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A method based onnoise perturbation in functional principal component analysis(NPFPCA) is for the first
time introduced to overcome the noise interference problem in two-dimensional correlation spectroscopy
(2D-COS). By the systematic addition of synthetic noise to the dynamic multivariate spectral data, the functional
principal component analysis (FPCA) described in this report is able to accurately determine which eigenvectors
are representing significant signals instead of noise in the original data. This feature is especially useful for
the data reconstruction and noise filtering. Reconstructed data resulted from the smooth eigenvectors can
produce much more reliable 2D correlation spectra by removing the correlation artifacts from noise, which
in turn enable more accurate interpretation of the spectral variations. The usefulness of this method is
demonstrated with a theoretical framework and applications to the 2D correlation analyses of both simulated
data and temperature-dependent reflection-absorption infrared spectra of a poly(3-hydroxybutyrate) (PHB)
thin film.

1. Introduction

Generalized two-dimensional correlation spectroscopy (2D-
COS)1-4 is based on the correlation analysis of perturbation-
induced variations of spectral intensities monitored by an
electromagnetic probe, for instance, time series spectra produced
by an infrared spectrometer fromn measurements atmdifferent
frequencies. These spectra with an intrinsic order of sampling
are not a simple disjoint set of multivariate observations
commonly dealt with in the classical statistics but in reality a
discrete representation of a set of continuously observed
functions, formulated as a matrixX of sizen by m. 2D-COS
analysis is primarily focused on dynamic changes in spectral
intensities during the measurement. The analysis is carried out
by the determination of a complex cross-correlation function
characterizing the relationship among the variables in spectro-
scopic data and their temporal physicochemical behaviors in
so-called synchronous and asynchronous 2D spectral entries.

Despite its utility and popularity in recent decades, especially
in vibrational spectroscopy, it has been recognized that there
are certain limitations to the use of 2D-COS. Most discussions
revolve aroundwhat exactly the calculated correlation spectra
represent and how exact they are.3-13 The problems of reliability
of correlation results can be ascribed to spectral variations with
respect to signal-related variations, peak shifting, baseline
fluctuations, and noise.5,13 As peak shift and distortion are
intrinsic to the data, they have to be examined prior to
correlation procedure and taken into account for accurate
interpretation of correlation patterns.5,6,14-16 Baseline correction
methods, such as perturbation-averaged spectrum6,13and iterative

polynomial fitting baseline correction,17 and data pretreatments,
for example, multiplicative scatter correction (MSC),18 principal
component analysis (PCA)-based strategy19 and orthogonal
signal correction (OSC)20 have been available for removing or
reducing the effects of baseline fluctuations.

Noise is often a major obstacle to the interpretation of 2D
correlation patterns, because it introduces artifact peaks, and
sometimes even causes peaks to enhance or attenuate. Therefore,
several approaches have been suggested to handle the noise
influence on the spectroscopic data prior to the correlation
analysis, including Fourier filtering,13 wavelet analysis,21 smooth-
ing technique22 and eigenvector reconstruction.23,24 Fourier
filtering uses the cosine/sine function to transform a noisy
spectrum forward first and then inversely back to the spectral
domain. The spectrum is, thus, denoised in that when the
spectrum is taken into the Fourier domain the noise by definition
cannot be adequately modeled. However, the applicability of
Fourier transform filtering heavily depends on the capability in
specifying a level of modeling in the operation. In wavelet
analysis, the elimination of small wavelet coefficients related
to the noise of variance spectrum allows the data denoising
through a basis function. The philosophy behind wavelet analysis
is similar to that of PCA, in which the tradeoff of the irrelevant
principal components associated with the small eigenvalues
allows the partial elimination of the data noise. However, in
wavelet analysis the definition of an optimal basis function and
the determination of a proper threshold term are problem
dependent. Smoothing is a kind of high-frequency filter that
eliminates all signals and noise of high-frequency regardless
of their amplitude or even the integrity of spectroscopic
information. It is, by its nature, not a true denoising technique.

