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A few years ago, we developed an approach to treat molecular systems exposed to an external, intense,
time-dependent field (J. Phys. Chem. A2003, 107, 4724;J. Chem. Phys. 2003, 119, 6998). Within this study,
we encountered two novel concepts: the dressed (namely,field affected) time-dependent nonadiabatic coupling
term and the space-time contours. In the present article, we analyze the newly introduced nonadiabatic coupling
term and discuss its importance for dynamical studies. We also refer to the just mentioned space-time contour
and present themoreefficient contour for realistic situations. The scope of the above-mentioned articles is
extended with the aim of defining quasi-adiabatic states for such situations. Strictly speaking, molecular systems
exposed tointense, fast oscillating fields are not expected to formadiabaticstates. Still we consider such a
situation and end up with three possibilities for quasi-adiabatical time-dependent states eventually to be used
within the Born-Oppenheimer approximation.

I. Introduction

The treatment of molecular systems exposed to electromag-
netic fields (e.g., laser fields) has become along the years one
of the main subjects in theoretical chemistry. This subject has
its origin in studies during the 1970s and the 1980s which
centered on time-independent treatments1-4 but then were
extended to the time domain.5-12 To treat such a time-dependent
Schrödinger equation (SE), one follows the usual same pattern,
namely, first solving the electronic time-independent (TID)
eigenvalue problem to derive the TID adiabatic eigenvalues and
in particular the TID eigenfunctions which are then employed
to form the time-dependent (TD) coupling matrix that is added
to the adiabatic Hamiltonian. This procedure, for a system that
contains conical intersections (ci), is described elsewhere.13

Several years ago, we presented the theory to treat the TD
Born-Oppenheimer (BO) molecular system exposed tointense
external TD fields.13-15 We use the wordintenseto distinguish
it from a weak field, which is considered as a perturbation, and
treated as is briefly described in the previous paragraph.13 In
the present article, we intend to discuss a few issues that are
closely connected with this preliminary study: (a) While treating
the TD electron-nuclear Hamiltonian, we became acquainted
with a novel magnitude, that is, thedressed(namely, field
affected) TD nonadiabatic coupling term (NACT); this magni-
tude is analyzed in the present publication. (b) In this and other
publications,13-15 we introduced a novel contoursaspace-time
contoursto form the TD adiabatic-to-diabatic transformation
(ADT) matrix A. In the present article, the discussion on this
issue is extended to end up with anefficientnetwork ofspace-
timecontours to be applied in realistic situations. (c) In previous
publications, we referred to external fields in general; in the
present one, we discuss explicitly the electric field (recalling
that we consider an intense electric field). (d) Recently, Balint-
Kurti et al.12 developed a time-dependent BOapproximation
which is somewhat related to our formalism. To achieve that

purpose, they solve an ordinary electronic eigenvalue problem
while considering time as a parameter (similar to the BO
assumption concerning the nuclear coordinates).16-21 In a
subsequent step, while forming the time derivative,ip∂Ψ/∂t,
the time parameter becomes again a variable. Part of the present
article is devoted to a similar issue, and we end up with three
definitions for quasi-adiabatical time-dependent states (where
the lowest one can be used within the BO approximation) which
are in the spirit of our general framework.13

II. Diabatic Potential Matrix for Intense Electric Fields

In a previous publication,13 we presented a recipe for
rigorously deriving the diabatic SE in the case of anintense
external field. We also made the distinction between a treatment
of a weakexternal field and a treatment of anintenseexternal
field. The main difference between the two situations is that in
the case of a weak field the perturbation can be presented in
terms of a small number of basis functions whereas in the second
case the perturbation requires a large basis set. Thus, ifL is the
number of basis functions required to present the perturbation
and if N is the actual number of states required to solve the
nuclear SEs, then within the perturbation approach it is usually
assumed thatL ) N; in other words, there is no distinction
between the two numbers. However, in the case of anintense
field (thus, a large perturbation), for which a large number,L,
of basis sets is required, assumingL ) N enforces also treating
a large number of SEs. In the above-mentioned publications,
we managed to separate between the two issues, namely, to
distinguish betweenL andN: we leftL to be as large as required
for presenting the field, whereasN is determined, independently,
until a converged solution is attained. In general, we expectL
. N.

In the present article, we concentrate again on the effect of
intense fields on molecular systems, where now the aim is
2-fold: (1) to analyze some of the expressions derived in the
previous publications and (2) to present practical ideas for future
applications.* E-mail: michaelb@fh.huji.ac.il.

