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The Use of Multidimensional Franck—Condon Simulations to Assess Model Chemistries: A
Case Study on Phenol
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Multidimensional Franck Condon simulations of the dispersed fluorescence spectra of phenol generated with
geometries obtained from the highly correlated post-HartFeek methods CASSCF, MRCI, and SACCI

are presented. While the simulations based on CASSCF and MRCI optimized geometries are very similar to
each other and fail to reproduce the experimentally measured intensities faithfully, the simulations obtained
from SACCI optimized geometries are very close to the experimental spectra. The code developed for the
multidimensional FranckCondon simulations is described. It is shown that the integral storage problem
common to the evaluation of multidimensional Fran€kondon integrals can be overcome by saving all
quantities needed to disk. This strategy allows the code to run on computers with limited resources and is
very well suited for application to molecules with a very large number of vibrational modes.

1. Introduction Studies 9 and 10 indicate that vibronic transition intensities

Multidimensional FranckCondon integrals are important &€ extremely sensitive to the upper a_nd Iovyer state geom_etries
guantities in physical chemistry. In spectroscopy, they are and, therefore, that .FranelCondon S|mulat|9ns of vibronic
directly related to the vibronic transition intensities of polyatomic SPectra of polyatomic molecules can provide very accurate
molecules; in reaction dynamics, they are used to calculate Means to assess the qugllty pf the calculated ab initio geometries.
electron transfer rates in chemical and biological procesdes. ~ Inspired by this fact, in this study, Franelcondon simula-

A variety of approaches have been developed to evaluatetions of the dispersed fluorescence (DF) spectrum of phenol
multidimensional FranckCondon integrals. Among these, the based on $and § eqUIllprlum geometries obtained from
coherent state method of Doktorov efdias been extensively ~CASSCF and the more highly correlated MRCI and SACCI
applied to large polyatomic molecules. Guner et alas the wave functions are presented and compare_d. A new Francl_<
first to use this method to simulate vibronic spectra of large €ondon program has been developed for this purpose, and like

molecules. Callis et dlapplied the method to the fluorescence the algorithms in the studies quoted previously, it is based on

Multidimensional FranckCondon simulations of the dis- computgtlonally, we give a compr.ehenswe account of the
persed fluorescence spectra of phenol have been carried out byinderlying theory in section 2, with a description of the
Schumm et al.using $ and S equilibrium geometries obtained ~ computational code in the Appendix of this paper. An in-depth
at the (8,7)-CASSCF/cc-pVDZ level of theory. These simula- analysis of the ab initio geometries and frequencies can be found
tions reproduced the main spectral features, but the intensitiesin Section 3, which also contains a set of rotational simulations
of several vibronic transitions were either under- or over- Of the S0°origin band. The rotational simulations were carried
estimated. A much better agreement between simulation andoUt uUsing the asymmetric rotor program developed by M. S.
experiment was obtained by manually altering the sBate Ford!! Finally, in section 4, the FranekCondon simulations
CASSCF geometry (shortening the-O bond and elongating ~ ©f the DF spectra are presented and discussed.
along the coordinate of mode 6a) to produce the characteristic
quinoidal structure commonly associated with-Sg electronic
transitions. The structural corrections carried out by Schumm  The intensityl,, of an electric dipole transition between two
et al. have further been corroborated t_)y Spangenberg €t al., vibronic states is proportional to the square of the electric
who have developed a Franekondon fit program that alters  transition dipole momeril,,, which in the adiabatic approxima-
the geometries of the states involved in the electronic transition tion can be written as eq 1.
until a best match between the simulated and experimental
intensities is ob_talr}ed._ The changes in rotational constants thusMW ~ O, (Q)13,(0.QIM(0,.Q)[9(A.Q) D, (Q) L=
produced are indicative of thej;Sstructural characteristics 3 Q)M (Q)lz (QTI(L)
mentioned above and provide an excellent comparison to ke k() Xmy
rotational constants determined by ab initio methods, particularly

in the evaluation of the inherent weaknesses in excited stateHere,@(a.Q)| or [ym(a,Q)Uand Gfk.(Q)I or [ym,.(Q)lidenote
methods. the final .«) or initial (m,x) electronic and vibrational states,

respectivelyMim(Q) is the electronic transition dipole moment;
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sion of the transition dipole moment about the equilibrium For the evaluation of andd, it is crucial that the equilibrium
position Qo of the initial electronic state is required to find geometries are oriented so that the Eckart conditfoase
approximate solutions. If only the first term of the series is fulfilled*15 for both states simultaneously. This is generally
considered, the FranelCondon approximation, which neglects the case when the atomic coordinates are in standard orientation,
the Q dependence of the electronic transition dipole moment, the same orientation in which the normal mode analysis is
is obtained and the evaluation of vibronic transition intensities conventionally performed. There are, however, cases where the
is simplified to the evaluation of the overlap (FrarcgBondon) standard orientation of the two electronic states to be overlapped
integral between the vibrational states of the electronic transition is largely different and axis switching effects need to be taken
of interest (eq 2). into account requiring a more general transformation than the
one in eq 4. This problem has been discussed extensively in

M = My Qo) Dl o (Q) ¥ Q) = the literaturets-17

3N-6 3N-6 Sharp and Rosenstd®were the first to solve the Franek

Mr(Qo) (@) | (QHT(2) Condon integral problem for polyatomic molecules including
= r= the Duschinsky effect. Their equations express individual
] ] ) o ) . Franck-Condon integrals by a finite series expansion. This

The V|brat|on_al wave functions of the |_n|t|al a_nd final electron_lc approach was the first of its kind and provided a general basis
states are written as products of one-dimensional wave functionsgy, |ater methodologies, one of which is the coherent state
@(Q), which are in turn functions off8(N = number of atoms)  ethod developed by Doktorov et &lwhich yields the same
normal coordinateg;’andQ; of the initial and final electronic  gyyression as the method of Sharp and Rosenstock. The solution
states, respectively. The normal coordinagsare related 10 of 5 myltidimensional FranckCondon integral is now achieved
the displacement coordinatesof nucleusi via eq 3.lqi, are by recurrence relations, which are exact in the harmonic

the elements of a [§] x [3N — 6] orthogonal matrix. and approximation. The derivation of these relations can be found
relate the mass-weighted Cartesian displacement coordinates t¢, 5 recent publication by Berger et &land thus, only a

the normal coordinates. It is generated from the ab initio HeSSia”quaIitative explanation of the principles behind it is given here.

