxation rates®N Ty, T, and >N—{*H} NOE are analyzed
with data fitting. Recently the*C'—13C* bond has been
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TABLE 13: Maximum NOE (Obtained with Model 1) and
Minimum T; and T, (Obtained with Model 1 and & = 1)
Values Corresponding to 11.7 T and 13.44 (5.5) ns at 278
(303 K) (Row 1); Average ExperimentalT; and T, and NOE
Values from Ref 13 (Row 2); and Percent Difference
between Corresponding Data in Rows 1 and 2 (Row 3)

T1, ms Tz, ms NOE
303 K
1 368.5 117.2 0.771
2 408.2+ 6.5 (1.6%) 129.4¢ 2.5 (1.9%) 0.771
3 10.8% 10.4% 0
278 K
1 720.4 55.0 0.816
2 781.34 18 (2.3%) 59.2¢ 2.1 (3.6%) 0.816
3 8.5% 7.7% 0
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Figure 16. >N—{'H} NOE calculated withr, = 6.1 ns,R¢ = 0.5,
Ri/R5 = 0.5 andc = 2. The rhombic potential coefficient?, was
varied from O to 6.

this axis whereas '©&C% is parallel to it. Similar results were
obtained for ubiquitin.

The unexpected temperature-independenc&(fi—H) is
actually imprinted in the raw data. Figure 15 shows the

cited therein). In this application tHéC’'—13C* dipolar{3C’ CSA
cross-correlated relaxation rafe, is measured. Because only

horizontal lines show the maximum “rigid sphere” NOEs
corresponding ta, values determined witfi1/T, analysis. It

a single relaxation rate is measured only model 1 cases, whichc@n be seen that most NOEs exceed the “rigid sphere” value.

featurer,, and $(C'—C%) as free variables, can be treated. In
such cases one can calcul&¢C'—C%) from the expression of

I’ usingtm determined with'>N spin relaxation. Hence within
the scope of the MF approach, combined-Nl and C—C*
analysis is relevant for rigid proteins where model 1 applies,
assuming that the peptide plane is rigid.

The ribonuclease binase was studied earlier With spin
relaxation at 11.7 and 18.8 2F,and recently with combined
15N—1H and C—C® spin relaxation at 11.7 T In the earlier
study the 18.8 T data could not be fit with MF formulas, and
the 11.7 T data yielded an altogether rigid backbone although
other methods (X-ray crystallography, molecular dynamics and
13C'—13Ce cross-relaxation) indicated that the catalytic loops
L2 and L5 are flexible! In ref 13 it was found that at 278 K
F(N—H) andS(C'—Cv) are practically the same, in agreement
with nearly rigid N-H and C—C® bonds. However, when the
temperature was increased to 3033(C'—C%) decreased by
10%, whereas(N—H) decreased by only 2%. This was
considered contrary to the expectation that at the higher
temperature the NH bond should be more sensitive than the
C'—C bond to the crankshaft motiéhoccurring about an axis
close to the N-C? bond, because NH is perpendicular to

This feature necessarily imposes on the fitting scheme model
1, where the “rigid sphere” NOE value is obtained. The latter
is independent of. T; and T, assume minimum values f&

= 1. As shown in Table 13, the difference between the average
experimental and minimunh; and T, values is approximately
8% at 278 K and 10% at 303 K. T values yielded by the
MF analysis are 0.903 at 278 K and 0.884 at 303 K, which
differ from 1 by 10 and 12%, respectively. Hence, the
unexpectedly small temperature-dependenc&@—H) is to

be assigned to issues related to the analysis, rather than issues
related to the sensitivity of the experimental data. A plausible
interpretation is outlined below.

The maximum theoretical NOE value has been determined
for axial local potentials. However, we found previously that
“nearly planarYy—Xw ordering” prevails at the NH bond.
Figure 16 shows the effect of potential symmetry on the NOE.
Calculations were performed fop, = 6.1 ns,75/tm = 0.5,R;/

R, = 05,¢ = 2 and fwp = 0°. The rhombic potential
coefficient,cg, was varied from O to 6, scanning thereby over
the various symmetries of the coupling potential and the
corresponding ordering tensor. As pointed out eartiér,—— 0
corresponds to axiaZy ordering; cﬁ = 2 corresponds to
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TABLE 14: Order Parameters Sy? and S,%, and (So?)axial® =
0.25 &2 + 0.75 §,2)?, for c5and ¢ As Given in the Table

G S? S? (S)axial Caxial) cich
10 16 —0.305 1.034 0.825 11.3 1.6
10 18 —0.381 1.100 0.943 34.9 1.8
10 20 -—-0.412 1.130 0.971 >50 2.0
10 22 —0.432 1.147 1.005 very high 2.2

rhombic Zy ordering;cg = 2.45 corresponds to axial perpen-
dicular Yy ordering;cg = 3 corresponds to rhombic “nearly
planarYy—Xw ordering” with Yy as the main ordering axisg

~ 5 corresponds to rhombiXy ordering. It can be seen that
the largest NOE value is obtained fgf = 2 andc; = 3, i.e.,
rhombic “nearly planaryy—Xyu ordering”, with Yy as main
ordering axis.

Figure 16 shows clearly that rhombic potentials can yield
higher NOEs than axial potentials. Therefore, if the theoretical
spectral density used in the fitting scheme yiefdaximum
NOEs corresponding to “nearly planak,—Xw ordering”, the
experimental NOEs may not exceed the maximum NOE, and
model 1 may not be imposed on the fitting scheme. Instead
model 2, which yields significantly lowes? values than model
1 (Table 7), may be selected at 303 K.

Yet another illustrative example is presented in Table 14
which shows highc? and c3 values, corresponding to high
order parametersp? andS?, as appropriate for model 1. For
the expecte@mp = 90° geometry corresponding to the “nearly
planar Yy—Xyw ordering”, the termr,/(1 + w?,?) in the
combination 1 spectral density is multiplied by the coefficient
[0.25 (%2 + 0.75 &?)?, becausediy)? = 0.25 and 25

= 0.75 (eq 20). Let us assume that this expression is mimicked

by (S9axia? in an axial potential scenario. We calculat&gd
andS? in terms of the potential of eq 4 wittf = 10 andc5
varied from 16 to 22. These potentials correspond to “nearly
planarYy—Xy ordering”. Table 14 also show%(axian, corre-
sponding to §?axia?- It can be seen that faw/c; > 1.6 the
axial mimic (S?)axia corresponds to very high potentials. This
agrees with the higl§?(N—H) values obtained in ref 13 at the
higher temperatures for binase and ubiquitin.

Combined analysis of NH and C—C® bond dynamics can

be carried out when the peptide plane is assumed to be rigid.

The local ordering tensor (diagonal in the M frame) is then a
common property. Because the magnetic framé&\f-H and
13C'—13Ce differ, the local geometryQ@up) differs. However,
for high local ordering corresponding to model 1 (combination
1) £ ((S9?) represents the mean square fluctuation amplitude
of all the local motion2? In this limiting case the anglgwvp
does not enter the analysis any longer. For that, a rhombic M

frame is required (eq 20). Hence one cannot expect differential

sensitivity of the N-H and C—C* bonds to the crankshaft
motion unless the local ordering is allowed to be rhombic in
the theoretical spectral density. As pointed out previotfsilis
ordering symmetry actually prevails at the-M site. As shown
herein, it can be treated with the SRLS model.

