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It is shown that constrained density functional theory (DFT) can be used to access diabatic potential energy
surfaces in the Marcus theory of electron transfer, thus providing a means to directly calculate the driving
force and the inner-sphere reorganization energy. We present in this report an analytic expression for the
forces in constrained DFT and their implementation in geometry optimization, a prerequisite for the calculation
of electron transfer parameters. The method is then applied to study the symmetric mixed-valence complex
tetrathiafulvalene-diquinone radical anion, which is observed experimentally to be a Robin-Day class II
compound but found by DFT to be in class III. Constrained DFT avoids this pitfall of over-delocalization
and provides a way to find the charge-localized structure. In another application, driving forces and inner-
sphere reorganization energies are calculated for the charge recombination (CR) reactions in formanilide-
anthraquinone (FA-AQ) and ferrocene-formanilide-anthraquinone (Fc-FA-AQ). While the two compounds
have similar reorganization energies, the driving force in FA-AQ is 1 eV larger than in Fc-FA-AQ, in agreement
with experimental observations and supporting the experimental conclusion that the anomalously long-lived
FA-AQ charge-separated state arises because the electron transfer is in the Marcus inverted region.

1. Introduction

Electron transfer (ET) is a fundamental chemical reaction that
impacts a variety of chemical systems, from biology to electronic
devices. Energy transfer processes in photosynthesis and several
other biological reactions go through electron transfer,1 while
ET in chemical reactions can also couple with proton transfer.2,3

Meanwhile, heterogeneous ET reactions play a key role in dye-
sensitized solar cells,4 and modern research in molecular
electronics mostly amounts to control of ET in various units.5

These applications have generated a vast literature that testifies
to the importance of ET. (See, for example, the five-volume
series edited by Balzani6 and numerous review articles.7-11)

The temperature-dependent kinetics of electron transfer is
characterized in classical Marcus theory7,8,12-14 with two
important parameters: the driving force and the reorganization
energy. Two parabolas along a reaction coordinate can be used
to represent the free energy curves of reactant and product states,
as shown in Figure 1, and these two surfaces are defined by
two parameters: the driving force is-∆G°, and λ is the
reorganization energy. Anharmonic effects are also studied by
a number of authors15,16 but are not addressed in this work. In
the diabatic representation, the two curves cross, and the crossing
point (qc) is the transition state. With the assumption that both
parabolas have the same curvature, the activation energy,∆Gq,
is given by

which then can be used in the Arrhenius relationship for the
rate constant

wherekB is the Boltzmann constant. Note that eq 2 is essentially
classical, and the temperature dependence of eq 2 breaks down
when quantum effects are important.17 In the adiabatic repre-
sentation, the two curves avoid crossing, forming an upper and
a lower curve with the energy gap atqc being twice the
electronic coupling constantHab. Figure 1 shows the potential
energy curves in the limit of smallHab, i.e., nonadiabatic
transition, where the adiabatic curves differ from diabatic ones
only in the region very nearqc. Most long-range ET studies are
in this limit.

Ab initio quantum chemistry methods are now often used to
calculate the ET parameters. Though free energies should be

∆Gq )
(λ + ∆G°)2

4λ
(1)

kET ) A exp(-∆Gq/kBT) (2)

Figure 1. Potential energy curves of an electron transfer reaction.q
represents the reaction coordinate.
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used in real systems, in ab initio calculations entropy changes
are often neglected, and instead, the potential energy is used.
When the structures of the reactant and the product are exactly
known, ∆G° is straightforwardly calculated as the difference
of their equilibrium energies. Calculation ofλ is more difficult,
however, because it involves nonequilibrium energies. As seen
in Figure 1, the reorganization energy is the energy decrease
when the product state is relaxed from the reactant’s equilibrium
structure to its own equilibrium structure.λ is usually decom-
posed into an inner-sphere (λi) part and an outer-sphere (λo)
part.14 λi results from the structural changes of the reacting
molecules, whileλo is due to the solvent relaxation. For a gas-
phase reaction,λi will be the only reorganization energy. But
for reactions in solution or in a complicated biological environ-
ment,λo becomes dominant. Ab initio calculations are usually
used to determine the inner-sphere reorganization energy. The
most commonly used method is Nelsen’s four-point method.18