when a normal-mode analysis is carried out. In short, an analysis of the action of the Duschinsky transforma-
N tion on the vibrational Hamiltonian expressed in terms of
12, = ¥ 3 annihilation and creation operators reveals the existence of an
m-u = ai,rQr ( )

operator (which is an element of the Lie group Sp,@ A H

(N), a dynamical symmetry group of the vibrational Hamilto-

L depends on the atomic masses and, more importantly, thenian) that connects the initial and final Hamiltonians and whose
force constant; and thus is specific to the ab initio method matrix elements are the Franekondon integrals. Taking
and electronic state for which it is calculated. Consequently, advantage of the fact that coherent states can serve as generating
the normal coordinate®,’ and Q, also differ and this causes functions for the stationary states (used in egs 1 and 2) of the
the normal modes of one electronic state to be rotated or mixedvibrational Hamiltonian and that furthermore they are a basis
in the normal-mode basis of the other electronic state, a of the dynamical group representation, the overlap integral
phenomenon first considered by Duschinkyit poses a between the coherent states of the initial and final electronic
particular problem when solving eq 2 as it prevents the Franck states can be used as a generating function for the Franck
Condon integrals from being reduced to simple products of one- Condon integrals, which leads to the extraction of recurrence
dimensional integrals, making their evaluation complicated and relations for their evaluation. These relations are given in eqs 7
computer intensive. Duschinsky proposed that the two sets ofand 8, where the former is used to decrement the final and the
normal coordinate®,’and Q; are related to each other by the latter the initial stationary state vector.

linear transformation shown in eq 4. T L T N =

r=

=25+ ) e [\ oo
ZZRik - Y VY AN 1 (O 7
=1, k= % +1
S= (L ) L (5) 3N-6 Uj’ 12
d= (L") Mg, — reo (6) 1, .., U5 Z Q- 1y | ——| @y ..tf—
= vi+1
The Duschinsky matrixs is an orthogonal matrix describing 2
the rotation, and theormal coordinatedisplacement vectad 1, .ty el 0O (RO)| | - 0, oo Uyl 7D
the translation betwee®;'andQ;. S andd are related to the Ui
L-matrices, the atomic masses, and the equilibrium geometries @
by eqs 5 and 6L has the dimensions f§ x [3N — 6], . " "
excluding the three rotations and three translations of the normal-2" 1¥1: -+ 2+ 1, oo vayglI=
mode analysisM*2is a diagonal [8]] x [3N] matrix with each -6 v |2
atom’s mass repeated three timg§;andry, are vectors of the 25 Rl (TR e P NI\ L (N 7 /A
equilibrium geometries of the initial and final states, respectively. 1= v+l
Scan be viewed as an overlap matrix between the normal modes 3N-6 ' \V2
of the two electronic states. The closer the diagonal elements v\ gL Z (2P = Lo\ 5| D'leny o= 1, e,
are to unity, the more the normal modes are similar to each = ut1l
other in form and energy. Large off-diagonal elements indicate
a change in the energy ordering or mixing between different  vgy_[H [(1gn—6 — P)Si @'y, oo Vi o s VgD

1

normal modes. This mixing is the mathematical expression of Uk
a Duschinsky rotation. (8)
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The [N — 6] x [3N — 6] matricesQ, P, R, J, and4,, and TABLE 1: Spand S State Rotational Constants (in MHz)
the vectors are defined below. The angular frequendiesn Obtained from the CASSCF, MRCI, and SACCI
Jw are related to the normal-mode frequendiasa eq 11. Equilibrium Geometries of Phenol
state rotational constant CASSCF MRCI SACCI eXptl

Q=01+J39) ' P=JQJ,R=0QJ ) S A 5671.1 5683.5 56935 5650.5

B 2630.6  2637.3 2614.7 2619.2

e U2 12 102 o\ % C 1797.1  1801.4 1791.8 1789.9

3= 248l 2y, = diag@r”, 03" - 0 g), 0 - s A 54514 5359.8 53645 5313.6
h*1/2,1w,d (10) B 2575.4  2600.3 2626.1 2620.5

C 1738.7 17509 1763.0 1756.1

W= 2.7'[% 11) a Experimental results taken from Berden etal.
-30 -20 -10 ., 10 20 30
The [0'|0'Coverlap is the only integral calculated explicitly. It R Tt
is shown in eq 12. } l
CASSCF
[FD” |6' - JUWM JquUuJu‘w MJUJ ) l_) JU\/ ’ k,, M
N-6[ 1 ” ™
A |‘| olet(Q)l’2 ex —EéT(l - P)| (12) Experiment
£
3. Ab Initio Results g , |
3.1. MethodologiesThree ab initio methodologies have been Q | wrer |L “ J ) I m J |
employed to optimize the;®nd S geometries of phenol. First, < A_.,_,l.ALLL,-wJJULL J JU.\JL _A UJMJL WA L)
(8,7)-CASSCF/cc-pVDZ calculations have been performed %‘ ) M
using the same active space employed in several CASSCF; | Experiment
studies on phenol published previoudllt consists of seven &

mr-orbitals, six on the aromatic ring and one on the oxygen, as
shown in refs 22 and 23. Second, internally contracted MRCI/ ;
cc-pvVDZ geometry optimizations of thep&nd § states of sacel “ ii l ‘ I ‘ i
phenol have been performed using the state-specific CASSCF Il UL l L u [ | 1
wave functions just described as reference. The MRCI wave ‘“AJK«JLLU‘UL‘«L L LULL A LU iy, Jufwltljnﬁlhbm
functions for the § and § states consisted of 3282 020 o |

