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We prove here a new transient-state kinetic rule which states that the ratios of the first derivatives of kinetic
isotope effect time courses, extrapolated to zero time, provide integral values which specify the precise step
number in the reaction sequence in single isotope substituted reactions. This rule defines such absolute numbers
even where the steps involved are too fast to provide measurable concentrations of intermediates and when
the full reaction sequence is unknown.

Introduction

The measurement of kinetic isotope effects (KIEs) has
provided a major tool for the elucidation of the mechanisms of
chemical reactions providing both some degree of kinetic
resolution as well as information on the nature of the transition
state of the isotope-sensitive step. The intrinsic KIE is defined
as KIEint ) kH/kD (wherekH andkD designate the forward rate
constants for a given step for the unsubstituted and deuterio-
substituted reactions). In the general case, however, the KIE
observed from any kind of kinetic rate measurements does not
equal KIEint since, in a reaction of any degree of complexity,
such an observed value must contain contributions from the rate
constants of the other steps involved in the reaction. On
occasion, the isotope-sensitive step may be rate-limiting to such
an extent that the value of the observed KIE may approach that
of KIEint within the accuracy of the measurement. In the more
usual case, however, the KIEint must be resolved from the
mathematical expression of the rate law for the given reaction.
Most of the work applying this approach to the study of enzyme-
catalyzed reactions has been based on steady-state kinetic
analysis.1 The strength of this approach is its rigorously derived
mathematical basis. Its principal limitation has been that of the
frequently severe kinetic masking of the intrinsic KIE by slower
steps in the reaction, although the use of multiple isotopic
substitutions as described by Northrop2 and Cleland and co-
workers3 have considerably increased the mechanistic resolution
of this approach. The transient-state kinetic approach, on the
other hand, permits the direct observation of the time courses
of individual reaction intermediates in real time and thus permits
the determination of intrinsic KIE values in a more direct
manner.4 Its application, however, has up until recently been
hampered by the lack of the comprehensive rigorously derived
body of theory that is the prime feature of the steady-state
approach. We have begun to develop the basic elements of such
a theory. Before proceeding, we must note that, although a
steady-state KIE is by definition independent of both time and
the specific signal by which it is measured, its transient-state

counterpart is strongly dependent on both time and signal.
Recognizing these features, we denote an experimentally
determined transient-state kinetic isotope effect as a “TKIE”.
Having observed that the effect of a single-step substituted
transient-state KIE (TKIE) is manifested on every step of the
entire reaction sequence, and defining the observed TKIE for a
component “x” as TKIEX ) d[X]H/dt/d[X]D/dt, we proved a
first rule of transient-state kinetic isotope effects: case I, the
time dependence of the TKIE curve of any complex occurring
after the isotopic sensitive step must equal the intrinsic KIE
(KIEint) at zero time and then its value must initially decrease
with time; case II, the TKIE curve of any complex occurring
prior to the isotope-sensitive step must have a value of unity at
zero time and then must decrease with time.5 More recently,
we proved an additional rule of TKIEs, this one applying to
multistep isotopically substituted reactions such as the measure-
ment of D2O solvent TKIEs.6 That rule states that in such a
reaction the zero-time intercept of the TKIE of any given
component equals the algebraic product of the intrinsic KIEs
of all of the forward rate constants which precede its formation.
Here, we demonstrate the validity of a new rule; one which
establishes a numerical relationship between the rates of decrease
with time of the TKIE of a singly substituted isotope reaction
component and the specific location of that component in the
reaction sequence.

The impetus for the theoretical exploration described here
was provided by the observation that the TKIEs of the
successive complexes of the glutamate dehydrogenase reaction
(Figure 5 of ref. 7) varied markedly in their time dependences,
that of the last complex formed decreasing more slowly than
those of the earlier complexes. A reexamination of these data
showed that the TKIE time courses of the group of complexes
obeyed the first rule, in that they all converged to a common
value att ) 0. However, the rates of decrease of these TKIEs
with time suggested an inequality of the form: d(TKIED)/dt <
d(TKIEC)/dt < d(TKIEB)/dt

