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A few years ago, we developed an approach to treat molecular systems exposed to an external, intense,
time-dependent fieldJ{ Phys. Chem. 2003 107, 4724;J. Chem. Phy2003 119, 6998). Within this study,

we encountered two novel concepts: the dressed (nafietiaffected) time-dependent nonadiabatic coupling

term and the space-time contours. In the present article, we analyze the newly introduced nonadiabatic coupling
term and discuss its importance for dynamical studies. We also refer to the just mentioned space-time contour
and present thenore efficient contour for realistic situations. The scope of the above-mentioned articles is
extended with the aim of defining quasi-adiabatic states for such situations. Strictly speaking, molecular systems
exposed tantense fast oscillating fields are not expected to foadiabaticstates. Still we consider such a
situation and end up with three possibilities for quasi-adiabatical time-dependent states eventually to be used
within the Born—Oppenheimer approximation.

I. Introduction purpose, they solve an ordinary electronic eigenvalue problem

The treatment of molecular systems exposed to eIectromag-Wh'lemcct)insr:de”::g :Inrinne at?\ anparlamreter (rsc,jlmllar tolrt]he BO
netic fields (e.g., laser fields) has become along the years Oneaszu P ot cto ce h'Igf € uiheat' cood .Eitét.ém)' IP/ata
of the main subjects in theoretical chemistry. This subject has subsequent step, while forming the ime derivatl ’
its origin in studies during the 1970s and the 1980s which the time parameter becomes again a variable. Part of the present

centered on time-independent treatmérftsbut then were artiplg_ is devoted toa simila_r iSSl.Je’ and we end up with three
extended to the time domain!? To treat such a time-dependent definitions for qua5|-ad|abat|(.:al. tlme-dependent. states (whgre
Schralinger equation (SE), one follows the usual same pattern, the I.OweSt one can be used within the BO approximation) which
namely, first solving the electronic time-independent (TID) are in the spirit of our general framewotk.
_eigenv_alue problem to_derive th? TiD ad_iabatic eigenvalues and”_ Diabatic Potential Matrix for Intense Electric Fields
in particular the TID eigenfunctions which are then employed
to form the time-dependent (TD) coupling matrix that is added ~ In @ previous publicatio’} we presented a recipe for
to the adiabatic Hamiltonian. This procedure, for a system that rigorously deriving the diabatic SE in the case ofiatense
contains conical intersections (ci), is described elsewkere. external field. We also made the distinction between a treatment
Several years ago, we presented the theory to treat the TDOf @ weakexternal field and a treatment of amtenseexternal
Born—Oppenheimer (BO) molecular System expose'njﬂtﬂ]se field. The main difference between the two situations is that in
external TD fields:3-15 We use the wordhtenseto distinguish the case of a weak field the perturbation can be presented in
it from a weak field, which is considered as a perturbation, and terms of a small number of basis functions whereas in the second
treated as is briefly described in the previous paragtaph.  case the perturbation requires a large basis set. Thuss ithe
the present article, we intend to discuss a few issues that arenumber of basis functions required to present the perturbation
closely connected with this preliminary study: (a) While treating and if N is the actual number of states required to solve the
the TD electror-nuclear Hamiltonian, we became acquainted nuclear SEs, then within the perturbation approach it is usually
with a novel magnitude, that iS, t}’messed(namewy field assumed that = N; in other WOde, there is no distinction
affected) TD nonadiabatic coupling term (NACT); this magni- between the two numbers. However, in the case dhtense
tude is analyzed in the present publication. (b) In this and other field (thus, a large perturbation), for which a large numier,
publicationst3-15 we introduced a novel contota space-time of basis sets is required, assuming- N enforces also treating
contour-to form the TD adiabatic-to-diabatic transformation a large number of SEs. In the above-mentioned publications,
(ADT) matrix A. In the present article, the discussion on this We managed to separate between the two issues, namely, to
issue is extended to end up with efficientnetwork ofspace-  distinguish betweeh andN: we leftL to be as large as required
time contours to be applied in realistic situations. (c) In previous for presenting the field, whereasis determined, independently,
publications, we referred to external fields in general; in the until a converged solution is attained. In general, we expect
present one, we discuss explicitly the electric field (recalling > N.
that we consider an intense electric field). (d) Recently, Balint-  In the present article, we concentrate again on the effect of
Kurti et al12 developed a time-dependent Bapproximation intense fields on molecular systems, where now the aim is