Unlike $(N—H), which is determined with combined fitting
of the relaxation quantitie$®N T, T, and ®N—{H} NOE,
F(C'—C%) is calculated directly from the expression for the
cross-correlated relaxation raté, This can be accomplished
by assuming that model 1 is valid, i.e., the spectral density is
given by the first term of eq 16. With,, determined with N-H
bond dynamics analysis(C'—C®) is the only unknown
parameter. The maximuivalue for 11.7 T is—2.395 (-1.194)
for tm = 13.44 ns (5.5 ns) whereas the corresponding experi-
mental value is—1.992 (-0.885). Hence limitations implied

Meirovitch et al.

TABLE 15: Best-Fit Parameters for N—H Site Dynamics
Obtained with Rhombic Potentials for the Average
Experimental Data of Binase at 11.7 T, 303 K (Ref 2 and
for the Combined 11.7 and 18.8 T Data of Binase Residue 16
at 303 K (Ref 28) (r, = 5.5 ns)

¢ & R fu,.deg RIR S« Sy S

av 55 9.7 0.97 90_fixed 1000_fixed-0.470 0.761 —0.291
resl6 5.0 10.0 1.0 90.0 30.0 —0.65 0.75 -0.10

aKindly provided by Prof. E. R. P. Zuiderweg of the University of
Michigan, Ann Arbor, MI.

by the experimental values exceeding maximum values implied
by axial potentials, as in the \H case, do not exist in this
case. For rigid residues tRéC' —13C* dipolar!3C’' CSA cross-
correlated relaxation rate depends to a large extent’8(D)
andJC%(0). Therefore, local motion effects are small, justifying
the use of model 1. Becauggp is approximately ©for C'—

C%, () axiaf IS approximately equal toS§?)2. For this reason

at the higher temperatures the relatively accugd€' —C*) MF
value is smaller than the force-fittegi(N—H) MF value.

The 3D Gaussian axial fluctuations (GAF) mafelccounts
guantitatively for the different geometric features at theHN
and C—C=« sites. In this approach the M& is expressed in
terms of harmonic fluctuations around thé £-C* axis (©,?)
and perpendicular to its?). The 3D GAF model was applied
to ubiquitin at 300 K2° Molecular dynamics simulations showed
thato,? > 044 MF fitting of the >N relaxation data showed
the same trend with even larger absolute magnitudes?nd
0og?. The (N—H) values obtained with the usual MF analysis
were reproduced by th&(N—H) values calculated with the
3D GAF model when (relatively small) contributions, which
are usually ignored if®N spin relaxation oft®N,*3C-labeled
proteins, were taken into accou®(C'—C*) values calculated
with the 3D GAF model were found to dagher than S(N—

H) as N-H senses the,? fluctuations, which can be considered
to represent the crankshaft motion, whereas© senses the
oog? fluctuations. Thus accounting for the asymmetry of the
local ordering with the 3D GAF model yield(8—H) <
F(C'—-C%), as expected

Instead of harmonic fluctuations,? and o,4? (suitable for
“rigid” residues only) and a predetermined geometry, which is
implicit in the 3D GAF model, the SRLS approach allows for
a rhombic ordering tensor with principal valugg andS? (eq
11) defined in terms of a rhombic potential (eq 4). Furthermore,
the SRLS treatment is not limited to “rigid” residues, and the
orientation of the M frame is not fixed. The perpendicular (to
the G- ,—C axis) orientations are not considered equivalent
and the magnitude of the local asymmetry is quantified through
¢; and c5, or S? and S2. The local motion is treated as
diffusive, which is reasonable (although improved modeling can
be introduced to account for any inertial effects).

Calculations using our fitting scheme for SRLS, which allows
for rhombic ordering, were carried out for the average values
of 1N Ty, T, and NOE acquired at 303 K and 11.7 T, and for
combined 11.7 and 18.8 T data of residue 16 of binase acquired
at 303 K. In the former case we fixed the raBy/R5 at 1000
and the angl@up at 9¢, allowing c3, c; andRE to vary. In the
latter case we allowed;, ¢35, RC, Rj/R5 andwp to vary. The
results are shown in Table 18(C'—C%) = 0.806 was derived
in ref 13 from the experimental cross-correlated relaxation rate,
T, measured at 11.7 T and 303 K, as outlined above. On the
basis of eq 11$(C'—C%) = 0.806 corresponds t(% = 10.2.
The components of the Cartesian ordering tensoSgre= Sy
—0.449,S,, = 0.898. It can be seen that the magnitudes of
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Figure 17. Experimental NOEs of oxidized flavodoxin acquired at
11.7, 303 K (ref 17). The horizontal line shows the maximum NOE
for 7.6 ns, with the global motion correlation time determined on the
basis of T./T; ratios.

the local potentials at NH and C—C* sites are similar
associated with*C,_,—**C* ; motion is comparable in magni-
tude with c; associated with!SN;—H; motion). The local
geometry is different wittByp = 90° for the N—H bond and
Bup = 0° for the C—C* bond. Becaus&:/R5 and Sup were
fixed in the fitting of the averagé®N relaxation data (as only

3 data points are available), and rhombic potentials could not
be used to treat'©C* bond dynamics (as only one data point

|
0 150

is available), we regard the data in Table 15 as interim results. 2

However, they can be used for illustrative purposes. If the
peptide plane is rigid, it is expected to determine the same tenso
components permuted frody ordering for C—C% to Yy
ordering for N-H. Thus,S,; = 0.898 is to be compared with
Sy = 0.761 (results for the average data).3fJ° is considered

to represent the crankshaft fluctuations, then 0.58 feiHNs

to be compared with 0.20 for'€C®. Clearly proper analysis
bears out the higher sensitivity of-NH bond dynamics as
compared to C-C* bond dynamics to the crankshaft fluctua-
tions.

Itis concluded that the effects of potential rhombicity, mixed
modes and the D-to-CSA tilt must be accounted for in the
theoretical spectral density to obtain physically insightful
information. This is outside the scope of the model-free approach
and can only be accomplished with the SRLS model. As shown
above, combine#N and!3C spin relaxation analysis is expected
to be useful within the scope of SRLS analysis. As shown below,
binase is not a singular case but a representative case.

Figure 17 shows the experimental NOEs of oxidized fla-
vodoxin acquired at 11.7 T, 300 K.Similar to the case for
binase, most NOEs exceed the maximum NOE calculated for
axial potentials, depicted by the horizontal lin®N spin
relaxation data of oxidized flavodoxin data could not be fit with
the standard MF fitting scheme. Fitting became possible only
after reducing the experimental NOEs globally by 10%, render-
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Figure 18. Experimental NOEs of RNase acquired at 285, 300 and
310 K, 11.7 T*2 The horizontal lines show the maximum NOE for the
Tm values shown, which were determined on the basi, 4, ratios.
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Figure 19. Experimental NOEs of RNase H acquired at 11.7, 14.1
and 18.8 T, 300 K2 The horizontal lines show the maximum NOE
for the 7, = 9.28 ns determined on the basisTafT, ratios.

mental NOEs are shown in Figure 18. It can be seen that quite
a few NOEs exceed the maximum NOE values depicted by
horizontal lines. The average slope &1S/dT determined with

MF analysis was 5.% 104 K™%, to be compared to & 1074

K~1 for binase, considered to be low. SRLS analysis, using the
equivalents of MF models-15 (ref 46) as implemented in our
2D grid-based fitting scheme for SRLS featuring axial poten-
tials 22 yielded 6.4x 1074 K~ for the 3, strand of RNase H.
Thus, the detrimental features of model 1 analysis with axial
potentials outlined for binase recur with RNase H.

15N relaxation data of RNase H were also acquired at 11.7,
14.1 and 18.8 T, 300 K (ref 57). The NOEs obtained for the
rigid part of the protein backbone are shown in Figure 19. NOEs
exceeding the maximum NOE are pervasive at 18.8 T, where
the local motion contributes significantly to the spectral density.
Hence valuable information will be lost with force-fitted MF
analysis.