Theoretical Development for a Simple Case.The two-step
reaction
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is the largest fully reversible sequential mechanism for which
an algebraic integral exists. Although such a reaction is
mechanistically insufficient for any realistic enzyme reaction,
examination of its mathematical solution illuminates a funda-
mental property which is applicable to the general case which
we consider below. The general solution for the time depend-
encies of components B and C in eq 1 is8

where

and

and

A corresponding set of equations for the same reaction (assum-
ing the first step to be isotopically sensitive) can be written by
substitutingk1/KIEint for k1, andk2/KIEint for k2

We now define a new function,nS

We proceed to evaluate this function using L’Hoˆpital’s rule.
As written, the function yields the indeterminate value of 0/0.
Successive applications of L’Hoˆpital’s rule, however, finally
yield a finite value ofnS ) 2. Thus, TKIEB initially decreases
at a rate precisely twice that of TKIEC where B is the immediate
product of the isotope-sensitive step in the forward direction of
the reaction and C is the product of the following step. It is
clear from the proof of eq 5 that the value ofnS is completely
independent of all rate constants and of the value of KIEint for
this simple two-step case and that it reflects only the position
of the isotope-sensitive step in the reaction.9 The mathematical
relationships involved in eqs 2-5 are more readily grasped by
reference to their graphic portrayal in Figure 1.

General Case.We now consider the more realistic reaction
scheme

Formally integrated kinetic equations for such a scheme do not
exist, as we have noted. The use of numerically evaluated

equations, however, provides a means of establishing the
relationships we require without any substantial loss of precision.
Figure 1 shows the time courses of each of the substituted and
unsubstituted species in the reaction sequence shown in eq 6
assuming that the isotopically sensitive step to be step one. Panel
a of Figure 2 shows the time courses of the TKIEs for each
species. It can be seen from the common intercept on thet )
0 axis that limtf0 TKIE for each species is precisely equal to
the assumed intrinsic KIE listed in the figure legend, as required
by the first rule. Panel b of Figure 2 shows the time courses of
the first derivatives of the various component TKIEs. Panel c
of Figure 2 shows the time courses of the ratio of d(TKIEB)/dt
to the d(TKIE)/dt of each of the components C, D, and E.
Inspection of these intercepts in panel c shows that the zero-
time intercept for each post-isotope-sensitive step is an integer
and that the value of that integer is identical to the sequence
number of the step which produces that complex. Thus, we have
now demonstrated (but, at this point, not formally proved) a
new rule of transient-state kinetic isotope effects

wherenS is the number of the step in a sequence such as that
shown in eq 6. This relationship, which we will designate as
the “second rule”, applies to both normal and inverse KIEs but
is not generally applicable to reactions in which isotope effects
occur in multiple steps.

Effect of a Pre-Isotopic Transfer Step on the Rule.If one
assumes the more realistic case where the isotope effect occurs
in the second step of the sequence shown in eq 6 rather than in
the first, the behavior of the KIEs of the components is
somewhat altered. The component time courses for the unsub-
stituted and the substituted reactions under this assumption for
the four-step case of eq 6 are shown in Figure 3. As seen in
panel a of Figure 4, the zero time value of TKIE for B, which
is now a pre-isotope affected entity, is unity as required by the
first rule6 described in the Introduction. Moreover, as can be

[B]( t) ) k1[( k-2

λ1λ2
+

k-2 - λ1

λ2(λ1 - λ2))e-λ1t +
λ2 - k-2

λ2(λ1 - λ2)
e-λ2t]

(2)

[C](t) ) k1k2[ 1
λ1λ2

+ e-λ1t

λ1(λ1 - λ2)
- e-λ2t

λ2(λ1 - λ2)] (3)

λ1 ) 1
2
(p + q)

λ2 ) 1
2
(p - q)

p ) k1 + k2 + k3 + k4;

q ) xp2 - 4(k1k2 + k-1k-2 + k1k-2)

Defining: TKIEB )
d[BH]/dt

d[BD]/dt
and TKIEC )

d[CH]/dt

d[CD]/dt
(4)
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Figure 1. Concentration time dependences for H and D substituted
components in the reaction shown in eq 6 assuming the isotope effect
to be on step 1. Dashed lines indicate unsubstituted components and
solid lines indicate isotope-substituted species of the component
bracketed with it. Assumed values for the constants werek1 ) 20, k2