which is somewhat related to our formalism. To achieve that 2-fold: (1) to analyze some of the expressions derived in the
previous publications and (2) to present practical ideas for future
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II.1. Dressed TD Nonadiabatic Coupling Term. The o(st) = ex;{— ﬁZ)IE=>wT(S|t) _ |h exp{% Z) ©6)

distinction betweerk and N enforces a different treatment of
the TD electror-nuclear interaction in molecular systems than
the usual. The details of this study are given in ref 13, but for (see eq 4 for the definition of the matiZ(st)), then to evaluate
convenience of the reader, we listed the relevant findings o'V we have to presend (andw') in terms of its eigenvalues
(without proofs) in Appendix A. The main difference is in the and eigenvectors

way the electronic part is treated within the BO framework.
Thus, instead of deriving the electronic basis set by solving a
TID eigenvalue problem, the TD eigenfunctions are obtained

o(slt) =G ex;{— %

R)GTI N (sl = 15G exp('% R)GT

by solving a TD equation for the electronic basis set

" a(seIs)

S = HdsIsDE(sIs) M

where i(slst); j = 1N are the required electronic basis
functions & ands are the corresponding electronic and nuclear

coordinates) andHe(sq|st) is the electronic TD Hamiltonian.

Having the TD electronic basis functions, we are in the position

to form the relevantiressedl'D nonadiabatic coupling matrix
(NACM), 7, which can be shown to be of the form

F=o0'to+ o'Vo (2)

Here,t is the original (TID)L x L NACM with its elements
defined as

7y (9) = [Gi(SIst=0)I Vi (sIst=0)] j={1L}; k={1L}
3)
where the functionsi(se|st=0) (= Ci(s|9); | = jk are the

ordinary (TID) eigenfunctions (see eq A.2) am(slt) is aL x
N rectangularmatrix related to the potential matrkte as

o(sit) = f/exp(— = J He(s|t')dt')|[‘ 4)
whereH(s|t) is the squareTD matrix of dimensiond. x L

F'jk(svt) = [gi(se/st=0)H (SIS 1) G (SelSst=0)T  (5)

IV is a rectangular unit matrix df rows andN columns (}
guarantees the correspondirgctangularstructure ofm(s|t))

and ??is a path ordering operator. It is important to realize that

the external field is turned on &t= 0 which implies that for

any timet < 0 the system is not exposed to an external field.

It is important to realize that, althoughis of dimensiond.
x L, the dressedl 7 is of dimensionsN x N, namely, of a
smaller dimension than.

()

where G(s;t) is a square matrix of dimensiorns x L which
diagonalizesZ andR(s;t) is a diagonal matrix which contains
the (L) eigenvalues oZ. Next, we derive the matrixyw

Vo(st) = [VG exp(— i R)GT =

- 1 GvR exp(— 1 R)GT n

h h

G exp(— # R)VGT N (8)

which, when multiplied, from the right-hand side by (see
eq 7), forms the desired result.

I.2. Adiabatic-to-Diabatic Transformation Matrix and the
Efficient Networks of Space-Time Contours.The diabatic
potential matrixwW(s;t) is written in the form?

W(st) = AT(sHH(sDA(sY) ©)

Here, two matrices are encountered, that is, the TD potential
matrix, He, and the corresponding ADT matriR,. As for He,

it was derived in ref 13 and is presented again, for the sake of
convenience, in eq A.7. In what follows, our main interest is in
the ADT matrix.

At this stage, two comments are to be made based on TID
studies: (1) In generalV is calculated along the contours, but
this happens only becauseis derived by solving line integrals
along thecontourg!23.24.28(as forHy, it is derived just like the
adiabatic potentiali, point-wise at every required grid point).
(2) It is important to emphasize that in case hMstates form,
in the considered region, a Hilbestibspac&V does notdepend
on the chosen contodt along whichA is calculated®> 2’ To
illustrate this, we refer the reader to Figure 1: The two contours
shown in Figure 1 (and for this sake any other contour) are
expected to yield the same value for the diabatic potential matrix
at the crossing point of the two contours (i.e., the po@i)j.

The ADT matrix is usually calculated alosgatialcontours.

