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On the Variety of Traveling Fronts in One-Variable Multistable Reaction—Diffusion
Systems
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The still-open problem of the variety of asymptotic solutions to one-variable, one-dimensional infinite
multistable reactiorrdiffusion systems is solved. We show that in such systems, besides monotonic traveling
fronts, nonmonotonic traveling fronts can exist for appropriate initial conditions. The dependence of numbers
of various types of traveling fronts on the number of stable stationary states also is given. Examples of
traveling fronts for the chemical model describing two enzymatic (catalytic) reactions inhibited by an excess
of their reactant is presented.

1. Introduction The existence of various possible types of traveling fronts as
) ) ) ) well as their numbers in multistable systems is still an open

_The problem of the existence of traveling fronts in reaction  proplem. In the present paper, we solve this problem. We show
diffusion (RD) systems was investigated at the beginning of {hat jn one-variable 1D infinite systems besides simple fronts
the previous century by Lutheand next by Fishet.Exact and monotonic multiple fronts it is possible to observe also
results are available only for one-variable one-dimensional (1D) ,onmonotonic fronts which to our best knowledge are never
as well as two-dimensional and three-dimensidirdinite RD described in the literature. In Section 2, we show all possible
systems with two stationary states. Traveling fronts may types of traveling fronts that can be observed in 1D infinite
propagate from an unstable stationary state to a stable stationarygp systems witin+1 stable stationary states and calculate the

state or from a stable stationary state to another stable stationary, ,mper of possible fronts of each type. These general results

state. In the first case, traveling fronts are unstable and the yre jljystrated by two models in Section 3. In the last section,
absolute values of their velocities are bounded from below and e giscuss shortly the obtained results.

may depend on the initial conditions according to the Kolmo-
gorov—Petrovsky-Piskunov theorer. In bistable systems, 2 Results
traveling fronts connecting stable stationary states are attractive . . )
solutions for appropriate initial conditions and have unique The geqeral problem. of trigger fronts connecting different
velocity as follows from the Kanhnd Fife-McLeol theorems. _stable st_at|onary states in a one-variable 1D infinite RD system
Traveling fronts have been observed in real chemical systems!S described by
such as: the iodate-arsenate reaction for which exact results 5
have been presentéthe Belousov-Zhabotinsky reactiofand OS(x.t) _ "Sxt) _ ) 0
the oxidation ferrous ions (lI) by nitric acit. ot G

Only partial results are known for one-variable 1D infinite
tristable system& Fife and McLeod have obtained a relation ~With appropriate initial conditions. We consider the case when
for velocities of traveling fronts connecting external stable the source terf(S) has 2+1 (n=1, 2, ...) positive (0< § <
stationary states in a tristable syst&€hCzajkowski and Ebeling S < ... < Sn+1) Stationary states among whick1 odd ones
have studied motionless monotonic fronts in one-variable 1D are attractive and the remainimgeven ones are repulsive. In
infinite tristable system® Sheintuch and Nekhamkina have chemical systemsf(S) describes the kinetics of chemical
mentioned the existence of multiple monotonic fronts in a one- reactions, and their roots correspond to homogeneous stationary
variable 1D tristable RD modét.Zemskov has studied solutions ~ states. The diffusion coefficiel? is set equal to 1 due to the
to a one-variable 1D infinite RD system with the piece-wise proper scaling of the spatial coordinate= xD"2 wherex' is
linear source term and analyzed their stabitity/ives et al. the physical coordinate.
have considered multiple traveling fronts in the two-variable ~ We consider the family of initial condition problems (Cauchy
Sel’kov model with two stable states separated by a saddle problems) for all values of parameters, which spet(§ and
point1® In all of these cases, the existence of nonmonotonic initial conditions in the form
traveling fronts has not been mentioned. The existence of two ] o
impulses with different amplitudes has been shown in the two- 0 = S(x, 0), lim supS(x, 0) = S, < lim inf S(x, 0) < « (2)
variable model with two thresholds describing an enzymatic
reaction allosterically activated by its product in an open for at least one value of(i = 1, 2, ...,n). Such initial conditions
systemt® ensure the existence of at least one traveling front joining two
different stable stationary states as an asymptotic solution to
*To whom correspondence should be addressed. E-mail: alk@ichf.edu.pl. eq 1 becausg; are repulsive stationary states. A traveling front
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S(2) wherez = x — ct andc is its velocity is a solution to the
system of two ordinary differential equations