A small value of d(1— S)/dT was also reported for ubiquitin.

ing them smaller than the maximum NOE. Even then model 1 The experimental NOEs acquired for ubiquitin by Lee and

was used predom|nant|y’ tI® values were very h|gh andn Wand are shown in F|gure 20. It can be seen that similar to

was 7.6 ns, which is about 2 ns shorter than expected for athe cases for binase and RNase H, many NOEs exceed the

bare sphere with a molecular weight of nearly 20 kDa, Maximum NOE.

corresponding to oxidized flavodoxin. Clearly, the experimental ~ Figures 15-20, as well as the last column of Table 5, indicate

data were force-fitted, similar to the binase case. SRLS-basedthat in many cases MF fitting schemes select model 1 by force-

fitting with axial potentials gave similar results, in support of fitting, yielding inaccurates? values. When the main effect is

the assessment that rhombic potentials are to be used. the omission of the D-to-CSA frame transformation, as for the
The enzyme ribonuclease H (RNase H) was studied #ikh villin headpiece (Table 5)?)? is underestimated b§. When

spin relaxation at 285, 300 and 310 K, 11.22TThe experi- the main effect is oversimplified symmetry of the local ordering,
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298K TABLE 16: Best-Fit Parameters Obtained by Subjecting the
08 ' l S ' l T Domain Residues 30, 100 and 135, Which Feature High
m = T a1 ' 1 Experimental NOEs, and Residues 77 and 80 of the Central
S ) ) 3 3 Linker Region, Which Feature Low Experimental NOEs, to
Bosl T : _ SRLS Analysis Using Combination 5 (&?)2, R¢ and
s | . .= | . Bwo Varied) with N = Rj/R-, = 12
PR — & & R jmden
o T R Bl i Tk 30_f 193 0897 005 0.01 4.9
S | BIL z = | 30 b 18.3 0.892 0.06 20.0 5.0
g =5 = 100 f 164  0.879  0.07 2.6 0.016
0.6 X | | 'z — 100_b 15.7 0.874 0.05 22.5 25.2
0 : o : ) : % : 20 135_f 214 0907 001 0.03 0.3
T T T T T T 76T 135 b 16.4 0.879 0.06 22.2 13.1
. _m—l’il_’:lf‘:ﬁx_%—ﬁli 77 _f 8.6 0.771 0.06 8.0 0.0
SO = rmxx T ox U= w0 77_b 84 0765  0.03 24.8 7.9
e |= = = . | 80 f 8.7 0.773 0.06 0.0 18.2
¢ E 80_b 8.2 0.760 0.03 28.0 21.6
L | L | L | = L
08, 20 40 60 80 2 The symbols “f" and “b” denote the ligand-free and ligand-bound
Residue forms, respectively? Note that a threshold value gf = 25 was also

Figure 20. Experimental NOEs of ubiquitin acquired at 11.7, 14.1 used by Vugmeyster et &l.
and 18.8 T, 298 R.The horizontal line shows the maximum NOEs

for 4.1 ns.
Dy

(S?)? is overestimated by (Table 14). Thus, thé&? profile C:_——-i-——; _
over the protein backbone may become qualitatively inaccurate. | -~~~ s Ca’*—ligated Calmodulin

5c. Limited Information on MairChain Conformational ﬁ;i‘:i:’--:,o‘;,
Entropy from N-H Bond DynamicsSimilar to its low sensitiv- .o Gistal ks
ity to temperature variation§(N—H) was also found to exhibit A [—B%. ~ T = i
low sensitivity to ligand binding. The paramet&®N—H) and 9 I =
(C'—C%) of ligand-free and ligand-bound &a-calmodulin R AR R B
(CaM) were derived in ref 18. The experimental data were Bt - L @ = 947 (N), 146° (C)

acquired at 11.7 T, 308 K, and the MF analysis used predomi- : . . )
nantly model 1. Except for the central linker and several loops, Figure 21. Ribbon diagram of Cé-ligated calmodulin reproduced

S(N—H) changed very litle wherea§?(C'~C%) changed /% 20 [0 OO ies OFHte oo o e epicted define
significantly upon ligand binding. As in the temperature- e giobal diffusion tensor as determined in ref 64. “N” and “C” denote
dependent study, it was concluded that theHNbond does  the N- and C-terminal domains of &aligated calmodulin.

not sense (in this case ligand-binding-dependent) backbone
fluctuations sensed by the'-©C* bond. This is important for its principal value. This could not be determined with the MF
conformational entropy derivation from M& in the context ~ approach because in models 1 and 2 the gfigieis implicitly
of complex formation. Z€ro. o )
Similar to the apparently low sensitivity cB(N—H) of As shown in Figure 11, MF analysis does not have the

binase, RNase H and ubiquitin to temperature changes, thegzgzb:]lg ;2025 gi)iﬁéesN;Etr;;tzsergEerS;lmw Olnbfe(g’;u;ﬁ dlt
apparently low sensitivity o (N—H) to ligand binding to CaM j2(w). The fact that the MpF scheme cozver e%l toqmodels 1 and
stems from force-fitting the experimental data with axial 12®). 9

otentials. instead of using phvsically sounder rhombic poten- 2 instead of model 5 is a consequence of force-fitting. With
P o >Ing phy y . pot SRLS analysis we found that residues 77 and 80 of the central
tials. Routine interpretation requires a very efficient SRLS fitting

scheme featuring rhombic potentials, which is currently being linker are associated with an averagvalue of 8.5 (corre-
! ' nding to an averag&yf)? value of 0.77), wher residu
developed. Therefore, we illustrate below the need for model °po g to an averag&) o ), whereas re es

: % 2
generality using our SRLS fitting scheme featuring axial 30, 100 a_nd 135 are associated . 17.'9 (@))_ 0.9).

. . . Hence axial-potential-based SRLS fitting differentiates between
potentials. Table 16 features results obtained for the residues

30, 100 and 135 of CaM (associated with high experimental the central linker and the N- and C-domains of CaM. The results

) . . will change when the potential will be allowed to be rhombic
N.OES) and for.the central linker residues 77 and 80 (assoc'atedandN will be allowed to vary. However, Table 16 illustrates
with low experimental NOES)r,, = 7.5 ns for the free form

a o clearly the fact that sensitivity to ligand binding can be borne
and Tm = 8.3 ns for the _bound form were us&#f® SRLS out by properties of the ordering tensor other tinwhich is
combinations 1 and 2, which correspond to MF models 1 and he only ordering-related parameter determined with MF models
2, did not yield acceptable results. SRLS combination 5, with 1 gnd 2. The local ordering is characterized by a tensor, not
N fixed at the value of 1, gave the results shown in Table 16. merely a parametrizing scalar quantig?,

This combination differs from MF model 2 in allowing the 5d. Calmodulin Detection of an Incorrect Phenomenon
orientation of the ordering tensgfup, to vary (recall that (1.5 Cz?*-ligated calmodulin is made of an N-terminal domain and
cog Bup — 0.5¢ is formally equivalent t&? in MF analysis).  a C-terminal domain connected by a helical linker, which is

For all the residues examined the local potential and the local flexible in the middle. In the crystal CaM adopts an elongated
ordering are high for both calmodulin forms, as found in ref dumb-bell structur® with the N- and C-terminal regions of the