In ref 13, it was shown that within the TD framework
(characterized by intense fields) this matrix has to be calculated
along space-timecontours. Although these contours are dis-

The matrix7 is one of the more characteristic magnitudes cussed in ref 13 (see also eqs A.11 and A.12), here, we extend
that emerge from this TD treatment. Although it may vary under this discussion with the purpose of gaining more insight.
a gauge transformation (just like the TID NACNE?), it is of Since for a Hilbert subspace the calculationvé{s,t) does
major importance because this dressed NACM not only is not depend on any specific set of contours, we are free to choose
responsible for forming the TD ADT matrix (the ADT matrix the more convenient ones for this purpose. In the forthcoming
is a solution of eq A.8) but also fulfills théour-dimensional paragraphs, we propose such contours.
space-time Curl equatiof. To discuss this issue in a comprehensive way, we break it

One of the more important features that characterizes theup into two parts. In the first part, we present the preferred
(TID) NACTSs, 7y, is the fact that at points of degeneracy some contour that leads from an initial poirgyffo) to some other point
of them becomesingular2? There exists a belief that intense (st), and in the second, we discuss specific contours that lead
external fields (either electric or magnetic) are capable of from an initial point &,to) to a grid of points §,t) (see Figure
affecting the positions of thesingularities In fact, the structure 2). To simplify the discussion, we assume the initial point to
of the dressed NACM as given in eq 2 shows that this possibility be (,t)) = (0,0) and recall thak, just like s is a point in
does not exist. configurational space.

As a final issue in this section, we analyze the second term, The contoud” we suggest is made up of two segments, one
o'V, in eq 2. Thus, ifw is written in the form segment[g, is defined as



Space-Time Contours

Figure 1. Space-time system of coordinates. Shown are two different
space-time contourB; andI"; connecting $=0,t=0) with (S=5t=t).
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Figure 2. Space-time system of coordinates. Shown is the cordtgur
=Tjs + I'« connecting $=0,t=0) with (S=5,t=t).
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.ot
A(stD) = & exp{%1 S ﬁe(s,t'ﬂ“t)dt’} x
0

expg — [ 7(st=0T)-dsp| (12)
0

It is important to realize that at= 0 (namely, just slightly
before the field is turned on) the time-dependent dressed NACM,
7, is identical to the ordinary undressed NACkI(see eqs 2
and 3). Thus, thepatial phase factor (on the right-hand side)
is identical to the one encountered within the TID frame-
work?123.24for contours given in eq 10a. It is only the time
phase factor (on the left-hand side) that introduces explicitly
the time (formed along the time segment of the contour in eq
10b). The calculations to derive this phase factor are simple
not only because the corresponding integration is performed for
a scalar (instead for a vector) but also because the elements of
He areanalytic functions oft ands (in other words He is not
expected to be affected by singularities).

Next, we limit ourselves to a specific space-time gsicty,
wherej = {0,ng andk = {0,n}. On the basis of eq 124, at
such a grid point, is given by following the expression

& b s ,
(/)/l:(l exp{gj;l He(s.t'1T) dt}]
. ] S
y’L‘! exp{— L | r(s’,t=0|1“js)-ds’} (13)

As for the meaning of the three contodrg, Ik, andFJS, see
Figure 2. We remind the reader that all matrices, in particular
He (see eq A.7), ar&-dimensional square matrices.

I1.3. Topological D(I') within the Space-Time Framework.
We just briefly refer to the topological matrix because it will
become a major issue in our next article that will present
numerical results as derived for a realistic model (formed by
the Mathieu equatid). The main reason for our interest in
the topological matrix (see eq A.13) is becauseniieasure’s

A(s T =

and it is noticed that this contour is essentially a spatial contour the ability of a group oN states to yield ainglevalueddiabatic

(calcu

To calculateA along the spatial segment, we employ eq A.8a,
and solving it the usual way (just like within the TID

lated for time = constant).

framework123.29 yields

A=

(in writing eq 11a, we assumed that= s.)
The second segmerii;, is defined as

and to calculaté\ along this segment, we employ eq A.8b and

I': (s0)—(s

f)

) fex;z[ [22(s t=0Ir)- ds’} (FOt

(10b)

solve it for the case that = t wheres is held constant

It is easy to see thdt = I's + I} (the contoul’y, in Figure 1,
is such a contour), and consequently, we obtainX¢s;t) (by
substitution of eq 11a into eq 11b) the following expression

A(stT) = Jl’exr{iﬁ /;; %e(st'|rgdt'}A(s,t=0) (11b)

@

potential matrix. It is proven elsewhere that, for the diabatic
potential matrixW(s) to become single-valued, tH2 matrix

has to be diagonal foany closed contour in that regioi-28

The new aspect that we encounter here is that it is not enough
thatD is diagonal alongny spatialcontour in the region but
has to be diagonal faany space-timeontour.