Due to its simplicity and the ease of use, eigenvector
reconstruction is another preferred method to remove the noise.
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Based on the concept of PCA, it uses a few eigenvectors
capturing almost all variances of the original data to reconstruct
the data at an appropriate level of modeling. Noise is accordingly
removed. It is crucial to find out the appropriate level of
modeling, so that the eigenvector reconstruction is accomplished
by the number of factors used against the amount of information
captured.21,23 This operation may influence much smaller
spectral features on the correlation patterns which 2D-COS tends
to highlight. The noise influence on 2D correlation analysis and
the eigenvector reconstruction denoising will be further dis-
cussed in the following section.

The aim of the present study is to investigate the noise-
filtering effect of eigenvector reconstruction for 2D correlation
analysis. A theoretical basis is provided for thenoise perturba-
tion in functional principal component analysis(NPFPCA)
technique. This variant form of the functional principal com-
ponent analysis (FPCA) makes use of the systematic effects of
noise, by actually adding synthetic noise to the spectroscopic
data, rather than relying on the existing random effects in the
data to identify the eigenvectors representing spectral signals.
The smooth eigenvectors derived from the FPCA method are
then used to model the spectroscopic data for data reconstruction
and noise truncation. The resulting data can produce more
reliable 2D-COS results and remove or reduce the correlation
artifacts from noise, which enables the spectral variations being
responsible for the 2D-COS patterns in the concerned system
to be interpreted more accurately and easily. 2D correlation
analyses of simulated data and reflection-absorption infrared
spectra of a poly(3-hydroxybutyrate) (PHB) thin film observed
during a melt process are used to demonstrate the utility of this
approach.

2. Method

2.1. Two-Dimensional Correlation Spectroscopy.In 2D-
COS a systemic perturbation produces complex 2D correlation
spectraΦ + iΨ, which are separated into real and imaginary
components.1-4 The real componentΦ gives the information
about coincidental or in-phase variations caused by the perturba-
tion, whose synchronous spectrum can be calculated as

whereν1 andν2 denote different frequencies,xj corresponds to
an individual dynamic spectrum, andn is the number of spectral
traces. The variations that occur out-of-phase can be ap-
proximated with the imaginary componentΨ in terms of
asynchronous spectrum, such that

In this equation,Njk represents thejth row andkth column
element of the discrete Hilbert-Noda transformation matrixN,
given by

Alternatively, eqs 1 and 2 can be written in the matrix notation,

and

For which the superscript T implies transpose of a matrix or
vector. For simplicity, the degree-of-freedom term 1/(n - 1) is
not included here, because it contributes only as a constant
multiplier.

The data matrixX can be decomposed into two parts,X )
(Xsignal + Xnoise), whereXsignal is a noise-free matrix that holds
pure signal information of the measured system, andXnoise is
the matrix consisting of noise. Thus, the synchronous spectrum
is given by

Similarly,

From a mathematical perspective, noise is orthogonal or nearly
orthogonal to any signal except itself, and thereby cross-peaks
on the synchronous 2D spectrum attributing toXsignal

TXnoiseand
Xnoise

TXsignal, do not show up because their intensity may be
too weak compared with that ofXsignal

TXsignal. When the noise
level (namely the trace of covariance matrixXnoise

TXnoise) is
much smaller compared to the magnitude of signals, i.e., trace-
(Xnoise

TXnoise) , trace(Xsignal
TXsignal), the noise has little interfer-

ence on the synchronous spectrum, and we haveΦ ≈ Xsignal-
TXsignal. On the other hand, the influence of noise on the
asynchronous 2D spectrum, especially the portion represented
by Xsignal

TNXnoiseandXnoise
TNXsignal, may become much stronger

if the noise level is very high. This is because of the following
reasons: (1) on the asynchronous 2D spectrum, only the subtle
spectral features that occur out-of-phase by 90° (Xsignal

TNXsignal)
tend to be highlighted and (2) because of the broadband nature,
noise may very well contain a substantial amount of component
which is 90° out-of-phase with the real signal.4 Thus, an
effective truncation of noise from the data is strongly desired
for the 2D-COS analysis.