60, whereagvp is small for the free form and on the order of helical linker parallel to one another (Figures 21 and 22).
25° for the bound form. Thus, ligand binding changes the Because the middle linker region is flexible the N- and
orientationof the ordering tensor preserving thegnitudeof C-domains may adopt various relative orientations in solution.
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_ _ _ Figure 23. Experimentall,/T; ratios at 8.5, 14.1 and 18.8 T, 294 and

Figure 22. Ribbon diagram of the crystal structure of Babu ef'al. 316 K, from ref 65. The isotropic global diffusion correlation times,

(PDB accession number 3CLN) and corresponding inertia frame, I. The 7, determined with the program QUADRI®€ are also shown.

global diffusion frame, D, shown in Figure 21 is also depicted.

experimental data set of Baber et®ako that!>N Ty, T, and
The helical target peptide, essential for CaM recognition and NOEs became available at 8.5, 14.1 and 18.8 T, at 294, 300,
regulation, binds between the domains. Hence molecular shape308 and 316 K. These data were analyzed in concert assuming
linker flexibility, and domain mobility are related to function, that (1)S?, 7; andN = R?/Rg are the same for all the residues
and deriving a reliable dynamic picture is important. within a given domain and are independent of temperature, and

Several experimental and theoretical methods, including NMR (2) the temperature dependencewg{app) (with rm(app) =

spin relaxation, have been used to study CaM flexibility. The 1/6D(app), D(app) = 1/3(2Dg + Dy)) is controlled by the
NMR-based dynamic picture changed as data were acquired atStokes-Einstein formula. A sudden decrease (increasedin
an increasing number of magnetic fields and temperatures. The(ry) was observed when the temperature was increased from
first 5N spin relaxation study of C&-saturated Drosophila CaM 308 to 316 K, interpreted as “melting” of residues—747 of
data acquired at 11.7 T, 35was carried out in 1992 These the central linker, considered important from a biological point
data were analyzed with the original MF formula. The assump- of view.
tion that C&"—CaM is nearly spherical in solution (also found Because data acquired at several magnetic fields and several
in refs 18 and 60) was corroborated by comparingHN temperatures are analyzed in concert, the analysis is particularly
orientations in solution and in the crystal structbrend by prone to force-fitting. It will be shown below that qualitatively
the nearly flat T+/T, profile. Somewhat different isotropic  erroneous results were obtained in the case 8f €aalmodulin.

correlation times on the order of@ ns were assigned to the 5d-i. Global Diffusion.The axial global diffusion tensoR®,
N- and C-domains. Except for the flexible residues-88 of was determined together with the site-specific parameters using
the central linker and two loops, the CaM backbone was found the total time correlation functioiG(t) (eq 14), withC-(t) given
to be quite rigid, with$ ~ 0.85 andre < 100 ps. by the extended MF formula, and using the coordinates of the

At low magnetic fields the local motion makes a relatively elongated dumb-bell shaped crystal strucfirén most MF
small contribution to the spectral density. If the spectral density studiesRC is determined separately on the basisCs(t). The
used to calculate the NMR variables is appropriate, the addition C(t)-based fitting of the combined multifield multitemperature
of higher field data will merely increase accuracy and precision. data yielded® = 68°, as shown in Figure 21, with the global
If it is not, then inconsistencies will arise because local motion diffusion axis,C, along the symmetry axis of the molecule.
effects will be parametrized in different ways at different Accordingly, the principal axis of the inertia tensbymust be
magnetic fields. The Ga-free Xenopus CaM study of Tjandra tilted at 68 from C. This disagrees with the orientation of the
et al83 identified such inconsistencies when 11.7 and 14.1 T inertia tensor in the crystal structure, shown in Figure 22. Clearly
data were analyzed in concert. The inconsistencies detectecthe latter orientation of the inertia tensor is correct, hence the
could be reconciled by using the reduced extended MF formula orientation of the global diffusion tensor is likely in error.

(eq 19 witht{ set equal to zero) instead of the original MF  Figure 23 shows the experimenfalT, data acquired at 8.5,
formula (eq 16). With5? fixed at 0.85 and uniform parameters  14.1 and 18.8 T, and 294 and 316 K and filtered according to
within each domain, the fitting yielded, = 12 ns,S? ~ 0.7 traditional criteria®*®5The width of the distribution divided by
andrs ~ 3 ns. The paramete&? andrs were interpreted within - the average error is 6 (4), 8.5 (9.0) and 13.0 (14.0) for 8.5,
the scope of wobble-in-a-cone motions of the two domains. The 14.1 and 18.8 T at 294 K (316 K). It is obvious that the

vertex angle of the cones was approximately,3®hich is distribution in Ty/T, is significantly smaller at 8.5 T, in
incompatible with isotropiam. Semiquantitative arguments in - agreement with the 11.7 T data of Barbato et2and Wand

support of an elongated solution structure with= Rf/Rg ~ and co-workerd®89|sotropic global diffusion analysis with the
1.6 were invoked. program QUADRIC® yielded therr, values depicted in Figure

15N spin relaxation data of Ca-saturated Xenopus CaM were  23. The shape of the distribution Th/T, values is both field-
acquired by Baber et &f.at 8.5 (except for NOEs), 14.1 and and temperature-dependent, although it has been assumed that
18.8 T, 308 K. The analysis was similar to that of Tjandra et RC is temperature-independent exceptfgfapp), which does
al83 The larger data set available made possible determinationnot affect the shape of th&/T, distribution. It is very likely
of the global diffusion tensoRC, and removal of the restrictions  that the structuredy/T, profiles at the higher fields represent
that 7 = 0 and 2 = 0.85. Chang et &R extended the mixed-mode contributions and unaccounted for geometric
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Figure 24. Analysis of the experimental data shown in Figure 23 with formula as outlined in ref 65 for the N-domain (open squares) and
the program QUADRI® assuming axial global diffusiorRf). The C-domain (solid circles) for Ga-saturated Xenopus CaM. Additional

resulting parameters, which define tR€ tensor, are also shown. best-fit parameters ar§” ~ 0.86,7; ~ 15 ps and global diffusion
parameter®, /Dy = 1.62,0 ~ 68°, ® ~ 94° for the N-domain and

. . 146> for the C-domain. Then(app) values are 11.55, 9.87, 8.12 and
effects. If this is not the case, then analyses based on single g5 ¢ 4t 294. 300, 308 and 316 K.