From eq 12, it is quite obvious that any group of states that
yields a single-valued diabatic potential matrix in a space-time
region has to form a single-valued diabatic potential matrix in
configurational space. Thus

D(ry = #exg— {i. (s t=0T)-ds}  (13)

This condition is not necessarily sufficient for the group of states
to yield the single-valued diabatic potential in the space-time
region because there exists the possibility that other space-time
contours may fornD matrices which are not diagonal (tie
matrix in eq. 13is just calculated for one particular contour).

In the forthcoming numerical study, this issue will be studied
in detail.

[ll. Intense (External) Electric Fields

I1.1. General Nuclear Schrodinger Equation. In Appendix
B, we derived the SE for a molecular system exposed to an
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intense electric field (see eq B.28). At this stage, we just mention where7 the TD, dressed NACM is given in eq 2. Equation 20

that the derivation was done for an interesectromagnetidield, is peculiar in the sense that it is governed only by NACTs but
but in the forthcoming application, we assume thatrttagnetic lacks the expected (adiabatic) potentials. In fact, it is not
component is weak enough so that it can be ignored. As for the surprising that eq 20 lacks thediabatic potentials because,

electric field, we assume it to be homogeneous so that strictly speaking, a molecular TD system (at least a fast

E(t). Consequently, eq B.28 takes the somewhat simplified form oscillating system) does not have adiabatic potentials or, in other
words, these potentials are identically zero.

~0W(s.sIt) K2 Still we may be able to produce, at least, quasi-adiabatic TD
ih T T 2om VT z (E,()'M,(sls)) + potentials by diagonalizing the TD Hermitean diabatic potential
v em, 7 matrix, W(s;t), discussed earlier and presented in eq 9. With

this idea in mind, we may produce the lowest quasi-adiabatic
W(s.slt) (14) state which in turn can be used to form the BO approxima-
tion.12'16'18_20'30
or This definition of the lowest eigenvalue is not straightforward
(sl , because the convergence of the eigenvalud¥/ (t) depends
SerS) AT on two numberd. and N and not on just one of them as is
A ot ( 2”\1 v+ He(se|5t))lp(se sit) (15) usually the case (the dependence on one number happens when
L = N). In other words, to attach to the lowest (BO) adiabatic
The first term on the right-hand side of eq 15 is the nuclear potential ofW(st) a physical meaning, we have to understand
kinetic energy expressed in terms of mass-dependent coordinateghe meaning of this eigenvalue.
(my is the reduced mass of the nuclear system), and the second From eq 9, it is noticed that the eigenvalues\Vé{s;t) are
term, He(SelSt), is the electronic Hamiltonian given in the form  identical to those ofle which is derived elsewhel&1® and
presented in eq A.7. Thus, our next task is to derive the

eigenvalues ofl.. To do that, eqg A.7 is presented in a slightly
He(slst) = — — z Vo Z (Eo()M(se]9)) + V(sil9) different form

(16)

V(sds)

A.= (B'w)'(B"AB)(B'w) = Q'B"AB)Q  (21)
whereV(sq|s) is the sum of Coulombic potentials that govern

the motion of the nuclei and the electrons. For simplicity, we whereB = B(st) is anL-dimensional orthogonal matrix which
ignore the direct effect of the field on the nuclei. Having diagonalizedd. (see eq 5) an@(st) (= B'w), just like o(st),
He(selst), we are in the position to forrile(st) (see eq 5) is a rectangulat. x N matrix. DefiningV(st) as the diagonal
matrix that contains the eigenvaluesﬁb@, we obtain

He(sH) = u(s) + E®-M(9) (17)
— R
and the corresponding explicit expression da(s,t) (see eq 6) V=BHcSB (22)
i t o\ The convergence of (st) to the desired level is achieved by
o(st) = J’ex;{— A (U(S)t +M(s) f; E(t)dt )]' L increasing.. Before analyzing the elgenvalueskbg we refer

(18) briefly to V(s;t). It is noticed that in the case wheteis a square
matrix (i.e., wherL = N) @ becomes an orthogonal matrix. In