It treats the reorganization of the electron donor and acceptor
separately. While this is an accurate approximation for inter-
molecular ET where the changes in the donor have nearly no
effect on the acceptor and vice versa, it becomes less appropriate
when the donor and the acceptor are connected and interact with
each other.19,20 It is possible to add a correction to the four-
point method21 to account for the donor-acceptor interaction,
but a direct method that does not separate the donor and acceptor
is much more desirable. Because of the large number of degrees
of freedom involved in the outer-sphere reorganization,λo can
often be simulated classically. One approach is to treat the
solvent as a continuous dielectric medium characterized by a
dielectric constant, with the reacting molecules sitting inside a
vacuum cavity in the continuum.22,23 Methods to calculateλo

range from the simple formula of Marcus7,12 to more sophisti-
cated nonequilibrium models.24,25 Further complication comes
when the solvent plays a role more than electrostatically, such
as forming hydrogen bonds with solute, for which solvent
molecules have to be considered explicitly.26 In this work, we
will focus on the calculation ofλi, leaving the outer-sphere
component of the reorganization for future work.

The reason that it is difficult for ab initio methods to directly
calculateλi is because it is not a ground-state property. In the
adiabatic representation, as is usually produced by ab initio
methods, the lower potential energy curve is of the ground state,
while the upper one is of an excited state. To calculateλi, one
needs the energy of the product state at the reactant state’s
equilibrium structure, which is the energy of a charge transfer
(CT) excited state. Excited-state energies are generally much
harder to compute accurately than the ground-state energy.
Time-dependent density functional theory (TDDFT) methods
are very promising,27-29 giving good excited-state energies for
relatively large systems (e.g., up to 100 atoms). However, the
energy of long-range CT states given by TDDFT is largely
underestimated,30-34 which limits the usefulness of TDDFT in
ET reactions.

Unlike the adiabatic states, diabatic states do not diagonalize
the electronic Hamiltonian, and they are not readily available
from ab initio calculations. There are two general ways to
construct diabatic states (or quasidiabatic states, since strictly
diabatic states generally do not exist35-37). One is to minimize
the nuclear derivative coupling term,38-40 which requires prior
knowledge of nonadiabatic couplings. The other is to define
diabatic states as those that have a similar electronic configu-
ration at all nuclear coordinates. The latter is especially relevant
in ET reactions where reactant and product states have different
charge localizations. For instance, in a charge separation process,

an electron transfers from the donor (D) to the acceptor (A);
hence, DA is one of the diabatic states and D+A- is the other.
For electron (hole) shifting, D-A (D+A) and DA- (DA+) then
form the two diabatic states. There are a variety of approaches41-48

to constructing diabatic states from an electronic structure
technique, mostly from results of multiconfiguration ab initio
calculations. In the diabatic representation, the reactant and
product states can be treated on an equal footing. Here, we
propose the use of constrained DFT as an alternative means of
accessing diabatic states in ET reactions.

To obtain an ET diabatic state, one wants to explicitly
constrain the electron density to the corresponding configuration
(e.g., D+A- or DA) and carry out all calculations under the
constraint. This constraint can be enforced by applying an
appropriate extra external potential in the system,49 where the
key is to find out the correct constraining potential that gives
the desired state.50,51 Recently, we have implemented this
constrained optimization52,53 within Kohn-Sham DFT and
successfully applied the method to long-range charge-separated
states. We will present in this report how forces in constrained
DFT can be calculated analytically, which leads to efficient
geometry optimization ofdiabatic states from an essentially
ground-state formalism. Having the equilibrium structures of
both reactant and product states, one can then directly calculate
the driving force and the inner-sphere reorganization energy.