6571J. Phys. Chem. A2006,110,6571-6578

10.1021/jp0617266 CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/03/2006



II.1. Dressed TD Nonadiabatic Coupling Term. The
distinction betweenL andN enforces a different treatment of
the TD electron-nuclear interaction in molecular systems than
the usual. The details of this study are given in ref 13, but for
convenience of the reader, we listed the relevant findings
(without proofs) in Appendix A. The main difference is in the
way the electronic part is treated within the BO framework.
Thus, instead of deriving the electronic basis set by solving a
TID eigenvalue problem, the TD eigenfunctions are obtained
by solving a TD equation for the electronic basis set

where új(se|s,t); j ) 1,N are the required electronic basis
functions (se andsare the corresponding electronic and nuclear
coordinates) andHe(se|s,t) is the electronic TD Hamiltonian.
Having the TD electronic basis functions, we are in the position
to form the relevantdressedTD nonadiabatic coupling matrix
(NACM), τ̃, which can be shown to be of the form

Here,τ is the original (TID)L × L NACM with its elements
defined as

where the functionsúi(se|s,t)0) (≡ úi(se|s)); i ) j,k are the
ordinary (TID) eigenfunctions (see eq A.2) andω(s|t) is aL ×
N rectangularmatrix related to the potential matrixH̃e as

whereH̃e(s|t) is thesquareTD matrix of dimensionsL × L

IL
N is a rectangular unit matrix ofL rows andN columns (IL

N

guarantees the correspondingrectangularstructure ofω(s|t))
andP is a path ordering operator. It is important to realize that
the external field is turned on att ) 0 which implies that for
any timet e 0 the system is not exposed to an external field.

It is important to realize that, althoughτ is of dimensionsL
× L, the (dressed) τ̃ is of dimensionsN × N, namely, of a
smaller dimension thanτ.

The matrix τ̃ is one of the more characteristic magnitudes
that emerge from this TD treatment. Although it may vary under
a gauge transformation (just like the TID NACM,τ22), it is of
major importance because this dressed NACM not only is
responsible for forming the TD ADT matrix (the ADT matrix
is a solution of eq A.8) but also fulfills thefour-dimensional
space-time Curl equation.13

One of the more important features that characterizes the
(TID) NACTs, τjk, is the fact that at points of degeneracy some
of them becomesingular.22 There exists a belief that intense
external fields (either electric or magnetic) are capable of
affecting the positions of thesesingularities. In fact, the structure
of the dressed NACM as given in eq 2 shows that this possibility
does not exist.

As a final issue in this section, we analyze the second term,
ω†∇ω, in eq 2. Thus, ifω is written in the form

(see eq 4 for the definition of the matrixZ(s,t)), then to evaluate
ω†∇ω we have to presentω (andω†) in terms of its eigenvalues
and eigenvectors

whereG(s,t) is a square matrix of dimensionsL × L which
diagonalizesZ andR(s,t) is a diagonal matrix which contains
the (L) eigenvalues ofZ. Next, we derive the matrix,∇ω

which, when multiplied, from the right-hand side byω† (see
eq 7), forms the desired result.

II.2. Adiabatic-to-Diabatic Transformation Matrix and the
Efficient Networks of Space-Time Contours.The diabatic
potential matrixW(s,t) is written in the form13

Here, two matrices are encountered, that is, the TD potential
matrix, H̃̃e, and the corresponding ADT matrix,A. As for H̃̃e,
it was derived in ref 13 and is presented again, for the sake of
convenience, in eq A.7. In what follows, our main interest is in
the ADT matrix.

At this stage, two comments are to be made based on TID
studies: (1) In general,W is calculated along the contours, but
this happens only becauseA is derived by solving line integrals
along thecontours21,23,24,28(as forH̃̃e, it is derived just like the
adiabatic potentialu, point-wise at every required grid point).
(2) It is important to emphasize that in case theN states form,
in the considered region, a HilbertsubspaceW does notdepend
on the chosen contourΓ along whichA is calculated.25-27 To
illustrate this, we refer the reader to Figure 1: The two contours
shown in Figure 1 (and for this sake any other contour) are
expected to yield the same value for the diabatic potential matrix
at the crossing point of the two contours (i.e., the point (sb̃,t̃)).

The ADT matrix is usually calculated alongspatialcontours.
In ref 13, it was shown that within the TD framework
(characterized by intense fields) this matrix has to be calculated
along space-timecontours. Although these contours are dis-
cussed in ref 13 (see also eqs A.11 and A.12), here, we extend
this discussion with the purpose of gaining more insight.

Since for a Hilbert subspace the calculation ofW(s,t) does
not depend on any specific set of contours, we are free to choose
the more convenient ones for this purpose. In the forthcoming
paragraphs, we propose such contours.

To discuss this issue in a comprehensive way, we break it
up into two parts. In the first part, we present the preferred
contour that leads from an initial point (s0,t0) to some other point
(s,t), and in the second, we discuss specific contours that lead
from an initial point (s0,t0) to a grid of points (sj,tk) (see Figure
2). To simplify the discussion, we assume the initial point to
be (s0,t0) ≡ (0,0) and recall thats0 just like s is a point in
configurational space.