field data and the concerted analysis should yield the same
results. This test is carried out below. decrease inS?, whereasD,, increases with temperature.
Using the filteredT:/T, data of Chang et &F we determined However, inspection of the absolute valuesDyf shows that
the axial global diffusion tensd®® at each magnetic field and  1/6Dy, is equal to 8.3 (6.8) ns for the N-domain (C-domain),
temperature separately with the program QUADRICThis whereas the apparent global motion correlation time is 6.88 ns.
corresponds to using<(t) instead ofC(t). In Figure 24 we show  Thatrsis larger thanry is not tenable physically, nor consistent
D(app)= 1/3(Dy + 2Dp) (R(app) in our notation) as a function ~ with the basic MF mode-independence assumption of time scale
of Py(cosf3cc)) at 8.5, 14.1 and 18.8 T, and at the temperatures separation between the global and local motions.
of 294 and 316 K. The discontinuities ir§? andzs between 308 and 316 K in
The spread of points about the theoretical straight lines Figure 25 results from the force-fitting process veering into a
(obtained with linear regression) in Figure 24 is invariably large, different region of the parameter space at 8.5 T and 316 K.
indicating that theory and data are incompatible. There are Inspection of the experimental data presented in Figures 26
relatively few points corresponding fec = 0, in disagreement 28 shows that th&,’s at 8.5 T, 316 K, are outliers. Figure 24
with the purported solution structure (Figure 21). The largest shows that the graph obtained for 8.5 T, 316 K is an outlier.
spread of points is obtained for 8.5 T, 316 K, although Inspection of Figures-58, where SRLS and MF analyses are
assumes the smallest valyé € 2) in this case. This is certainly ~ compared for corresponding parameter values near the BO limit,
not expected for models matching the data to which they are shows that forrm = 15 ns the corresponding NMR variables
applied, but it can occur when force-fitting sets in. All four ~are comparable in magnitude. On the other handzfor 5 ns
parameters defining the global diffusion tensor are field- T2 obtained with the MF approach is significantly higher than
dependent. In all the cases except for 8.5 T, 316 K, the angle T2 obtained with the SRLS approach. This supports the assertion
O of the individual analyses is much closer to @oincident that artificial results can be obtained by force-fitting large data
inertia and diffusion frames) than to the nonphysical angle of Sets covering extensive parameter ranges. In the case under
68° yielded by the concerted multifield multitemperature MF  consideration the experimental data acquired at low fields and
analysis. The contradictions between the raw data, the single-high temperatures do not accommodate the force-fitted param-
field analysis and the concerted MF analysis are substantial.eters, which fit all the other data. Therefore, discontinuities in
For example, the raW1/T, profile at 8.5 T, 316 K is nearly ~ S? andts, which are merely technical in nature, ensue.
flat (Figure 23), whereas thRC tensor illustrated in Figure 24 5d-iii. SRLS AnalysisThe calmodulin data were analyzed
is closest to the axial tensor yielded by the concerted analysis.Separately for each temperature and magnetic field using our
As shown in Figure 23, isotropi®C analysis also yielded  SRLS fitting scheme based on axial potentials. We assumed
inconsistentr, values. Inaccuracies iB-(t) must have been  thatin view of large-amplitude domain moti&? is on average
clearly absorbed bgC(t). Therefore, the local motion param-  isotropic, and used they(app) values of Chang et & lsotropic

eters must be highly inaccurate, as demonstrated below. RC is consistent with the calmodulin studies of Barbato é€al.
5d-ii. Local Motion. Figure 25 reproduces th&2 and s and Wand and co-worket&5°and with othe5N spin relaxation
temperature-dependent profiles obtained by Chang®tTale ~ Studies of proteins exhibiting large-amplitude domain mo-

squared generalized order parame$ér shows very limited tion.1921 As mentioned above, this SRLS fitting scheme assumes
temperature dependence between 294 and 308 K and decreasd@plicitly that R; > R, in analogy withts > 7 in the MF
abruptly upon increasing the temperature to 316 K. The slow approach. The SRLS fitting scheme selected primarily combina-
local motion correlation timers, is temperature-independent  tion 5, which corresponds to MF mOde' 5. The averag€){
between 294 and 308 K afiacreasesabruptly upon increasing ~ (the formal analogue of MB?) andzf, (the formal analogue
the temperature to 316 K. Within the scope of the cone model of MF 7s) values for each magnetic field are shown as a function
used by Chang et &.the correlation time for slow local motion,  of temperature in Figure 29.

7, depends analytically o®? andD,,. The respective expression It can be seen that SRL1% differs in magnitude from Mk

is used to show that the abrupt increaseiis due to the abrupt  (cf. Figure 25).7s shows the nonphysical temperature depen-
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Figure 26. Longitudinal®>N T; relaxation times of Cd—calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1
and 18.8 T8 The vertical dashed lines depict the central linker (residues7j.

Residue

Figure 27. Transversé®N T, relaxation times of Ca—calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1
and 18.8 T The vertical dashed lines depict the central linker (residues7j.

dence illustrated in Figure 25, whereds shows physically local motion, 1/®y, is larger than the correlation time for global
reasonable temperature dependence illustrated in Figure 29motion, 7, for the N-domain, and equal te, for the C-domain.
SRLS &?)? is approximately half of MFS2 and decreases  Motion about the N-H bond is on the order of 20 ps as# is
monotonically with increasing temperature. No sudden change on the order of 0.85 throughout the temperature range investi-
is observed between 308 and 316 K in either parameter. Thegated.

inconsistencies amon&f£)? and rE values obtained at differ- The abrupt change in best-fit parameters values upon increas-
ent magnetic fields are expected to be eliminated in future work, ing the temperature from 308 to 316 K is interpreted as
where rhombic potentials will be used. “melting” of residues 74 77. This process is purported to have

5d-iv. Dynamic Picture According to MF Analysis.CaM biological implications for target peptide binding by prolonging
is an elongated dumb-bell shaped molecule. The N- and the flexible part of the central linker by 50%. Note that the
C-terminal domains wobble within cones with vertex angles experimental data of residues 747 (as well as many other
increasing suddenly from 22.527°) to 27 (37°) for the CaM residues) are not observed experimentally at 316 K
N-domain (C-domain) when the temperature is increased from (Figures 26-28, residues demarcated by the dashed vertical
308 to 316 K. This corresponds to a squared generalized orderlines).
parameterS2, decreasing from 0.77 (0.68) to 0.68 (0.53) for 5d-v. Dynamic Picture According to the Current SRLS

the N-domain (C-domain). The average wobbling ré&g, is Analysis.CaM is on average spherical in solution due to large-
1.7 x 107 (2.0 x 10") st at 295 (316 K) for the N-domain,  amplitude nanosecond segmental motions of its N- and C-
which translates into correlation times, D¥g of 9.8 (8.3) ns. terminal domains. This is physically plausible, consistent with

The value oDy, is 2.0 x 107 (2.45 x 107) s™1 at 295 (316 K) the To/T, profiles at 11.7 T that are determined predominantly
for the C-domain, which translates into correlation times of 8.3 by the global motion, and the quantitative analysis by Barbato
(6.8 ns). The correlation time for global motion is 11.55 (6.88) at al®2and Wand and co-worket&0Average spherical shapes
ns at 295 (316 K). Hence, at 316 K the correlation time for in solution were also determined witfN spin relaxation for
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Figure 28. Steady-staté’N—{'H} NOEs of C&"—calmodulin at 294 K (black), 300 K (red), 308 K (green) and 316 K (blue), and 8.5, 14.1 and
18.8 T The vertical dashed lines depict the central linker (residues78i.
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Figure 29. Best-fit (3?)? andth values obtained with SRLS combi-
nation 5 by averaging over the results obtained for the individual
residues usingm, values of 11.55, 9.87, 8.12 and 6.88 ns at 294, 300,
308 and 316 Kfwp was on average 25Experimental data from ref
65 were used.

AKeco!® and binasé! which, being similar to CaM, feature
large-amplitude domain or loop motions in solution. Both

AKeco and binase have elongated shapes in the crystalline state

similar to the crystal structure of CaM.

Domain motion is expected to occur on the same time scale
as the global motion, implying mode mixing. This is accounted

for by the SRLS analysis, which yield{g on the order of 36
ns in the temperature range of 29316 K. As expectedrE
decreases monotonically with increasing temperat®g)3(is

TABLE 17: Best-Fit Parameters Obtained with the SRLS
Combination 5 (SRLS_5) and SRLS Combination 6
(SRLS_6) Using the Axial-Potential 2D Grid-Based Fitting
Schemé

Bwo,
R & S« Sy S d’\g% N

SRLS_5 0.44 3.2 0.6-0.315-0.315 0.63 16.1 1000 (fixed)
(2= 15.9)

SRLS 6 0.45 3.2 0.6-0.315-0.315 0.63 16.3 916¢=15.8)
SRLS_rh 0.23 4.8 10.3-0.469 0.799-0.330 99.5 40.042 = 12.3)

aSRLS_rh represents the calculation carried out with the fitting
scheme allowing for rhombic potentials and arbitrady= Rﬁ/RE
values, with thgkx (@) functions calculated on the fly. The combined
15N relaxation data of residue 124 of RNase H acquired at 11.7, 14.1
and 18.8 T, 300 K, were used, = 9.28 ns was usedr’® is the same
asthtm, andN = Rj/R. S, Sy and S, are the components of the
Cartesian ordering tensor.