) 7, k3 ) 75, k4 ) 150,k5 ) 70, k6 ) 120,k7 ) 132,k8 ) 35, KIEint

) 2.7.

nS )
lim
tf0

d(TKIE1)/dt

lim
tf0

d(TKIEnS)/dt
(7)
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seen in panel c of Figure 4, the resulting intercepts ofnS no
longer obey the predictions of eq 7; whennS is calculated using
the first species to exhibit an isotope effect (C in Figure 4),
values of 1, 1.5, 2, and 2.5 are obtained instead of the integers
1, 2, 3, and 4. The discrepancy is due to an erroneous assignment
of the initial step when computingnS. The nonintegral series
was obtained by assuming that the numbering system should
begin with the isotopic-sensitive step (which is in fact step 2,
not step 1). If the computed nonintegral values ofnS are
multiplied by the step-number, 2, of the first isotopically
sensitive reaction, thennS is transformed into a series giving
the correct step number for each reaction. This behavior and
its mode of detection is a completely general feature of linear

singly substituted reactions. For example, if step 3 is the locus
of the isotope effect, the series of integers required by eq 7
will result only if values obtained fornS are multiplied by 3.
The analytical proof, presented below, provides the mathematical
basis for this operation. The potential for this property to detect
reactions prior to the isotopically sensitive step should be
evident.

Analytic Proof of the Second Rule for the General Case

The application of the numerical evaluation of the approach
of TKIEs to their zero limit which we have described is very
useful in several ways. First of all, it provides full component
time courses which are not obtainable from the formal limiting
value equations we will describe below in validating the rule
and in obtaining values of thenS function. Second, it may
provide some conceptual insight into the nature of the rule from
a viewpoint that is more directly related to the physical reaction
as it would be observed experimentally than that of the formal
mathematical treatment. Finally, it provides a facile means of
exploring the applicability of the second rule to more complex
reactions and varying numbers and loci of an isotopic substitu-
tion. If, in a given case, varying any rate constant or KIE value
would have an effect on thet ) 0 intercepts ofnS, then eq 5 is
not applicable. However, even though we have tested eq 5
extensively using the numerical integration approach without
ever encountering an exception, it remains anecdotal in nature
and must be regarded as a demonstration rather than a formal
proof. To fill this gap in our argument, we now provide an
analytic proof of the second rule.

Proof that nS Counts Reactions after an Isotopically
Sensitive Step.General Case.Consider a species Xi which
reacts (perhaps through many steps) to give a species Xj. The
function nS(i, j) is defined as

To evaluate this function, the limits of the derivatives in the

Figure 2. (a) Time courses of TKIEs for each product species of the
reaction shown in eq 6; calculated from the curves shown in Figure 1
according to eq 4. (b) Time courses of d(KIEX)/dt for each product
species. (c) Time courses of d(KIEB)/dt/d(KIEX)/dt for each post isotope-
sensitive step product complex. The intercept at zero-time for each
complex provides its value ofnS as defined in eq 7 and identifies its
reaction step number in the scheme shown in eq 6.

Figure 3. Concentration time dependences for the same reaction shown
in Figure 1 using the same set of rate constants, but now assuming the
isotope-sensitive step to be the second step in the scheme shown in eq
6.

nS(i,j) )
lim
tf0

dTKIEi

dt

lim
tf0

dTKIEj

dt
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numerator and denominator need to be evaluated. Applying to
the definition of TKIE gives

Simplifying and recognizing the presence of TKIE in the result
gives

Evaluating this limit for any two species of interest allowsnS

to be computed. The behavior of the components in this

expression depends on the rate laws and the number and
distribution of isotopically sensitive steps. A reversible sequence
without branches and with only the first step being isotopically
sensitive will be analyzed.

Conditions for a Limit that is Not 0/0.Evaluating the limit
of the ratio above is approached by considering the limiting
behavior of the numerator and denominator. If species far
enough “downstream” are considered, the ratio has the form of
0/0 and L’Hôpital’s rule will be applied, generating higher-order
derivatives. Whether or not the numerator and denominator are
zero depends on the rate laws and the value of the indexi. For
instance, the rate law forX1 has a term withX1 in it; it will
extrapolate to a nonzero value att ) 0. In contrast, the rate law
for X5 does not have concentrations that extrapolate to nonzero
values at t ) 0. Similarly, the second derivatives in the
numerator could be zero or nonzero. If they are nonzero, the
numerator might still be zero because a difference is being
computed.

