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Vibrational energy relaxation (VER) of polyatomic, as opposed to diatomic, molecules can occur via different,
often solvent assisted, intramolecular and/or intermolecular pathways. In this paper, we apply the linearized
semiclassical (LSC) method for calculating VER rates in the prototypical case of a rigid, symmetrical and
linear triatomic molecule (AB—A) in a monatomic liquid. Starting at the first excited state of either the
symmetric or asymmetric stretches, VER can occur either directly to the ground state or indirectly via
intramolecular vibrational relaxation (IVR). The VER rate constants for the various pathways are calculated
within the framework of the LandatTeller formalism, where they are expressed in terms of two-time quantum-
mechanical correlation functions. The latter are calculated by the-tEBC method, which puts them in a
“Wignerized” form, and employs a local harmonic approximation (LHA) in order to compute the necessary
multidimensional Wigner integrals. Results are reported for the LHL/Ar model of Deng and Str&ti¢m.
Phys.2002 117, 1735], as well as for C@in liquid argon and in liquid neon. The LHALSC method is

shown to give rise to significantly faster VER and IVR rates in comparison to the classical treatment, particularly
at lower temperatures. We also find that the type and extent of the quantum rate enhancement is strongly
dependent on the particular VER pathway. Finally, we find that the classical and semiclassical treatments can
give rise to opposite trends when it comes to the dependence of the VER rates on the solvent.

I. Introduction orders of magnitude, particularly when high-frequency vibrations
are involved. The development of more rigorous methods for

Vibrational energy re_laxatyon .(VER) Is the fundqmental computing VER rate constants is therefore clearly highly
process by which an excited vibrational mode releases its eXCessy irable

energy to other, intermolecular and/or intramolecular, degrees . .
We have recently introduced a new approach for calculating

of freedom (DOF). Virtually all chemical phenomena in the _ L
condensed phase involve VER processes. The measurement anER rate constants, which is based on estimating the guantum-

calculation of VER rates in such systems have therefore receivedMechanical FFCF via the linearized semiclassical (LSC) ap-
much attention over the last few decade®® Recent theoretical proximation. The latter approximation involves linearizing the

and computational studies of VER have been mostly based onforward—backward path integral action in the exact quantum-
the LandawTeller (LT) formulal550 which is derived by mechanical FFCF, with respect to the difference between the

assuming weak coupling between the relaxing mode and theforward.and backward patf3.This leads to a cIasspaI-hke
accepting DOF and neglecting solvent induced fluctuations of expression for the FFCF, where the classical variables are
the vibrational frequencd. This formulation puts the VER rate  'epPlaced by certain Wigner transforms of the corresponding
constant in terms of the Fourier transform (FT), at the vibrational duantum-mechanical operators. We have also introduced a local
frequencyw, of a certain quantum mechanical autocorrelation Narmonic approximation (LHA) in order to evaluate these
function of the force exerted on the relaxing mode by the Wigner transforms in many-body anharmonic systéfiis.the
remaining DOF. The fact that for most molecular vibrations rémainder of this paper, we will refer to the method that results
hwlksT > 1, even at room temperature, implies that replacing from the combination of the LSC and LHA approximations as
the quantum-mechanical force-force correlation function (FFCF) LHA-LSC.

by its classical counterpart is in general not justified. Indeed, In previous work, we have demonstrated the accuracy of the
discrepancies by many orders of magnitude have been reported HA—LSC method on the following nontrivial benchmark
between experimentally measured VER rates and predictionsproblems?3 (1) a vibrational mode coupled to a harmonic bath,
based on classical molecular dynamics simulatfdn®. At the with the coupling exponential in the bath coordinates, and (2)
same time, a numerically exact calculation of the quantum- a diatomic coupled to a short linear chain of helium atoms. The
mechanical FFCF in liquid solutions is not feasible. The most feasibility of applying the method to molecular liquids was also
popular approach for dealing with this difficulty has been based demonstrated via applications to a “breathing sphere” diatomic
on multiplying the classical prediction for the VER rate constant in a two-dimensional monatomic liquid, as well as to neat liquid
by a frequency-dependent quantum correction factor (G oxygen, neat liquid nitrogen, and liquid oxygen/argon mix-
Many different approximate QCFs have been proposed in the tures®®-5>We have also performed a systematic analysis of the
literature. Unfortunately, the choice of QCF is often rather ad temperature and mole fraction dependence of the HHBC-

hoc and estimates obtained from different QCFs can differ by based VER rates, as well as of the importance of different
contributions to ther® The LHA—LSC-based predictions were

* Corresponding author. E-mail: eitan@umich.edu. found to be of the same order of magnitude as the experimental

10.1021/jp062363c CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/15/2006




9556 J. Phys. Chem. A, Vol. 110, No. 31, 2006 Ka and Geva

results (when available). This represents a dramatic improvement <0 X

. X . .. . xa B X > O
in comparison to the classical predictions which are smaller than

the experimental results by many orders of magnitude. We have ® CMC ®
also shown that the LHALSC method can accurately reproduce

the experimental dependence of the VER rate on temperature my my my

in the case of neat liquid oxygen and the dependence of therigure 1. A schematic view of the linear symmetric triatomic molecule.

VER rate on the oxygen mole fraction in the case of liquid

oxygen/argon mixture¥. Our work has also shown that obtain-  simulation results are reported and analyzed in section VII. We

ing accurate predictions requires that one account for quantumconclude in section VIII with a summary of the main results

delocalization and nonclassical samplfig® and some discussion on their significance. Explicit mathematical
In recent experimental studies of VER, attention has been expressions for quantities required for the evaluation of the

shifting to polyatomic solute/solvent systeAig3-77 The main LHA —LSC approximation are provided in the Appendix.

new feature of VER in polyatomic molecules, as opposed to

diatomic molecules, has to do with the fact that it can occur Il. Model

via different intramolecular and/or intermolecular pathways.