The magnetic tensors have arbitrary symmetry and orientation.
Starting with the original MF limit, where the magnetic tensors
are collinear, their frame is the same as the local ordering frame,
and the global and local diffusion tensors are isotropic, one can
then systematically lower symmetries until the complexity of
the model matches the integrity of the data. In this case reliable
fitting, which extracts properly the dynamic information inherent
in the experimental data, can be accomplished. Table 17
illustrates the last part of such a process, where SRLS spectral
densities are upgraded to include more detailed features in a
stepwise fashion.

The example considered is residue 124 of RNase-H, which
pertains to the flexible loomp/Bs. The 15N relaxation data
acquired at 11.7 T, 300 K, were fit previously with MF model
512 The global motion correlation time of RNase H was

on the order of 0.20.35 in this temperature range and decreases getermined to ber, = 9.28 ns at 300 K, and it has been

monotonically with increasing temperature. No discontinuity is
exhibited by either ther, or the &?)2 temperature profiles.

ascertained that the protein is spherical within a good ap-
proximation. We subjected the combined 11.7, 14.1 and 18.8,

The results shown in Figure 29 are interim results because 300 K, data of this residue (kindly provided by Prof. A. G.

the analysis used oversimplified axial symmetry for the local
orienting potential/local ordering, and assumed implicitly that
R:/R5 > 1. The implications of removing these restrictions are
illustrated and discussed in the next section.

6. Reliable Fitting; Mixed Mode Concept. In our current

Palmer Il of Columbia University), to SRLS analysis.

The first row of Table 17 shows the best-fit parameters
obtained with SRLS combination 5 (SRLS_5), which is formally
analogous with MF model 5. In this scenario the local ordering
is axially symmetric andN = Rj/R5 > 1. The potential is

fitting scheme the local and global diffusion tensors are allowed small (c% = 3.2), the corresponding squared order parameter is
to be axially symmetric, and the local ordering tensor (or local small (5?2 = 0.47), the D-to-M tilt is small fup = 16.1°),

coupling/mixing/orienting potential) is allowed to be rhombic.

and there is only a modest time scale separation between the
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H \m : TABLE 18: Best-Fit Parameters Obtained with the SRLS
p ™ ko Combination 6 Featuring Rhombic Potentials Using
N} C i - A(iiéanylate Kinase Data Acquired at 14.1 and 18.8 T, 303
& 7 15, ik res 6 G R S« Sy S. pun,deg N

g 46 57 105 082 —0.465 0827 —0.361 1014 96
: 47 43 103 0.73 —0.470 0.761 —0.291 100.7 6.3

; ar, = 15.1 ns was used® = 7-/tm. S« Sy and S, are the
N components of the Cartesian ordering tensor.
% appears that this is as much as one can extract ffon
H relaxation data in proteins. Note that nine data points, acquired
i at three magnetic fields were successfully used in the RNase

Figure 30. Various local motion modes including the anti-correlated calculations. The.rhomblc potential quﬁ'c'eng' is the on!y

®; andW;_; crankshaft motion (upper left), peptide-plane motion about €Xtra parameter in the SRLS analysis as compared with the
C:l_l—cgl (upper r|ght)’ nitrogen pyramida"zation (|ower |eﬂ) and fast extended the MF analySiS. On the Other hand, fOI’ ﬂexible
small-amplitude fluctuations (lower right). residues that are typically of biological interest, the SRLS model
features a single local motion whereas the MF approach features
two local motions (fast and slow), so the MF concept is actually
a more compounded one.

6a. Meaning of Mixed Moded.et us consider a cylinder
iffusing freely in an isotropic medium. The diffusion rates are
R; and R5, with N = R}/ R; determined by its shape. The
solution of the diffusion equation yields eigenvalugs?! =

6R5 + KXR; — RE), with K =0, 1, 2. Let us now consider the

4 same cylinder diffusing in the presence of a locally orienting
potential. This is a reasonable model for aniM bond attached
physically to the protein, with the local potential representing
the restrictions imposed on its motion by the immediate protein
environment. The protein itself is reorienting at a slower rate
with respect to a fixed lab frame. When the local and global
motions do not occur on a greatly separated time scale, and the
local potential is neither very low nor very high, the potential
couples or mixes the motions of the- bond and the protein.
The local ordering can be expressed (as usually done for
restricted motions in liquids) in terms of an ordering tensor with
principal values defined in terms of the orienting potential.

; - This is the two-body problem solved by the SRLS model. A
SRLS_rh corr_esponds to “nearly planéji—Xu ordering”, as Smoluchowski equation of the form of eq 1 is solved where
expected. This is borne out clear.Iy by the values_of the he SRLS diffusion operatdr can be written in either of the
components of the Cartesian ordering tensor shown in Table,, , equivalent forms given by eq 2 or eq 3. In eq 2 the

17. The diffusion tilt isfvp ~ 90° in the rhombic case,  gientation of each body is referred to the lab (inertial) frame,
compatible with crankshaft fluctuatiofsor peptide-plane + \with a potential coupling them, which depends on their

global and perpendicular componeﬁq*E (i.e., R = 0.44 in
units of RE). Similar values were obtained previously for the
flexible residues of a large number of proteins and can be
considered typical. A modest time scale separation between theOI
global and local motionRC) is expected. Quite unexpectedly,
the local potential is weakcg = 3.2) for the tightly packed
globular proteins; i.e., the local ordering is lov&f)2 = 0.40).
Also, the diffusion tilt is on the order of 2anstead of being
on the order of 99 corresponding to preferred ordering aroun
C",—C/" or N—C. No improvement was achieved by allow-
ing N to vary (SRLS_6), indicating thad > 1 is not the main
reason for these difficult-to-reconcile results. On the other hand,
significant improvement was achieved by allowing the potential
to be rhombic, in addition to allowindyl to vary, as shown by
the last row of Table 17.

Let us compare the results obtained for axial (SRLS_6) and
rhombic (SRLS_rh) potentials. The valueNdf= 40 corresponds
to 7, = 53 ps whereasl = 916 corresponding ta; ~ 0. The
ordering is high in the rhombic case, as implieddéy: 10.1,
and low in the axial case. The ratid/c; obtained with

reorientation about the {G—C? axis or the N-Ci bond,  yejative orientations. Simple products of basis functions of the
respresented bEE_, as well as small-amplitude-\H wobblmg two rotators (N-H body and protein), corresponding to their
motion and/or nitrogen pyramidalizatiéhrepresented by, free diffusion (i.e., zero potential coupling them), are utilized