The contourΓ we suggest is made up of two segments, one
segment,Γs, is defined as

ω(s|t) ) exp(- i
p

Z)IL
N w ω†(s|t) ) IN

L exp( i
p

Z) (6)

ω(s|t) ) G exp(- i
p

R)G†IL
N w ω†(s|t) ) IN

LG exp( i
p

R)G†

(7)

∇ω(s|t) ) [∇G exp(- i
p

R)G† - i
p

G∇R exp(- i
p

R)G† +

G exp(- i
p

R)∇G†]IL
N (8)

W(s,t) ) A†(s,t)H̃̃e(s,t)A(s,t) (9)

ip
∂ú(se|s,t)

∂t
) He(se|s,t)ú(se|s,t) (1)

τ̃ ) ω†τω + ω†∇ω (2)

τjk(s) ) 〈új(se|s,t)0)|∇úk(se|s,t)0)〉; j ) {1,L}; k ) {1,L}

(3)

ω(s|t) ) P exp(- i
p
∫0

t
H̃e(s|t′)dt′)IL

N (4)

H̃ jk(s,t) ) 〈új(se|s,t)0)|He(se|s,t)|úk(se|s,t)0)〉 (5)
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and it is noticed that this contour is essentially a spatial contour
(calculated for timet ) constant).

To calculateA along the spatial segment, we employ eq A.8a,
and solving it the usual way (just like within the TID
framework21,23,24) yields

(in writing eq 11a, we assumed thatz ≡ s.)
The second segment,Γt, is defined as

and to calculateA along this segment, we employ eq A.8b and
solve it for the case thatz ≡ t wheres is held constant

It is easy to see thatΓ ) Γs + Γt (the contourΓ1, in Figure 1,
is such a contour), and consequently, we obtain forA(s,t) (by
substitution of eq 11a into eq 11b) the following expression

It is important to realize that att ) 0 (namely, just slightly
before the field is turned on) the time-dependent dressed NACM,
τ̃, is identical to the ordinary undressed NACM,τ (see eqs 2
and 3). Thus, thespatial phase factor (on the right-hand side)
is identical to the one encountered within the TID frame-
work21,23,24 for contours given in eq 10a. It is only the time
phase factor (on the left-hand side) that introduces explicitly
the time (formed along the time segment of the contour in eq
10b). The calculations to derive this phase factor are simple
not only because the corresponding integration is performed for
a scalar (instead for a vector) but also because the elements of
H̃̃e areanalytic functions oft ands (in other words,H̃̃e is not
expected to be affected by singularities).

Next, we limit ourselves to a specific space-time grid (sj,tk),
wherej ) {0,ns} andk ) {0,nt}. On the basis of eq 12,A, at
such a grid point, is given by following the expression

As for the meaning of the three contoursΓjk, Γkt, andΓjs, see
Figure 2. We remind the reader that all matrices, in particular
H̃̃e (see eq A.7), areN-dimensional square matrices.

II.3. Topological D(Γ) within the Space-Time Framework.
We just briefly refer to the topological matrix because it will
become a major issue in our next article that will present
numerical results as derived for a realistic model (formed by
the Mathieu equation29). The main reason for our interest in
the topological matrix (see eq A.13) is because it “measures”
the ability of a group ofN states to yield asingle-Valueddiabatic
potential matrix. It is proven elsewhere that, for the diabatic
potential matrixW(s) to become single-valued, theD matrix
has to be diagonal forany closed contour in that region.23-28

The new aspect that we encounter here is that it is not enough
that D is diagonal alongany spatialcontour in the region but
has to be diagonal forany space-timecontour.

From eq 12, it is quite obvious that any group of states that
yields a single-valued diabatic potential matrix in a space-time
region has to form a single-valued diabatic potential matrix in
configurational space. Thus

This condition is not necessarily sufficient for the group of states
to yield the single-valued diabatic potential in the space-time
region because there exists the possibility that other space-time
contours may formD matrices which are not diagonal (theD
matrix in eq. 13′ is just calculated for one particular contour).
In the forthcoming numerical study, this issue will be studied
in detail.

III. Intense (External) Electric Fields

III.1. General Nuclear Schro1dinger Equation. In Appendix
B, we derived the SE for a molecular system exposed to an

Figure 1. Space-time system of coordinates. Shown are two different
space-time contoursΓ1 andΓ2 connecting (s)0,t)0) with (s)s̃,t)t̃).

Figure 2. Space-time system of coordinates. Shown is the contourΓjk

)Γjs + Γkt connecting (s)0,t)0) with (s)s̃j,t)tk).