Here, u(s) is anL-dimensional diagonal matrix that contains ¢ 4 casaz becomes orthogonal as well and therefore the

the (TID) adiabatic_potentiaIM(s) is anL-di_mensional square  gjgenvalues offie, A, and W are all the same and are
matrix which contains the (TID) various dipole momerigt) contained along the diagonal of (such a situation we
is the TD external field, ant{' is arectangularunit matrix of encountered while studying theeak fieldcase (see eq 18 in
L rows andN columns. Substituting eqs 17 and 18 into eq A.7 1ef 13). We also mention that these quasi-adiabatic potentials
yields the corresponding potential matrbde which is then 41 identical to those discussed in ref 12, Returning to the BO

employed to form the diabatic potential matrii(st). Having approximation, we find that the BO state (in the case that
W(sit), we are in the position to solve the relevant diabatic SE N) is the lowest diagonal element¥{s) and therefore is well
given in the form defined.
2 The situation becomes more complicated in case dhtease
iA e _ (_ i V2 + W(at))d) (19) field. Here, our approach allowsto differ from N, and in this
at 2m situation, @ is rectangular and the same appliest2aso that

the eigenvalues of-l differ from those ofH. and therefore
also fromV. Consequently, the adiabatic (lowest) state to be
employed within the BO approximation is not uniquely defined
anymore. This situation opens up two additional possibilities:

(1) AssumingN = 1, we get thaH. is a 1 x 1 matrix and
this single matrix element takes the form

It is important to remind the reader that(st) is theN x N
diabatic potential matrix and thab(s;t) is an N-dimensional
column vector that contains the (diabati@)clearwave func-
tions to be solved.

I11.2. Born —Oppenheimer Approximation for a Strongly
Perturbed Time-Dependent Hamiltonian. One of the more
peculiar outcomes of treating the strongly perturbed TD L
r’\r;c()jllecular. system is the following adiabatic SE fpfs\), the CRAES Z Q. Qy (23)

-dimensional vector that contains the (adiabatic) nuclear Z
componentspj: j = {1,N},**7%5 namely
5 (2) AssumingN = 1, we recall thaHis a square Hermitian
ih@lg _ _ h” (v + i)zw (20) matrix which can be diagonalized. Thus, we may employ the
lowest eigenvalue of this matrix for the BO approximation.
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IV. Discussion and Conclusions potential matrixHe, and the corresponding ADT matrig,. In
what follows, both are briefly discussed and we start With

To relate to a realistic case, we assume that the external field
is turned on at = 0 which implies that fot < 0 the system is
unperturbed and therefore described in terms of the electronic
HamiltonianH(se|S) (= He(t=0)) which is TID. Consequently,
for t = 0, the eigenfunctionsjj(sels); j = {1.L} of He(t=0)),
are also TID. Thus

The TD (nonperturbative) approach to study molecular
systems exposed to externalienseTD fields was presented
sometime agé? In the present article, this study is extended to
cover the following issues:

(a) We elaborated on the nowdlessed’D NACM: We not
only emphasized its importance for dynamic studies but also
analyzed the meaning of the algebraic expression.

(b) We discussed in some detail how to choose efficiently —0) — 11 : — i
the network of space-time contours to obtain the corresponding (He(SISt=0) ~ Y(S)IE (SIS t=0)=0;] 1""L(A.2)
ADT matrix (see eq 13) which is then employed to calculate
the TD diabatic potential matriX/(s;t) (see eq 9). whereu(s); j = {1L} are TID adiabatic potentials.

(c) Next, we referred to the possibility of forming the lowest At t = 0, the electronic molecular system becomes TD, and
guastadiabatic potential with the aim of applying it within the consequently, the corresponding basis&t|st); j = {1.N}

BO approximation to treat molecular systems exposed to intensebecomes, as well, TD because it is a solution of the following

electromagnetic fields. eigenvalue problem

(d) As a side issue (see Appendix B), we studied the
connection between a molecular Hamiltonian expressed in terms i ac(s,Isit) —H A3
of an externabector potentialand the one expressed in terms ! ot = He(sIse(s s (A-3)

of corresponding externalectric and magneticfield compo-
nents. This derivation is performed with the aim of revealing The TD eigenfunctions can be presented in terms of the
the conditions for which this connection can be formed in the previous, TID eigenfunctions
case ofintenseelectromagnetic fields.