Examining higher-order derivatives (computed from the rate
laws describing the mechanism) and assuming that only the first
speciesX1 is present at the start of the reaction allows the
following generalizations for a linear mechanism.

Thenth-order time-derivative of theith species extrapolates
to a nonzero value whenn g i - 1. Thus, in attempting to
evaluate the limit with repetitive applications of L’Hoˆpital’s rule,
limits will go from zero to nonzero once the order of the
derivative is high enough (i - 1). A few of the lowest-order
derivatives that have nonzero limits are given in the Table 1.

Although the derivatives in the numerator are nonzero when
the order isi - 1, the reaction mechanism imposed by the
chemistry causes this difference to be zero as described below.
As a result, a nonzero numerator is obtained for theith species
when the order of the derivatives in the difference equals the
index i, as listed in the table.

Conditions for a Nonzero Numerator.Consider the first
nonzero derivatives for theith species (derivatives with orderi
- 1)

Assuming identical initial concentrations of the protio and
deutero reactants allows the concentration to be factored from
both terms. Because only the first reaction (indexh ) 1) is
isotopically sensitive, all rate constants in the products will be
identical except for the factork1, which experiences an intrinsic
KIE of KIE1,int. The limit of TKIEi as t f 0 is the product of
all of the forward intrinsic KIEs, in this case KIE1,int, which
convertsk1

D to k1
H, giving the numerator a value of zero

Figure 4. TKIE behavior for a reaction shown in Figure 3. The dashed
lines in panel c are calculated on the basis that C is the first post-
isotopic product. The solid lines are calculated based on the argument
described in the text.
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[(d2Xi

dt2 )
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- TKIE i(d2Xi

dt2 )
D
]

(dXi
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D
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numerator) lim
tf0[(di-1Xi

dti-1 )
H

- TKIE i(di-1Xi

dti-1 )
D
]

) [(∏
h)1

i-1

kh
H)X1,H

0 - TKIE i
0(∏

h)1

i-1

kh
D)X1,D

0 ] (10)

numerator) [(∏
h)1

i-1

kh
H)X1,H

0 - TKIE i(∏
h)1

i-1

kh
D)X1,D

0 ]

) (∏
h)2

i-1

kh)[k1
H - KIE1,intk1

D]X1
0

) (∏
h)2

i-1

kh)[k1
H - k1

H]X1
0 ) 0 (11)
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Similar considerations applied to the next-higher order derivative
give a nonzero result

The rate constants in the sums are the same for both the protio
and deutero reactions, except for those of the first step, where
there is a KIE. Therefore, subtraction cancels all but the first
rate constants, simplifying the expression to

Calculating the Limit of the DeriVatiVes of TKIE.The results
listed in the Table 1 may be substituted into eq 9 to calculate
limits of derivatives of TKIEi. For i ) 1

For i ) 2

For i ) 3, L’Hôpital’s rule will be needed. Its application to eq
9 gives

This intermediate result is recursive, with the quantity we wish
to find (left side) produced as part of the effort to find it (second
term, right side). The first term on the right side, when analyzed
by the criteria described above, gives a limit consisting of the
ratio of nonzero numbers. Thus

When i ) 4, two applications of L’Hoˆpital’s rule to eq 9 are
required, giving

The right side of the equation is not 0/0, so that

A pattern can be seen. Each application of L’Hoˆpital’s rule adds
another “recursive” term which acts, in effect, as a counter. The
counting stops when the limit can be evaluated. In the general
case, for speciesi (i > 2), i - 2 applications of L’Hoˆpital’s
rule are needed, giving the general result

