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The still-open problem of the variety of asymptotic solutions to one-variable, one-dimensional infinite
multistable reaction-diffusion systems is solved. We show that in such systems, besides monotonic traveling
fronts, nonmonotonic traveling fronts can exist for appropriate initial conditions. The dependence of numbers
of various types of traveling fronts on the number of stable stationary states also is given. Examples of
traveling fronts for the chemical model describing two enzymatic (catalytic) reactions inhibited by an excess
of their reactant is presented.

1. Introduction

The problem of the existence of traveling fronts in reaction-
diffusion (RD) systems was investigated at the beginning of
the previous century by Luther1 and next by Fisher.2 Exact
results are available only for one-variable one-dimensional (1D)
as well as two-dimensional and three-dimensional3 infinite RD
systems with two stationary states. Traveling fronts may
propagate from an unstable stationary state to a stable stationary
state or from a stable stationary state to another stable stationary
state. In the first case, traveling fronts are unstable and the
absolute values of their velocities are bounded from below and
may depend on the initial conditions according to the Kolmo-
gorov-Petrovsky-Piskunov theorem.4 In bistable systems,
traveling fronts connecting stable stationary states are attractive
solutions for appropriate initial conditions and have unique
velocity as follows from the Kanel5 and Fife-McLeod6 theorems.
Traveling fronts have been observed in real chemical systems
such as: the iodate-arsenate reaction for which exact results
have been presented,7 the Belousov-Zhabotinsky reaction,8 and
the oxidation ferrous ions (II) by nitric acid.9

Only partial results are known for one-variable 1D infinite
tristable systems.10 Fife and McLeod have obtained a relation
for velocities of traveling fronts connecting external stable
stationary states in a tristable system.11 Czajkowski and Ebeling
have studied motionless monotonic fronts in one-variable 1D
infinite tristable systems.12 Sheintuch and Nekhamkina have
mentioned the existence of multiple monotonic fronts in a one-
variable 1D tristable RD model.13 Zemskov has studied solutions
to a one-variable 1D infinite RD system with the piece-wise
linear source term and analyzed their stability.14 Vives et al.
have considered multiple traveling fronts in the two-variable
Sel’kov model with two stable states separated by a saddle
point.15 In all of these cases, the existence of nonmonotonic
traveling fronts has not been mentioned. The existence of two
impulses with different amplitudes has been shown in the two-
variable model with two thresholds describing an enzymatic
reaction allosterically activated by its product in an open
system.16

The existence of various possible types of traveling fronts as
well as their numbers in multistable systems is still an open
problem. In the present paper, we solve this problem. We show
that in one-variable 1D infinite systems besides simple fronts
and monotonic multiple fronts it is possible to observe also
nonmonotonic fronts which to our best knowledge are never
described in the literature. In Section 2, we show all possible
types of traveling fronts that can be observed in 1D infinite
RD systems withn+1 stable stationary states and calculate the
number of possible fronts of each type. These general results
are illustrated by two models in Section 3. In the last section,
we discuss shortly the obtained results.

2. Results

The general problem of trigger fronts connecting different
stable stationary states in a one-variable 1D infinite RD system
is described by

with appropriate initial conditions. We consider the case when
the source termf(S) has 2n+1 (n ) 1, 2, ...) positive (0< S1 <
S2 < ... < S2n+1) stationary states among whichn+1 odd ones
are attractive and the remainingn even ones are repulsive. In
chemical systems,f(S) describes the kinetics of chemical
reactions, and their roots correspond to homogeneous stationary
states. The diffusion coefficientD is set equal to 1 due to the
proper scaling of the spatial coordinatex′ ) xD1/2 wherex′ is
the physical coordinate.