Indeed, VER in polyatomic molecules often involves solvent-

assisted intramolecular vibrational relaxation (IVRY® More

specifically, the solvent can induce coupling between intramo-

lecular modes of a polyatomic solute, which would be uncoupled 5 the solvent is assumed to be monatomic. It should be noted

in the isolated molecule. The case of small polyatomic molecules , Deng and Stratt have recently employed a similar model

(3—4 gtom_s) is particularly attractive since the modes that define ¢, studying VER in a polyatomic molecule within the frame-

the vibrational spectrum are more or less isolated, and the s of classical mechanics, linearized instantaneous normal

number of VER pathways is relatively small. mode (INM) formalism (for IVR), and the instantaneous-pair
IR-pump/Raman-probe spectroscopy is arguably the mosttheory (for intermolecular VERS

powerful experimental method available for studying VER  The solvent-free Hamiltonian of the rigid, linear and sym-

pathways in polyatomic liquid¥%"-%In this technique, a short  metric solute molecule AB—A is given by (cf. Figure 1)
IR pulse is used to excite a vibrational mode, and a delayed

visible probe generates anti-Stokes transients from all Raman 2 2 2
active vibrations. This way, the relaxation of the pumped H = Pa + L
transition into first-generation daughters, and the subsequent - 2My 2Mg  2m,
decay into second- and even third-generation daughters, can be 1 2
monitored in real time and with an unprecedented level of detail. EK(XC —% 1" (1)
This technique has been used for elucidating the VER pathway

of high-frequency stretches in a variety of molecular “qUidS, Here, {Xa, Xb, Xc} and {pa, Pb, pc} are the positions and

The model that we will focus on in this paper probably
corresponds to the simplest example of solvent-assisted VER
involving a polyatomic solute. The polyatomic solute of choice
corresponds to Agid, linear and symmetric triatomic molecule,

+%K(xb—xa—r92+

including dichloromethan®, chloroform#283bromoform® ac- corresponding momenta of the atomic siée$, andc relative
etonitrile?>#® benzené/ nitromethané? OCIO in aqueous  to the molecular center of mass (projected along the molecular
solution® water and its isotopomer&°-24 and alcohol8%95-97 axis and such thag, < 0 andx; > 0); mx andmg are the masses

The wealth of detailed experimental information on VER in of atoms A and B, respectively;is the spring constant; and
polyatomic solute/solvent systems has motivated many theoreti-is the equilibrium A— B bond length. It should be noted that
cal studies that attempted to provide a molecular interpretation the bending modes were left out for the sake of simplicity.
of the observed time scales and pathways in such systems as &ccounting for stretch-to-bend VER pathways may be important
linear triatomic solute in a monatomic liquieOCIO in water?® in practice, and an extension of the methodology to include
HOD in D,0,%299.10057ide in watet?1-1%2neat liquid chloro- bending modes will be considered in future work. Furthermore,
form*®> and neat liquid methand®:#° Those theoretical studies  as pointed out by Deng and Stratt, symmetric to asymmetric
have been based on classical MD simulations, although a fewIVR is actually not uncommon in polyatomic molecufésVe
have also attempted to account for quantum-mechanical effectsalso note that the lack of anharmonic terms in the intramolecular
through the use of QCF3:436010Extending the range of  potential implies that solvent-free IVR is neglected. This
application of the LHA-LSC method to such polyatomic liquid  simplification reflects our desire to focus @olent-assisted
solutions is therefore highly desirable. In this paper, we take IVR.

the first step in this direction by using the LHA.SC method We next rewrite the Hamiltonian in eq 1 in terms of the
for calculating the rates of different VER pathways in the case symmetrids) stretch anésymmetriqas) stretch normal mode
of a rigid, symmetrical and linear triatomic molecule{B— coordinates and momenta:

A) in a monatomic liquid. In this case, VER from the first

excited state of the symmetric or asymmetric stretches can occur pSZ pa52 1 25 1 2 5

either directly to the ground state or indirectly via IVR. H,= > + > + 505 Gs + 5¥as Yas (2

The remainder of this paper will be organized as follows.
The model Hamiltonian of a symmetrical and linear triatomic
solute in a monatomic liquid is outlined in section Il. The general
theoretical framework of VER in such systems is described in
section Ill. The LHA-LSC method for calculating VER rates ws= JkIm, and w,= \/kM/m,mg 3)
in this system is formulated in section 1V. The three models on
which calculations were performed are described in section V. are the frequencies of the symmetric and asymmetric stretches,
The simulation techniques used for calculating the LHAC- respectively, andM = 2ma + mg is the molecular mass. It
based VER rate constants are described in section VI. Theshould be noted that

Here,
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Pas _ /M: 1+2% (4)
Ws mg mg

such thatwas > ws.

The corresponding normal mode coordinates are given by

g |_(w2 0 ~1W2 ga )
Uas| \y/mg/2M —,/2m,/M /mg/2M qi)

wherega = \/My(Xa + re), Qo = /MgXp, aNdge = /My (X —

re) are the mass weighted displacements of the three atoms from
their equilibrium positions. The reverse transformation from

normal modes to local modes is given by

0, 1?2 VMg/2M
b|={0  —y/2mM (33) ©)
as

% \-142 Jmy2m

Finally, we define a vector of atomic displacementsyhich
can be presented as eitheg,(Qp, 9c) Or (Os, Gag)-
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site c of the triatomic molecule, ang is the distance between
the jth andkth solvent atoms.
The potential energy(q) in eq 12 involves three types of

pair potentials corresponding to (1) the interaction between the

solvent atomsg«(r); (2) the interaction between atom A of the
triatomic solute and the solvent atongs(r) = ¢c(r) = ¢a(r);

and (3) the interaction between atom B of the triatomic solute
and the solvent atomey(r) = ¢s(r). In actual simulations, we

have assumed that all of these pair potentials are of the Lennard-

Jones (LJ) type, namely,

aio=| [t ()

Ill. Vibrational Energy Relaxation Theory

(13)

The eigenfunctions of the solvent-free vibrational Hamiltonian
Hs are given byind® |nad1= |ns, Nad]] such that

HS| nS’ nagz (nJLwS + nashwagms’ nag (14)

with ng, nas= 0, 1, 2, .... VER proceeds via transitions between
these solvent-free vibrational states. Within the framework of

The translational and rotational kinetic energy terms of the Fermi’s golden rule, the rate constant for the transition from

free triatomic molecule are given blpcw2M and L%2l,

respectively, wherePcy is the molecular center of mass

momentum,L is its overall angular momentum, ands its

moment of inertia (boldface symbols represent vectors through-

out this paper):

B m,P, + mgP, + m,P, -
C™M — M ( )

L?= rez[( Pa,x - Pc,x)2 + (Pa,y - F>c,y)2 + (Pa,z - Pc,z)z] 8)

| = mux” 4+ mgx,” + mux” = (V2mar, — a)® + 0.2 (9)

state|ng(i), nadi)to state|ng(f), na{f)Clis given by:
1=

ey = - Clo) (15)
where
Cilwy) = [ Cy(t) =
Ty cosloyt] Re(C () =

1 :—ﬁhwifJ;WSin[wift] Im{C;()} (16)

It should be noted that, unlike ref 43, we explicitly account for gnd

the vibrationat-rotational coupling, which gives rise to VER

via centrifugal forces. It should also be noted that a more Cy(t) =z, Tr{e "™ " (i), n i) T(q) +

negatve g translates int@xtensioralong the A-B bonds, and
therefore leads to a larger moment of inertia.