TABLE 1. Derivatives that Have Nonzero Values ast f 0

species
lim
tf0 (dnXi

dnt ) * 0 lim
tf0 [(dnXi

dnt )
H

- TKIE(dnXi

dnt )
D
] * 0

X1 lim
tf0

(dX1

dt ) ) -k1X1
0

lim
tf0 (d2X1

dt2 ) ) k1(k1 + k-1)X1
0

X2 lim
tf0

(dX2

dt ) ) k1X1
0

lim
tf0 (d2X2

dt2 ) ) -k1(k1 + k-1 + k2)X1
0

X3 lim
tf0 (d2X3

dt2 ) ) k1k2X1
0 lim

tf0 (d3X3

dt3 ) ) -k1k2(k1 + k-1 + k2 + k-2 + k3)X1
0

X4 lim
tf0 (d2X4

dt3 ) ) k1k2k3X1
0 lim

tf0 (d4X4

dt4 ) ) -k1k2k3(k1 + k-1 + k2 + k-2 + k3 + k-3 + k4)X1
0

Xi lim
tf0 (di-1Xi

dti-1 ) ) (∏
h)1

i-1

kh)X1
0 lim

tf0 (diXi

dti
) ) -(∏

h)1

i-1

kh)(∑
h)1

i

kh + ∑
h)1

i-1

k-h)X1
0

numerator) lim
tf0 [(diXi

dti )
H

- TKIE i(diXi

dti )
D
]

) - (∏
h)1

i-1

kh)[(∑
h)1

i

kh + ∑
h)1

i-1

k-h)H -

(∑
h)1

i

kh + ∑
h)1

i-1

k-h)D]X1
0 (12)

numerator) -(∏
h)1

i-1

kh)[k1
H + k-1

H - k1
D - k-1

D ] * 0 (13)

lim
tf0

dTKIE1

dt
)

k1
H(k1

H + k-1
H - k1

D - k-1
D )X1

0

- k1
D X1

0
)

-KIE1,int(k1
H + k-1

H - k1
D - k-1

D ) (14)

lim
tf0

dTKIE2

dt
)

k1
H(k1

H + k-1
H + k2 - k1

D - k-1
D - k2)X1

0

- k1
D X1

0
)

-KIE1,int(k1
H + k-1

H - k1
D - k-1

D ) (15)

lim
tf0

dTKIE3

dt
) lim

tf0

[(d3X3

dt3 )
H

- TKIE3(d3X3

dt3 )
D
]

(d2X3

dt2 )
D

-

lim
tf0

dTKIE3

dt
(16)

lim
tf0

dTKIE3

dt
) - 1

2
KIE1,int(k1

H + k-1
H - k1

D - k-1
D ) (17)

3 lim
tf0

dTKIE4

dt
) lim

tf0

[(d4X4

dt4 )
H

- TKIE4(d4X4

dt4 )
D
]

(d3X4

dt3 )
D

(18)

lim
tf0

dTKIE4

dt
) - 1

3
KIE1,int(k1

H + k-1
H - k1

D - k-1
D ) (19)

lim
tf0

dTKIEi

dt
) - ( 1

i - 1)KIE1,int(k1
H + k-1

H - k1
D - k-1

D ) (20)
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Calculating nS. Having computed individual derivatives of
TKIE, nS may be calculated from their ratios. For example

In general, when the first step is isotopically sensitive, fori
and j g 2

Therefore, wheni ) 2 (or 1), reactions from the isotopically
sensitive first step are counted bynS, in agreement with eq 7.
Equation 23 provides an analytic proof of the behavior ofnS in
cases where the isotope sensitive step is preceded by one or
more earlier steps, producing a series of nonintegral values from
eq 7. This formal proof provides a basis for the procedure
deduced from the numerical integration examples described in
an earlier section; only multiplication of the computed non-
integral values ofnS by the actual step number of the reaction
sequence provides the unique series of integers expressed by
eq 7.

The second rule has been explicitly proven above for linear
reaction sequences. It can also be shown that when the reaction
sequence has branch-points with alternative pathways that lead
to product, the mathematical approach shown above is still valid
andnS will still represent the number of reaction steps leading
to the species in question. In the case where there are an unequal
number of steps in the alternative pathways,nS will give the
number of steps through the shortest pathway.