We consider the family of initial condition problems (Cauchy
problems) for all values of parameters, which specifyf(S) and
initial conditions in the form

for at least one value ofi (i ) 1, 2, ...,n). Such initial conditions
ensure the existence of at least one traveling front joining two
different stable stationary states as an asymptotic solution to
eq 1 becauseS2i are repulsive stationary states. A traveling front* To whom correspondence should be addressed. E-mail: alk@ichf.edu.pl.
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S(z) wherez ) x - ct andc is its velocity is a solution to the
system of two ordinary differential equations

System 3 has 2n+1 stationary states (0,Si) for i ) 1, 2, ...,
2n+1. They are nodes if the zeros off(S) Si are repulsive or
saddle points ifSi are attracting. The uniqueness of the velocity
of the traveling front connecting the attracting zeros is the result
of the structural instability of the heteroclinic orbit joining the
corresponding saddle points.17 Let us mention that system 3 is
invariable with respect to transformation

therefore, only initial conditions (eq 2) are considered below.
The symmetry (eq 4) means that if a traveling front exists for
given initial conditions, then also its mirror reflection exists for
symmetrical initial conditions.

2.1. Monotonic Traveling Fronts. Traveling fronts of the
simplest type connect two stable stationary states. They can join
two adjacent stable stationary states or two stable stationary
states separated by some number of stable stationary states. If
they connect adjacent stable stationary statesS2i-1 andS2i+1 (i
) 1, 2, ...,n), one can use directly the Kanel and Fife-McLeod
theorem to show the existence and the stability ofn traveling
fronts S2i-1,2i+1. There aren such fronts running to the right.
For appropriately chosen values of parameters off(S), fronts
connecting statesS2i-1 andS2i+1 can run to the left. Taking into
account the mirror symmetry condition (eq 4) and fronts running
to the left, we obtain the total number of traveling fronts
connecting adjacent stable stationary states in the multistable
system with 2n+1 stationary states equal to 4n.

For appropriate choice of the parameter values inf(S), there
are possible traveling fronts connecting nonadjacent stable
stationary statesS2i-1 and S2j+1 (i ) 1, 2, ..., j-1, j ) i+1,
i+2, ...,n). Such fronts appear if initial conditions are such that
S(x, 0) belongs on the half-line-∞ < x e x1 to the basin of
attraction ofS2i-1 and on the other half-linex1 e x2 < x < ∞
is in the basin of attraction ofS2j+1. S(x, 0) must be bounded
from below byS2i-1 and from above byS2j+1 for x1 < x e x2.

Integration of system 3 gives the general formula for the velocity
of the traveling frontS2i-1,2j+1

The direction of propagation of the front is determined by the
propagation direction of the fronts connecting subsequent
adjacent stable stationary states betweenS2i-1 and S2j+1. All
traveling fronts considered in this paper can be presented as
trajectories on the phase plane (S, P2i-1,2j+1). The increasing
traveling front joiningS2i-1 andS2j+1 is presented as a directed

curve positioned aboveP(S) ) 0. Examples of such trajectories
are shown in Figure 1 together with schematic pictures of initial
conditions and their asymptotic profiles. Taking into account
the mirror symmetry property (see eq 4), we obtain the total
number of single traveling fronts connecting nonadjacent stable
stationary states equal to 2n(n-1). In tristable systems, four
such fronts are possible, connecting stationary statesS1 andS5

(Figure 1). According to the Kanel lemma,6 c13 > c15 > c35 for
the fronts shown in Figure 1.

One can choose the values of the parameters off(S) in such
a way that monotonic multiple traveling fronts appear for
appropriate initial conditions (eq 5). Such fronts are monotonic
compositions of single traveling fronts. In the simplest case of
a tristable system forF13 > 0 (c13 < 0) andF35 < 0 (c35 > 0)
and initial conditions

the multiple frontS1,3,5 exists.Fi,j denotes∫Si

Sj f(S)dS. In this
case, two single fronts propagate in the opposite directions
(Figure 2a). The multiple fronts may be presented on one plane
(S, P) with vertical axesP(S) corresponding to the constituent
fronts. Such a “compound phase plane” is just the graphical
composition of phase planes corresponding to the constituent
fronts. The trajectory corresponding to the multiple front shown
schematically in Figure 2a consists of two trajectories above
the half-axis 0S. They begin at stable stationary statesS1 and
S5, and end atS3.