We next turn to the solvent, which we assume to be
monatomic. The solventsolvent interactions and the interac-

U@Ing®), nodie " myi), i) T() +
U@Ing), n4HT (17)

tions between the solvent atoms and the three sites of theHere,wir = [nf) — ns(i)]ws + [Nadf) — Nadi)]was Ho = T(0)
triatomic solute are described in terms of pair potentials, such + U(0), 8 = 1/kgT, andZ, = Tr{e A},

that the overall solute- solvent Hamiltonian can be given in

the following form:

H=H,+ T(q) + U(q) (10)
Here,
Pew® L2 N P?
Ta)=——+ + Z— (11)
2M - 2(q)  F=2ms
and

qa N-1 N
rju+—9‘ +§1 ¢dry) (12)
=1 k=j+1

N
U(q) = by
220

whereP; is the momentum of th@h solvent atomm is its
mass,j, is the vector pointing from th@h solvent atom to
sitea on the soluteQ is a unit vector pointing from sita to

In practice, the evaluation ahg(i), nadi)|T(q) + U(q)|ng(f),
nadf)0is usually based on expanditg(q) andT(q) in powers
of qg:

U(@) = U - (Fus Fu,ag(‘;;) +

G,.. G
(G qag(GU'S'S GU'S'aSJ(g;) +.. (18)

U,as,s U,as,a

@ = T0) - (Fro Fra & ] +

GT s, GTs aSJ(qs )
, i > + ... (19
(qs qas)(GT,als,s GT,as,a qas ( )

Substituting these expansions iffg(i), nadi)|T(q) + U(q)Ins
(), na(NL) one finds thaty s andFr s induce (g, Nag — (Ns
1, nyg transitions Fy asandFr asinduce (s, Nag — (Ns, Nas = 1)
transitions,Gy s s and Grs s induce s, Nad — (Ns = 2, Ny
transitions,Gy as,asand Gr as asinduce (s, Nag — (N, Nas £ 2)
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transitions, an@y s asaNdGr s asinduce s, Nad — (Ns = 1, Nas
F1) transitions. Thus, the lowest order contributionsntier-
molecularVER are associated witRy s, Fuas Frs, @andFras
while the lowest order contribution to IVR is associated with
Gusasand Grsas We will also assume that the lowest order
contributions are the dominant ones, such that contributions from
higher order terms can be neglected (including those arising
from GU,s,s GT,s,s, GU,as,as and GT,as,a;-

The expansion coefficientsy s, Fu as Fr.s, FTas Gusas and
Grs,asfor the model under discussion are giverfy

1
FU,SZ (Fa - Fc)
A/ 2m,
_ 1
FU,as_ —(mBFa —2myFy, + mBFc)
2m,mgM
U s,as 'V (Gaa - G
LZ
FT,s= - 3 I:T as= 0, GTs as— 0 (20)
2m,r
where
N
Fa = = _ZQS& i
=
U
aa BXQZ oo
o[ o) T e
= + 2 e

¢:;(rja)
= lia ja l ia
It should be noted that the centrifugal coupling only contributes
to the intermolecular VER of the symmetric mode.
Starting at the first excited state of tlsymmetricstretch,
Ing(i), nagi)0= 10, 10J VER can follow one of two pathways
(cf. Figure 2).

1. VER to the|0, OOstate with the rate constant:

k= ﬁas [ dte e, 22)
where
Cudt) = ZbilTr{ eiﬂHbeiHbt/hFu,aﬁiiHbﬂhFu,aJ (23)
2. IVR to the|l, 0Ostate with the rate constant:
Kir = Zop o =0t & Cur®) (24)
wherewiyr = was — ws, and

Civr(t) = Zb_lTr{ e_ﬁHbeiHbﬂhGU,s,ag_iHbﬂhGU,s,a} (25)

It should be noted that accounting for IVR betwgéniand

|2, 0COwould require the inclusion of third-order expansion terms
of the formgs?gasin egs 18 and 19, and is therefore not allowed
within our model (even if these states are close in energy).

Ka and Geva

o)

Figure 2. VER pathways in the linear symmetric triatomic molecule.

Next consider the possible VER pathways when one starts
at the first excited state of theymmetricstretch,|ng(i), nadi)0
= |1, 0l Here too, VER can follow one of two pathways (cf.
Figure 2).

1. VER to the|0, OOstate with the rate constant:

k= Zhiws [ dte ey (26)

where

CJ) = 2, 'Tr{e e ™(F + Fr Je ™ (Fy o+ Fr o}
(27)

2. IVR to the|0, 1lstate with the rate constant:

__ o Pho;
ki,vr =e & wlwkivr

It should be noted that significant IVR from the symmetric
stretch to the asymmetric stretch requires tifdiw,, is
comparable to or smaller than unity.

Finally, it should also be noted that transitions from the
ground state0, Oto the first,|1, OCland second, 10) excited
states can be assumed to be negligibly slow, givenjhai,
Phwas> 1.

(28)

IV. The linearized Semiclassical Approximation

In this section, we will outline the application of the LHA
LSC method for calculating the three quantum-mechanical
correlation functionsCq(t), Cadt), and Ci(t) (cf. eqs 23, 27,
and 25, respectively). In doing so, we will follow and extend
procedures previously used for studying VER in the case of
diatomic molecules in liquid solutio?:5%

We will start out with the LSC approximation fa€,dt),
which only involves the potential forcEyas The LSC ap-
proximation for this correlation function is given ¥4 72

Z 27[1’1 N.[dQOfdPO[éFU aseiﬁHb]W(Qoy Po) X

[0F, dw(Q, P (29)

Here, Q" = Q{“)(Qo, Po) andP{*" = P{(Qy, Py) correspond

to the Cartesian coordinates and momenta of all the atoms
(including these that constitute the triatomic molecule), which
are propagated classically with the initial conditidggandPy,

and

as()"’

AUQ. P) = [ dA ™A@ + A21AIQ — A/200 (30)

is the Wigner transform of the operaté¢'% The LHA is
employed in order to calculate the Wigner transfoiff .~
BHsW(Qo, Po) in eq 2953755 More specifically, we effectively
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expandHp and Fy asto second order arounQ,, followed by
an analytical integration oveA of the Gaussian integral
associated withqFy a& "] w(Qo, Po)/[Qo|e#Hs|Qoll This leads
to the following LHA—LSC approximation foiCad1):

EDO|e*ﬁHb|QOD N 1 1/2
C. )~ [dQg———[dP
as() f QO Zb f n,Oll:l a(j)ﬂhz
(PR’
g = {19Fad0 + D1l Pl 9l
o

(31)

Here, {P¥} are mass-wighted normal mode momenta, as

obtained from the expansion éf, to second order aroun@o
(the LHA), ando® = Q0 coth[ghQW0/2)/k, where{(Q®)Z

J. Phys. Chem. A, Vol. 110, No. 31, 2008559

TABLE 1: Model and Simulation Parameters?