Discussion

It is clear that in the case of single-step isotope-substituted
reaction sequences, equations of the form of (5) or (7) must
apply and that the ratios of the derivatives of the limits of the
TKIEs of successive reaction products must be related by a
series of integral numbers. If application of either of these
equations to experimental data produces a set of nonintegral
values, the reaction sequence must be expanded with additional
steps at the appropriate places until eq 7 is satisfied. If the
observed values ofnS appear to be too high to satisfy eq 7 within

experimental error, extra post-isotopic steps must be added to
the reaction sequence; if they appear to be too low, then one or
more pre-isotopic steps must be added until a set of integral
values fornS is obtained.

It is also clear that the mathematics of consecutive reversible
single-step substituted reaction sequences counts all steps
including those which provide no observable signal as well as
those with such high commitment factors that their resulting
complexes do not accumulate to any significant degree. This
being so, it follows that if one can evaluate the TKIE function
for a late step in a single-step isotopically substituted reaction
as well as that for the initial isotope-sensitive step, the total
number of intervening steps in the included portion of the
reaction sequence can be determined unambiguously.

Both the derivation of the second rule provided here and the
behavior of chemical reactions in the transient state predicted
by it involve counter-intuitive aspects at several levels. The most
obvious of such questions is that of how the values of TKIEb

and TKIEc as defined in eq 4 and employed in eq 5 lead to
finite limiting values att f 0 when the concentrations of all
product species must equal 0 att ) 0. The answer here involves
the precise definition of the limit of a function. Recalling that
the limit of a function does not necessarily equal the actual value
of the function at the limit, and acknowledging that att ) 0,
[B] and [C] ) 0, we take note of the fact that, as shown clearly
in Figure 2, panels a and b, the concentrations and the functions
derived from the time dependencies of those concentrations all
approach the initial value of 0 at different rates and thus produce
the nonzero limiting functions shown in Figure 2. The apparent
anomaly lies in the fact that the product concentrations equal
zero only att ) 0 itself. Such values, then, represent mathemati-
cal singularities. Since singularities, by definition, cannot exist
for any finite period of time, they are never actually expressed
in the behavior of physical systems.

A second concern, expressed by colleagues who have
explored our formulation, is the occurrence of discontinuities
observed at longer times in plots of d(TKIEX)/dt. Here it should
be noted that the values of this and indeed of all TKIE functions
used here lead to simple interpretations only when extrapolated
to t ) 0. The behavior of these entities at finite times are highly
dependent on the values of the rate constants involved. For this
reason, the curves in Figure 2 have been limited to the relatively
early time span required for extrapolation to thet ) 0 ordinate.
It can be seen from Figure 1 in which a longer time span is
portrayed that d[BH]/dt passes through a value of 0 at about 75
ms, while that of d[BD]/dt is still rising. It is clear that at some
later time, as the slower isotope-substituted reaction catches up
with the normal reaction, the value of d[BD]/dt will itself equal
0 and will thus produce indeterminate TKIEB value and a
resulting discontinuity. This (and other odd features appearing
at later times) are simply due to the fact that, as time proceeds,
the isotopic and normal reactions become increasingly out of
phase and are no longer comparable.

Experimental Scope of the Rule.The practicality of applica-
tion of the Second rule to a given reaction depends on both the
kinetic properties of the reaction and on the availability of
analytic tools capable of distinguishing individual intermediate
species. In general it is potentially applicable to chemical
reactions that may be sufficiently slow to be measurable by
conventional continuous kinetic measurements. For very fast
reactions such as enzymatic catalysis, the use of the stopped
flow absorbance and fluorescence techniques are indicated.
Where intermediate steps involve the release of a specific
chemical entity, the quench flow technique, which does not

nS(2,3)) lim
tf0 [dTKIE2

dt
dTKIE3

dt
] )

-KIE1,int(k1
H + k-1

H - k1
D - k-1

D )

- 1
2
KIE1,int(k1

H + k-1
H - k1

D - k-1
D )

) 2 (21)

nS(2,4)) lim
tf0 [dTKIE2

dt
dTKIE4

dt
] )

-KIE1,int(k1
H + k-1

H - k1
D - k-1

D )

- 1
3
KIE1,int(k1

H + k-1
H - k1

D - k-1
D )

) 3 (22)

nS(i,j) ) lim
tf0 [dTKIEi

dt
dTKIEj

dt
] )

- 1
i - 1

KIE1,int(k1
H + k-1

H - k1
D - k-1

D )

- 1
j - 1

KIE1,int(k1
H + k-1

H - k1
D - k-1

D )
) j - 1

i - 1
(23)
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necessarily require unique spectroscopic identities, offers a
somewhat broader applicability. This being said, the maximum
attainable scope of the approach is defined by the mathematics
of the theory itself, and it is appropriate to discuss those aspects
here.