ds

dz
—cP(2) — (9

P@) (3a)

dP_

e (3b)
System 3 has2t1 stationary states (&) fori = 1, 2, ...,
2n+1. They are nodes if the zeros {5 S are repulsive or
saddle points i§ are attracting. The uniqueness of the velocity
of the traveling front connecting the attracting zeros is the result
of the structural instability of the heteroclinic orbit joining the
corresponding saddle poirtsLet us mention that system 3 is
invariable with respect to transformation

z——-z+27,c—~—CZzeR (4)
therefore, only initial conditions (eq 2) are considered below.
The symmetry (eq 4) means that if a traveling front exists for
given initial conditions, then also its mirror reflection exists for
symmetrical initial conditions.

2.1. Monotonic Traveling Fronts. Traveling fronts of the
simplest type connect two stable stationary states. They can join
two adjacent stable stationary states or two stable stationary
states separated by some number of stable stationary states.
they connect adjacent stable stationary st&es and S+ (i
=1, 2, ...,n), one can use directly the Kanel and FifelcLeod
theorem to show the existence and the stability ¢faveling
fronts S;—1.5+1. There aren such fronts running to the right.
For appropriately chosen values of parameter§($f fronts
connecting stateS;—; andSy+1 can run to the left. Taking into
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Figure 1. Single travelling fronts (solid) connecting nonadjacent stable
dtationary state§, andSs in the tristable system, examples of initial
conditions (dashed), and corresponding trajectories are shown schemati-
cally. Numbers denote stable stationary stafgs= fg f(9dSandc;;

is the velocity of the fron§;. Faster fronts have two arrowheads.

curve positioned above(S) = 0. Examples of such trajectories
are shown in Figure 1 together with schematic pictures of initial

account the mirror symmetry condition (eq 4) and fronts running  congitions and their asymptotic profiles. Taking into account

to the Igft, we obtain the tota! number of 'Fravellng frpnts the mirror symmetry property (see eq 4), we obtain the total

connecting adjacent stable stationary states in the multistablen,mper of single traveling fronts connecting nonadjacent stable

system with 2+1 stationary states equal to.4 stationary states equal tm@—1). In tristable systems, four
For appropriate choice of the parameter value&$)) there  g,c fronts are possible, connecting stationary s@tesdS;

are possible traveling fronts connecting nonadjacent Stable(Figure 1). According to the Kanel lemnfis > Cis > Cas for

stationary state$yi—1 and S+1 (i = 1, 2, ...,j—1,j = i+1, the fronts shown in Figure 1.

i+2, ...,n). Such fronts appear if initial conditions are suchthat  §ne can choose the values of the parametefépin such

Sx, 0) belongs on the half-line-co < x < x; to the basin of 3 way that monotonic multiple traveling fronts appear for

attraction of$;-1 and on the other half-ling =< x; < x < o appropriate initial conditions (eq 5). Such fronts are monotonic

is in the basin of attraction ;1. S(x, 0) must be bounded o mpositions of single traveling fronts. In the simplest case of

from below byS;—; and from above by for x; < X < .. a tristable system foF13 > 0 (c13 < 0) andFas < 0 (cs > 0)

and initial conditions

Sio <% 0)<S; forxe (—o,x] (5a)
S, <Sx0)<S,, forxe (x,x)] (5b) lim supS(x, 0) < S,,S, < lim inf x, 0) )
Sy <8 0)< Sy, forxe (x, ] (5¢)

the multiple frontS, 35 exists. F;j denotesfg f(9dS. In this
case, two single fronts propagate in the opposite directions
(Figure 2a). The multiple fronts may be presented on one plane
(S P) with vertical axesP(S) corresponding to the constituent
fronts. Such a “compound phase plane” is just the graphical
composition of phase planes corresponding to the constituent
fronts. The trajectory corresponding to the multiple front shown
o schematically in Figure 2a consists of two trajectories above
S P 3a(@dz the half-axis @ They begin at stable stationary staf&sand