2.2. Principal Component Analysis and Functional Prin-
cipal Component Analysis.In the eigenvector reconstruction
of spectral data based on PCA, the data manipulation involves
both the determination of significant eigenvector components
related with signals in spectroscopic data and the truncation of
eigenvectors merely representing noise. When it comes to the
determination of the significant components, there are roughly
two cardinal strategies: eigenvalue analysis and eigenvector
analysis, as pointed out by Malinowski25 and Meloun et al.26

They stated that procedures for determining the number of
components using a variety of empirical and statistical methods
have a strong relationship with the consistency of the model
assumption and the property of real data. In case the knowledge
of the instrumental error associated with the experimental data
is available, the methods based on eigenvalues such as IND
(indictor function),25 ER (eigenvalue ratio)25 and RESO (the
ratio of eigenvalues calculated by smoothed PCA and those by
ordinary PCA)27 or other indices are recommended. When the

Φ(ν1,ν2) )
1
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∑
j)1

n
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Ψ(ν1,ν2) )
1

n - 1
∑
j)1

n

xj(ν1)∑
k)1

n

Njkxk(ν2) (2)

Njk ) {0; if j ) k
1

π(k - j)
; otherwise

Φ ) XTX (3)

Ψ ) XTNX (4)

Φ ) (Xsignal+ Xnoise)
T(Xsignal+ Xnoise)

) Xsignal
TXsignal+ Xnoise

TXsignal+

Xsignal
TXnoise+ Xnoise

TXnoise (5)

Ψ ) (Xsignal+ Xnoise)
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) Xsignal
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responsive profiles are smooth, the frequency analysis,28 the
morphological approach29 and the FPCA27,30 based on eigen-
vectors should be preferred.

PCA is a popular method in applied statistical work and data
analyses.25,31-34 It can describe the data in an underlying factor
analytic manner and provide information about the number of
components by using a set of eigenvectorsr i (i ) 1, 2, ...,n)
which maximizes the objectiveλi (i ) 1, 2, ...,n),

Here,r i, subject to

is the ith eigenvector of the dispersion matrixXTX associated
with the eigenvalueλi. All the eigenvectors are obtained in a
numbered order according to the magnitude of eigenvaluesλ1

g λ2 g ... g λn. This process can be realized by the singular
value decomposition (SVD)25,32 of X.

The aim of PCA is to pick the firstp principal components
(t i ) Xr i, i ) 1, 2, ...,p) with p e min(n,m) that are relevant
to the variables of interest for attacking the problems in the
data, such as those of dimensionality, collinearity, baseline
variations and substantial noise. The number of componentsp
can be determined by observing the significant eigenvalues
obtained. When the data are free from noise, the number of
eigenvalues larger than zero is equivalent top, providing that
the spectra of components are linearly independent. That is,λn

- p + 1 ) ... ) λn ) 0. However, as real data usually contain
experimental noise or random error, the eigenvalues and
eigenvectors sought by PCA are bound to be contaminated by
noise. Therefore, the number of eigenvalues different from zero
is usually larger thanp. The noise contained within the minor
components (t i ) Xr i, i ) n - p + 1, ...,n) with the smallest
eigenvalue or variance can be extracted or removed from the
data by retaining only the firstp components. On the other hand,
the component of noise that mixes into and is carried within
the first p principal component eigenvectors cannot be com-
pletely removed from the data.25,26 The determination ofp is
not an easy task, although many eigenvalue-based statistical
methods have been proposed with varying degrees of success
to deal with the problems. If there are minor components with
relatively weak signal contributions, or the signal-to-noise ratio
of the data set is low, these methods may not perform well.
Some methods fail in determining the realp because the
eigenvalues for some true components and noise may be in the
same order of magnitude.27,35