Γs: (0,0) f (s,0) (10a)

A(s,t)0|Γs) ) P exp{- ∫0

s
τ(s′,t)0|Γs)‚ds′}A(s)0,t)0)

(11a)

Γt: (s,0) f (s,t) (10b)

A(s,t|Γt) ) P exp{ i
p
∫0

t
τ̃e(s,t′|Γt)dt′}A(s,t)0) (11b)

A(s,t|Γ) ) P [exp{ i
p
∫
0

t

H̃̃e(s,t′|Γt)dt′} ×

exp{- ∫
0

s

τ(s′,t)0|Γs)‚ds′}] (12)

A(sj,tk|Γjk) ) [P ∏
l)0

k

exp{ i

p
∫tl-1

tl H̃̃e(sj,t′|Γkt)‚dt′}]
[P ∏

l)0

j

exp{- ∫sl-1

sl τ(s′,t)0|Γjs)‚ds′}] (13)

D(Γs) ) P exp{- IΓs
τ(s′,t)0|Γs)‚ds′} (13′)
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intense electric field (see eq B.28). At this stage, we just mention
that the derivation was done for an intenseelectromagneticfield,
but in the forthcoming application, we assume that themagnetic
component is weak enough so that it can be ignored. As for the
electric field, we assume it to be homogeneous so thatE )
E(t). Consequently, eq B.28 takes the somewhat simplified form

or

The first term on the right-hand side of eq 15 is the nuclear
kinetic energy expressed in terms of mass-dependent coordinates
(mn is the reduced mass of the nuclear system), and the second
term,He(se|s,t), is the electronic Hamiltonian given in the form

whereV(se|s) is the sum of Coulombic potentials that govern
the motion of the nuclei and the electrons. For simplicity, we
ignore the direct effect of the field on the nuclei. Having
He(se|s,t), we are in the position to formH̃e(s,t) (see eq 5)

and the corresponding explicit expression forω(s,t) (see eq 6)

Here, u(s) is an L-dimensional diagonal matrix that contains
the (TID) adiabatic potentials,M (s) is anL-dimensional square
matrix which contains the (TID) various dipole moments,E(t)
is the TD external field, andIL

N is a rectangularunit matrix of
L rows andN columns. Substituting eqs 17 and 18 into eq A.7
yields the corresponding potential matrix,H̃̃e which is then
employed to form the diabatic potential matrix,W(s,t). Having
W(s,t), we are in the position to solve the relevant diabatic SE
given in the form

It is important to remind the reader thatW(s,t) is theN × N
diabatic potential matrix and thatΦ(s,t) is an N-dimensional
column vector that contains the (diabatic)nuclearwave func-
tions to be solved.

III.2. Born -Oppenheimer Approximation for a Strongly
Perturbed Time-Dependent Hamiltonian. One of the more
peculiar outcomes of treating the strongly perturbed TD
molecular system is the following adiabatic SE forψ(s,t), the
N-dimensional vector that contains the (adiabatic) nuclear
componentsψj: j ) {1,N},13-15 namely

whereτ̃ the TD, dressed NACM is given in eq 2. Equation 20
is peculiar in the sense that it is governed only by NACTs but
lacks the expected (adiabatic) potentials. In fact, it is not
surprising that eq 20 lacks theadiabatic potentials because,
strictly speaking, a molecular TD system (at least a fast
oscillating system) does not have adiabatic potentials or, in other
words, these potentials are identically zero.

Still we may be able to produce, at least, quasi-adiabatic TD
potentials by diagonalizing the TD Hermitean diabatic potential
matrix, W(s,t), discussed earlier and presented in eq 9. With
this idea in mind, we may produce the lowest quasi-adiabatic
state which in turn can be used to form the BO approxima-
tion.12,16,18-20,30

This definition of the lowest eigenvalue is not straightforward
because the convergence of the eigenvalues ofW(s,t) depends
on two numbersL and N and not on just one of them as is
usually the case (the dependence on one number happens when
L ) N). In other words, to attach to the lowest (BO) adiabatic
potential ofW(s,t) a physical meaning, we have to understand
the meaning of this eigenvalue.

From eq 9, it is noticed that the eigenvalues ofW(s,t) are
identical to those ofH̃̃e which is derived elsewhere13-15 and
presented in eq A.7. Thus, our next task is to derive the
eigenvalues ofH̃̃e. To do that, eq A.7 is presented in a slightly
different form

whereB ) B(s,t) is anL-dimensional orthogonal matrix which
diagonalizesH̃e (see eq 5) andΩ(s,t) () B†ω), just like ω(s,t),
is a rectangularL × N matrix. DefiningV(s,t) as the diagonal
matrix that contains the eigenvalues ofH̃e, we obtain

The convergence ofV(s,t) to the desired level is achieved by
increasingL. Before analyzing the eigenvalues ofH̃̃e, we refer
briefly to V(s,t). It is noticed that in the case whereω is a square
matrix (i.e., whenL ) N) ω becomes an orthogonal matrix. In
such a case,Ω becomes orthogonal as well and therefore the
eigenvalues ofH̃e, H̃̃e, and W are all the same and are
contained along the diagonal ofV (such a situation we
encountered while studying theweak fieldcase (see eq 18 in
ref 13). We also mention that these quasi-adiabatic potentials
are identical to those discussed in ref 12. Returning to the BO
approximation, we find that the BO state (in the case thatL )
N) is the lowest diagonal element ofV(s,t) and therefore is well
defined.