For F13 < 0 andF35 < 0 andc13 < c35 (Figure 2b) orF13 >
0 andF35 > 0 (Figure 2c), another type of the multiple front
exists. In this case, the constituent fronts run in the same
direction. On “the compound phase plane,” the multiple front
shown in Figure 2b corresponds to the trajectory situated above
the half axis 0S,which begins atS5, passes throughS3 and ends

dS
dz

) P(z) (3a)

dP
dz

) -cP(z) - f(S) (3b)

z f -z + z0, c f -c, z0 ∈ R (4)

S2i-2 < S(x, 0) < S2i for x ∈ (-∞, x1] (5a)

S2i-2 < S(x, 0) < S2j+2 for x ∈ (x1, x2] (5b)

S2j < S(x, 0) < S2j+2 for x ∈ (x2, ∞] (5c)

c2i-1,2j+1 ) -

∑
k)2i-1

k)2j-1∫Sk

Sk+2 f(S)dS

∫-∞

∞
P2i-1,2j+1

2 (z)dz
(6)

Figure 1. Single travelling fronts (solid) connecting nonadjacent stable
stationary statesS1 andS5 in the tristable system, examples of initial
conditions (dashed), and corresponding trajectories are shown schemati-
cally. Numbers denote stable stationary states.Fi,j ) ∫Si

Sj f(S)dSandci,j

is the velocity of the frontSi,j. Faster fronts have two arrowheads.

lim sup
xf-∞

S(x, 0) < S2,S4 < lim inf
xf∞

S(x, 0) (7)
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at S1. The multiple-front propagating in the opposite direction
(Figure 2c) corresponds to the opposite-directed trajectory. Let
us mention that if two trajectories start at the same stable
stationary state, then no multiple fronts passing through it can
exist. In this case, a single front is formed. This conclusion helps
us to construct all possible multiple fronts. Taking into account
the mirror symmetry and the possibility of change of the
direction of propagation for appropriate chosen values off(S),
we obtain the total number of multiple fronts whose constituent
fronts run in the same direction in the multistable system equal
to

Similarly, one can obtain the number of all multiple fronts whose
constituent fronts run in the opposite directions equal to

2.2. Nonmonotonic Traveling Fronts.Besides the mono-
tonic fronts described above, there are also possible nonmono-
tonic compositions of monotonic fronts propagating in the same
direction in multistable systems. Such fronts are impossible in
bistable systems. Their existence has never been discussed in
the literature.

In the tristable system for whichF13 < 0, F35 > 0, F15 ) F13

+ F35 < 0 andc1,5 < c3,5, the nonmonotonic frontS1,5,3running
to the right (Figure 3a) exists for initial conditions

This front connects stable stationary statesS1, S5, andS3. [x1,
x2 ] is the interval on whichS(x, t) belongs to the basin of
attraction ofS5 such that fort > T, its length grows.

Nonmonotonic fronts consist of alternately increasing and
decreasing monotonic fronts whose amplitudes (velocities)
decrease (increase) in the direction of their propagations. These
fronts can be single or multiple fronts whose constituent fronts
run in the same direction. Let us consider the nonmonotonic
front consisting of an odd numberl+1 of single fronts (l ) 2,

4, ..., j-i, i ) 1, 2, ...,n-1, j ) i+1, i+2, ...,n) propagating to
the right. Assume thatl/2+1 of them are increasing

and l/2 are decreasing

where: k1 ) i, i+1, ..., j-1, k2 ) k1+1, k1+2, ..., j-1, ...,kl )
kl-1+1, kl-1+2, ..., kl-2-1. The first increasing front has the
largest amplitude and connects stable stationary statesS2i-1 and
S2j+1. The last increasing front has the smallest amplitude and
connects statesS2kl-1+1 andS2kl+1. Such nonmonotonic front we
denote as:

If the velocities of the constituent monotonic fronts fulfill the
condition

the nonmonotonic front (eq 12) exists for appropriate initial
conditions. Examples of such initial conditions are shown
schematically in Figures 3 and 4 (dashed line). Each nonmono-
tonic front corresponds to a trajectory that has the shape of “a
spiral” on “the compound phase plane” (see Figures 3 and 4).
The whole trajectory is directed to the state that the system
approaches after the last monotonic sequence has passed. The
arms of “the spiral” correspond to subsequent monotonic fronts.
For appropriate values of parameters off(S), the monotonic
fronts can be multiple fronts. Each multiple front can joinm+2
different stable stationary states. The example of such multiple

Figure 2. The multiple fronts and corresponding trajectories on “the
compound phase plane” (S,P) for the tristable system are shown
schematically.