Besides the information of eigenvalues, the information
carried out on eigenvectors is also useful for the determination
of the component number of the spectroscopic data, as well as
the confrontation of the aforementioned problems. The spectral
observationsxi (i ) 1, 2, ...,n) often appear as a smooth and
continuous function of frequencies or wavenumbers (V) as
xi

T(V) ) f i
T(V) + error noise

T (V ) 1, 2, ...,m). It is natural to
assume the componentsr i

f(V) (i ) 1, 2, ..., n) representing
spectral data in PCA should also be smooth. If such additional
information is effectively utilized, a more accurate determination
of the number of components may be achieved. The functional
principal component analysis (FPCA),27,30 based on functional
data analysis,36-38 was introduced to chemistry and chemomet-
rics to deal with the eigenproblem. It is a method of finding an

alternative set of eigenvectors involving the idea of smoothness.
The FPCA is very similar to ordinary PCA. The main difference
between the two lies in the addition of roughness penalty in
FPCA. FPCA searches for a set of vectorr i

f(i ) 1, 2, ...,n) by
maximizing the objective functionF(r i

f),

subject to

Here r i
f represents theith smooth eigenvector,I denotes an

identity matrix, andD is a second difference operator of size
(m - 2) × m. 27,38

The term r i
fTDTD r i

f is defined as the roughness penalty of
discrete functionr i

f, andR is a penalty parameter for control-
ling the tradeoff between the fidelity of measured data and
roughness, which can be set subjectively or by cross valida-
tion.37,39

Providing that the eigenvalueλi
f is associated withr i

f, eq 8
can be changed into the following form,

Hence, the determination of the smooth eigenvectorr i
f and the

smooth eigenvalueλi
f is equivalent to solving a generalized

eigenvalue problem.
Let ui(i ) 1, 2, ...,n) be theith eigenvector of a symmetric

matrix X(I + RDTD)-1/2(I + RDTD)-1/2XT, then,

for which the superscript-1 implies the inverse of the
symmetric matrix (I + RDTD). The vectorui can be easily
obtained by implementing SVD on the matrixX(I + RDTD)-1/2.
This solution has been documented in refs 27, 30, and 38 and
is not repeated here.

2.3. Noise Perturbation in Functional Principal Compo-
nent Analysis.As a matter of fact, the eigenproblem of eq 10
in FPCA can be regarded as a perturbation of the eigenproblem
of eq 2 in ordinary PCA. Chen et al.27 suggested that the number
of components could be determined by observing the ratio
change ofλi

f/λi with the variation of the penalty parameterR.
However, a small value ofR cannot adequately distinguish noise
from signals, and a large value ofR will make the small
eigenvalues representing signals change significantly. Therefore,
how to select a goodR value is not a trivial problem in that
there is a tradeoff balance between curve fitting (undersmooth-
ing) and curve distortion (oversmoothing) in any smoothing
process.39

Motivated by the above dilemma, the concept of so-called
noise perturbation, instead of changes in the smooth parameter
R, was introduced into the FPCA method.30 In this scheme,
synthetic random noise is systematically added to the original
spectroscopic data. The added noise should be small so as not

λi )
r i

T XTXr i

r i
T r i

i ) 1, 2, ...,n (7)

r i
T r j ) {1; if i ) j

0; otherwise

F(r i
f) )

r i
f TXTXr i

f

r i
f T(I + RDTD)r i

f
i ) 1, 2, ...,n (8)

r i
f T(I + RDTD)r i

f ) {1; if i ) j
0; otherwise

D ) [1 -2 1 0 ... 0 0 0 0
0 1 -2 1 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 -2 1 0
0 0 0 0 ... 0 1 -2 1

]
(m-2)×m

(9)