The situation becomes more complicated in case of theintense
field. Here, our approach allowsL to differ from N, and in this
situation,ω is rectangular and the same applies toΩ so that
the eigenvalues ofH̃̃e differ from those ofH̃e and therefore
also fromV. Consequently, the adiabatic (lowest) state to be
employed within the BO approximation is not uniquely defined
anymore. This situation opens up two additional possibilities:

(1) AssumingN ) 1, we get thatH̃̃e is a 1× 1 matrix and
this single matrix element takes the form

(2) AssumingN * 1, we recall thatH̃̃e is a square Hermitian
matrix which can be diagonalized. Thus, we may employ the
lowest eigenvalue of this matrix for the BO approximation.

H̃̃e ) (B†ω)†(B†H̃eB)(B†ω) ) Ω†(B†H̃eB)Ω (21)

V ) B†H̃eB (22)

(H̃̃e)11 ) ∑
k)1

L

Ω†
1kVkkΩk1 (23)

ip
∂Ψ(se,s|t)

∂t
) (- ∑

γ

p2

2mγ

∇γ
2 - ∑

γ

(Eγ(t)‚Mγ(se|s)) +

V(se|s))Ψ(se,s|t) (14)

ip
∂Ψ(se,s|t)

∂t
) (- p2

2mn
∇2 + He(se|s,t))Ψ(se,s|t) (15)

He(se|s,t) ) -
p2

2m
∑

R
∇R

2 - ∑
R

(ER(t)‚MR(se|s)) + V(se|s)
(16)

H̃e(s,t) ) u(s) + E(t)‚M (s) (17)

ω(s,t) ) P exp[- i
p (u(s)t + M (s) ‚ ∫0

t
E(t′)dt′)]IL

N

(18)

ip
∂Φ
∂t

) (- p2

2m
∇2 + W(s,t))Φ (19)

ip
∂ψ
∂t

) - p2

2m
(∇ + τ̃)2ψ (20)
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IV. Discussion and Conclusions

The TD (nonperturbative) approach to study molecular
systems exposed to external,intenseTD fields was presented
sometime ago.13 In the present article, this study is extended to
cover the following issues:

(a) We elaborated on the noveldressedTD NACM: We not
only emphasized its importance for dynamic studies but also
analyzed the meaning of the algebraic expression.

(b) We discussed in some detail how to choose efficiently
the network of space-time contours to obtain the corresponding
ADT matrix (see eq 13) which is then employed to calculate
the TD diabatic potential matrixW(s,t) (see eq 9).

(c) Next, we referred to the possibility of forming the lowest
quasi-adiabatic potential with the aim of applying it within the
BO approximation to treat molecular systems exposed to intense
electromagnetic fields.

(d) As a side issue (see Appendix B), we studied the
connection between a molecular Hamiltonian expressed in terms
of an externalVector potentialand the one expressed in terms
of corresponding externalelectric andmagneticfield compo-
nents. This derivation is performed with the aim of revealing
the conditions for which this connection can be formed in the
case ofintenseelectromagnetic fields.

Our main outcome is that whereas the adiabatic states in
general and the lowest BO state in particular are uniquely
defined within the TID framework, the situation within the TD
framework is more complicated. Strictly speaking, adiabatic
states in general and the lowest (BO) one in particular do not
exist for a system exposed to an (external) TD field (e.g., a
laser field). In this article, we study this situation in detail and
end up with three definitions of TD quasi-adiabatical states. It
still remains to be seen if indeed these states, in numerical
applications, can be considered as being (quasi-) adiabatic states
and then, if so, which of the definitions applies best in realistic
cases.

Before the conclusion, we would like to make two comments:
(1) To solve eq 1, we use the relevant TID BO basis set with

time-dependent coefficients. It is very likely that in such a
procedure we may have to include continuous, namely, non-
discrete eigenfunctions extracted from the continuum. Although
it seems as if such eigenfunctions may cause numerical
difficulties, these are very likely to be overcome by employing
negative imaginary potential (NIPs) to form absorbing boundary
conditions.30-32

(2) Next, we refer to the fact that in the present study we
ignored the wavelength (frequency) of the field. It is true that
in an actual numerical treatment this feature of the field has to
be incorporated as is done routinely in many theoretical and
numerical treatments (see, e.g., refs 1-12 and in particularly
ref 4). We decided to ignore this issue, at this stage, mainly to
emphasize the new ingredients as given here.

Acknowledgment. The author acknowledges the U.S.-Israel
Bi-national Science Foundation (for the years 2003-2007) for
partially supporting this study.

Appendix A. Time-Dependent System: The General
Formulation

The diabatic SE is characterized by the diabatic potential
matrix W(s,t) which is written in the form

Here two matrices are encountered, that is, the (extended)

potential matrix,H̃̃e, and the corresponding ADT matrix,A. In
what follows, both are briefly discussed and we start withH̃̃e.