S, and end ats.
The direction of propagation of the front is determined by the  ForFi3 < 0 andF3s < 0 andcys < ¢35 (Figure 2b) orF3 >
propagation direction of the fronts connecting subsequent O andFss > 0O (Figure 2c), another type of the multiple front
adjacent stable stationary states betw&gm and S+1. All exists. In this case, the constituent fronts run in the same
traveling fronts considered in this paper can be presented asdirection. On “the compound phase plane,” the multiple front
trajectories on the phase plan® P.i-15+1). The increasing shown in Figure 2b corresponds to the trajectory situated above
traveling front joiningSy—1 andSy+1 is presented as a directed  the half axis &, which begins a&;, passes through and ends

Integration of system 3 gives the general formula for the velocity
of the traveling frontSy—1 5+1

k=2j—1

Scr2
25

f(9dsS

(6)

Coi—19+1=
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Figure 2. The multiple fronts and corresponding trajectories on “the
compound phase plane’'SP) for the tristable system are shown
schematically.

at 5. The multiple-front propagating in the opposite direction
(Figure 2c) corresponds to the opposite-directed trajectory. Let
us mention that if two trajectories start at the same stable
stationary state, then no multiple fronts passing through it can
exist. In this case, a single front is formed. This conclusion helps
us to construct all possible multiple fronts. Taking into account Figure 4. One (solid) of 28 possible nonmonotonic fronts in the
the mirror symmetry and the possibility of change of the Multistable system with four stable stationary states @), the example
direction of propagation for appropriate chosen value§9f SL-Z'éttf'afg%ﬂgﬁﬂsséﬂii?aeﬁggf"d the corresponding trajectory. Al
we obtain the total number of multiple fronts whose constituent ) v
fronts run in the same direction in the multistable system equal
to 4,..,j—1,i=1,2,..,n=1,j =i+1,i+2, ...,n) propagating to
the right. Assume thdi2+1 of them are increasing

2" —2n+1)(n+2)—4 (8)
SZifl,aJrl’ %k1+1,2k2+1, %k3+1,2k4+17 e %k,,1+l,2k‘+1 (11a)
Similarly, one can obtain the number of all multiple fronts whose

constituent fronts run in the opposite directions equal to andl/2 are decreasing

2(n—3)2"+n+3) 9 Sir12q T LSugriagiy S 112 41 (11D)

2.2. Nonmonotonic Traveling Fronts.Besides the mono-  where: ky =i, i+1, ...,j—1, ko = ki+1, ki +2, ...,j—1, ...k =
tonic fronts described above, there are also possible nonmono+_;+1, k—1+2, ..., k—>—1. The first increasing front has the
tonic compositions of monotonic fronts propagating in the same |argest amplitude and connects stable stationary sBatasand
direction in multistable systems. Such fronts are impossible in S;,;. The last increasing front has the smallest amplitude and
bistable systems. Their existence has never been discussed igonnects statey, ,+1 andSy+1. Such nonmonotonic front we

the literature. denote as:
In the tristable system for whidk3 < 0, F35 > 0, F15=Fi3
+ F35 < 0 andcy 5 < ¢35 the nonmonotonic fror s srunning 52i—1, A1, AL, D -er 2K+, AL (12)

to the right (Figure 3a) exists for initial conditions
If the velocities of the constituent monotonic fronts fulfill the

lim supS(x, 0) < S, (10a)  condition
Sy < 8, 0) < 00, X € [X,%)] (10b) 0 <Gy, 341 < Cyin,aar1 = - = Co_ 41, 41
S, < lim supS(x, 0) < S, (10c) the nonmonotonic front (eq 12) exists for appropriate initial
conditions. Examples of such initial conditions are shown
This front connects stable stationary stafesSs;, and Ss. [xg, schematically in Figures 3 and 4 (dashed line). Each nonmono-
X2 ] is the interval on whichS(x, t) belongs to the basin of  tonic front corresponds to a trajectory that has the shape of “a
attraction ofSs such that fort > T, its length grows. spiral” on “the compound phase plane” (see Figures 3 and 4).

Nonmonotonic fronts consist of alternately increasing and The whole trajectory is directed to the state that the system
decreasing monotonic fronts whose amplitudes (velocities) approaches after the last monotonic sequence has passed. The
decrease (increase) in the direction of their propagations. Thesearms of “the spiral” correspond to subsequent monotonic fronts.
fronts can be single or multiple fronts whose constituent fronts For appropriate values of parametersf(®), the monotonic
run in the same direction. Let us consider the nonmonotonic fronts can be multiple fronts. Each multiple front can jair-2
front consisting of an odd numbeét1 of single fronts (= 2, different stable stationary states. The example of such multiple
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constituent fronts joiningy;, S, andS; is shown in Figure 4.
The number of “spirals” with the first increasing front connect-
ing statesS;—1 and $+1 is given by the following formula

k)

where: |+1 is the number of monotonic fronts for a given
nonmonotonic front. Let us mention that for each nonmonotonic
front moving in the one direction, one can change parameters
of f(§ in such a way that the nonmonotonic front connecting

(13)

the same stable stationary states in a different order is possible.