In the rest of this report, we first briefly review the constrained
DFT method, followed by a description of how analytic forces
are calculated. We test the method first in the intervalence
transfer of tetrathiafulvalene-diquinone radical anion, a sym-
metric mixed-valence compound that is treated poorly by
unconstrained DFT. Then, the method is applied to calculations
of the driving force and inner-sphere reorganization energies
for formanilide-anthraquinone and ferrocene-formanilide-
anthraquinone, where an unusual long-lived charge-separated
state is observed in the former and is attributed to the inverted
region of Marcus theory. In both cases, our constrained
calculations support the experimental observations, while tra-
ditional DFT methods fail.

2. Method

2.1. Constrained DFT.The constrained DFT method was
first proposed by Dederich et al.49 It is based on the density
functional theory of Hohenberg, Kohn, and Sham,54,55 which
says that the ground-state energy is given by the minimum of
the following functional

whereJ is the classical Coulomb energy,Exc is the exchange-
correlation energy, andVn is the external potential.N is the total
number of electrons, andF(r ) is the electron density,F(r ) ) 2
∑i

N/2|φi(r )|2, with φi being the lowest-energy orbitals of a
reference noninteracting system. For completeness, we briefly
review the important formulas for computing energies in
constrained DFT. For simplicity, we present here the formalism
for closed-shell systems with a spin-restricted treatment. Our
earlier work has general formulas for unrestricted cases.52

If a constraint on the electron density, e.g.,

is applied, a constraining potential,Vc, can be introduced as

E[F] ) 2∑
i

N/2〈φi| -
1

2
32|φi〉 + ∫ drVn(r )F(r ) + J[F] +

Exc[F] (3)

∫ wc(r )F(r ) dr ) Nc (4)
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the Langrange multiplier so that minimizing the energy of the
system subject to the constraint (eq 4) is equivalent to finding
the stationary point of

with respect toF andVc. The stationary condition forVc is just
the constraint of eq 4, while the stationary conditions for orbitals
are

which are the standard KS equations with an additional
constraining potential,Vcwc(r ), in the effective Hamiltonian.
Early applications lacked a way to solveVc and φ simulta-
neously, but we have recently developed a direct method to
solve for Vc andφ in one self-consistent-field (SCF) calcula-
tion.52

For charge transfer, it is most convenient to constrain the
charge difference between the donor and the acceptor; that is,
Nc ) (ND - NA)/2, whereND andNA are the net charges on D
and A.52,53This can be done by defining the weight function in
eq 4 to be positive on the donor and negative on the acceptor,
which effectively constrains both the donor and the acceptor.
As in implementations of most quantum chemistry codes, a set
of atom-centered basis functions is used to expandφi, φi(r ) )
∑µ cµiøµ(r ), and energy is then in terms of the density matrix
P. We also build a weight matrixwc in our calculations so that
eq 5 is rewritten as

where Tr stands for the matrix trace. Among different schemes
to define the weight matrix, we found that the Lo¨wdin
population often gives satisfactory results for long-range charge
transfer states.53 Elements of the Lo¨wdin weight matrix are given
by

whereS is the overlap matrix, andC defines the group of atoms
under constraint.

2.2. Forces.The force on nucleusA is the negative of the
potential energy gradient atA, which includes the gradients of
the nuclear repulsion energy and the electronic energy. Our focus
here is the electronic part, whose energy expression is given
by eq 3. For a constrained system, the energy is equivalent to
the stationary value ofW, which is an unconstrained property.
BecauseW is variational with respect to bothP andVc, using
the Hellmann-Feynman theorem and eq 7, we then have

The first term is the gradient in usual unconstrained calculations,
which includes the Hellmann-Feynman force, Pulay force,56

and the force due to the integration grid used in DFT.57 The
second term represents the extra force due to the constraint
condition, and it is the part we need to derive.

From eq 8, we have

Thus, 3AS1/2 needs to be calculated first. For that, we make
use of the eigenvectors and eigenvalues ofS, i.e., Ci and εi,
respectively. After some derivation, one has

whereT indicates the transpose of a vector. This result can then
be used in eq 10 and subsequently in eq 9 to calculate the force
in constrained DFT.

We have implemented the above formalism inNWChem58

to calculate the forces of a constrained system and verified its
correctness by comparing with gradients computed through finite
differences. The forces are then fed into the default driver in
NWChemfor geometry optimization to find the minimum-
energy geometry of the constrained diabatic state.