. . . . (periment
uncontracted configuration space functions (CSFs), which were
internally contracted to 170 429 configurations. Third, SACCI/

cc-pVDZ geometry optimizations have been carried out using N

. . . - - -20 -10 10 20 30
all valence orbitals as active space. For calculation efficiency,
the (8,7)-CASSCF/cc-pVDZ geometries were used as starting Frequency Offset/ GHz

geometries in the optimization. All single excitation operators Figure 1. High resolution rotational spectra of thed3vibrationless
were included in the linked term of the SACCI calculations. A ﬁ”%n- Thhe r?ﬁolutio?twa? set tCIJ t7'5 MHz and thdettempefa_tufe :0”11-5
; H H i . 10 show the quality of simulations compared 1o experiment, the

e s s s TS0 NG s e 50 O vl 3 e o2 G 3

; s ) —e A the origin (as this region of the spectrum is almost featureless).
were included. This led to an excitation space consisting of
40 377 operators for the SAC and 28 210 operators for the delivers a closer value in the ground state and MRCI in the
SACCI wave function. Operator guess independent geometry excited state. Thus, inspection alone leaves some ambiguity as
convergence was achieved after seven macroiterations for bothto which method has produced the best geometry. To visualize
states. The geometries thus obtained were used for the subsethe quality of the calculated geometries, rotational profiles of
quent simulations. The Dunning cc-pVDZ basis set was used the vibrationless §° band origin were simulated with the

throughout. rotational constants in Table 1 and compared to a partially
MRCI calculations were performed with MOLPRO version rotationally resolved 3 1' REMPI spectrum. The temperature
2002.6*and SACCI calculations with Gaussiart®8n an IBM and resolution in the simulations were set to 2.12 K and 1400

RS/6000 (4x Power3 375 MHz 64-bit RISC, model 44P270, MHz, respectively (typical values for the laser experiments
AIX 5.1L, 4 Gb RAM, 64 Gb scratch) and Linux PC (2x conducted at York). The transition dipole moment was set to
Pentium Il 32-bit, Redhat Linux 9.0, 2 Gb RAM, 16 Gb be essentially parallel to the pherwhxis (99%up, 1% ua, as
scratch). per values reported in the literatdife The partially rotationally

3.2. Geometries: Rotational Constants and Simulations.  resolved band profiles obtained from the ab initio rotational
Very accurate rotational constants of thg&hd S states of constants fit the experimental band contour well but look very
phenol have been measured by Berden & Bhble 1 lists these  similar and do not clearly show if any improvements are
constants together with the constants obtained from the CASS-obtained with the MRCI and SACCI methodologies. To gain a
CF, MRCI, and SACCI calculations. Inspection of the values better comparison between theory and experiment, high resolu-
indicates that the rotational constants obtained from SACCI tion rotational spectra have been simulated and compared to (a
calculations are very close to experiment, while those obtained simulation of) the high resolution experimental spectrum of the
from CASSCF and MRCI calculations are apparently less vibrationless g0° origin recorded by Berden et &.In this
accurate. However, while the SAC® and C constants are  second set of rotational simulations, the resolution was set to
closer to experiment, in the case of thAeconstant, CASSCF 75 MHz and the temperature to 1.5 K. The high resolution
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TABLE 2: Vibrational Frequencies of Phenol in the § State?

experiment assignment (8,7)-CAS NMA on assignment (8,7)-CAS NMA on
exptl CASSCF MRCI (8,7)-CASSCF MRCI SAC

MN B® Re Re BP vd geometry geometry R B vd SAC geometry
1 244 225 10b 11 10b 249 242 10b 11 10b 244
2 309 7(OH) 291 306 7(OH) 381
3 404 15 18b 15 430 429 16a 429
4 409 404 16a 436 431 15 18b 15 430
5 503 504 16b 552 550 16b 545
6 527 526 6a 563 565 6a 563
7 619 618 6b 664 665 6b 662
8 686 686 4 720 720 4 707
9 751 11 10b 11 774 776 11 10b 11 763
10 817 10a 836 838 10a 817
11 823 820 1 12 1 871 878 1 12 1 868
12 881 17b 898 900 17b 882
13 973 17a 975 978 17a 964
14 995 5 1000 1004 5 987
15 1000 999 12 1 12 1068 1073 12 1 12 1073
16 1026 18a 1093 1097 18a 1092
17 1070 18b 15 18b 1144 1151 18b 15 18b 1147
18 1150 9b 1184 1197 9b 1189
19 1169 9a 1251 1256 9a 1253
20 1177 1174 B(OH) 1271 1276 B(OH) 1268
21 1343 1349 14 1358 1368 14 1367
22 1262 1261 13 7a 13 1382 1400 13 7a 13 13883
23 1277 3 1463 1466 3 1465
24 1472 19b 1597 1603 19b 1600
24 1502 1505 19a 1633 1643 19a 1635
26 1604 8b 1740 1750 8b 1738
27 1610 8a 1758 1773 8a 1768
28 3027 20a 13 Ta 3317 3316 20a 13 Ta 3355
29 3049 7a 7b b 3336 3334 7a 7b 7b 3371
30 3063 7b 2 20b 3348 3346 7b 2 20b 3381
31 3070 20b 20b 2 3361 3360 2 20a 20a 3401
32 3087 2 20a 20a 3370 3369 20b  20b 2 3414
33 3656 o(OH) 4162 4158 o(OH) 4111

a All values are given in cmt. Out-of-plane vibrations are in italics. MN, mode number; NMA, normal-mode analysis; B, assignment by Bist;
R, assignment by Roth; V, assignment by Varga® Data from ref 24. IR spectr&.Data from ref 26. DF spectrd.Reference 25¢ Reference 27.
fSometimes called(CO) or»(CO).