model LHL/Ar COyJ/Ar COy/Ne
re (A) 1.1388 1.16 1.16
ma (amu) 3.895 16.0 16.0
mg (amu) 72.11 12.0 12.0
wad2c (cmY) 2000 2400 2400
wd27c (cm™?) 1900 1253 1253
wivl277C (cm™1) 100 1147 1147
edka (K) 117.7 117.7 47.0
os(A) 3.504 3.504 2.72
enlks (K) 117.7 85.1 53.8
oa (A) 3.504 3.23 2.84
ealks (K) 117.7 77.6 49.1
os (A) 3.504 3.43 3.04
T (K) 294.25 94.16 37.6
o (nm9) 24.4 19.76 42.24
time step (fs) 2.0 4.0 3.0

a All simulations were performed with one triatomic solute and 105

are the eigenvalues of the corresponding Hessian matrix (explicitsolvent atoms in the simulation box.

expressions of the potential derivatives underlying the LHA for

the model considered here are provided in the Appendix). The The purely quantum-mechanical teBg s a{Qo, Pn,0) originates
term Dy a{Qo, Pn0) represents quantum nonlocality and is purely from theGy s ascoupling term which leads to IVR. An explicit

guantum-mechanical [i.e., it vanishes at the classitat(0)

expression for this term can be obtained by replaéipgs by

limit]. The explicit expression for this term can be found in ref Gusasin the expression foby as Some detailed expressions of
54, and some detailed expressions of quantities required in itsquantities required for the evaluation of this term for the model
evaluation for the model under discussion are provided in the under discussion are provided in the Appendix.

Appendix. Another quantum-mechanical effect is introduced by

the fact that the initial sampling of the positions and momenta V. Model Parameters

is nonclassical. More specifically, the initial sampling of the

Classical and LHA-LSC-based calculations &, kas and

positions is based on the exact quantum-mechanical positiony, were performed on three different model systems and under

probability density[Qo|e#Hs|Qol1Z,, while the initial sampling

different conditions as described below (cf. Table 1 for model

of the momenta is based on the nonclassical probability density narameters).

M. [1/(00h)] Y2 expl-(PI) (h%a0)).
Next consider the correlation functidy(t), which involves
contributions from the potential forcEy s, and centrifugal force,

Frs The LHA—LSC approximation in this case can be obtained
following the procedures previously developed for diatomic

molecules, which lead to the following resét®®

|:(D0| e—ﬁHb| QOD N 1 12

c~ [ onff dPn,Ol_j

b =1\ a7k

(Pro’°

exp — [éFU,s(QO) + aFT,s(PO) + Dy Qo Pno) +

A2a 0
D1o(Qo Paoll0F Q) + 0F Q)] (32)

D1(Qo, Pno) andDy «(Qo, Pn,g) are purely quantum-mechanical

The first model that we considered is the LHL/Ar model,
which was recently studied by Deng and Stratt within the
classical INM formalism (for IVR) and instantaneous-pair theory
(for intermolecular VERY2 This model corresponds to the case
where atom A is much lighter than atom B, such thagi~ ws.
More specifically,ma/mg = 0.054, which implies that.dws
= 1.053. Unlike other models considered in ref 43, the
frequencies assigned to the asymmetric and symmetric stretches
were relatively high in this case, namedy,d27c = 2000 cnt
and wd2xc = 1900 cmt. The solvent corresponds to high-
density supercritical argon fluid at room temperatyre=(24.4
nm—3, T = 294.25 K). SinceBhwas = 9.8, phws = 9.3, and
Phoi, = 0.49, one expects sizable quantum corrections in the
case ofkss and ks, while a classical treatment is expected to
provide relatively reliable results in the casel@f. One also
expects that, in this casky, > kag ks If SO, an equilibrium
will be established between the symmetric and asymmetric

nonlocal terms that originate from the centrifugal and potential excited states, prior to VER from either one of them to the
forces, respectively. Explicit expressions for those terms can ground state. Another interesting feature of this model has to
be found in ref 54, and some detailed expressions of quantitiesdo with the relatively small moment of inertia of the solute
required for their evaluation (for the model under discussion) molecule, which suggests that centrifugal forces may contribute

are provided in the Appendix.

We finally turn to the case dfi,(t). The latter is similar to
Cadt), and the only difference is th&t ssis replaced byGy s as
Thus, the LHA-LSC approximation foiCi,(t) is as follows:

[@yle "™*1Q,0 AN T
Cu®~ [ dQOTf dPo D O
ey
exyg — — [(SGU,s,a;QO) +
h2a(1)

DU,s,aéQO' Pn,O)] 6GU,S,a£Q§CD) (33)

significantly to VER.

The second model consists of a £le solute in liquid argon
(o = 19.76 nm3, T = 94.16 K). In this casefhwas = 36.7,
Phws = 19.2, andphwi,, = 17.5. Thus, one expects more
pronounced quantum corrections in this case, includingifor
The relatively large value g#hwi, also implies that IVR from
the|0, 1 ktate to thel, O state is an irreversible process. Thus,
an excited symmetric stretch must relax to the ground state via
the ks pathway, while the excited asymmetric stretch can relax
via either theky, or kas pathways.

The third model is similar to the second one, except for the
fact that the solvent was changed from argon into neon. The
same thermodynamic point in terms of reduced LJ units was
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used I* = 0.8 andp* = 0.85), such that the actual density
and absolute temperature are= 42.24 nnt3 andT = 37.6 K,
respectively. As a resulfhwas= 91.9,5hws = 48.0, angbhwiy

= 43.9. Hence, one expects the most pronounced quantum
effects in this case.

VI. Simulation Techniques

Classical simulations on the LHL/Ar model were initiated
with an overall number of 108 solvent atoms in a cubical
simulation cell with standard periodic boundary conditions,
which were organized in 27 unit cells (4 solvent atoms per unit
cell). Three neighboring solvent atoms in a linear configuration
were then replaced by the LHL molecule. The system was then
equilibrated at a desired temperature for 20 ns with the help of
the velocity rescaling method and the velocity Verlet algo-
rithm.194 The constraints imposed by the rigidity of the molecule
were imposed explicitly by working in terms of the center of

mass and angular momentum, rather than the Cartesian coor-

dinates of the individual atoms. The equilibration period was
followed by a calculation of the correlations functio@g(t),
Cadt), andCi(t) by averaging over 10 240 equilibrium trajec-
tories, each with 5000 time steps. Once the correlation functions
were obtained, their FT was calculated via the FFT method.
All of the results reported below were based on the cosine
transform of the real part of the correlation functidhs$n the
case of very high vibrational frequencies500 cnt?) the FT

is a very small number and, therefore, very difficult to compute
directly. Following the common practice, we instead extrapo-
lated the exponential gap law, which was observed to emerge
at low frequencies, to higher frequenci€s1% Assuming that
this extrapolation is the major source of error in these cases,

Ka and Geva
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Figure 3. The classical and LHALSC frequency-dependent rate

constants for the symmetric stretch, asymmetric stretch, and IVR, for
LHL in argon. Calculated data are shown as solid lines. The dashed
lines represent extrapolations to the corresponding frequencies of the
symmetric and asymmetric stretches. The relevant frequencies are

10.0
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we evaluated the error bars reported for the VER rate constantsindicated by arrows.

based on the least-squares fit to the corresponding linear

scale).