Since the rule is independent of the mass of the isotope,
tritium and other isotopes can be employed as well as deuterium
by use of the quench flow technique in some cases.

The ratio of the sensitivity ofnS to its uncertainty varies
inversely as the step number increases. For the first few steps,
the values ofnS for successive steps differ by a very substantial
amount but the extrapolation to zero time of these rapidly
decreasing functions is subject to a corresponding large error.
Conversely, the slower rate of decrease of the later steps permits
a more accurate determination of their individualns values but
the degree of accuracy required to distinguish between them
becomes more severe.

Although extrapolation of the multiexponential component
time courses to zero time constitutes a major source of error in
the application of the second rule, application of the first rule
to the total data set of a reaction may reduce the degree of
uncertainty in this extrapolation, particularly in the case of rapid
early steps whose origin is lost in the instrumental dead-time
as well as in cases where the accumulation of a given
intermediate provides a very low signal-to-noise ratio. If it can
be shown that the TKIEX time courses for at least two reactive
species converge at a single point on the zero-time axis, then
according to the first rule that point may be taken as TKIEint

and assigned as the zero-time point for the TKIE curves for all
other species.

Even where it is not possible to obtain accurate values ofnS

for every step in a given reaction, useful information may be
obtained using this approach. For example, determination ofnS

for only one very early step and one much later step are most
easily obtained and may clearly define the number of otherwise
unknowable transition states between them. Such a pair ofnS

values may also be sufficient to reveal the number of steps
preceding the isotope sensitive step. A second special case where
this approach may be useful is in a reaction where two products
appear to arise at nearly the same point in time. The approach
described here may constitute the method of choice for resolving
the question of whether the two steps are truly concerted
(involving only a single transition state) or, if not, what is the
order of their formation.

The second rule of TKIEs developed here should be ap-
plicable to chemical reactions in general and may provide a
unique new approach to the investigation of enzyme mecha-
nisms. It is clear that the seemingly arcane relationships
expressed in the first three rules of TKIEs must be implicit in
the sets of simple differential equations that suffice to completely
define the kinetic behavior of even the most complicated reaction
schemes. This evolution of complexity from simple origins
(exemplified by eqs 2 and 3) reflects the extensive coupling of
exponential and preexponential terms of the equation for any
given reaction species and the further extension of that coupling
forced by the mechanism-dictated relationships between the
terms of the various species involved. It is a commonplace event
that the transient-state product time course of a five to eight
step reaction can be fitted to a high degree of precision by a
two or three term exponential equation. Differentiation, as
required by expressions needed for TKIEs, tends to reveal
evidence of the underlying complexity of the system. Further
exploration of the nature of these mathematical relationships,

particularly those which may find expression in physically
measurable terms, may therefore be warranted.

Conclusion

We summarize here the formal expressions of the three rules
of TKIEs which we have thus far established stated in a
consistent nomenclature.

Consistent nomenclature defining the transient-state kinetic
isotope effect on a given component,X

The First Rule of Transient-State TKIEs.This rule states that
for any postisotope substituted step in a single-step substituted
linear reaction sequence5

For any postisotope substituted step in such a reaction

In either case,

is negative for normal isotop effects but positive for inverse
effects.

The Second Rule of Transient-State TKIEs.This rule states
that for such reactions

wherenS is the number of the step in the reaction sequence
whose product formation followskn.

The Third Rule of Transient-State TKIEs.This rule states that
in a multistep isotope-sensitive linear reaction6

Simply stated, in a multistep substituted linear reaction sequence,
the TKIE observed for a given species att ) 0 is the algebraic
product of all of the KIEints for all steps preceding the formation
of the product of thenth step.

It should be noted that the TKIEs for the reverse rate constants
are absent from the expressions for all three of these rules.

We see no reason to presume that this list of rules of TKIEs
is complete.
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