experimental spectrum recorded by Berden et al. was reproducedvell to the experimental frequencies of the DF spectra, thus
by simulation using the experimental rotational constants giving some justification for the strategy employed.
reported in ref 23 and listed in Table 1. Figure 1 shows the  Asthe Sand S geometric minima at the SACCI and MRCI
obtained results. The simulations generated from the SACCI |evels of theory are displaced with respect to the CASSCF
geometries give the best fit to the experiment, with line minima, the CASSCF normal-mode analyses on the MRCI and
intensities and energies that are faithfully reproduced in both SACCI geometries have large translations, which are, however,
the P and R branches over a range extending more than 30 00Qvithin an acceptable limit of 80 cm. This, and the absence of
MHz on either side of the origin. The rotational analysis thus negative frequencies, suggests that the potential energy surfaces
conclusively shows that the geometries predicted by SACCI are of CASSCF, MRCI, and SACCI are to a first approximation
of suitably high quality and suggest that improved Franck very similar to each other and of reasonably high quality, further
Condon simulations will be obtained from these geometries. justifying the use of CASSCF normal modes and frequencies
3.3. Normal-Mode Analysis.The $ and S state normal- for the Franck-Condon simulations with MRCI and SACCI
mode analysis was carried out at the (8,7)-CASSCF/cc-pvDz €equilibrium geometries.
level of theory for all three sets of geometries. This strategy  Tables 2 and 3 list the results of the CASSCF normal-mode
was mainly enforced by computation time restrictions, as SACCI analyses for the@and S states together with the experimental
and MRCI frequencies on a small molecule like phenol would frequencies and the major schools of mode assignments available
take unfeasibly long computation times. Performing normal- in the literature: Bisg* Varsanyi,®®> and Roth?® A schematic
mode analyses using frequencies obtained at lower levels ofrepresentation of the phenol normal modes assigned to the
theory on geometries obtained from a higher level of theory is nomenclature of Vafsgi can be found in ref 26.
generally accepted if the obtained frequencies are comparable The CASSCF normal frequencies found at the MRCI equi-
to experimental data. This indicates that the frequencies havelibrium geometries are similar to the frequencies found at the
already been calculated at a high enough level of theory that CASSCF equilibrium geometry, with a mean difference of 4.31
the benefit of further, higher level, calculations would be at best cm™ in the § state and 8.47 cmt in the § state. The
marginal. In the case of phenol, no negative frequencies weredifferences between the CASSCF frequencies found at the
obtained, as the differences between the CASSCF and MRCI/CASSCF and SACCI equilibrium geometries are much larger,
SACCI geometries lay between 0.1 and 1.0 pm and thus arewith a mean difference of 14.72 crhin the S state and
very small. Furthermore, the normal-mode frequencies compare23.41 cn?! in the S state. The maximum difference arises
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TABLE 3: Vibrational Frequencies of Phenol in the S, State?

J. Phys. Chem. A, Vol. 110, No. 14, 2008561

assignment assignment

experiment  exptl CASSCF MRCI (8,7)-CAS NMA on SACCI (8,7)-CAS NMA on
MN  BP Re RC BP vd (8,7)-CASSCF geometty MRCI geometry R BP vd SACCI geometry
1 206 162 10b 11 10b 182 164 10b 11 10b 144
2 187 16a 271 259 16a 240
3 635 7(OH) 284 314 4 349
4 356 465 4 371 364 7(OH) 388
5 396 15 18b 15 417 416 15 18b 15 419
6 441 16b 472 468 16b 458
7 615 580 11 10b 11 493 491 11 10b 11 474
8 475 6a 507 510 6a 511
9 580 615 10a 540 543 10a 517
10 523 6b 582 582 17a 564
11 734 700 17a 593 594 6b 580
12 700 726 17b 616 619 17b 594
13 726 734 5 701 711 5 708
14 783 1 12 1 823 833 1 12 1 834
15 935 12 1 12 969 983 12 1 12 995
16 962 18b 15 18b 1014 1026 18a 1039
17 958 18a 1031 1036 18b 15 18b 1040
18 975 9a 1216 1222 9a 1221
19 989 9b 1234 1240 9b 1240
20 1005 B(OH) 1283 1290 B(OH) 1303
21 1273 13 7a 13 1373 1397 13 7a 13 1403
22 1131 3 1437 1443 3 1448
23 1478 19b 1510 1520 19b 1530
24 1498 19a 1546 1559 19a 1563
24 8b 1675 1693 8b 1708
26 1566 8a 1700 1720 8a 1732
27 1180 1572 14 1864 1881 14 1895
28 3084 20a 13 7a 3344 3342 20a 13 7a 3374
29 3092 7a 7b 7b 3355 3350 7a 7b 7b 3380
30 7b 2 20b 3371 3369 2 20b 3407
31 3136 20b  20b 2 3380 3378 20b  20b 2 3413
32 3186 2 20a 20a 3392 3391 2 20a 20a 3428
33 3581 o(OH) 4158 4147 o(OH) 4090

a All values are given in cmt. Out-of-plane vibrations are in italics. MN, mode number; NMA, normal-mode analysis; B, assignment by Bist;
R, assignment by Roth; V, assignment by Vassa® Data from ref 24. IR spectrd.Data from ref 26. DF spectrd.Reference 25¢ Reference 27.
fSometimes called(CO) or v(CO).

between the frequencies of the OH torsion modeH), with equilibrium geometries has introduced artificial Duschinsky
values of 89.67 cmt in the § state and 104.29 cmiin the § rotations, which would affect the calculated Fran€kondon
state. Furthermore, large differences occur in some in-planeintensities and make a comparison of the simulations obtained
modes. The largest are around 30-érfor the high energy CH difficult.

and OH stretching modes in both the &hd § states. In the following discussion, the mode assignment by Roth
The energy ordering and the sign (direction) of the displace- 5564 on the Varsgi notation will be used. The plots of the
ment of some normal modes are inverted in the CASSCF p5chinsky matrices will on the other hand list the modes in

normal-mode analysis on the SACCI equilibrium geometries. (o mg of ascending energy based mode numbering. To relate
T_he sign change, howev?r, does !‘Ot affec_t the Framndon this numbering to the assignment by Roth, refer to Tables 2
simulations, as Doktorov’s recursion relations are based on theand 3 for the Sand S states, respectively

harmonic approximation; inherent to the harmonic potential is . . .
a sign uncertainty in the change of the equilibrium geometry. The Duschinsky matrix obtained from the CASSCF normal-

Expansion or contraction along a normal coordinate gives the M0de analysis on CASSCF optimized @&hd § geometries is
same value for the FraneiCondon integral. shown in Figure 2a. As already observed in refs 9 and 10, the