Examples of such nonmonotonic fronts for the tristable system
are shown in Figure 3. Taking into account the mirror symmetry
and the possibility of changes in the direction propagation of
fronts, we obtain finally

3 _ "3 4 on+5

(14)
as the number of all nonmonotonic fronts possible in the
considered multistable system.

3. Models

3.1. The Generalized Schigl Model. To obtain a generic
model of a multistable chemical system, one can formally
generalize the Schipp modell® The model consists ofr2-1
reactions

A+is%(i+1)s i=2 .., (15a)

S B

——

~ (15b)
In this casef(S) is the polynomial of degreerz-1
(9 = —k "+ k,y AS"— ... —k, S+ k_,B (16)

where concentrations @& and B are assumed to be constant.

From the signs of eq 16, we can easily see that the necessary

condition for the existence ofi2-1 roots off(S) stemming from
the Descartes theorem is fulfilled. Figures 5 and 6 show the
nonmonotonic fronts to eq 1 and corresponding trajectories on
“the compound phase plane” for the source té{8) = a(S —
S)(S— $)...(S— ). The solutions to eq 1 with appropriate
initial conditions are obtained numerically on the interval [O,
L] by an algorithm using the CranekNicolsor® scheme for
the diffusion term and the fourth order Rung€utta method
for the source term. Zero-flux (Neumann) boundary conditions
are used.
) )
aX(O, t) ax(L’ t)=0 a7)
Because for traveling fronts lime. 0S/0x (X, t) = liMy——. 05
ox (x, t) = 0, if the constituent fronts are sufficiently far from

the boundaries, then the Cauchy problem can be approximated

by the Fourier problem with the zero-flux boundary conditions
(eq 17). In bounded systems, all traveling fronts attend the
boundaries after sufficiently long time and disappear. Therefore,
asymptotic solutions in bounded systems have the form of

J. Phys. Chem. A, Vol.

110, No. 25, 2008385
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i=5, j=7
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Figure 5. Nonmonotonic solutions to eq 1 withfS) = —10%S —

0.001)S — 0.32)S — 0.334)6 — 0.345)G — 0.667)8 — 0.846)C —

1). The initial condition is drawn as a dashed black line. The trajectory

corresponding to the solution for tinte= 9 (solid) is presented below

on “the compound phase plane”.

=1, j=7

i=3,j=5

i=3, j=7

-1.0

Figure 6. Nonmonotonic solutions to eq 1 withfS) = —10%S —
0.001)6 — 0.21) — 0.334)6 — 0.57) — 0.667)6 — 0.8)S — 1).
The trajectory corresponding to the solution for titne 8 (solid) is
presented below on “the compound phase plane”.

Sy+1, the analytic solution for the trajectory can be easily
obtained

P(S = v/2IF;_4(S) (18)
whereF;_1(S) = f . f(o) do. Figure 8 shows the trajectory
corresponding to the motionless front connectBagnds;. Let

us notice that the Schibmodel contains nonelementary (higher

homogeneous distributions with values equal to the most stablethan the second order and autocatalytic) reactions. However,

stationary state. Figure 7 shows compositions of multiple fronts
whose middle front is almost motionless. In the case of a
motionless front connecting stable stationary st&gs and

using the Korzoohin algorithr#f, one can construct a scheme
composed of elementary reactions only, which can be reduced
to the system described by an arbitrary polynomial.
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i=1,j7
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Figure 7. Nonmonotonic solutions to eq 1 withfS) = —10%S —
0.001)6 — 0.19)S — 0.334)68 — 0.5)S — 0.667)G — 0.8)(S — 1).
The trajectory corresponding to the solution for titwe 1.8 (solid) is

presented below on “the compound phase plane”. The middle front

S 7 is almost motionless.
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Figure 8. TrajectoryP(S) computed from eq 18 for the front connecting

S andS,.