XTX r i
f ) λi

f T(I + RDTD) r i
f i ) 1, 2, ...,n (10)

r i
f ) (I + RDTD)-1XTui i ) 1, 2, ...,n (11)
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to influence the model of the original data too much, but
sufficient enough to change the structure of the original noise
in the data. The degree of roughness of eigenvectorsr i

f is
utilized to determine the significant components in the noise
perturbation in functional principal component analysis (NPF-
PCA). An index ci between the eigenvectors (r i) sought by
ordinary PCA and those (r i

f) by FPCA before and after the
noise addition is defined,

The added synthetic noise will contribute very little to the
smooth eigenvectors representing signals, and the resultingci

(i ) 1, 2, ..., p) is close to 1. On the other hand, those
representing noise will otherwise change dramatically because
of the noise addition, therebyci (i ) n - p + 1, ...,n) becomes
much smaller than 1.

To make an objective determination of significant compo-
nents, the Monte Carlo method is adopted for the synthetic noise
addition. That is, the noise of the same level is generated by
different random seeds and added to the dataX. Such an
experiment is repeatednum times, and then a statistical
parameter of the standard deviation ofci is calculated as

If ci is close to 1 and remains rather stable innum noise
additions, the value of the standard deviationdi approaches zero
until i ) p. Wheni ) n - p + 1, ...,n, the values ofdi become
very large becauseci (i ) n - p + 1, ...,n) varies dramatically
with the noise addition. As a result, the firstp eigenvectors are
accurately determined as the significant components representing
signals and should be retained for data reconstruction. On the
other hand, all the other eigenvectorsr i (i ) n - p + 1, ...,n)
are cutoff for noise filtering. It is noted that thep smooth
eigenvectors (r i

f 0, i ) 1, 2, ...,p) obtained by the FPCA before
the synthetic noise addition rather than those (r i, i ) 1, 2, ...,p)
directly obtained by the ordinary PCA should be used to
reconstruct the dataX, because the latter still has some noise
component, especially if the noise level is high. The resulting
reconstructed data (Xev) based on the smooth eigenvectors

are then used in eqs 3 and 4 for 2D-COS analysis, in which the
noise influence on the 2D correlation patterns can be minimized.

3. Experimental and Data Analysis

The performance of the NPFPCA method is evaluated by
using both simulated data and real noisy experimental spectra,
which were selected to show the effectiveness of noise reduction
in the eigenvector reconstruction for 2D-COS analysis. This
experiment specifically covers some noise situations difficult
to be handled by the ordinary PCA filtering.

MATLAB 5.3 (The MathWorks Inc., Natick, MA) was used
to implement the in-house programs for calculations of simulated
and real data sets, running on a personal computer with Pentium
1.7 GHz CPU and 512 MB RAM under the Microsoft Windows
XP operating system. The 2D-COS software was developed on
the Hilbert-Noda transformation as well as the NPFPCA routines
in our laboratory.

3.1. Simulated Data.The data set consisted of 45 simulated
dynamic spectra. Each spectrum had 280 variables (V ) 1001,
..., 1280). The frequency axis was arbitrarily designated for the
spectral variables (V). Four Lorentzian band shapes located at
1050, 1115, 1198, and 1220 data point were created in these
noise-free spectra. Figure 1 shows these series noise-free
simulated spectra. The intensities of overall bands increased or
decreased monotonically at different rates. Normally distributed
noise of four different levels was then added to these data series
to produce noisy spectra. A Gaussian noise generator was used
to randomly generate the noise with zero mean and four different
standard deviations of 0.001, 0.005, 0.01, and 0.05 of the
maximum band absorbance. To avoid any kind of noise
structure, each noise level was repeated 20 times and the
averaged noise was used. Another 20-time-averaged noise with
zero mean and standard deviation of 0.01 of the maximum band
absorbance and a proportionality factor 2 dependent on the
absorbance magnitudes were together used to make a heterosce-
dastic noise addition into individual data series.