Classical simulations on the G@r system were started by
replacing the LHL molecule by a GOnolecule in an equilib-
rium configuration of the LHL/Ar system. The density was then
modified top = 19.76 nm3 by changing the volume of the
simulation cell, and the system was allowed to equilibrate for
about 10 ns al = 94.16 K. Classical simulations on the @O
Ne system were started with an equilibrium configuration of
the CQJ/Ar system, where the argon atoms were replaced by
neon atoms. The density was then modifieghte 42.24 nn13
by changing the volume of the simulation cell, and the system
was allowed to equilibrate for about 10 nsTat 37.6 K. The
subsequent calculation of the correlation functi@as), Cadt),
andC,(t) and corresponding VER rate constants followed the
same procedure as in the LHL/Ar system.

LHA —LSC-based calculations &f, kas andk, followed a
procedure similar to that previously described in the context of
diatomic molecule8® The main difference between the current
and previous studies is that, rather than restricting the £tHA
LSC treatment to contributions from the first few solvation shells
around the triatomic solute, we were able to apply it to all the
atoms in the simulation cell (which was made possible by the
availability of improved computer resources). The calculation
starts by sampling the initial positions of all the atoms in the
simulation cell via a PIMD simulation, where 16 beads were
assigned to each atom. The PIMD simulation was started with
all 16 beads in the position of the corresponding atom in a
classical equilibrium configuration (as obtained from the clas-
sical simulation described in the previous paragraphs). This was
followed by an equilibration period of 3 ps at the desired

of length four (one thermostat for each of the three Cartesian
coordinates of each atom), and the velocity Verlet algorithn.

It should be noted that the initial configurations sampled satisfied
the constraint imposed by the linearity of the triatomic mol-
ecule>* The sampling was performed by choosing random beads
from snapshots of the isomorphic liquid of cyclic polymers at
each time step. An overall number of up to 286 000 initial
configurations was used. For each of these, we calculated the
normal mode frequencies and transformation matrix via the
Jacobi method% and used them in order to sample the initial
normal mode momenta. Here too, we restrict ourselves to normal
mode displacements which satisfy the constraints imposed by
the linearity of the triatomic molecufé.We then performed a
classical MD simulation over 500 time steps for each of the
initial configurations, and extracted the correlation functiGgs

(t), Cadt), and Ciy(t) from them. It should be noted that, in
calculating correlations functions via LHALSC, we can only
correlate the relevant quantitiestat 0 and at a later time

VII. Results and Discussion

A.LHL in Liquid Argonat p=24.4nnT3andT = 294.25
K. The VER rate constantgs ks, andk;, for the LHL/Ar system
are shown in Figure 3, as a function of frequency (on a semilog
plot). The results obtained via the LHA.SC method and fully
classical calculations are shown. The corresponding values of
kas ks, andk;,r at the actual frequencies,s ws, andwi,, of the
LHL molecule are reported in Table 2. Also given in this table
are the values predicted by only using nonclassical initial
sampling, while neglecting the nonlocal terBgs, Dy as Du s as
andDr (cf. egs 31, 32, and 33).
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TABLE 2: ks ks, and ki, in the LHL/Ar System, as Obtained via the LHA—LSC Method?

kadust kfus™ Kyi/nst branching ratio

LHL/Ar U U U+T U eiukdKas
classical (4 2) x 1073 (704 10) x 1073 (914 8) x 103 109+ 6 3.6+05
nonclassical sampling 51 16+ 6 15+ 5 (2.0£0.5)x 1?7 5+3
LHA-LSC 11+ 3 28+ 9 27+ 8 (2.0£0.5)x 17 442
fLHAfLSC 2.7 x 102 3.8 x 102 3.0x 102 1.94
fst 2.0 2.0 2.0 1.24
fu 9.8 9.3 9.3 1.26
fsc 133 104 104 1.28
fums 36 31 31 1.27

a Also shown are the corresponding predictions obtained via fully classical simulations, and by using nonclassical initial sampling and neglecting
the nonlocal terms. The branching ratio between the two possible VER pathways is shown in the right column. Also reported are H8CEHA
based quantum enhancement facfaia(1sc) and the following QCFsX= phw): (1) standards(x) = 2/(1 + e€7), (2) harmonicfu(x) = x/(1 —

e™), (3) Schofieldfsc = €42, (4) mixed harmonic/Schofielfls(X) = v/xe’(1—e ™).

We first note that our classical predictions tqg andks are b — —Total -4
about 1 order of magnitude smaller than these reported by Deng . O A el L N o g
and Stratt for the same mod8l.This discrepancy may be
attributed to the fact that the values reported in ref 43 were N
obtained within the framework of the instantaneous pair theory, %
while the values reported in Table 2 were obtained by assuming o
that the exponential gap law observed at low frequencies can 6; e
be extrapolated to higher frequencies. We also note that our —6 g
prediction for the classica{y, is in excellent agreement with = T, L0 ToER D, 0 >
that reported in ref 43 (a numerically exact calculatiokgfis O 4\ BFDEL0 N BF D0 16 O
possible in this case due to the relatively small valuegf). K 8 =

The classicaks is about twice as large &ss A similar trend
was also reported in ref 43, where it has been attributed to the

fact that the solvent is more effective at relaxing the symmetric ) 12

stretch. More specifically, the central B atom is protected from 00 01 02 030 5 10 15 20

the solvent by the two terminal A atoms. The solvent is therefore 2 1

ineffective in applying a force on the central B atom along the t (ps) o/2nc (10°cm’)

molecular axis. This implies thdfy,as ~ W(Fa + Figure 4. The force-force correlation function (a, c) and its Fourier

. transform (b, d), for the symmetrical stretch of LHL/Ar. Also shown
FC)’ while Fys = 1/,/2m,(Fa — Fo) (Cf' eq_20). At the same are the relétive)contributio%s of the classical-like and quantum nonlocal
time, Fa and F. tend to have opposite signs because of the terms (a, b), and the centrifugal and potential forces (c, d).
solvent’s tendency to apply inward pressure. THig,— F|

> |Fa + F¢[, which implies that the solvent will be more interesting to note that the enhancement of the EHSC-based
effective at relaxing the symmetric stretch (to this end, also note ks, ks and ki, is significantly larger than that predicted by
thatme/M ~ 1 in the case of the LHL model). In addition, it  various QCFs (cf. Table 2). Furthermore, LHASC predicts
should be noted thais < wasmakes the VER of the symmetric g |larger enhancement in the casegfdespite the fact thabs
stretch even more effective because of the decrease in the density: (5 This should be contrasted with the commonly used QCFs,

of accepting modes as the frequency increases. where the quantum enhancement of the VER rate constant is a
The classical value ok, is observed to be larger thdg monotonically increasing function of the frequency. The larger
andk,s by about 6 orders of magnitude. The fact tfat;,, = enhancement in the case of the symmetric stretch may reflect