To relate to a realistic case, we assume that the external field
is turned on att ) 0 which implies that fort e 0 the system is
unperturbed and therefore described in terms of the electronic
HamiltonianHe(se|s) (≡ He(t)0)) which is TID. Consequently,
for t e 0, the eigenfunctions,új(se|s); j ) {1,L} of He(t)0)),
are also TID. Thus

whereuj(s); j ) {1,L} are TID adiabatic potentials.
At t g 0, the electronic molecular system becomes TD, and

consequently, the corresponding basis setúj(se|s,t); j ) {1,N}
becomes, as well, TD because it is a solution of the following
eigenvalue problem

The TD eigenfunctions can be presented in terms of the
previous, TID eigenfunctions

where theω(s|t) matrix contains the TD expansion coefficients:
As discussed in the last paragraph in the Introduction, we

expectL * N and, consequently,ω(s|t) becomes a rectangular
matrix of dimensionsL × N (it reduces to a rectangular “unit”
matrix for t e 0). It can be shown thatω(s|t) is related to the
potential matrixH̃e as

whereIL
N is a rectangular unit matrix ofL rows andN columns

(IL
N guarantees the relevant structure ofω(s|t)), P is a path

ordering operator, andH̃e(s|t) is the square matrix of dimensions
L × L

It is noticed that fort e 0 this matrix reduces to a diagonal
matrix that contains the adiabatic potential energy surfaces (see
eq A.2).

To continue the derivation of eq A.1, we still need the explicit
expression forH̃̃e which, like all other expressions, can be
found in ref 13. Thus

It is noticed that, in contrast to therectangularmatrix ω and in
contrast to theL-dimensional square matrixH̃e, the matrixH̃̃e

is anN-dimensional square matrix. However, the value ofN is
still not determined and will be discussed below.

The second issue to be considered is the ADT matrix,A. In
ref 13, we showed thatA is a solution of a set of first-order
differential equations in a four-dimensional space, namely,
within space-time

whereτ̃, the dressed nonadiabatic coupling matrix (NACM), is

W(s,t) ) A†(s,t)H̃̃e(s,t)A(s,t) (A.1)

(He(se|s,t)0) - uj(s))|új(se|s,t)0)〉 ) 0; j ) 1,...,L
(A.2)

ip
∂ú(se|s,t)

∂t
) He(se|s,t)ú(se|s,t) (A.3)

|ú(se|s,t)〉 ) ω(s|t)|ú(se|s,t)0)〉 (A.4)

ω(s|t) ) P exp(- i
p
∫0

t
H̃e(s|t′)dt′)IL

N (A.5)

H̃(s,t)jk ) 〈új(se|s,t)0)|He(se|s,t)|úk(se|s,t)0)〉 (A.6)

H̃̃e ) ω†H̃eω (A.7)

∇A + τ̃A ) 0 (A.8a)

ip
∂A
∂t

+ H̃̃eA ) 0 (A.8b)
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given in the form

Here, τ is the original NACM defined in terms of the time-
independent basis setú(se|s,t)0)

andω is introduced through eq A.5. It is important to emphasize
that τ̃(s,t), just like A(s,t) and H̃̃e(s,t) (but unlike τ(s,t)), is an
N-dimensional square matrix.

The solution of eq A.8 leads to a single-valued diabatic
potential matrix,W(s,t), if and only if the vector,τ̃̃, defined in
terms of its space-time components

fulfills the space-time Curl condition/equation.13 Here,τ̃sj; j )
{1,n} are the relevant spatial components ofτ̃ (and therefore
also of τ̃̃) and H̃̃e is the corresponding (N-dimensional) poten-
tial matrix defined in eq A.7 and applies as the time component
(see eq A.7). These conditions are extensively discussed for
the TID system.21,23,26,27Here, we just briefly refer to the parallel
conditions to be fulfilled for the TD system.

The solution of eqs A.8 is given in terms of an exponentiated
line integral along a space-time contourΓ13

whereP is an extended ordering operator,τ̃̃ is the space-time
vector defined in eq A.11,z is the space-time coordinate, and
the dot stands for the corresponding scalar product.

The space-time contour,Γ, contains a mixture of segments
related to various spatial coordinatessj:j ) {1,n} and to time
(the time variable is, in fact, nott but (i/p)t). In Figure 1, two
such contours are presented,Γ1 andΓ2, connecting the initial
point (s)0,t)0) and some arbitrary point (s)s̃,t)t̃).

Having introduced the two matrices,H̃̃e andA, we are in a
position to derive the diabatic potential matrixW (see eq A.1).

Next, we briefly refer to the topological matrixD(Γ) which
is closely related to the ADT matrix but defined for aclosed
space-time contourΓ, namely

The feature that most characterizes the topological matrix is
that it becomes diagonal when the Curl equation is fulfilled21,23

(this happens when theN states form a Hilbert subspace). A
closed contour is formed when two open contours, for example,
Γ1 andΓ2 cross at two (different) points. In such a case,Γ )
Γ1 - Γ2 (see Figure 1).