3.2. Temperature-Dependent Infrared Spectra of a PHB
Thin Film. Bacterially synthesized poly(3-hydroxybutyrate)
(PHB) with Mn ) 2.9× 105 andMw ) 6.5× 105 was obtained
from the Procter & Gamble Co., Cincinnati, OH. The sample
was purified by first dissolving in hot chloroform, then
precipitating in methanol, and finally drying in a vacuum at 60
°C for 24 h. A thin film of PHB was prepared by the spin coating
of an about 1.0 wt % PHB chloroform solution at a speed of
3000 rpm for about 40 s onto an Au-coated glass wafer. The
wafer was cleaned in a fresh piranha solution (30% H2O2 mixed
in a 1:5 ratio with concentrated H2SO4) prior to the spin coating.
[Caution: Piranha solution reacts violently with organic matter
and should be handled with extreme care!] Consequently, the
thin film was kept under vacuum at 60°C for 48 h to completely
remove the residual solvent.

Reflection-absorption infrared spectra were recorded by
averaging 32 scans at a 2 cm-1 resolution with a Thermo Nicolet
Magna 470 spectrometer equipped with a MCT detector. The
incidence angle was 84°, and the polarization of the incoming
beam was parallel to the plane of incidence (p-polarized). The
infrared spectra were collected at 2°C intervals with a heating
step rate of 2°C min-1 from 30 to 190°C using a homemade
variable temperature cell. Baseline correction was performed
for each spectrum prior to data analysis.

ci ) r i
T r i

f i ) 1, 2, ...,n (12)

di )
1

num
∑
k)0

num(ci
k -

1

num+ 1
∑
k)0

num

ci
k)2

i ) 1, 2, ...,n

(13)

Xev ) X[r1
f 0, r2

f 0, ..., rp
f 0][ r1

f0, r2
f 0, ..., rp

f0]T (14)

Figure 1. Original noise-free dynamic spectra that were artificially
simulated with four Lorentzian bands increasing or decreasing mono-
tonically at different rates.
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4. Results and Discussion

4.1. Two Key Parameters.Two parameters,R and the noise
level for synthetic perturbation addition, are important for the
NPFPCA performance and have to be ascertained in advance.
Our experience points to the conclusion that the value of the
penalty parameterR within the range 1-10 can lead to a
satisfactory result, which well balances between curve fitting
and curve distortion in the smoothing process. In this study, it
was set to 2. Fortunately, the NPFPCA method is not very
sensitive to the level of perturbation noise, which is an attractive
feature in practice. Whatever the level of noise is added
synthetically to the data, it does not influence much the result
of the determination of significant eigenvectors for data

reconstruction. Of course, too small noise will not provide
enough perturbation. One can try different levels of noise to
discern how the added noise influences the determination of
significant eigenvectors.

4.2. Simulated Data.To the simulated noise-free dynamic
data shown in Figure 1 we added four different levels of noise
as described in experimental section. Now, the data with a noise
level of 0.05 are taken to illustrate how the NPFPCA procedure
determines the significant eigenvectors.

According to eqs 7 and 11, the data matrixX with a noise
level of 0.05 are first decomposed by ordinary PCA and FPCA
using SVD. The first 10 ordinary eigenvectorsr i(i ) 1, 2, ...,
10) obtained by PCA are selected, as well as the first 10 smooth
eigenvectorsr i

f 0(i ) 1, 2, ..., 10) obtained by FPCA in which
the penalty parameter is set toR ) 2. The indexci between the
PCA-based eigenvectorr i and the smooth eigenvectorr i

f 0 is
consequently calculated with the increase in the eigenvector
number from one to ten. Then, synthetic noise with zero mean
and standard deviation of 0.001 of the maximum band absor-
bance, randomly generated by a Gaussian noise generator, is
added to the dataX as a perturbation. It should be pointed out
that this synthetic noise may be of different level, and one can
manipulate the noise level to achieve an optimal result. The
noise-perturbed data are also decomposed by FPCA withR )
2, and another 10 smooth eigenvectorsr i