Energy and sign change mainly affect some of the CH mat_rix can bg divided into three bl_ocks of vibrations that do
stretching and out-of-plane modes, particularly in thes@te. not interact WI'[.h each qther. These .|nclude.the o_ut-of-plane and
This is reflected in a large degree of mode scrambling in the in-plane vibrations, which have no interaction with each other,
Duschinsky matrix outlined and discussed in the next section. @s they belong to different symmetry elements in the G4
The in-plane modes and the out-of-plane mode 10b seen in theSymmetry group, and the CH stretching vibrations (20a, 7a, 7b,
experimental DF spectra are not affected by displacement sign20b, and 2) which form a block of their own and do not interact
changes and are also very similar in form to the CASSCF normal With the other in-plane vibrations. Among the in-plane vibra-
modes obtained from CASSCF equilibrium geometries. Thus, tions, two very strong Duschinsky rotations were observed in
it can be concluded that the difference in the simulated intensitiesref 9 and are also reproduced in this analysis. The first occurs
will be mainly due to differences in the equilibrium geometry, between modes 12 (or 1 in the notation of Bist et4aland
not in the description of the normal modes. 18a, and the second, between modes 9b, 14 5§0¢H). The

3.4. Duschinsky Rotations.t is important to determine if out-of-plane vibrations show large rotations, which have to be
the CASSCF normal-mode analysis on MRCI and SACCI treated with care: the CASSCF active space only contains
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TABLE 4: Predicted So—S; Geometry Changes
Hy, Har o
p
% (@
....I....I....I.;].‘ M N
Di"'l""E""I'"'_I""I""I"".. [
- . . <4
[ = : 1F
st m™ : 4 |
b . : -
C a " ; 1F
W C H 1L
% 10»:— ] - ~: :—
= sE . " I 4k
H;. H., = - - 1t
L [ 4
SACCI MRCI CASSCF fit fit(rot) 1 iso? % | T B @...l __________________ 3 B %
S;—S, Bond Length Change/pm = I N 1k
O-H 0.14  0.08 0.09 0.00 0.00 0 5L b JE
C,—OH -1.86 —-0.97 -0.80 —2.20 —-1.90 '. 14
Ci—Coa 2.83 343 366 230 2.90 o . 3E
Coa—Csa 294 330 3.41 2.10 2.40 . w 1F
Csa—Cs 300 3.76 4.00 3.30 3.60 : : w]f
Cap—Ca 238 321 3.43 2.70 2.90 35 Dtottotttotebttebtededbeddedb et bbbt
Cav—Capb 314 396 4.11 3.00 3.30 e 3 iy A8 Al asn S0 6D
C1—Ca 243  2.86 3.04 1.40 2.20 S, Normal Modes
Coa—Haa -0.21 -024 -0.31 -0.30 —0.30
Csa—Haza —-0.30 —-0.26 -—-0.26 —0.40 —-0.30
Cs—Hgy4 028 —-0.04 -0.11 -0.20 —-0.20 14
Csp—Hap —-0.36 —0.28 —-0.28 —0.40 —-0.30 B
Cop—Hap -0.23 —-0.23 -0.14 -0.40 —-0.30 % (b)
Si—Sy Angle Change/deg | |
C,—O—H 0.29 0.11 0.26 0.10 0.20 0"""“""“"' e
Coa—C1—0O -1.73 —-134 -1.06 -—1.40 —1.40 RS ERSA RARET ALY RS A DT B
Cyp—C:;—0O —-146 -0.78 —-0.70 -—1.00 —1.10 [ " 1F
C—Cps—C3s -—-187 -—-1.11 -—-091 -0.60 —-0.90 5:— = ; _ _
Ci—Cyp—Cs —146 —-094 —-0.72 —-0.40 —0.70 i - 1 : 1F
Coa—Css—Cs —-1.32 —-0.86 —-0.67 —2.30 —-2.10 o 10k - 1Eb
Cyp—Csp—Cs, —-143 —-1.04 —-089 -2.60 —2.30 g B - : 1
Coa—C1—Cyp 3.29 2.12 1.76 2.40 2.60 o E - : 1t
Cs:-—Cs—Csp 299  1.83 1.43 3.60 3.40 = I5F - 1F
C1—Coa—H2a 0.14 0.23 0.30 0.00 -0.20 E B " . B o
C1—Cap—Hap 0.19 0.19 0.23 —-0.20 0.00 = 20_—.. ................ 1t B
aResults taken from ref 10: “fit"” marks the geometry changes ZF L.
obtained from the fit to line intensities, while “fit(rot) 1 iso” are the ¢ 2F = 1r
results obtained from a simultaneous fit to line intensities and the E : 10 4
experimental rotational constants kefphenol. 30:- B _ _
L . ] 4
K . mdF
mr-orbitals and thus provides a good description only for in- Kl ST TN PN PR FETE TS P i

0 5 10 15 20 25 30 35

plane vibrations.
S, Normal Modes

The Duschinsky matrix, obtained from the CASSCF normal
modes of the MRCI optimized geometries is essentially identical Figure 2. Plot of the squares of the elements of the Duschinsky matrix
to the one obtained from the CASSCF geometries and thereforeS obtained from the CASSCF normal-mode analysis erasd S
not shown. Conversely, the Duschinsky matrix obtained from CASSCF (2) and SACCI (b) geometries. The darker the square, the

. o closer the respective matrix element is to unity. The axes list the normal
the CASSCF r_lormal'mOde analysis of the SACCI Opt'm'zed modes in terms of mode numbers. To relate mode numbering to the
geometries (Figure 2b) shows some differences. As in the assignment by Roth based on the Vaggaotation used in the profile
previous matrix, there are three blocks formed by the out-of- graphs and text, see Tables 2 and 3. The profile graphs show the
plane, in-plane, and CH stretching vibrations. In the in-plane Duschinsky rotation of mod@(OH) for an $—§, transition (right
vibration block, the strong rotations between modes 12 and 18a,Profile window) and an 5-S, transition (top profile window). The
9b, 14, and3(OH) are present. However, there are substantial degree of mode scrambling may be seen by the intensity of off-diagonal

. . . . .. components.
rotations also occurring in the CH stretching block. This is a
result of the larger difference between thgaid S calculated
CH stretching modes mentioned earlier. Thus, a simulation in
the CH stretching energy region would have to be treated with
care, as the large mode scrambling induced Duschinsky rotations
would have a substantial effect on the transition intensities.
However, the DF spectra of phenol only show substantial
transition intensities in the in-plane vibrations and the out-of-  4.1. Dispersed Fluorescence Spectra of the Electronic
plane vibration 10b, and thus, the artificial Duschinsky rotations Origin. Figure 3 shows the experimental and simulated DF
in the matrix will not affect the simulation intensities obtained spectra obtained from the; Slectronic origin. As already
from the SACCI equilibrium geometries. Therefore, the differ- pointed out in refs 9 and 10, there are substantial differences

ence in intensities will mainly be due to the difference in the
S—S1 geometry changes determined at different levels of

ory.