2n+3 - 2(n + 1)(n + 2) - 4 (8)

2((n - 3)2n + n + 3) (9)

lim sup
xf-∞

S(x, 0) < S2 (10a)

S4 < S(x, 0) < ∞, x ∈ [x1,x2] (10b)

S2 < lim sup
xf∞

S(x, 0) < S4 (10c)

Figure 3. Nonmonotonic fronts (solid) in the tristable system, examples
of initial conditions (dashed), and corresponding trajectories on “the
compound phase plane” are shown schematically.

Figure 4. One (solid) of 28 possible nonmonotonic fronts in the
multistable system with four stable stationary states (n ) 3), the example
of initial conditions (dashed), and the corresponding trajectory. All
objects are drawn schematically.

S2i-1,2j+1, S2k1+1,2k2+1, S2k3+1,2k4+1, ...,S2kl-1+1,2kl+1 (11a)

S2j+1,2k1
+ 1,S2k2+1,2k3+1, ...,S2kl-2+1,2kl-1+1 (11b)

S2i-1, 2j+1, 2k1+1, 2k2+1, ..., 2kl-1+1, 2kl+1 (12)

0 < c2i-1, 2j+1 < c2j+1, 2k1+1 < ... < c2kl-1+1, 2kl+1
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constituent fronts joiningS7, S5, andS3 is shown in Figure 4.
The number of “spirals” with the first increasing front connect-
ing statesS2i-1 and S2j+1 is given by the following formula

where: l+1 is the number of monotonic fronts for a given
nonmonotonic front. Let us mention that for each nonmonotonic
front moving in the one direction, one can change parameters
of f(S) in such a way that the nonmonotonic front connecting
the same stable stationary states in a different order is possible.
Examples of such nonmonotonic fronts for the tristable system
are shown in Figure 3. Taking into account the mirror symmetry
and the possibility of changes in the direction propagation of
fronts, we obtain finally

as the number of all nonmonotonic fronts possible in the
considered multistable system.

3. Models

3.1. The Generalized Schlo1gl Model. To obtain a generic
model of a multistable chemical system, one can formally
generalize the Schlo¨gl model.18 The model consists of 2n+1
reactions

In this case,f(S) is the polynomial of degree 2n+1

where concentrations ofA andB are assumed to be constant.
From the signs of eq 16, we can easily see that the necessary
condition for the existence of 2n+1 roots off(S) stemming from
the Descartes theorem is fulfilled. Figures 5 and 6 show the
nonmonotonic fronts to eq 1 and corresponding trajectories on
“the compound phase plane” for the source termf(S) ) a(S -
S1)(S - S2)...(S - S7). The solutions to eq 1 with appropriate
initial conditions are obtained numerically on the interval [0,
L] by an algorithm using the Cranck-Nicolson19 scheme for
the diffusion term and the fourth order Runge-Kutta method
for the source term. Zero-flux (Neumann) boundary conditions
are used.

Because for traveling fronts limxf∞ ∂S/∂x (x, t) ) limxf-∞ ∂S/
∂x (x, t) ) 0, if the constituent fronts are sufficiently far from
the boundaries, then the Cauchy problem can be approximated
by the Fourier problem with the zero-flux boundary conditions
(eq 17). In bounded systems, all traveling fronts attend the
boundaries after sufficiently long time and disappear. Therefore,
asymptotic solutions in bounded systems have the form of
homogeneous distributions with values equal to the most stable
stationary state. Figure 7 shows compositions of multiple fronts
whose middle front is almost motionless. In the case of a
motionless front connecting stable stationary statesS2i-1 and

S2j+1, the analytic solution for the trajectory can be easily
obtained

whereF2i-1(S) ) ∫S2i-1

S f(σ) dσ. Figure 8 shows the trajectory
corresponding to the motionless front connectingS1 andS7. Let
us notice that the Schlo¨gl model contains nonelementary (higher
than the second order and autocatalytic) reactions. However,
using the Korzoohin algorithm,20 one can construct a scheme
composed of elementary reactions only, which can be reduced
to the system described by an arbitrary polynomial.