f(i ) 1, 2, ..., 10) are
acquired. Likewise, the same levels of noise generated by
different random seeds in the Monte Carlo method are added
to the dataX. There are total of 50 experiments, and synthetic
noise is added to 49th one (namely,num ) 49). For each
experiment of noise perturbation, the indexci between the
ordinary eigenvectorsr i and the smooth eigenvectorsr i

f ob-
tained by FPCA after the synthetic noise addition are calculated
versus increasing eigenvector number. Finally, the standard
deviationdi(i ) 1, 2, ..., 10) of individual eigenvector indexci

is calculated, as referred to eq 13. We plot all the indicesci of
50 experiments and their standard deviationsdi versus increasing
eigenvector number, as displayed in Figures 2a and 3a. As seen
from Figure 2a, the values ofci are close to 1 as the eigenvector
number goes from 1 to 3, whereas a sharp decline appears from
4 to 5. Between the eigenvector number of 3 and 4, the value
of ci declines a little due to heavy noise. In Figure 3a, one can
observe a flat line from 1 to 4 (eigenvector number) at which
the correspondingdi remains close to 0, followed by a dramatic
change from 4 to 5. This result points to the conclusion that
the number of significant eigenvectors representing signals of
the noisy spectra equals 4, because the smooth signals are
usually unaffected by this perturbation, whereas those eigen-
vectors representing noise are affected.

In the same way, the numbers of significant eigenvectors
representing signals of the other three noisy data sets with
smaller noise of 0.001, 0.005 and 0.01 levels are all determined
to be 4. The results are also shown in Figures 2 and 3. In these
three cases, we kept the conditions ofR ) 2 and the level of

Figure 2. Eigenvector index (ci) versus eigenvector number for noise
perturbation experiments for simulated noisy spectra of four different
noise addition levels: (a) 0.05 level; (b) 0.001 level; (c) 0.005 level;
(d) 0.01 level.

Figure 3. Standard deviation (di) of eigenvector index (ci) versus
eigenvector number for noise perturbation experiments for simulated
noisy spectra of four different noise addition levels: (a) 0.05 level; (b)
0.001 level; (c) 0.005 level; (d) 0.01 level.

TABLE 1: Determination Results of Significant
Eigenvectors of the Simulated Spectra with Artificial Noise
Addition of Four Different Levels Obtained by Five Indices

noise level IND IE ER VPVRS NPFPCA

0.001 6 4 3 4 4
0.005 4 4 3 4 4
0.010 4 4 3 4 4
0.050 3 3 3 3 4
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synthetic noise used for perturbation experiments being 0.001
of the maximum band absorbance. These results all indicate
that four significant eigenvectors should be utilized when using
eigenvector reconstruction to filter the input noisy data for 2D-
COS.

Comparison has been made between the NPFPCA and
ordinary PCA for the determination of significant eigenvectors
of noisy spectroscopic data used for the eigenvector reconstruc-
tion. Four often used indices in the ordinary PCA, i.e., IND,
ER, IE (imbedded error)25 and VPVRS (variance percentage to
variance sum),25,27are described below to determine significant
eigenvectors according to the eigenvaluesλi (i ) 1, 2, ...,n) of

the covariance matrixXTX obtained by SVD. These indices
are calculated as

Figure 4. Synchronous 2D-COS spectra resulted from (a) noise-free simulated spectra, (b) directly simulated noisy spectra with the 0.05 level
noise added, (c) reconstructed spectra with the first four ordinary eigenvectors obtained by PCA, (d) reconstructed spectra with the first four
significant smooth eigenvectors obtained by NPFPCA, (e) reconstructed spectra with the first six ordinary eigenvectors, and (f) reconstructed
spectra with the first two ordinary eigenvectors. Solid and dotted lines represent positive- and negative-going peaks.