Our main outcome is that whereas the adiabatic states in IE(s:Is )= o(sIt)E(sIst=0)0 (A-4)
general and the lowest BO state in particular are uniquely . . . -
defined within the TID framework, the situation within the TD where them(s|t) matrix contains the TD expansion coefficients:

framework is more complicated. Strictly speaking, adiabatic  A\S discussed in the last paragraph in the Introduction, we
states in general and the lowest (BO) one in particular do not 8XPectL = N and, consequentlyy(sjt) becomes a rectangular
exist for a system exposed to an (external) TD field (e.g., a matrix of dimensiond. x N (it reduces to a r_ectangular unit
laser field). In this article, we study this situation in detail and Matrix fort = 0). It can be shown thab(s|t) is related to the
end up with three definitions of TD quaatliabatical states. It ~ Potential matrixHe as

still remains to be seen if indeed these states, in numerical

) i ~
applications, can be considered as being (quasi-) adiabatic states o(slt) = .C/’eXL{— A fot He(slt')dt')lf (A.5)
and then, if so, which of the definitions applies best in realistic
cases. wherel} is a rectangular unit matrix df rows andN columns

Before the conclusion, we would like to make two comments:

(1) To solve eq 1, we use the relevant TID BO basis set with
time-dependent coefficients. It is very likely that in such a
procedure we may have to include continuous, namely, non-
Fﬂscrete elgenfynctlons extracted from the continuum. AIthough H(st) = Z(sIst=0)H (sIst)|5(s|st=0)0 (A.6)
it seems as if such eigenfunctions may cause numerical
difficulties, these are very likely to be overcome by employing |t is noticed that fort < O this matrix reduces to a diagonal
negative imaginary potential (NIPs) to form absorbing boundary matrix that contains the adiabatic potential energy surfaces (see
conditions30-32 eq A.2).

(2) Next, we refer to the fact that in the present study we  To continue the derivation of eq A.1, we still need the explicit

ignored the wavelength (frequency) of the field. It is true that expression forde which, like all other expressions, can be
in an actual numerical treatment this feature of the field has to found in ref 13. Thus

be incorporated as is done routinely in many theoretical and

(It guarantees the relevant structure cofit)), is a path
ordering operator, andg(gt) is the square matrix of dimensions

numerical treatments (see, e.g., refs1? and in particularly |f|e: m*ﬂew (A7)
ref 4). We decided to ignore this issue, at this stage, mainly to
emphasize the new ingredients as given here. It is noticed that, in contrast to tirectangularmatrix & and in
contrast to thé_-dimensional square matride, the matrixHe

Acknowledgment. The author acknowledges the U-$srael is anN-dimensional square matrix. However, the valuéNdé
Bi-national Science Foundation (for the years 26@807) for still not determined and will be discussed below.
partially supporting this study. The second issue to be considered is the ADT ma#ixn

) ) ref 13, we showed thaA is a solution of a set of first-order

ﬁgfgzﬂgoﬁ- Time-Dependent System: The General differential equations in a four-dimensional space, namely,

within space-time
The diabatic SE is characterized by the diabatic potential

matrix W(s,t) which is written in the form VA+7A=0 (A.8a)

W(st) = AT(stH(sHA(SH) (A.1) ih % +HA=0 (A.8b)

Here two matrices are encountered, that is, the (extended)wherez, the dressed nonadiabatic coupling matrix (NACM), is
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given in the form

F=o0'to+ o'vVo (A.9)
Here, 7 is the original NACM defined in terms of the time-
independent basis séfs|s,t=0)

7y = [G(t=0)IVE(t=0)] j={1L};k={1L} (A.10)
andw is introduced through eq A.5. Itis important to emphasize
thatz(st), just like A(sit) andHe(s;t) (but unlike z(s;t)), is an
N-dimensional square matrix.

The solution of eq A.8 leads to a single-valued diabatic

potential matrixW(st), if and only if the vectorZ, defined in
terms of its space-time components

T={TgToFenld (A.11)
fulfills the space-time Curl condition/equatiéhHere,%s;; | =

{1.n} are the relevant spatial componentszofand therefore
also ofr) andHe is the corresponding\-dimensional) poten-

Baer
1 e \|?
H=— —iAvV, + - +
ZmZ * caa
! ( ihV +eZﬁ 2+V( ) (B.1)
— | =i —a S.,S .
szﬁ B c B o

Here,V(s«,Ss) is the sum of Coulombic potentials that govern
the motion of the nuclei and the electroms, y = a,( are the
values of the vector potentialat the position of thet electron
wheny = a or at the position of thg nucleus whery =
(consequentlya and 8 are the summation indices for the
electrons and the nuclei, respectively) andZg are the mass
and the charge of the nucleusmis the mass of the electron,
S« IS the coordinate of the electran ands; is the coordinate
of the nucleugs.