∑
l)1

j-i (j - i
l ) ∑

m)0

j-i-l(j - i - l
m ) (13)

3n+1 - 2n+3 + 2n + 5 (14)

A + iS y\z
ki

k-i
(i + 1)S i ) 2, ..., 2n (15a)

Sy\z
k1

k-1
B (15b)

f(S) ) -k-2n S2n+1 + k2n A S2n - ... - k1 S+ k-1 B (16)

∂S
∂x

(0, t) ) ∂S
∂x

(L, t) ) 0 (17)

Figure 5. Nonmonotonic solutions to eq 1 withf(S) ) -104(S -
0.001)(S - 0.32)(S - 0.334)(S - 0.345)(S - 0.667)(S - 0.846)(S -
1). The initial condition is drawn as a dashed black line. The trajectory
corresponding to the solution for timet ) 9 (solid) is presented below
on “the compound phase plane”.

Figure 6. Nonmonotonic solutions to eq 1 withf(S) ) -104(S -
0.001)(S - 0.21)(S - 0.334)(S - 0.57)(S - 0.667)(S - 0.8)(S - 1).
The trajectory corresponding to the solution for timet ) 8 (solid) is
presented below on “the compound phase plane”.

P(S) ) x2|F2i-1(S)| (18)
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3.2. The Catalytic Model of the Tristable System.The
model describing two parallel reactions catalyzed by two
catalysts (enzymes) E and E′, which are inhibited by an excess
of their reactant S, is a more realistic system exhibiting
tristability. The model is based on the Langmuir-Hinshelwood
(Michaelis-Menten) scheme. The system is open only for the
reactant due to the reaction 19a.

It should be emphasized that the model consists of only
elementary reactions. Below, capital letters denote reagents and
their concentrations as well, because this notation does not
introduce misunderstandings. Reactions of formation products
P and P′ are irreversible so their concentrations do not enter
into the kinetic description of the system. E and E′ are

isoenzymes when P and P′ are the same chemical compound.
The system is closed to catalysts and their complexes. Hence,
the total concentrations of catalysts E0 and E′0 are the first
integrals of kinetic equations, which allows one to eliminate
the concentrations of SE and SE′ from considerations. The
concentrations of catalysts (enzymes) are usually a few orders
of magnitude smaller than concentrations of reactants. In such
conditions E, S2E, E′, and S2E′ are fast variables. Let us mention
that kinetic equations for fast variables are linear, and each of
them has only one quasi-stationary state. Therefore, the sub-
system of fast variables approaches its quasi-stationary state for
all values of the reactant concentration. In the slow time scale
the dynamics of the system can be reduced to the equation
describing changes of the reactant concentration according to
the Tikhonov theorem.21

where: Km ) (k-1+k2)/k1, Km′ ) (k′-1+k′2)/k′1, K3 ) k3/k-3,
and K′3 ) k′3/k′-3. Let us mention thatf(S) ) 0 (eq 20) has
only positive roots. For properly chosen values of the param-
eters,f(S) may have five roots (see Figure 9). In this case, the
first root is stable, so thef(S) has properties required in the
previous section. If the diffusion coefficients for E, E′, and their
complexes can be neglected, then the behavior of the system is
described by eq 1 withf(S) given by eq 20. Figures 10 and 11
show the monotonic and nonmonotonic fronts, respectively, for
the above-defined catalytic system.

4. Conclusions

In this paper, we solve the hitherto open general problem of
types and numbers (see Table 1) of possible traveling fronts

Figure 7. Nonmonotonic solutions to eq 1 withf(S) ) -104(S -
0.001)(S - 0.19)(S - 0.334)(S - 0.5)(S - 0.667)(S - 0.8)(S - 1).
The trajectory corresponding to the solution for timet ) 1.8 (solid) is
presented below on “the compound phase plane”. The middle front
S1,7 is almost motionless.

Figure 8. TrajectoryP(S) computed from eq 18 for the front connecting
S1 andS7.