2.3. Driving Force and Inner-Sphere Reorganization
Energy. We will use the standard notationE(a|b) to represent
the energy of statea calculated at the equilibrium structure of
stateb, wherea andb may or may not be the same. If the two
states are DA and D+A-, then

The equilibrium structures of both states can be obtained
unambiguously with two constrained DFT geometry optimiza-
tions. On the other hand, for any fixed structure, constrained
DFT provides a direct way to calculate energies of both states.
Therefore, the driving force and the reorganization energy are
both readily available from constrained DFT. It is instructive
to compare eq 13 to the four-point method, which calculatesλi

by

Equation 13 does not separate the donor and the acceptor but
fully takes into account their interactions as they are in the real
system. This is a clear advantage, especially for intramolecular
ET reactions.

It is also useful to compare constrained DFT with usual DFT
calculations without constraint. In mixed-valence systems, there
are a few systems where unconstrained DFT successfully
localizes the unpaired electron and gives∆G° andλi directly.19,20

However, it is more often the case that DFT fails to localize
the unpaired electron because of the overdelocalization problem
caused by the self-interaction error (SIE).59-63 For such cases,
DFT cannot distinguish the reactant state and the product state,
hence cannot calculate either∆G° or λi. In the case of charge
recombination reactions, one of the states is a charge transfer
excited state, which is known to be incorrectly described by
TDDFT. Taken together, these problems make DFT unsuitable
for the vast majority of ET reactions. Constrained DFT does
not have these problems, because it can force the unpaired
electron to be localized, and it gives a much better description
of CT states.52,53 Therefore, constrained DFT can be a useful
tool to study ET reactions, as we demonstrate below.

W[F, Vc] ) E[F] ) Vc(∫ wc(r )F(r ) dr - Nc) (5)

[- 1
2

32 + Vn(r ) + ∫ F(r ′)
|r - r ′| dr ′ + Vxc(r ) + Vcwc(r )]φi )

εiφi (6)

W[P] ) E[P] + Vc(Tr{Pwc} - Nc) (7)

wcλV
L + ∑

µ∈C

Sλµ
1/2 SµV

1/2 (8)

3AW ) 3AE + Vc∑
λV

PλV3AwcλV (9)

3AwcλV
L ) ∑

µ∈C

(SµV
1/23ASλµ

1/2 + Sλµ
1/23ASµV

1/2) (10)

3AS1/2 ) ∑
i,j

Ci
T3ASCi

xεi + xεj

(11)

∆G° ) E(DA|DA) - E(D+A-|D+A-) (12)

λi ) E(D+A-|DA) - E(D+A-|D+A-) (13)

λi
4p ) [E(D+|D) - E(D+|D+)] + [E(A-|A) - E(A-|A-)]

(14)
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In the following examples, we sometimes attempt to calculate
the solvent effects by using the continuum solvent models
COSMO64 implemented inNWChem. Single-point constrained
calculations withCOSMO are performed at the gas-phase
equilibrium structures to approximate total∆G°. At the current
stage, the outer-sphere reorganization energy is not calculated.

3. Calculations and Results

3.1. Tetrathiafulvalene-Diquinone Radical Anion. Our
first test is of a symmetric mixed-valence (MV) compound. MV
systems have different oxidation states at two redox centers in
the same molecule. An unpaired electron may transfer intramo-
lecularly between these two centers. This reaction is also called
intervalence transfer (IT), which can be observed optically.65

For symmetric mixed-valence systems, because the driving force
is zero, there are the following simple expressions for the optical
ET νjmax and the activation energy∆Gq:9

Figure 2 demonstrates these relationships.
Robin and Day have divided MV compounds into three

classes:66 Class I has no coupling between the two different
states, making the odd electron completely localized at one of
the centers. Class II has intermediate coupling; hence though
the odd electron is still localized, it can transfer back and forth
between the two centers with a small activation energy barrier.
Class III has a strong coupling, and the odd electron is
completely delocalized over the two centers. DFT calculations
have been used to help classify MV compounds. However, the
deficiency of overdelocalizing the unpaired electron makes the
DFT prediction questionable when a class III compound is
assigned. On the other hand, when a class II compound is
observed experimentally, DFT may not be suitable to study the
system at all.