(Figure 30). The ratRE =0.23x 9.28= 2.1 nsshows that, as  to provide a matrix representation bf This is a convenient
expected, loops move on the same time scale as the entirebasis set when the potential is relatively small, i.e., weak
molecule. Unlike the axial scenario the rhombic scenario is coupling. In eq 3 only the global motion of the protein is referred

consistent and physically appropriate. to the lab frame, whereas the local motion of thelbond is
Data fitting with rhombic potentials was also carried out for referred to the local director frame fixed in the protein. This
residues 46 and 47 of adenylate kinase friantoli (AKeco), latter scenario thus describes the local motion in relative

which are representative of the mobile domain AMPbd of coordinates. Then product basis functions for the overall motion
AKeco. The results are shown in Table 18. The symmetry of and the relative motion are used to provide the matrix
the rhombic potential is of the same type as found for residue representation of’. This is a more natural choice when the
124 of RNase H, and the angéup is also close to 90 coupling potential is large. Because these two approaches are
However,RC is on the order of 0.8 for the AKeco residues 46 mathematically equivalent, one may use either choice. In our
and 47 as compared to 0.2 for residue 124 of RNase-sz:md past work we have utilized eq 2, whereas in the newer work
~ 1.5 ns for the AKeco residues 45 and 47 as comparegl to We have reported in this paper we utilized eq 3.
= 75 ps for residue 124 of RNase-H. This indicates significantly ~ The eq 2 perspective on mixed modes means that as a
stronger dynamical coupling and smaller local diffusion ani- coupling potential is added, the new eigenmodeF become
sotropy for mobile domains (AKeco) than for flexible loops. linear combinations of the product functions of the two free
The SRLS version that allows for rhombic potentials and axial rotors. This is a point of view where there are two sources of
local diffusion clearly yields a consistent physical picture. It “mixed-modes”: the first results from the coupling between the
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TABLE 19: Dominant Eigenvalues and Respective Weights
(in Parentheses) in theCy(t) Correlation Function for Two
Isotropic Rotators, R¢ and R- = 1, Mixed by an

Axial Potential of Strength 0 < ¢ < 4, and Time Scale

TABLE 20: Dominant Eigenvalues and Respective Weights
(in Parentheses) of theCxk:(t) Components That Contribute
to the Measurable Spectral Density

. 2 \2
i i C = eigenvalue (dg)” or
Separation Given byR 1.0,01 an:co.01 & 52 52 (weight) K K 2
00 0439 0.0 6.58(0.415) 0 0 1.0
c (S%? 1.0 0.1 0.01 0.006 (0.193)
0o o 6.00(L00)  6.00(L00)  6.00 (1.00) s Eg'ig%
1 0.049 4.79 (0.60) 0.59 (0.06) 0.06 (0.05) ' :
7.57 (0.39) 5.94 (0.65) 5.57 (0.32) 30 0.088 0572  5.40(0.349) 0.25
7.33(0.15) 6.04 (0.27) 4.44 (0.237)
2 0.193 3.90 (0.71) 0.58 (0.23) 0.06(0.19) 4.36 (0.232)
10.0 (0.27) 6.55 (0.57) 6.04 (0.26) 8.31(0.114)
8.10(0.11) 6.68 (0.36) 0.006 (0.008)
3 0.366 3.41(0.79) 0.56 (0.41) 0.06 (0.37) 436 (0.214 075
13.43 (0.17) 7.95 (0.37) 7.20 (0.15) 185 5012093 '
9.47 (0.12) 8.02 (0.33) 5.70 (0.184)
4 0.506 3.19 (0.85) 0.55 (0.56) 0.06 (0.51) 0.006 (0.098)
10.06 (0.22)  10.0(0.30)
11.54 (0.14) 4.36(0.428) 2 -2 0.75

0.006 (0.163)
14.40 (0.125)

5.40 (0.120)

4.44 (0.08)

aThe (?)? values corresponding to '[hrl%J values are also pre-
sented.

two rotors, so that the motion of the internal rotor becomes more
that of its motion relative to the protein. This is a feature that
exists even when there is timf-scale separati.on,Fk%RL < — 0°, and for the thombic case we utiliz& = 0,001, = 2, 2 =
1_' Th_e Seco_nd arises Whm/R_ ~ 1, so there is no 'Onger a_ 3 andfup = 90°. The respective irreducible ordering tensor compo-
significant time-scale separation. In that case the diffusive nents, 52 andSy? are also presenteBWhereK = 0 andK’ = 0.
reorientation of the internal rotor becomes a mixture of the o o
global and local motions. That is, an observer that detects just'esults forR%/R- = 0.1 are qualitatively similar. FOR/R" =
the 15N label on a particular NH bond can no longer 1 the results are quite different. Aséis increased from 0, two
distinguish between a local and a global mode of motion. Thus, main mixed modes appear, one of which decreases from the
these modes become mixed. In the case wherein eq 3 and it&/alue of 6.00, while the other increases from this value, and
convenient basis set are used, the intuitive picture changesthe former becomes relatively more importanQ(t). We can
somewhat, but the final analysis must remain equivalent. In intuitively suggest that the former represents a mixed mode,
simple mathematical terms this means that the eigenvalues ofwherein as the protein reorients in one sense (e.g., clockwise),
I are unchanged, but the eigenmodes are represented in (ofh€ internal rotor is attempting to reorient in the opposite (e.g.,
referred to) the different basis sets, and appear different, althoughcounterclockwise) sense; the latter mixed mode would cor-
(again) they must be equivalent. Here, for very high ordering respond to more additive reorientational diffusion (i.e., both are
and RE/RL < 1, the eigenmodes can be represented by the in the same sense).
overall motion and by the relative internal motion with Finally, a comment on the tensdR§ andR" that constitute
eigenvalues given (for axial potentials) by eq 18, and eigen- input values in a given SRLS calculation, or best-fit parameters
functions given elsewhere (refs 29 and 48), yielding simple in fitting actual experiments, is in order. These quantities may
limiting correlation functions. As the coupling potential is represent more complex local and global rotators, and not just
reduced (butRS/R- < 1), the correlation functions for the the RC and Rt tensors corresponding to simple rotators. One
relative motion (i.e., for theDf,, «(Qcw)) become more com-  an suggest tentatin_e inf[erpreta_\tion_s, as was done in a recently
plex, involving several eigenmodes of this motion. Again, as Published SR'—LS application to nitroxide-labeled T4 Lysozyihe.
RC/RE — 1, there must be “mixed modes” of the two coupled [N that paperR; was interpreted as motion around a specific
dynamic processes. bond of the nitroxide tether, where& was associated with
We illustrate some of these concepts with a relevant motion around the symmetry axis of the helix comprising the
computational study presented by Polimeno and Ffédthis nitroxide-labeled residue. For-NH bond motion we associated
was performed using the basis set appropriate for eq 2; i.e., theat this stage of our studid®; with motion around the £,—C}*
global and internal rotors both referred to the lab frame. Table axis and Rﬁ with motion around an axis perpendicular to
19 shows the eigenvalues (in units &) and corresponding  C*,—C" within the peptide plane.
weights of the two isotropic rotors coupled by an axial potential ~ Table 20 illustrates the high sensitivity of the eigenvalues
whose strength is given b;ﬁ Values ofR¢/R- of 1.0, 0.1 and and weights comprised in the time correlation functi@ag (t)
0.01 are considered, am@ ranges from O to 4. Wheq?) =0, to the symmetry of the coupling potential. The parameters used
the motions are uncoupled, so only the motion of the local rotor includeRE = 0.001 andt; = 2, with ¢ = 0 for axial ordering
relative to the lab frame is relevant. It corresponds to eigenvalue andc; = 3 for rhombic “nearly planaly—Xu ordering”. For
6 (or more precisely @) with weight 1.00, independent &¢/ axial ordering onlyCq(t) is relevant. For theByp = 90°
R-. For the case oR°/R- = 0.01 there is good time-scale geometry only the correlation functio®s(t), Ca(t) andCo—(t)
separation of the motions. Thus, @is increased the global = C_y,(t) contribute to the measurable spectral density. The
motion retains the eigenvalue 0.06, but its relative weight in dominant eigenvalues and their eigenmode composition depend
the correlation functiorCo(t) increases roughly according to to a large extent on the symmetry of the coupling potential.
(S92 The local motion is represented by several eigenvalues The individual Lorentzians in a given functigek(w), obtained
with the (typically two) major ones given in Table 19. The by Fourier transformation of the corresponding time correlation

a For the axial case we utilize = 0.001,c3 = 2, ¢3 = 0 andfBuo
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function, are multiplied by df,o) or 2(dﬁK,), whereK = 0 or E% ll:ipar?, g gzago, ﬁg. ﬁm guem goc igg% igj gggig?g.