0.49 also implies thak,, ~ kir > ks, kas Thus, one expects an  the fact that the solvent is more effective at relaxingf it.
equilibrium to be established between the symmetric and k, is still about 4 orders of magnitude larger tharandkas
asymmetric excited states, prior to VER from either one of these within the LHA—LSC treatment, which implies that equilibrium
excited states to the ground state. The corresponding branchingwill still be established between the symmetric and asymmetric
ratio is 3.6, which implies that about one out of four molecules excited states, prior to VER to the ground state. The branching
will relax to the ground state via the asymmetric stretch. It ratio is also similar to that in the classical case.

should be noted that the fact that IVR is faster is a direct In Figure 4, we show the FFCF in the time and frequency
consequence of the small valueffwi,. In fact, the solvent is domains (the latter is shown on a semilog plot), as obtained

expected to be rather ineffective at assisting WRIhis is via the LHA—LSC method, for the symmetric stretch. Figure

because the potential curvatui@g, and G tend to have the  4a shows the contributions to the FFCF from the classical-like

same sign, such th&@y s as] (Gaa — Gc) becomes small. term [Fys+ Frd[Fust) + Fr«t)] and nonclassical ternDj, s
The frequency dependence of the LHASC-based,s Ks, + Drd[Fudt) + Fr«t)] (the initial sampling is nonclassical in

andk;, follows a trend which is similar to that observed in the both cases). The contributions of those two terms to the FT of
classical case (cf. Figure 3). However, the actual valudgsof ~ the FFCF are shown in Figure 4b. The classical-like term is
ks, andki,, obtained via the LHA-LSC method are generally  observed to dominate the FFCF in the time and frequency
larger than the classical ones (except at very low frequencies).domains. Indeed, adding the nonclassical term is observed to
The enhancement is much more pronounced in the cakge of increaseksonly by a factor of 2 (which should be contrasted to
and kys More specifically, whilek,, increases by a factor of  the overall enhancement of the LHASC rate over the classical
about 2 ks andkgsincrease by 2 orders of magnitude. It is also one by a factor of about 300). This observation should also be
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contrasted with previous applications of the LHASC method R O
to such systems as neat liquid oxygen, neat liquid nitrogen, and of T~ <~ -
oxygen/argon mixture®,where the nonclassical term was seen . = \Cfgs},ga ™~
to dominate the high-frequency tail of the FFCF. However, it 5 Ivr . S
should be noted thgthw in the case of the LHL/Ar system is 0 800 _ 1200
smaller by a factor of 4 or so in comparison to these other @/2nC (Cm )
systems. Figure 6. The classical and LHALSC frequency-dependent rate

Figure 4c shows the contributions to the FFCF from the terms constants for the symmetric stretch, asymmetric stretch, and IVR, for
[Fro + DrdFrl) and Fu. + DudFod). which arse flom  £0,n o, Calaled dat are o a2 ol nes, he cashed
the centrifugal anq potentlal forces, respectively (cross terms symmetric and asymmetric stretches. The relevant frequencies are
are not shown explicitly, but can be deduced from the difference ;. jicated by arrows.
between the overall FFCF and the diagonal contributions). The

corresponding contributions in the frequency domain are shown e tastest VER rate in this system corresponds, tin this

in Figure 4d. Despite the relatively large moment of inertia, case, the LHA-LSC method predictds ~ 10° 51, which

the VER rate is clearly dominated by the potential force in both represents a quantum enhancement by about 4 orders of

the time and frequency domains. In fact,_ unlike in the_clgssical magnitude relative to the corresponding classical resalo(?

case, the effect of the centrifugal force, if any, falls within the s1). For IVR, the LHA-LSC method predictiy,: ~ 0.6 s,

error b_ar' ) . which is faster than the corresponding classical result by a factor
In Figure 5, we show the FFCF in the time and frequency o apout 50. Given thathws ~ Shawr, this difference can only

dp mains (the latter is shown on a semllog plot), as obtained be attributed to the fact that the solvent is more effective at

via the LHA-LSC methOd’ for the asyr_nm_etnc stretch and IV_R' assisting VER of the symmetric stretch than [¥8Eurthermore,

As for the symmetric stretch, the contribution of _the non_classmal since s, Show > 1, the corresponding reverse processes

term to the overall quantum enhancementkgfis relatively are negligibly slow. Thus, the rate of VER from the excited

3[;‘:5“ gt -Ie-sglrf ﬁ;.vlen ;rr]]eoi)iséivfglétg?fen;rlgasvsvﬁiac Ihteigm asymmetric stretch is dictated ky;, while that from the excited
4 symmetric stretch is dictated by bl (and is therefore

consistent with the relatively small value gfiwiy. significantly faster)
B. COyin Liquid Argon at p=19.76 nnT3 andT = 94.16 The relafi | ] ¢ lassical i dth |
K. The VER rate constanigs ks, andk;, for the CQ/Ar system € refative roles ot nonclassical sampliing and the noncias-

are shown in Figure 6, as a function of frequency (on a semilog sical term can also be inferred from the results presented in
plot). The results obtained via the LHASC method and fully Table 3. More specifically, while the addition of the nonclassical

classical calculations are shown. The valueg.gfks, andki term enhancess and kas by 1 and 2 orders of magnitude,
at the actual frequenciesss ws, andwi, of the CQ are given respectively, it has no noticeable effectkap. As for the LHL/
in Table 3. Also given in this table are the values predicted by A model, itis also found that the contribution of the centrifugal

only using nonclassical initial sampling, while neglecting the force toks is negligible. Finally, we note that the quantum
nonlocal terms. enhancement predicted via LHASC for ks andkas does not

h coincide with any of the QCFs, and falls between the Schofield

The classical rate for direct VER of the asymmetric stretc ! -
and harmonic/Schofield QCFs (cf. Table 3).

is extremely slow in this systenk{; ~ 10715 s71), which can

be attributed to the relatively high value ffiw,s (~37) and C. COzin Liquid Neon at p = 42.24 nnmt3 and T = 37.6
the fact that the bath is less effective at relaxing the asymmetric K. The VER rate constantss ks, andki, for the CQ/Ne system
stretch?® kys also remains negligibly slow within the LHA are shown in Figure 7, as a function of frequency (on a semilog

LSC treatment, despite the enhancement by about 8 orders ofplot). The results obtained via the LHA.SC method and fully
magnitude relative to the classical result. Thus, the possibility classical calculations are shown. The value&.gfks, andki,

of direct VER of the asymmetric stretch to the ground state at the actual frequenciesss ws, andwi,, of the CQ molecule
can be ruled out. are given in Table 4. Also given in this table are the values
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TABLE 3: kas ks, and ki,r in the CO,/Ar System, as Obtained via the LHA-LSC Method?