The symmetric mixed-valence complex tetrathiafulvalene-
diquinone (Q-TTF-Q) is synthesized as an example of using
TTF as a bridge to conduct electrons between two groups, which
may help build electronic devices made of a single molecule.67

The anion of Q-TTF-Q has been observed by electron spin
resonance (ESR) to undergo intramolecular electron transfer,67

indicating it to be a class II system. However, using the B3LYP
functional68-70 and 6-31+G(d) basis set to optimize the
geometry, Q-TTF-Q- ends up in a symmetric structure, with

the two quinone groups having the same amount of charge. (This
is true even if we start from an asymmetric structure obtained
from constrained DFT below.) Thus, DFT predicts Q-TTF-Q-

to be a class III compound, which does not agree with
experiments.

We can instead explicitly constrain one of the quinones in
Q-TTF-Q- to have one more electron than the other, and then
optimize the geometry. The results of this optimization are
summarized in Table 1 together with the structures of neutral
Q-TTF-Q molecule, quinone, and quinone anion, all using
B3LYP/6-31+G(d). The table clearly shows that, in the
constrained system, the neutral Q group resembles the structure
of the quinone molecule, and the reduced Q group has a similar
structure as the quinone anion. The unconstrained DFT results,
however, have the Q group geometry close to be the average
of the corresponding groups in the constrained DFT results. Note
that there is a slight nonplanarity of the Q-TTF-Q structure,
resulting from the sp2 hybridization of the sulfur atoms. In the
table, we also list the dihedral angle (R) between the planes of
each Q group and the bridge tetrathioethylene group, which can
be seen from a side view of the molecule as in Figure 3. It is
also interesting to compare the geometry of Q-TTF-Q- and
Q-TTF-Q. The neutral Q group in Q-TTF-Q- has nearly the
same geometry as the Q groups in the neutral Q-TTF-Q
molecule. Thus, the reduction of one Q group in Q-TTF-Q does
not significantly change the geometry of the other except
pushing it further to be coplanar with the bridge group. With
the structure of constrained DFT, the inner-sphere reorganization
energy,λi, is calculated to be 13.08 kcal/mol. The observed IT
band is centered around 1300 nm67 in the 10:1 ethyl acetate/
tert-butyl alcohol mixture solvent, which means the total
reorganization energy is about 22 kcal/mol. Therefore, in this
case,λi is actually larger thanλo.

Now, the symmetric structure of Q-TTF-Q- predicted by DFT
is not the correct ground-state geometry, but is there any
meaning to this structure? To address this, we performed two

Figure 2. Diabatic potential energy curves for a symmetric electron
transfer reaction.

νmax ) λ ) λi + λo (15)

∆Gq ) λ
4

(16)

TABLE 1: Comparison of Geometries of the Quinone
Groups in Q-TTF-Q - and Q-TTF-Q, as Well as the Quinone
Molecule (Q) and Its Anion (Q-)a

Q-TTF-Q- Q-TTF-Q Q Q-

DFT C-neutral C-reduced

O-C1 1.246 1.226 1.268 1.226 1.227 1.273
C1-C2 1.464 1.481 1.450 1.481 1.487 1.452
C2-C3 1.370 1.359 1.378 1.359 1.345 1.375
C1-C6 1.470 1.491 1.450 1.489 1.487 1.452
C5-C6 1.358 1.342 1.376 1.343 1.345 1.375
R 168.5 171.4 160.2 166.7

a All bond lengths are in angstroms. C-neutral and C-reduced stand
for the constrained DFT results of the neutral and reduced, respectively,
Q group geometry in Q-TTF-Q-.