4. Franck—Condon Simulations
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Figure 3. Experimental (a) and simulated DF spectra of the electronic Figure 4. Experimental (a) and simulated DF spectra of the -9
origin using (b) CASSCF, (c) MRCI, and (d) SACCI geometries. The 107 transition using (b) CASSCF, (c) MRCI, and (d) SACCI
largest transition intensities have been labeled following the nomen- geometries. The largest transition intensities have been labeled following
clature of Varéayi.?® The intensities are plotted with their associated the nomenclature of Vafaegi.® The intensities are plotted with their
frequencies listed in Table 2. The experimental spectrum was repro- associated frequencies listed in Table 2. The experimental spectrum
duced by fitting Lorentzian line shapes to intensities taken from ref was reproduced by fitting Lorentzian line shapes to intensities taken
10. The subscript number behind a mode indicates the number of quantarom ref 10. The subscript number behind a mode indicates the number
in that mode. of quanta in that mode.

between the experimental and simulated DF spectra obtainedance. Furthermore, the combination bands involving mode 10b
from CASSCF geometries. Specifically, transitions involving become more intense. In the experimental DF spectrum, there
mode 6a are missing from the CASSCF simulation and the is also a very intense band associated with the;ldy
simulated intensities of transitions involving mode 12 are too combination mode, which is missing in all of the simulated
intense. There is only a slight improvement in the intensities spectra. Vibrations 10b and 16a haveand & symmetry (or
obtained from the MRCI geometries. Mode 6a has become b; and a symmetry in G4), respectively, and the combination
slightly more intense, and mode 12 and its combination bands band therefore has'aymmetry (or bin G4) and is symmetry
have lost some intensity. On the whole, the spectrum is very forbidden. Anharmonic effects, not included in the Franck
similar to the one obtained from the CASSCF geometries. The Condon treatment, allow this transition to gain intensity, and
spectrum obtained from the SACCI geometries shows a very thus, the band is not reproduced in the simulations.
good resemblance to the experimental and fitted spectra of ref 4.3. DF Spectra of the @ + 6a Vibronic Transition. Figure
10. Mode 6a and its combination bands now have an appropriate5 shows the experimental and simulated DF spectra obtained
intensity, while transitions involving mode 12 have become from the vibronic transition § + 6a. Band 6ais an intense
considerably less intense. transition in the DF spectrum but is completely missing in the
In the experimental DF spectrum, there is also a very intense simulation obtained from the CASSCF geometries. This band
band assigned to mode L6between modes 12 and 18a. This acquires some intensity in the MRCI based simulation but gets
mode is missing in all simulations, the reason for which is a very intense in the spectrum obtained from the SACCI
Fermi resonance between modes 12 and.18b the method geometries. Furthermore, the ,6aombination bands gain
used for calculating FranekCondon integrals is based on the considerable intensity in the SACCI based simulation, duplicat-
harmonic approximation, anharmonic effects such as Fermiing the experiment nicely. Bands 1 and 12 are missing in

resonances are not taken into account. CASSCF and MRCI but are too intense in the SACCI spectrum,
4.2. DF Spectra of the @ + 10k? Vibronic Transition. while 6a1; and 6al2; remain too intense in all simulations.

Figure 4 shows the experimental and simulated DF spectra 4.4. DF Spectra of the @° + 12 Vibronic Transition. Figure

obtained from the vibronic transition0+ 107 As with the 6 shows the experimental and simulated DF spectra obtained

origin spectrum, mode 12 and its combination bands lose from the vibronic transition § + 12. The CASSCF based
intensity when going from CASSCF and MRCI to SACCI simulation overestimates the intensity associated with band 1.
geometries and approach the experimental spectrum in appearHowever, in both MRCI and SACCI, the band almost dis-
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Figure 5. Experimental (a) and simulated DF spectra of the06a Internal Energy /'cm
transition using (b) CASSCF, (c) MRCI, and (d) SACCI geometries. Figure 6. Experimental (a) and simulated DF spectra of tifei012
The largest transition intensities have been labeled following the transition using (b) CASSCF, (c) MRCI, and (d) SACCI geometries.
nomenclature of Varswi?® The intensities are plotted with their  The largest transition intensities have been labeled following the
associated frequencies listed in Table 2. The experimental spectrumnomenclature of Varsyi.?®> The intensities are plotted with their
was reproduced by fitting Lorentzian line shapes to intensities taken associated frequencies listed in Table 2. The experimental spectrum
from ref 10. The subscript number behind a mode indicates the numberwas reproduced by fitting Lorentzian line shapes to intensities taken
of quanta in that mode. from ref 10. The subscript number behind a mode indicates the number

of quanta in that mode.

appears, duplicating its intensity in the experimental spectrum. similar discre : ;

. NN - . pancies when compared to experiment. A key
_Band 6a is completely missing in CA.SSCF bUt ga‘_hefs INtensIty oason for their similarity is reflected in the geometry changes
n M.R.CI and approaches the experlmental_lnter}sny in SACCI. predicted by the fits and SACCI. The fits to vibronic line
Add't'on%"){’ t?? appears '? ISACC? bUt_I_'rS]' Sltleuhtgo Z".’a” intensities and rotational constants in ref 10 predict that the
g??rrﬂﬁ;ent i?1 tﬁee);z?)rgrri]rigr?taslpsger;mm t;ezut i rr?ligsifg in average C-C bond length increases by 2.9 pm upon excitation

: X ith i h [ f th | h of
CASSCF and MRCI. In the SACCI based simulation, the band s o p"’;: ‘Eﬁﬂﬁ;”?&?gszggﬂwg 2 tgnodﬁgﬂgthergéu oo

has some intensity but remains severely underestimated, whileby 1.86 pm and the €C bonds lengthen by 2.81 pm. This can
band 18a gains intensity with respect to its 12 and 1 combination be séen from the values shown in Table 4 ' '
bands. - : .
. . . The changes in the-©0 and C-C bond lengths influence