3.2. The Catalytic Model of the Tristable System.The

model describing two parallel reactions catalyzed by two
catalysts (enzymes) E and, Evhich are inhibited by an excess
of their reactant S, is a more realistic system exhibiting

tristability. The model is based on the Langmtiiinshelwood

(Michaelis=Menten) scheme. The system is open only for the

reactant due to the reaction 19a.

k3 T
S+ SEE SE
kl
S+E =—=SF
ko1
K,
SE—P +F

K5 ,
S+SE<=SE

(19a)
(19b)

(19¢)
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Figure 9. Graph off(s) (eq 20) forkeS = 3.4,k-o = 1073, koEp = 10,
Km = 100,Ks = 0.01,K>E' ¢ = 13,K', = 10°2 andK's = 10792 Values
of sare normalizeds = k_¢/(keS)S The inset show$(s) for smalls.
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Figure 10. Composition of the multiple monotonic fro& 3 sand the
single frontS; s being the solution to eq 1 witl{S) (eq 20) wheréS
= 3.4,ko = 1073, kiEp = 10, Ky, = 100,Ks = 0.01,k',E'g = 13,K'r,
= 102 andK'; = 107°2 Values ofs are normalized = k-¢/(koS)S,
and the vertical axis has scale changed &t 0.05.

isoenzymes when P and &e the same chemical compound.
The system is closed to catalysts and their complexes. Hence,
the total concentrations of catalysts Bnd Ey are the first
integrals of kinetic equations, which allows one to eliminate
the concentrations of SE and 'Stom considerations. The
concentrations of catalysts (enzymes) are usually a few orders
of magnitude smaller than concentrations of reactants. In such
conditions E, gE, E, and SE' are fast variables. Let us mention
that kinetic equations for fast variables are linear, and each of
them has only one quasi-stationary state. Therefore, the sub-
system of fast variables approaches its quasi-stationary state for
all values of the reactant concentration. In the slow time scale
the dynamics of the system can be reduced to the equation
describing changes of the reactant concentration according to
the Tikhonov theorer!

ds
at = koS — K oS—
k,ES K,E',S
K,+S+KS K, +S+K,S

where: Km = (k_1+k2)/k1, Kn = (k'_l‘f'k'z)/k'l, Kz = |@/k_3,
andK's = k's/lk'_3. Let us mention thaf(S) = 0 (eq 20) has
only positive roots. For properly chosen values of the param-
eters,f(S may have five roots (see Figure 9). In this case, the
first root is stable, so th&S) has properties required in the
previous section. If the diffusion coefficients for E, Bnd their
complexes can be neglected, then the behavior of the system is
described by eq 1 witi(S) given by eq 20. Figures 10 and 11

=f(9 (20)

It should be emphasized that the model consists of only show the monotonic and nonmonotonic fronts, respectively, for
elementary reactions. Below, capital letters denote reagents andhe above-defined catalytic system.

their concentrations as well, because this notation does not )

introduce misunderstandings. Reactions of formation products4- €onclusions

P and P are irreversible so their concentrations do not enter

into the kinetic description of the system. E and &e

In this paper, we solve the hitherto open general problem of
types and numbers (see Table 1) of possible traveling fronts
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TABLE 1: Types of Travelling Fronts for the Multistable System with n+1 Stable Stationary States
number of stationary statesn21)

type of the solution number of solutions 3 5 7 9
single fronts connecting adjacent states n 4 4 8 12 16
single fronts connecting nonadjacent states n(n21) 0 4 12 24
multiple fronts travelling in the same direction M2 —2(n+1)(n+2) — 4 0 4 20 64
multiple fronts travelling in the opposite directions 12(3)2+ n+ 3) 0 2 12 46
nonmonotonic solutions ngt—2mM3+2n+5 0 4 28 128
L 0000 immpbilized on a solid support or ina CFUR (continuous-flow
0 7625 — unstirred reactor) reactor, can give the travell'ng fronts presented
’ 107 ' above. Moreover, the fronts shown in this paper may be
-=-0.0 B observed in multistable systems described by more than one
0.2875| ——1.0 ' v . R . s e .
N - variable like arsenateiodate and chloriteiodite systems, which
0.0500 :;:g i exhibit tristability?” Our results seem to be useful also in
0.0375 vl experimental investigations of various waves in the bromate
o cyclohexanedionecatalyst system in which no gas bubbles
0'0125‘1|—r— N appear?
0.0000 Ll X
0 10 20 30 40
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