Figure 3. A side view of the molecular structure of Q-TTF-Q-. Upper
part: DFT results. Lower part: constrained DFT results. Images are
produced with VMD.71
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constrained calculations at the symmetric structure, with the odd
electron either on the left or the right Q group, and found they
have the same energy. Furthermore, this energy is 3.31 kcal/
mol higher than the minimum constrained state energy, i.e.,
about one-fourth ofλi (the true factor is 3.95). These results
indicate that the symmetric structure of DFT might be a good
approximation of the gas-phase IT transition-state structure of
Q-TTF-Q-. This finding is surprising at first sight, but it is also
understandable. Due to symmetry and overdelocalization, the
minimum-energy DFT structure has the charge evenly distrib-
uted between the two Q groups, which has the same effect as
equally mixing the two diabatic states, as it should be for the
transition state. Therefore, even though the DFT energy is not
reliable at that point, the structure might still be useful. It remains
to be tested how useful the overdelocalized DFT structure can
be in general for predicting the transition states of mixed-valence
complexes.

3.2. Formanilide-Anthraquinone and Ferrocene-Forma-
nilide-Anthraquinone. According to the Marcus theory, there
is an inverted region in the ET picture;13 that is, after some
point, the ET reaction rate decreases with increasing driving
force. This is the region where the driving force becomes larger
than the reorganization energy (Figure 4). The inverted region
was not observed experimentally until over two decades after
its prediction72-74 and is one of the greatest triumphs of Marcus
theory. Besides the theoretical importance, the inverted region
has important practical applications too, and one of those is in
the making of a long-lived charge-separated (CS) state.

A long-lived CS state is an essential step in converting light
energy to chemical energy in various photoinduced electron
transfer processes, such as photosynthesis and photovoltaic
cells.75-77 A long-lived CS state means that the charge
recombination reaction is slow compared to other chemical
reactions that turn the initial excitation energy stored in the CS
state into useful work. One way to obtain a long-lived CS state
is to use multiple electron transfer steps to separate the electron
and the hole so that they have a small chance to recombine.78

However, because each step of ET costs some energy, it is
preferable to have a long lifetime of the CS state in a single-
step ET. This is possible if the CR lies in the inverted region
of Marcus theory. An even more attractive quality of the inverted
region is that the greater energy stored in the CS state, the slower
the CR is.

Recently, a successful case utilizing the inverted behavior in
photovoltaic cells has been reported.79 After laser excitation,
the CS state of the formanilide-anthraquinone (FA-AQ) dyad
is observed to have a much longer lifetime than that of
ferrocene-formanilide-anthraquinone (Fc-FA-AQ) triad (>900
µs compared to 20 ps). It is attributed to a decrease in the driving
force and an increase in the reorganization energy, i.e., the
charge recombination is in the inverted region. The driving force,
as measured electrochemically, is 2.24 eV for FA-AQ and 1.16

eV for Fc-FA-AQ. As an estimation ofλ, we make the following
derivation from experimental data, in full accordance to the
Marcus theory. Assume that the coupling constantHab is small
and the prefactorA in the CR rate expression (eq 2) of both
compounds is the same. The ratio of their CS state lifetime then
tells the difference of∆Gq, which is about 0.45 eV. Further
assume that the reorganization energy is also the same; then,
the totalλ is calculated to be 1.41 eV. This simple estimation
shows that CR of FA-AQ is in the Marcus inverted region, while
that of Fc-FA-AQ is close to the top region.

We have calculated the driving force and the reorganization
energy for the charge recombination of FA-AQ and Fc-FA-AQ
in the gas phase, all with the B3LYP functional and the 6-31G-
(d) basis set. In both compounds, the anthraquinone moiety
serves as the electron acceptor. Because the carbonyl group has
an electrophilic carbon and the CO double bond conjugates with
the anthraquinone, we put the carbonyl group as part of the
acceptor too. The rest of the molecule is treated as the electron
donor. Our results as well as some experimental data are listed
in Table 2. First, examine the gas-phase results. The driving
force in both cases is more than 10 times the reorganization
energy, showing they are both in the inverted region. FA-AQ
and Fc-FA-AQ have similar reorganization energies with only
0.05 eV in difference, but the former has a driving force almost
1 eV larger than the latter (3.25 eV to 2.29 eV). This would
agree with the observed trend that FA-AQ has a much longer
lifetime of the CS state than Fc-FA-AQ. The fact that the driving
force is so much larger (3 or 2 eV) thanλi suggests that there
is a strong possibility that their CR in solution will stay in the
inverted region with nonpolar or moderately polar solvents, such
as DMSO used in the experiment. (The dielectric constant of
DMSO is 46.7.)