Ei 4.5. D7F SﬁeCtratﬁf tr|1:e G‘);—‘gCOd (13) _V|b:0?|c Trar;smon.DF the intensities associated with modes 6a, 1, 12, and 13 and their

igure sbovx_/s dfe raE _ct))n on simu '?‘Q'jgr; %O $’h combination bands. A correct estimate of their change is only
spectrum obtained from the vibronic transit ot The obtained from SACCI. The underestimated intensities associated
experimentally prominent 63, band, cor_npletely MISSING 1N \yith mode 6a and its combination bands observed in the
the C.ASS.CF a'.“d .MRCl based S|mulat|qns, acquires an ap-cagscE simulations clearly indicate that the shortening of the
propriate |n_ten_3|ty in the .SACCI based S'm“'?t"’”' while the C—0 bond length upon excitation is underestimated. Modes 1
1112, combination band dlsa_ppears. Combmanqn bar1<_1§11 and 12 and their combination bands are largely overestimated,
and 1313, are less intense in SACCI but remain too intense because CASSCF underestimates theQChond lengthening
compared to the experiment. Band 6a, missing in CASSCF andA similar picture arises for the €0 and G-C bond length

MRCI, is present in the SACCI simulation with an appropriate changes predicted by MRCI, and thus, the simulations obtained

niensiy: from these geometries are very similar to the CASSCF simula-
5. Discussion tions.
. The underestimated €0 bond length contraction can be

The simulations obtained from the SACCI geometries are in related to the degree of correlation of the-O bond via the
very good agreement with the experimental and fitted spectra oxygen p orbital included in the CASSCF active space and the
of ref 10. In common with the fitted spectra, they suffer from reference of the MRCI wave function. The natural population
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compared to CASSCF and MRCI, but further improvement
would require a bigger operator space spanning a more extended
portion of the complete potential energy surface of the molecule.

It is at first sight surprising that only little improvement is
gained in the simulations when MRCI geometries are used. The
excitation space, from which the MRCI wave function is
constructed, is far larger than CASSCF. However, the key
ingredient in MRClI is the reference wave function from which
the first-order excitation space is generated. The choice of the
reference heavily influences the properties that one wishes to
describe. In the calculations presented, the CASSCF wavefunc-
tion was used as reference. Little improvement is gained
compared to CASSCF as the excitations forming the first-order
interaction space mainly recover dynamic correlation, which
does not play a major role in the description of the quantities
needed to obtain good vibronic simulations, specifically the
change in the €0 and C-C bond lengths. Thus, further
orbitals would have to be included in the reference space in
order to obtain a better potential energy surface along modes
6a and 8a. A far larger MRCI wave function would therefore
be required to gain some improvement in the simulations,
making calculations impracticable even for a small system like
phenol.

The SACCI excitation space formed by the linked operators
is smaller than the one of MRCI. However, the unlinked terms
make it far larger, thus yielding a wave function that is superior
to the MRCI wave function based on the (8,7)-CASSCF
reference. Furthermore, by virtue of the perturbation selection
of the excitation operators, the SACCI wave function contains
important excitations, thus giving a much improved performance
while still making calculations practicable even for larger
systems.

It has been shown that carrying out a CASSCF normal-mode
analysis on SACCI optimized geometries, although questionable

associated frequencies listed in Table 2. The experimental spectrumin terms of its consistency, does not affect the simulated

was reproduced by fitting Lorentzian line shapes to intensities taken
from ref 10. The subscript number behind a mode indicates the number
of quanta in that mode.

of this orbital is 1.99, clearly indicating a small multireference
character and thus a minor involvement in the-S; bond
length change.

One of the major findings from the fits to the DF spectra of
phenol in ref 10 was that the quality of the fit is greatly improved

transition intensities and thus offers a cheap alternative strategy
for obtaining frequencies on SACCI equilibrium geometries
provided that the difference between the SACCI and actual
CASSCF equilibrium geometries is not too large. Of course, a
more consistent and thorough method would be to carry out
the normal-mode analysis at the SACCI level of theory. This
would require the inclusion of a large number of operators that
span the potential surface along all th&l 3- 6 normal

by constraining the geometric changes not only to match the coordinates. Prior to the normal-mode analysis, a new geometry
experimental vibronic intensities but also to state-specific optimization has to be carried out for this enlarged operator set
rotational constants of the molecule, as this avoids overcorrec-until operator guess independent convergence is obtained. This
tions in the geometries. The fact that the SACCI predicted S method requires very long computation times for phenol and
S; geometry changes are closest to the values obtained fromwould be impossible to apply to the larger species such as
the simultaneous fit to line intensities and rotational constants phiomolecules.

of six isotopomers of phenol indicates that, in contrast to the )

geometries obtained from the fit to line intensities only, the ©- Concluding Remarks

SACCI geometries are not overcorrected. However, the pre- This study was a critical test of both the FrangRondon
dicted SACCI geometry changes suffer from some major program developed and used for the simulations presented and
shortcomings. Very precise experimental data regardirgSs various ab initio methodologies that have become available for
geometry changes have been obtained by Ratzefétrabugh the calculation of electronically excited states. It forms a basis
fitting of the S state geometry to the inertial parameters of 12 for calculations and choice of methodologies in the more
isotopomers obtained from high resolution rotational laser complicated cases such as clusters and biomolecules. Although
induced fluorescence (LIF) spectra. This group’s fits predict a the results obtained suggest that the SACCI methodology is the

decrease of the €0 bond length similar to SACCI (1.40 pm).
However, there is also an increase of the ®bond length by
1.9 pm; for SACCI, this bond is largely unaffected by the
electronic excitation.