Appendix B. Molecular Schro1dinger Equation in an
Electromagnetic Field

1. Molecular Schro1dinger Equation and the Vector
Potential. Our starting point is the molecular Hamiltonian which
describes the interaction between a molecular system made up
of electrons and nuclei and an external electromagnetic field34,35

Here,V(seR,sâ) is the sum of Coulombic potentials that govern
the motion of the nuclei and the electrons,aγ, γ ) R,â are the
values of the vector potentiala at the position of theR electron
when γ ) R or at the position of theâ nucleus whenγ ) â
(consequently,R and â are the summation indices for the
electrons and the nuclei, respectively),mâ andZâ are the mass
and the charge of theâ nucleus,m is the mass of the electron,
seR is the coordinate of the electronR, andsâ is the coordinate
of the nucleusâ.

Our aim is to solve the following time-dependent Schro¨dinger
equation

For this purpose, we examine the possibility to eliminate parts
of the vector potential and in this way to simplify the equation
that finally has to be solved. For this purpose, we introduce a
phase factor and try the following substitution4,36

whereΩ(se,s) is assumed to be of the form4

but the explicit expressions ofΩR(seR) and Ωâ(sâ) are still to
be determined.

To simplify the forthcoming derivation, we introduce the
canonical momentum operatorπγ

and consider the following expression

To continue, we remind the reader of the Helmholtz theo-
rem20,37 that states that a given vectorG can be shown to be a
sum of two components, that is, a longitudal componentGlo

and a transversal component,Gtr

where (Glo,Gtr) fulfill the following conditions

and

In what follows, we assume this decomposition to exist also

τ̃ ) ω†τω + ω†∇ω (A.9)

τjk ) 〈új(t)0)|∇úk(t)0)〉; j ) {1,L}; k ) {1,L} (A.10)

τ̃̃ ) { τ̃s1,τ̃s2,....,τ̃sn,τ̃e} (A.11)

A(z|Γ) ) P exp{- ∫s0

s
τ̃̃(z′|Γ)‚dz′} (A.12)

D(Γ) ) P exp{-IΓτ̃̃(z′|Γ)‚dz′} (A.13)

H )
1

2m
∑

R
(-ip∇R +

e

c
aR)2

+

∑
â

1

2mâ
(-ip∇â +

eZâ

c
aâ)2

+ V(seR,sâ) (B.1)

ip
∂Θ(se,s)

∂t
) HΘ(se,s) (B.2)

Θ(se,s) ) exp{iΩ(se,s)}Ψ(se,s) (B.3)

Ω(se,s) ) ∑
R

ΩR(seR) + ∑
â

Ωâ(sâ) (B.4)

πγ ) -ip∇γ +
Zγe

c
aγ; γ ) R,â (B.5)

πγ
2 exp{iΩ(se,s)} ) exp{iΩ(se,s)}{-p2∇γ

2 - 2ip

(p∇γΩγ +
Zγe

c
aγ)‚∇γ - ip

Zγe

c
∇γaγ - ip2∇γ

2Ωγ +

(p∇γΩγ)
2 + p

2Zγe

c
aγ‚∇γΩγ + (Zγe

c )2

aγ
2} (B.6)

G ) Glo + Gtr (B.7)

curlGlo ) ∇ × Glo ) 0 (B.8a)

DivGtr ) ∇‚Gtr ) 0 (B.8b)
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for a so that at each point,aγ, γ ) R,â can be presented as

where the longitudal and the transversal components fulfill eqs
B.8a and B.8b, respectively.

Substituting eq B.9 into eq B.6 and choosing the phases
ΩR(seR) andΩâ(sâ) to fulfill the first-order vector equation

we find that eq B.6 simplifies to become

whereΛ(aγtr) is the sum of the terms that contain the transversal
componentsaγtr. While deriving eq B.11, we assumed that eq
B.10 has an analytic solution. The condition for that to happen
is that alo fulfills eq B.8a at every point. Indeedalo, by its
definition, satisfies eq B.8a (see the statement that follows eq
B.9).

To complete the derivation, we have to evaluateΛ(aγtr).
Following a few simple algebraic manipulations, we obtain

where ∇γ aγtr is an operator that does not act on functions
beyond the parentheses. However, recalling thataγtr, by its
definition, satisfies eq B.8b, the expression forΛ(aγtr) simplifies
to become

Returning now to eq B.2 and replacingΘ(se,s) according to eq
B.3, we have

which, following the incorporation of eqs B.1, B.4, B.5, and
B.11, yields the following relevant SE

namely, a SE to study any molecular system affected by an
external electromagnetic field.

2. Introducing the Electric and Magnetic Fields. 2.1.
Electric Field. When introducing the electric field, we consider
the following Maxwell equation

SinceBγ can be presented in terms of a vector potential

Substituting eq B.16 into eq B.15 and solving it we get

where ø is an undetermined analytic function. Sincealo is
determined up to a function of the type∇ø, we can define the
expression ((1/c)alo + ∇ø) as a new longitudal component, that
is, alo

(n) which is an analytic, but yet, undefined function. In
what follows, we assume that this new longitudal component
is such that for all cases to be considered here

where we dropped the upper index,n. With this assumption in
mind, we may form, forEγ, the following expression

To make the connection betweenΩγ and Eγ, we employ eq
B.10. For this purpose, we first derive the solution of this
equation which is presented in terms of an integral along a
contour,Γ

wheresγ is defined as

It is important to remind the reader that each of the integrals in
eq B.20 (like each of the differential equations in eq B.10) yields
an analytic, single-valued function ofΩγ because curlalo ≡ 0.