Figure 9. Graph off(s) (eq 20) fork0S0 ) 3.4,k-0 ) 10-3, k2E0 ) 10,
Km ) 100,K3 ) 0.01,k′2E′0 ) 13,K′m ) 100.2, andK′3 ) 10-0.2. Values
of s are normalizeds ) k-0/(k0S0)S. The inset showsf(s) for small s.

Figure 10. Composition of the multiple monotonic frontS1,3,5and the
single frontS3,5 being the solution to eq 1 withf(S) (eq 20) wherek0S0

) 3.4,k-0 ) 10-3, k2E0 ) 10, Km ) 100,K3 ) 0.01,k′2E′0 ) 13, K′m
) 100.2, andK′3 ) 10-0.2. Values ofs are normalizeds ) k-0/(k0S0)S,
and the vertical axis has scale changed ats ) 0.05.

dS
dt

) k0S0 - k-0S-

k2E0S

Km + S+ K3S
2

-
k′2E′0S

K′m + S+ K′3S
2
≡ f(S) (20)

S0 y\z
k0

k-0
S (19a)

S + E y\z
k1

k-1
SE (19b)

SE98
k2

P + E (19c)

S + SEy\z
k3

k-3
S2E′ (19d)

S + E′ y\z
k1

k-1
SE′ (19e)

SE′ 98
k′2

P′ + E′ (19f)

S + SE′ y\z
k′3

k′-3
S2E′ (19g)
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connecting attracting stationary states in multistable systems.
Besides well-known fronts connecting adjacent stable in bistable
systems, the following types of traveling fronts are possible in
multistable systems:

a. Single fronts connecting nonadjacent stable stationary
states.

b. Monotonic multiple fronts composed of single fronts
running with increasing velocities in the same direction.

c. Monotonic multiple fronts composed of two constituent
fronts running in opposite directions.

d. Nonmonotonic compositions of fronts consisting of
alternate increasing and decreasing monotonic fronts running
in the same direction.

In the literature, only the fronts connecting nonadjacent stable
stationary states in tristable systems have been mentioned.10,11,13

The nonmonotonic fronts have never been reported earlier. We
have found only one paper in which a nonmonotonic front is
described.22 However, this front appears in a bistable system.
It joins successively two stable stationary states and an unstable
stationary state. The part of the front joining two stable
stationary states is motionless, but the part joining the lower
stable stationary state with the unstable stationary state is
unstable.

The fronts described in this paper may appear in all dynamic
systems whose dynamics can be reduced to eq 1, provided that
the kinetic term has an appropriate number of stable stationary
states. The inhibition by an excess of a reactant described in
Section 3.2. is a well-known phenomenon not only in biochem-
istry but also in microbiology23 and heterogeneous catalysis.
Enzymes inhibited by an excess of their reactant, such as
ATCase inhibited by aspartate,24 acetylcholinesterase inhibited
by acetylcholine,25 inorganic pyrophosphatase inhibited by
pyrophosphate, and galaktokinase inhibited by galactose26

immobilized on a solid support or in a CFUR (continuous-flow
unstirred reactor) reactor, can give the traveling fronts presented
above. Moreover, the fronts shown in this paper may be
observed in multistable systems described by more than one
variable like arsenate-iodate and chlorite-iodite systems, which
exhibit tristability.27 Our results seem to be useful also in
experimental investigations of various waves in the bromate-
cyclohexanedione-catalyst system in which no gas bubbles
appear.28
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TABLE 1: Types of Travelling Fronts for the Multistable System with n+1 Stable Stationary States

number of stationary states (2n+1)

type of the solution number of solutions 3 5 7 9

single fronts connecting adjacent states 4n 4 8 12 16
single fronts connecting nonadjacent states 2n(n-1) 0 4 12 24
multiple fronts travelling in the same direction 2n+3 - 2(n+1)(n+2) - 4 0 4 20 64
multiple fronts travelling in the opposite directions 2((n-3)2n+ n + 3) 0 2 12 46
nonmonotonic solutions 3n+1 - 2n+3 + 2n + 5 0 4 28 128

Figure 11. Composition of the nonmonotonic frontS3,1,5and the single
front S3,5 being the solution to eq 1 withf(S) (eq 20) wherek0S0 ) 2.7.
Values of the remaining parameters are the same as in the previous
figure.
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