B . . Iparl, G.; S5zabo, . AM em SoC 1 .
K' = 0, to yield the mea_surable spectral den_s_'ty' -ﬂiﬁ . (8) Clore, G. M.; Szabo, A.; Bax, A.; Kay, L. E.; Driscoll, P. C.;
values are also presented in Table 20. The additional contribu-Gronenborn, A. M.J. Am Chem Soc 199Q 112 4989-4991.
tions, comprising a large number of eigenvalues with small (9) Lee, A. L.; Wand, JJ. Biomol NMR 1999 13, 101-112.
individual weights, are not shown. It can be seen clearly that __(10) Osbome, M. J.; Wright, P. El. Biomol NMR 2001, 19, 209~
pOtent_ia|S of $imi|ar magnitUdeS bUt_C_“fferent Symmetries are " (11) vugmeyster, L.; Trott, O.; McKnight, C. J.; Raleigh, D. P.; Palmer,
associated with a different composition of dynamic modes. A. G., Ill. J. Mol. Biol. 2002 320, 841-854. _ _
Obviously potential symmetry is a very influential component, 35(11%)03&228'2,?- M.; Akke, M.; Palmer, A. G., llIBiochemistryl996
to WhI'Ch .the experimental data are highly senS|t!v¢. '(13) Wang, T.Cai S.: Zuiderweg, E. R. B.Am Chem Soc 2003

As indicated, we have developed recently a fitting scheme 125 8639-8643.
for SRLS where the spectral densitig§w) and jkx(w) are 206é4)272%¢3211, I\él3 4Jacob, M.; H., Schindler, T.; Balbach).Biomol NMR
Calcu'?'ted on the le. Thls. fllttlng scheme allows for rhomplc (15) korchugaﬁov, D. S.; Gagnidze, I. E.; Tkach, E. N.; Schulga, A.
potentials, and arbitrary axiality of the local and global diffusion A :'kirpichnikov, M. P.; Arseniev, A. SJ. Biomol. NMR2004 30, 431—
tensors. Efforts to improve the computational efficiency of this 442.

scheme are underway (16) Chang, S.-L.; Tjandra, NIl. Magn Reson 2005 174, 43—53.
(17) Zhang, P.; Dayie, K.; Wagner, G. Mol. Biol. 1997, 272, 443~
. 455,
IV. Conclusions (18) Wang, T.; Frederick, K. K.; Igumeniva, T. I.; Wand, A. J;

. . . . . Zuiderweg, E. R. PJ. Am Chem Soc 2005 127, 828-829.
MOd?l'free IS a very S|rr_1pI|f|ed approach for analyzmg spin (19) Tugarinov, V.; Shapiro, Yu. E.; Liang, Z.; Freed, J. H.; Meirovitch,
relaxation data in proteins, such that the quality of the E.J. Mol. Biol. 2002 315 171-186.

experimental data and their variations (e.g., with magnetic field)  (20) Shapiro, Yu. E.; Kahana E.; Tugarinov, V.; Liang, Z.; Freed, J.
H.; Meirovitch, E.Biochemistry2002 41, 6271-6281.

are frequentl_y bey_ond _its capabilities. Small data set; (three data '(21) Pang, Y.. Buck, M.. Zuiderweg, E. R. Biochemistry2002 41,
points at a given field in the case of\H bond dynamics) can  2655-2666.
usually be force-fitted with good statistics but inaccurate best-  (22) Tugarinov, V.; Liang, Z.; Shapiro, Yu. E.; Freed, J. H.; Meirovitch,

: ; ; it E. J. Am Chem Soc 2001, 123 3055-3063.
fit parameters, which are obtained through parametrization of (23) Polimeno, A.: Freed. J. Hdy. Chem Phys1993 83, 89-210.

the experimental spectral densities. When larger data Sets (24) polimeno, A Freed, J. K. Phys Chem 1995 99, 10995-11006.
acquired at several magnetic fields, temperatures, states of (25) Liang, Z.; Freed, J. H. 1999 Phys Chem B 1999 103 6384
complex formation, etc., are subjected to MF analysis, or when 6396.

.  ~a . . _ (26) Meirovitch, E.; Shapiro, Yu. E.; Tugarinov, V.; Liang, Z.; Freed,
N—H and C—C* bond dynamics are analyzed in concert, force- ; /'y Phys Chem B 2003 107, 98839897,

fitting is so pervasive that functional dynamics may be missed,  (27) Mmeirovitch, E.; Shapiro, Y. E.; Liang, Z.; Freed, J.1Phys Chem
qualitatively erroneous results may be derived, and incorrect B 2003 107, 9898-9904.

phenomena may be detected. Conformational entropy derivedlos()%ff)ll':’&imenor A.; Moro, G. J.; Freed, J. 8.Chem Phys 1996 104,

from parametrizing entities is inaccurate. Entropy profiles over ™~ 59y "poinaszek, C. F.; Freed, J. B.Phys Chem 1975 79, 2283-
the protein backbone may even be qualitatively inaccurate.  2306.
On the other hand, the experimental data can be analyzed g(l)g k/'lrlll \th J-:’\';fied’dq- HJ. Bms CShISm 19k79~ 8% 3879I<401-L g
. rs . . s H Hiet, O.; Muhandiram, D. R.; rynnikov, N. S5.; Kay, L. &.
5|gn|f[cantly more (ellably with SRLS spectral densities, Whlch Am Chem Soc 2002 124, 6439-6448.
constitute generalized forms of the MF formulas. The main  (32) Choy, W.-Y.: Kay, L. E.J. Biomol NMR 2003 25, 325-333.
aspects that greatly improve the analysis include axial local (33) Akke, M.; Bruschweiler, R.; Palmer, A. G., I0. Am Chem Soc

motion, rhombic local ordering, rigorous account of mode- 1993 115 9832-9833.
i q reat gt ]9 | feat ¢ local (34 (@) Yang, D.; Kay, L. EJ. Mol. Biol. 1996 263 369-382. (b)
coupling, and proper treaiment or general features or local yang "p.:'Mok, Yu-K.; Forman-Kay, J. D.; Farrow, N. A.; Kay, L. B.

geometry. The dynamic picture emerging, which differs sig- Mol. Biol. 1997 272 790-804. (c) Kay, L. E.; Muhandiram, D. R.; Farrow,
nificantly from the MF picture, is physically insightful, con- ~ N. A Aubin, Yk Forman-Kay, J. DBiochemistryl996 35, 361-368. (d)
sistent and comprehensive. Conformational entropy can bemrl‘géi'gl" %%7' ;i'ZK;Q'B‘ir%i”'Kay' J. D Farow, N. A Kay, L. B
derived with SRLS in a straightforward manner from experi- (35) (a) Li, 'z.; Raychaudhuri, S.; Wand, A. Brotein Sci 1996 5,

mentally determined local potentials of arbitrary symmetry.  2647-2650. (b) Lee, A. L.; Kinnear, S. A;; Wand, A. Nat Struct Biol.
200Q 7, 72-77. (c) Lee, A. L.; Wand, A. INature2001411, 501-504.
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