To have a better understanding of the solvent effects, we note
that the calculated gas-phase driving force is about 1 eV larger
than the experimental value measured electrochemically in
DMSO solution. This is because a polar solvent stabilizes the
CS state more than it does the ground state. We did single-
point constrained calculations with the COSMO solvent model.
By using a solvent radius of 0.5 Å and dielectric of 46.7, we
are able to obtain∆G values in good agreement with the
experiment. From the estimated totalλ above,λo is about 1.2
eV, which has a much larger contribution thanλ.

4. Conclusion

We have further developed the constrained DFT method by
presenting an analytic formula for the forces in a constrained

Figure 4. Diabatic potential energy curves for an electron transfer
reaction in the inverted region.

TABLE 2: Calculated Driving Force and Inner-Sphere
Reorganization Energy for the Charge Recombination
Reaction of FA-AQ and Fc-FA-AQa

-∆GCR(exptl) -∆GCR (calcd)

τCR gas phase in DMSO λi

FA-AQ >900µs 2.24 3.25 2.31 0.26
Fc-FA-AQ 20 ps 1.16 2.29 1.02 0.21

a Also listed are the experimental driving force and charge-separated
state lifetime (τCR) from ref 79. All energy values are in eV.
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system. Using these forces, we are able to efficiently explore
the diabatic potential energy curves in the Marcus theory of
electron transfer and make accurate calculations of the driving
force and the reorganization energy. Our current implementation
gives full account of those parameters for gas-phase reactions.
For ET in solution, the inner-sphere reorganization energy can
be calculated, and the driving force can be approximated by
invoking continuum solvent models.

We wish to summarize a few advantages of using constrained
DFT in ET studies. First, constrained DFT provides an easy
way to access diabatic states, from which the Marcus parameters
can be directly calculated. Second, with constrained DFT, the
diabatic states are obtained from ground-state calculations. The
difficulty and inaccuracy in excited-state calculations are
avoided. Third, with two different constrained geometry opti-
mizations, one naturally obtains the equilibrium structures of
both the reactant and product states. The same optimization in
adiabatic states guarantees only one equilibrium structure. The
last advantage is that the quality of diabatic potential energy
curves from constrained DFT is higher than that of the adiabatic
curves from DFT. This is because the self-interaction error is
more serious for systems with fractional charges.60 DFT
overdelocalizes an unpaired electron, while constrained DFT
forces it to be localized. Therefore, the energy values from
constrained DFT are more accurate. We note that, because
constrained DFT is a ground-state method, it cannot be used
for ET reactions that involve a local excited state. However,
TDDFT is known to work well for those states.28,29A combina-
tion of TDDFT and constrained DFT would be a good approach
to studying such reactions. We also note that in our method the
electron donor and acceptor are preselected. This could be a
problem for systems where the donor and the acceptor are not
well-separated. Thus, it is clear that at the current stage our
method is best for long-range ET reactions, which is what it
was developed for.

To make constrained DFT more useful, it is important to
calculate the coupling constant, with which accurate adiabatic
energies can be obtained from diabatic ones. The coupling
constantHab is crucial in studying nonadiabatic dynamics. DFT
overestimatesHab, and one of the consequences is that Robin-
Day class III compounds may be falsely assigned. One would
like to extend the constrained DFT formalism for obtaining high-
quality diabatic energies to also predict accurateHab values.
One of the obstacles is that constrained DFT methods do not
produce the real wave function.Hab is the coupling between
two different wave functions and has no analogue in terms of
static density-dependent observables. Hence, some approxima-
tions are necessary to extractHab from constrained DFT. We
are currently performing active research on this topic, and results
will be reported in a future work. WithHab, one can also study
the issue of degenerate charge transfer states80 with constrained
DFT. In addition, it may be used to work on similar problems
addressed by restricted open-shell Kohn-Sham approach.81,82
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