kadS 7t kfs? ks~

COy/Ar U U U+T )
classical (6.5 1) x 1075 (13+ 1) x 102 (14.1+ 1) x 102 (117+£4) x 104
nonclassical sampling #2) x 10°° (17+£3) x 10 17+ 3) x 10 (6+1)x 101
LHA—LSC (4+£1)x 107 (11+1) x 1¢? (114 1) x 1¢? (6+£1)x 101
fLHA—LSC 5.7 x 10/ 9x 10 8 x 10° 48
fst 2 2 2 2
fu 37 19 19 18
fsc 9.3x 10/ 1.45x 10° 1.45x 10° 6.4x 10°
fMHS 5.8 x 1@ 5 x 102 5 x 102 3 x 102

2 See footnotea below Table 2.
TABLE 4: ks ks, and ki, in the CO,/Ne System, as Obtained via the LHA-LSC Method?
kadS L kys™t Kuls ™

CO.J/Ne U U U+T U
classical (24+ 8) x 107 (5+1)x 10 (5+1)x10+* (99+8) x 10°¢
nonclassical sampling & 2) x 1077 (30+6) x 10 (38+£7) x 10* 26+04
LHA—-LSC (15+ 4) x 10°5 (9+1) x 10° (10+2) x 106 2.6+04
fLHA—LSC 6 x 1014 1.9x 107 2.4 x 107 2.6 x 104
fst 2 2 2 2
T 92 48 48 44
fsc 9 x 101° 2.6 x 10%° 2.6 x 101 3.4x 10°
fumHs 9 x 101 1.1x 1C° 1.1x 1C° 4% 100

a See footnotea below Table 2.
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Figure 7. The classical and LHALSC frequency-dependent rate
constants for the symmetric stretch, asymmetric stretch, and IVR, for )
CO, in neon. Calculated data are shown as solid lines. The dashedOf the CQ/Ne system is more than compensated for by a
lines represent extrapolations to the corresponding frequencies of theconsiderably larger quantum enhancement. This may be ex-
symmetric and asymmetric stretches. The relevant frequencies areplained by the fact that neon has a smaller mass than argon

indicated by arrows.

predicted by only using nonclassical initial sampling, while

neglecting the nonlocal terms.

The classical rate for direct VER of the asymmetric stretch
in this system is even slower than in @@r (kas~ 10719s71),
which can be attributed to the fact th#twas ~ 92. Thus, the
possibility of direct VER of the asymmetric stretch to the ground
state can be ruled out. This remains true even if one takes into
account the enhancement by 15 orders of magnitud&,of
predicted by the LHA-LSC method.

Similarly to the CQ/Ar system, the fastest VER rate in this
system corresponds t@. In this case, the LHALSC method
predictsks ~ 10* s71, which represents a quantum enhancement
by 7 orders of magnitude relative to the corresponding classical
result &5 x 1074 s™1). The IVR rate is significantly slower
than that of direct VER from the symmetric stretdty,(~ 3
s 1), with a smaller, 4 orders of magnitude, quantum enhance-
ment. Thus, the rate of VER from the excited asymmetric stretch
is dictated byki,, while that from the excited symmetric stretch
is dictated by byks (and is therefore significantly faster). As
for the CQ/Ar system, the quantum enhancement predicted via
LHA —LSC forks andkssin the CQ/Ne system is different from
that predicted by various QCFs, and falls between the Schofield
and harmonic/Schofield QCFs (cf. Table 4).

Finally, it is interesting to note a trend reversal in the VER
rates between argon and neon as we go from the classical
treatment to its semiclassical counterpart (cf. Tables 3 and 4).
More specifically, while the classical VER rates in argon are
fasterthan those in neon, the LHALSC-based VER rates are
actually slower in argon than they are in neon. This implies
that the reduction of the VER rates due to the lower temperature

and that the Ne O interaction potential is somewhat softer than
the Ar—0O interaction potential, in the repulsive region. TheALO
Ne system can therefore better penetrate classically forbidden
areas on the repulsive region of the interaction potential, which
would give rise to a larger quantum enhancement.
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Vil Summary D, =r0yr) — 2(4— D)D) =r'p"" — 6’y +

In this paper, we have extended the applicability range of 15r2¢" — 15r¢' = W(r) (A2)
the LHA—LSC method to the case of VER in polyatomic
molecules in liquid solution. Although our model of choice is DO, =rd(r) — 2(3— 1)D,(r) = 3" — 3r’p" + 3rg) =
a relatively simple one, namely, a rigid, linear and symmetrical w(r) (A3)
triatomic solute in a monatomic liquid, it already includes the
main feature of VER in polyatomic systems, namely, the A (Y _ 2
multiplicity of VER pathways. Our main conclusions, which P, =r®(r) = 22— Oy() =" —r¢' =u(r)  (A4)

we believe would also be relevant to many other polyatomic ol _ — o —
systems, can be summarized as follows: Dy =P~ 2(1- oo =r¢" =1(1) (A5)
1. Generally speaking, the LHALSC method predicts faster D, = ¢(r) (A6)

VER and IVR rates in comparison to the classical treatment.

2. The actual rate enhancement may be strongly pathway-
dependent. For example, for the model studied here, thelt should be noted thaf(r) is one of three pair potentials. The
enhancement of intermolecular VER was found to be stronger specific choice is dictated by the two sites involved in defining
than that of IVR. the distance.

3. A.classical treatment may provide an incorrect prediction  The [HA requires the calculation of the first and second
regard||ng ;hce: dependence (;)f VER rz?]tes OQ th? So_lveln\t/'ELhederivatives of the potential energy with respect to the Cartesian
extamp € ? tQ_lnt?]rg]?n an ni(')ln’t;]N I(_elr—fAtSCe: EaSS:jC?/ER coordinates of the atoms. Explicit expressions for these deriva-
rates are faster in the former, whre the ~-oase tives in the case of a diatomic molecule in a monatomic solvent
rates are faster in the latter, demonstrates this point. . . - .

were given in ref 55, where LJ pair potentials were also

The next step is clearly to extend the methodology to more assumed. An extension of these results for the case of a linear
realistic models, and incorporate such important aspects as )

stretch-to-bend VER pathways, higher order IVR processes,triatomic solute is rather straightforward and will therefore not

nonlinear molecular geometries, and polar sohsgelvent  P€ reproduced here.

interactions. The investigation of these issues is currently ~We next consider the calculation of the quantum nonlocal

underway in our group, and will be reported in future publica- terms{Dyn} wheren = a, as. The explicit expressions for these

tions. terms are given in ref 54. As shown there, calculating the real
part of{ Dy} requires knowledge of the second derivatives of

Acknowledgment. The authors are grateful for financial F  with respect to the atomic coordinates. Explicit expressions
support from the National Science Foundation through Grant ¢ those derivatives are given below.