The simulations obtained from SACCI geometries suggest
that the operator space of the SACCI wave function employed
in this study is large enough to yield superior geometries

most suitable for generating Frane€ondon simulations that
are in good agreement with experimental spectra and should
be the only one used for assignments of vibrational bands and
vibronic spectra, the possibility that the CASSCF and MRCI
methods might perform better in certain cases cannot be
excluded. The wave functions recover different parts of the
electron correlation, each of which can be more or less important
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to the geometric properties and excitation induced geometric
changes of the molecule under investigation. Nonetheless, the
information gained about the different ab initio methodologies 700
employed using phenol as a test case is very vaIuat_)Ie, as one is soob | 2IDoF  =007121

not completely in the dark about the suitability of various levels 2 -1

of theory in predicting geometries accurately enough to allow g soF o 20013E.84 85042610
easy and accurate distinction between geometric isomers2 b 21375 1000873
frequently present with biomolecules and clusters through & 400k
Franck-Condon simulations. °

Equation: y=:-:'xb
ighting: y  No
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7. Appendix Number of Overlap Integrals
When writing the algorithm used for the FraneRondon Figur_e 8. _Scaling_of the computation time with th_e_number of in’_[egrals.
simulations presented in this paper, the aim was to create a codd "€ insetin the figure shows the results from fitting the funcyon
that was capable of running on personal computers without thea)@ fo the data points.
random access memory (RAM) problems inherent to code in the vibrational ground state or a well-defined initial vibronic
developed for this same purpose. This was achieved by using astate which generally does not contain more than two or three
disk based storage method which still allows for calculations vibrational quanta, only integrals of the typ&, ... wan—6|00]
to be performed in a realistic time frame, even on relatively that is, where the initial state is in the vibrational ground state,
slow processors. Furthermore, filters have been developed toare saved, since they constitute the largest number of integrals
allow direct interface of this program to the Gaussian, MOL- to be calculated in any one recursion. For the same reason, the
PRO, and GAMESS-US computational suites. program automatically generates all possible quantum combina-
The action of the recursion relations in eqs 7 and 8 on a tions in the vibration vector of the final state but lets the user
hypothetical overlap integral can be found in the appendices of define the quantum state of the initial state vector. To limit the
refs 8 and 9. Those recursion charts clearly show that, in the amount of integrals to be calculated, the program checks against
evaluation process of a single overlap integral, integrals of the a set of user defined restrictions similar to those described in
same type are needed several times. Thus, efficient executiorref 9 as it counts up the quantum numbers in the final state
of the recursion relations 7 and 8 can only be achieved by vector. The parameter of major importance is the energy
generating the integrals in a specific order and by storing window—equivalent to the spectral range of interesithin
previously calculated FranekCondon integrals in the computer  which the user wishes to carry out the simulation, as the program
memory. This is not an easy programming task, as a simple only considers vibrations up to the specified maximum energy
multidimensional array that uses the set df 3 6 vibrational of this window. Furthermore, the user can restrict the number
guanta as an index would require enormous amounts of randomof modes that can be simultaneously populated in any one
access memory, even when the relations are applied to smallvibration vector that is evaluated. The total number of vibrational
molecules. A number of algorithms have been developed to quanta in all modes and the maximum number of quanta in
overcome this difficulty, with the most successful approaches one mode can also be restricted.
being the binary tree algorithm developed by Gruner and In the Franck-Condon simulations of phenol DF spectra
Brumef and the three-level-fixed tree algorithm by Ruhoff and presented in section 5, the energy window was set to be 2500
Ratner?®* Schumm et af.implemented a hash table algorithm cm™1, the number of simultaneously populated modes to 2, the
which has also proved successful. total number of vibrational quanta in all modes to 20, and the
In the code presented herein, the integrals are written to amaximum number of quanta in one mode to the already
dedicated file on the computer hard disk. As the program runs mentioned limit of 9. With the above restrictions, the evaluation
down the recursion branches, it checks if the integral to be of the DF spectrum took 1 min and 32 s on a laptop equipped
calculated has already been written out. The integral is with an 800 MHz Intel Celeron processor, showing that the
recognized by its associated vibration state vector, which is storage method implemented can be used for large molecules
printed as a string of integers in a standard tab delimited ASCII on small, commercially available computers.
file. If the integral is found, the program moves up the recursion A more extensive set of test calculations geared to analyze
branches until all loops are closed. the code performance was carried out on a 32-bit PIll machine
Saving the vibration state vector as a string where there is with a RedHat 9 OS for guanirf.In those simulations, the
no white space between the quantum numbers of different energy window was set to 2500 cf which resulted in a
vibrations restricts the maximum number of quanta in any one vibration string of 37 entries. The maximum number of quanta
vibration to nine. While this limitation is easily overcome, it in each mode was set to nine, and in a set of three calculations,
was not felt to be a severe restriction, as vibronic progressionsthe maximum number of simultaneously populated modes was
with more than six quanta are very rare in vibronic spectra progressively increased from two, to three, and finally to four.
recorded in molecular beams. However, as strings can have uprhis resulted in the evaluation of 3457, 27 142, and 89 721
to 256 characters, vectors with a maximum number of 256 overlap integrals, respectively. The times taken by the calcula-
modes can be stored, making this method amenable to Franck tion machine for the respective simulations were 1 min in the
Condon simulations of very large molecules. first instance, 60 min in the second instance, and 12 h and 53
As the program was written for the simulation of electronic min in the last instance. These data points are plotted in Figure
spectra recorded in molecular beams, where the molecules are together with the interpolation line generated from a function
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of the typey = ax®, wherey is the calculation time angis the (20) Watkins, M. J.; Miler-Dethlefs, K.; Cockett, M. C. RPhys. Chem.
number of integrals calculated. A fit to the data points results Chem. Phys2000 2, 5528. o o
in the parameteb being close to 2 (fitted as 2.13250.0037); (21) Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper,

. . . D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer,
thus, the program scales with approxma_tel%/l_@the ngmber G.; Knowles, P. J.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNicholas, S.
of overlap integrals O. The set of data points is certainly small, J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer,
but the result shown is indicative of the scaling of the code R.:Rauhut, G.; Scta, M.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni,

- . . R.; Thorsteinsson, T.; Werner, H.-MIOLPRO, a package of ab initio
with respect to the change in the number of integrals. programs version 2002.6.

Note Added after ASAP Publication. This article was " (iz)gr:iSCh’M'J';JT“ECK?\h G-tWJSchlngelA,H-J B.; \?CUSGria,TGkE-éRO?(b,

: : . A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
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Table 1. The revised version was repOSIEd on March 30, 2006.Mennucci| B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
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