Our aim is to solve the following time-dependent Sdhinger
equation

90(se9)

ih o

=HO(s,9) (B.2)

For this purpose, we examine the possibility to eliminate parts

tial matrix defined in eq A.7 and applies as the time component of the vector potential and in this way to simplify the equation
(see eq A.7). These conditions are extensively discussed forthat finally has to be solved. For this purpose, we introduce a
the TID systen?!23.262™Here, we just briefly refer to the parallel ~ Phase factor and try the following substitutc
conditions to be fulfilled for the TD system. .

Y 0(s,9) = exp{iQ(s, 9} W(s.9)

B.3
The solution of egs A.8 is given in terms of an exponentiated B3

line integral along a space-time contdti®

A(zT) = wexp[— f; %(z'|r)-dz'} (A.12)
where «?is an extended ordering operat@ris the space-time
vector defined in eq A.11z is the space-time coordinate, and
the dot stands for the corresponding scalar product.

The space-time contouF,, contains a mixture of segments
related to various spatial coordinatgg = {1,n} and to time
(the time variable is, in fact, ndtbut (i/A)t). In Figure 1, two
such contours are presentdd,andI',, connecting the initial
point (5=0,t=0) and some arbitrary poins€$t=t).

Having introduced the two matricelle andA, we are in a
position to derive the diabatic potential matihk (see eq A.1).

Next, we briefly refer to the topological matrR(T") which
is closely related to the ADT matrix but defined forckbsed
space-time contour, namely

D(I) = #exd ~ {7z 1)-dz] (A.13)

The feature that most characterizes the topological matrix is

that it becomes diagonal when the Curl equation is fulffiled
(this happens when thd states form a Hilbert subspace). A

closed contour is formed when two open contours, for example,

T'; andT; cross at two (different) points. In such a cabBesr
'y — I'; (see Figure 1).

Appendix B. Molecular Schrodinger Equation in an
Electromagnetic Field

1. Molecular Schradinger Equation and the Vector
Potential. Our starting point is the molecular Hamiltonian which

whereQ(s.,s) is assumed to be of the fofm

Q(s,9) = z Q(Sw) T ; Qp(sp) (B.4)

but the explicit expressions &q(Se.) and €25(sg) are still to
be determined.
To simplify the forthcoming derivation, we introduce the
canonical momentum operatat,
L Ze
7, = —ihv, + vy a,;

y=a, (B.5)

and consider the following expression

7,2 expiQ(s,9)} = exp{iQ(se,s)}{ —h?v,? — 2ik

Ze L Ze P
thQfI—TaV 'Vy—lhTVya.y—lh Vy Qy+

(hv,Q)° +h Z—iye a v,Q + (2%3)2 aj} (B.6)

To continue, we remind the reader of the Helmholtz theo-
ren?%37 that states that a given vect@rcan be shown to be a
sum of two components, that is, a longitudal compor@gt
and a transversal componef@;

G=G,t+G, (B.7)
where Go,Gy) fulfill the following conditions
curlG,, =V x G,=0 (B.8a)
and
DivG, = V-G, =0 (B.8b)

describes the interaction between a molecular system made up

of electrons and nuclei and an external electromagneticfigtd

In what follows, we assume this decomposition to exist also
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for a so that at each poing,, y = ., can be presented as B,=curla; y=ap (B.16)
a, =a,tay, (B.9) Substituting eq B.16 into eq B.15 and solving it we get
where the longitudal and the transversal components fulfilleqs g — _ 9 [1 n v ] _ Q(} ) _
B.8a and B.8b, respectively. v atlc @+ ayo) Xo| =7 Gt \c A
Substituting eq B.9 into eq B.6 and choosing the phases a1
Qq(se) and €2(sp) to fulfill the first-order vector equation at\c B0 Vity (B.17)
Ze where y is an undetermined analytic function. Sineg is
Vi@, t =0 r=ap (B.10) determined up to a function of the typey, we can define the
expression ((B)a, + Vy) as a new longitudal component, that
we find that eq B.6 simplifies to become is, a,™ which is an analytic, but yet, undefined function. In
what follows, we assume that this new longitudal component
2 i = i h that for all [ h
7, exp{iQ(s,9)} = is such that for all cases to be considered here
exp(iQ(s,9} (—h*V. 2 + A B.11 3 (1 3 (1
HiQs 9} (—h°V,> + A@,) (B.11) 2ladi= 2 Ea) (8.18)

whereA(a,y) is the sum of the terms that contain the transversal ] ) ) o

componentsa,.. While deriving eq B.11, we assumed that eq Where we dropped the upper index,With this assumption in

B.10 has an analytic solution. The condition for that to happen Mind, we may form, foiE,, the following expression

is that a, fulfills eq B.8a at every point. Indeedy,, by its 3

ge;i)nition, satisfies eq B.8a (see the statement that follows eq E,= %% y=ap (B.19)
To complete the derivation, we have to evaluatéa,y).