CHE-0306695. We first consider the case where the derivative is with respect

Appendix: Useful Expressions for Calculating the to coordinates of atoms in the triatomic molecule:
LHA —LSC VER Rates
2

In this Appendix, we provide some technical details associated 9 Fun Nar ® wW(r )X + o(r)r? x|
with the calculation ofC(t), Caqt), and Ci(t) via the LHA— NI AL et 20—
LSC method. The following notations and conventions are used 9" 9X = r r
throughout: forp=1 (A7)

(1) The triatomic sites, b, andc are labeled 3, 1, and 2, 5
respectively. IFuyn

(2Bp=5-p,suchthap=2—p=3andf=3— =

2 (it should be noted thakis used here as an index, and should X X%

not be confused witl = 1/kgT). Nae fw(r)@ + o(r)r? XQ () + 1 (r)r?
(3) r = r@.9 corresponds to the vector pointing from the r]n(ﬂ) —Q + 2u(r) F—);

site of the triatomic molecule to théh solvent atomx = x99, i= r® r4 r4re

y=y®, andz= Z.%) correspond to thg, y, andz coordinates forf=2,3 (A8)

of this vector, and = |r| corresponds to its length. B

(4) T = r.9 corresponds to the vector pointing from the
site of the triatomic molecule to th#h solvent atomg = x(:%),
y =y andz = Z'%) correspond to thg, y, andz coordinates
of this vector, and = |r| corresponds to its length.

Here, as in the rest of the papét,— — for § = 2 and+ — +
forp =3 (x — + for p =2 and+ — — for f = 3).

(5) The elements of the transformation matrix from local to BZFUYn Nar . w(r)xy ny + yQ,
normal mode coordinates: —_—= Z ,(f) r-Q + o(r)y——;
XD gy P £ r 4
1 1 forp=1 (A9
=0, @P=—2_ @=- =1 (A9)
2m, 2m, 32Fu,n
W_ _ 2m, @_ @ _ mg (A1) ax(%) 3y(oﬁ)
o Mmg' 7% o 2mM N w(r)xy XQy+yQ,  u(r)xy,
n® rQ + u(r) — "
(6) Various combinations of the pair potential functions and = r r rre

their derivatives: for f=2,3 (Al10)
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PFun
XD OB
Nl p(rE+ 102 o(F)% + I(T)P?
4 ®B) _ B .
n . "n . '
i= 2rr 2r'r,

e
forp=2,3 (All)

¥Fy, N ) 4 1(n)r?

— = Z("l) ; forp=2,3
X @ & 2r'r,

(A12)

Here, as well as throughout the remainder of this Appendix,
expressions for other second derivatives can be obtained bygy(05) 5,(0%)

substitutingx andy by other combinations of coordinates.

OFun W[ uxy oD%
+=iz n® - ; forp=2,3
X% gy & 2rr, 2r'

e

(A13)

2

RALUNNES ) i PR v
= Zn  forf=23 (A1)

X gy S 2r'r,

We next consider the case of a mixed second derivative with
respect to the solvent atom and triatomic site coordinates:

aZFU'n _ (1) W(r)X2 + U(I’)I’Z XQX .
o g8 6 ' a
forp =1 (A15)
82|:U,n @ W(r)é + u(r)r? XL,
— =y Q4+ 2(r)—} £
ax® gx) " r © ré
u(r)x2 + 1(r)r?
77n )—————— forf=2,3 (A16)
= 2r'r,
¥Fy W(r)xy Q, +yQ,
W:_Wﬁl){ M0 4
forp=1 (Al17)
—BZFU'n =—n? (r)xyr-Q + U(r)—ny Y +
Oap
ax® gyt r r
u(r)xy

;77 ; forp=2,3 (A18)
2t re

Finally, we consider the case of a second derivative with

respect to a solvent atom coordinate:

azFu,n 3 wW(r)E + o(r)r? XQ,
N SO =+ 20— (AL9)
O ox® = r rt
PFun 2 p[woxy X, + y€,
=3 r-Q + u(r) (A20)
xD oy = r r

oy P axen £
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2 2
Fun _ FFun
ax® X0 ax" gy

=0; fori=j (A21)

We next consider the calculation of the quantum nonlocal
term Dy sas Calculating the real part of this term requires
knowledge of the second derivative Gfa = Gszz and G =
Gg2 with respect to the atomic coordinates (cf. eq 20). Explicit
expressions of those derivatives are given below. We first
consider the case where the derivative is with respect to
coordinates of atoms in the triatomic molecule:

32@/3[; Nar [\ w(r)x@ + w(r)r? ,
= —(r- Q)"+
i= r
w(r) u(r) 2 1
4—|xQ, F — r-Q—l—Z— ¢Q F —r-Q| +
r6 2r, 2r le
w(r)x2 u(r)
+—; forg=2,3 (A22)
6 4
r r
2,

XD s
Nar [ w(r)x@ + o(r)r? u(r) u(r)é

Z T Q+ —Qx— ;
= roré rot or Frt

€
forp=2,3 (A23)

Gy Nwfu(rpd|
axXP) ) IZ or 2t

forf=2,3 (A24)

82Gﬂﬂ NAr[W(r) y
8

—_—= (rQ)+2£(xQ+QrQ:F
3y ox%) .Z; ¥

r re
W(r)xy u(r)[ x y W(r)xy
2——rQto—|—F Q| F|+ :
rort r* \2re 2re r

forf=2,3 (A25)

Y ;
rar® ra’ 2r rt

forf=2,3 (A26)

Gy NAr[ w(r)xy u(r) u(r)xy]
+ r-Q+—Q ;

P oD £

Gy M fu(r)xy]
; forp=2,3 (A27)
2r 2rt

2 2
axO (O y/0D 5 ()

=0; forp=1,2,3 (A28)

We next consider the case of a mixed second derivative with

respect to the solvent atom and triatomic site coordinates:
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9G W) + W(r)r? w(r)
s (reO)2 — 47 o
o) oy s (rQ)” — 4—xQrQ £
w(r)x2 U(r)[( )Q L1 Q] S w()x
ral 2re re
u(r). _
7, fOI’ﬁ =2,3 (A29)
2,
Ho | WOF O 0,
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(A30)
&G W(r)x ()
5 y, .
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w(r)xy u(r)( ) w(r)xy
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ro® rt \2re Yoo 8
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ay® ax%) ro rat
PG ¥’G
55 _ 55 _ o _
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Finally, we consider the case of a second derivative with

respect to a solvent atom coordinate:

¥’G W(r ) +
g W) W(r)r' ey + 400 10 +
ax® gx® 8 r®
o) L, WX | o(r) _
27Qx +—6+_4 fOI’ﬁ— 2, 3 (A34)
¥’G
il W(V)Xy, r)? + 240 ()( Q,+
ay® ax® ré
yorQ + 2”(”9 Q2+ W(r)xy, for =2, 3 (A35)

ré

2, 2
ax® ax®  ax® ay(j)
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