Next, differentiating eq B.20 with respect to time and recalling
eq B.19, we obtain

Finally, substituting eq B.22 into eq B.14 yields the explicit
incorporation of the electric field in the molecular SE

As a special case, we consider a homogeneous electric field.
Consequently,Eγ can be moved in front of the integral and eq
B.23 takes a more familiar form

whereMγ is the electronic (nuclear) dipole moment

aγ ) aγlo + aγtr (B.9)

∇γΩγ +
Zγe

pc
aγlo ) 0; γ ) R,â (B.10)

πγ
2 exp{iΩ(se,s)} )

exp{iΩ(se,s)}(-p2∇γ
2 + Λ(aγtr)) (B.11)

Λ(aγtr) )

-ip
Zγe

c
(2aγtr‚∇γ - ∇γ‚aγtr) + (Zγe

c )2

aγtr
2 (B.12)

Λ(aγtr) ) -2ip
Zγe

c
aγtr‚∇γ + (Zγe

c )2

aγtr
2 (B.12′)

ip
∂Ψ(se,s)

∂t
) exp(-iΩ(se,s))(H + p

∂Ω
∂t ) exp(iΩ(se,s)) ×

Ψ(se,s) (B.13)

ip
∂Ψ(se,s)

∂t
) (- ∑

γ

p2

2mγ

∇γ
2 + ∑

γ

1

2mγ

Λ(aγtr) +

p ∑
γ

∂Ωγ

∂t
+ V(se,s))Ψ(se,s) (B.14)

curlEγ ) 1
c

∂Bγ

∂t
; γ ) R,â (B.15)

Bγ ) curlaγ; γ ) R,â (B.16)

Eγ ) - ∂

∂t [1c (aγtr + aγlo) - ∇øγ] ≡ - ∂

∂t (1c aγtr) -

∂

∂t (1c aγlo + ∇øγ) (B.17)

| ∂
∂t (1c aγlo)| . | ∂

∂t (1c aγtr)| (B.18)

Eγ ) 1
c

∂aγlo

∂t
; γ ) R,â (B.19)

Ωγ ) Ωγ0 -
Zγe

pc ∫Γ
dsγ‚aγlo; γ ) R,â (B.20)

sγ ) {seR; γ ) R
sâ; γ ) â

(B.21)

∂Ωγ

∂t
) -

Zγe

p
∫Γ

dsγ‚Eγ; γ ) R,â (B.22)

ip
∂Ψ(se,s)

∂t
) (- ∑

γ

p2

2mγ

∇γ
2 + ∑

γ

1

2mγ

Λ(aγtr) -

∑
γ

Zγe∫Γ
dsγ‚Eγ + V(se,s))Ψ(se,s) (B.23)

ip
∂Ψ(se,s)

∂t
) (- ∑

γ

p2

2mγ

∇γ
2 + ∑

γ

1

2mγ

Λ(aγtr) -

∑
γ

(Eγ‚Mγ) + V(se,s))Ψ(se,s) (B.24)
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In this presentation,sγ is a vector that connects theγ-particle
with the chosen origin of coordinates.

II.2.2. Magnetic Field. To obtain a more explicit expression
for the effect of the magnetic field, we consider the simplified
case where the magnetic field,B, is homogeneous (see paragraph
126 in Landau and Lifshitz).34 In such a case, theγ-transversal
vector potentialaγtr can be presented as

whereBγ is the magnetic field affecting theγ-particle (see also
eq B.21). Recalling eq B.12′, we obtain forΛ(aγtr) the result

Next, we recall that

so that eq B.23 becomes

whereL is the angular momentum operator. Substituting eq 27′
into eq 24 leads to the final expression for the SE of the electrons
and the nuclei in a given electromagnetic field.

where for simplicity we ignored the term that is quadratic in
the intensity of the magnetic field (in other words eq B.28
applies for weak magnetic fields).
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Mγ ) Zγe∫Γ
dsγ ) Zγesγ (B.25)

aγtr ) 1
2

Bγ × sγ (B.26)

Λ(aγtr) ) -ip
Zγe

c
Bγ × sγ‚∇γ + (Zγe

2c )2

(Bγ × sγ)
2

(B.27)

Bγ × sγ‚∇γ ) Bγ‚sγ × ∇γ ) -iBγ‚Lγ

Λ(aγtr) )
Zγep

c
Bγ‚Lγ + (Zγe

2c )2

(Bγ × sγ)
2 (B.27′)

ip
∂Ψ(se,s)

∂t
) (- ∑

γ

p2

2mγ

∇γ
2 + ∑

γ

Zγep

c
Hγ‚Lγ -
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(Eγ‚Mγ) + V(se,s))Ψ(se,s) (B.28)
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