Following a few simple algebraic manipulations, we obtain To make the connection betweéd, and ,, we employ eq

B.10. For this purpose, we first derive the solution of this
Ala,) = equation which is presented in terms of an integral along a
&u . contour,I’
Y

L Ze ez ,
_IhT (z%tr'vy - vy.aytr) + ~ ay (B.12) 3 Zye . B
Q,=Q0-— [ds-a, y=af (B.20)
where V, a,y is an operator that does not act on functions

beyond the parentheses. However, recalling that by its wheres, is defined as
definition, satisfies eq B.8b, the expressionAda,) simplifies )
to become s = {Se“ r=« (B.21)
TS =6
. L0 Ze? . . . .
A,y = _ZIhT Vv, t o) & (B.12) It is important to remind the reader that each of the integrals in

eq B.20 (like each of the differential equations in eq B.10) yields
Returning now to eq B.2 and replaci®ys.,s) according to eq  an analytic, single-valued function 61, because cual, = 0.
B.3, we have Next, differentiating eq B.20 with respect to time and recalling
eq B.19, we obtain
oW (s.s
%9 exp(-iR(s.9H +h 52 expl(s.9) x Q,_ ze

' ot h JrdsE; y=ap (B.22)
W(s,9) (B.13)

Finally, substituting eq B.22 into eq B.14 yields the explicit

which, following the incorporation of eqs B.1, B.4, B.5, and incorporation of the electric field in the molecular SE
B.11, yields the following relevant SE

€9 0P (sy) ( s R, 1
V(S8 h? 1 ih ==Y —=—Vv2+Y —A@,) -
i =|-F _y?2 — at 2m, 7 2
h— y Zm/vy +22myA(aytr)+ 7 2m, 7 2m,
aQ ds,E, + V(s,9) |W(s,9) (B.23
hZEyW(s@s) W(s.9) (B.14) EZ’e‘fr VETVRITES (529
Y

As a special case, we consider a homogeneous electric field.
namely, a SE to study any molecular system affected by an ConsequentlyE, can be moved in front of the integral and eq

external electromagnetic field. B.23 takes a more familiar form
2. Introducing the Electric and Magnetic Fields. 2.1.
Electric Field. When introducing the electric field, we consider i IP(s,9) h? vt 1 Ala)
. . | = | — R —_ —
the following Maxwell equation ot szy y 2 om, iy
_19,
curle, =- =5 y=ab (B.15) > (E,;M,) + V(5.9 [P(s.9) (B.24)
¥

SinceB, can be presented in terms of a vector potential whereM, is the electronic (nuclear) dipole moment
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M,=Ze [.ds,=Zges, (B.25)
In this presentations, is a vector that connects theparticle
with the chosen origin of coordinates.

11.2.2. Magnetic Field. To obtain a more explicit expression
for the effect of the magnetic field, we consider the simplified
case where the magnetic fiell,is homogeneous (see paragraph
126 in Landau and Lifshitz3* In such a case, thetransversal
vector potentiak,y can be presented as

(B.26)

&y xS,

whereB, is the magnetic field affecting the-particle (see also
eq B.21). Recalling eq B.12we obtain forA(a,) the result

Ze
A(aytr)——lh Bst+(C) (B, xs)
(B.27)
Next, we recall that
By X Sy~Vy = By~sy X Vy = —iBy~Ly

so that eq B.23 becomes
Zeh Z )
Al@dy) =——B,L, + (B xs)" (B.27)

wherelL is the angular momentum operator. Substituting €q 27
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Discuss.2004 127, 337.

(28) See ref 22, Chapter 2.

(29) Vertesi, T.; Vib&, A.; Halasz, G. J.; Yahalom, A.; Englman, R.;

into eq 24 leads to the final expression for the SE of the electrons Baer, M.J. Phys Chem 2003 107, 7189.

and the nuclei in a given electromagnetic field.

IW(se9)

a2

K2 Z,eh
—V, 24 —H L
2m > C

ih

> (E,'M,) + V(s,9) [W(s,9) (B.28)
Y

where for simplicity we ignored the term that is quadratic in
the intensity of the magnetic field (in other words eq B.28
applies for weak magnetic fields).
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