IND i ) ( ∑
j)i+1

n

λj

m(n - i)
)1/2

/(n - i)2 i ) 1, 2, ...,n - 1 (15)

IEi ) ( i ∑
j)i+1

n

λj

nm(n - i)
)1/2

i ) 1, 2, ...,n - 1 (16)
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Here,n andm mean the same as before.
The ability of these five methods to determine the significant

eigenvectors of noisy spectra of four different noise levels has
been investigated and the results are listed in Table 1. The results
show that IND and ER are hardly able to determine the correct
significant eigenvectors, even when the interfering noise in the

data is small. IE and VPVRS are slightly inferior to NPFPCA
in the four cases. However, these two methods fail to determine
the significant eigenvectors when the noise level increases to a
high degree. NPFPCA works best because it utilizes eigenvector
information rather than eigenvalue information. A possible
explanation may be that noise does affect the eigenvalues of
ordinary PCA but has less influence on the significant eigen-
vectors. This result suggests that the eigenvalue-based methods
are not suitable for determining the significant eigenvectors for
the data with heavy noise.

As for 2D correlation, the mean of the series spectra is taken
as a reference spectrum to create dynamic spectra. Both

ERi )
λi

λi+1
i ) 1, 2, ...,n - 1 (17)

VPVRSi )
λi - λi+1

λi+1 - λi+2
i ) 1, 2, ...,n - 2 (18)

Figure 5. Asynchronous 2D-COS spectra resulted from (a) noise-free simulated spectra, (b) directly simulated noisy spectra with the 0.05 level
noise added, (c) reconstructed spectra with the first four ordinary eigenvectors obtained by PCA, (d) reconstructed spectra with the first four
significant smooth eigenvectors obtained by NPFPCA, (e) reconstructed spectra with the first six ordinary eigenvectors, and (f) reconstructed
spectra with the first two ordinary eigenvectors. Solid and dotted lines represent positive- and negative-going peaks.
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synchronous and asynchronous 2D spectra are calculated for
2D-COS analysis complying with eqs 3 and 4. Figure 4a shows
a synchronous 2D correlation spectrum constructed from the
original noise-free spectra. Four autopeaks (peaks at diagonal)
and six cross-peaks are developed on this 2D contour plot. The
positive correlation peaks are plotted solid, and the negative
cross-peaks dotted. A positive synchronous cross-peak at
position (V1, V2) indicates that the intensity variations atV1 and
V2 proceed in the same direction, whereas a negative synchro-
nous cross-peak reveals that the changes are in opposite
directions. It can be found from this figure thatΦ(1050, 1115)
< 0, Φ(1050, 1220)< 0, Φ(1115, 1198)< 0, Φ(1115, 1220)
> 0, Φ(1198, 1050)> 0, andΦ(1198, 1220)< 0. This result
is in accordance with the simulation setting that two bands at
1050 and 1198 data points intensify gradually while the other
two bands decrease in intensity. The corresponding asynchro-
nous 2D spectrum is depicted in Figure 5a, where six cross-
peaks are present on account of different rates of intensity
variations of the four bands. From the sign of these asynchro-
nous cross-peaks together with that of the synchronous cross-
peaks, it is deduced that the temporal behaviors of their phase
changes occur in the order of 1220> 1050 > 1115 > 1198,
which agrees with the simulated rates. This example reveals
the fact that the asynchronous 2D spectrum can particularly
reflect some subtle spectral features taking place in dynamic
spectra. Hereof, the asynchronous 2D spectrum is susceptible
to experimental noise.

Figures 4b and 5b show the synchronous and asynchronous
2D spectra directly derived from the noisy spectra with a noise
level of 0.05. The noise introduces many serious artifact peaks
and obscures the 2D correlation spectra. In particular, the
asynchronous 2D correlation patterns are badly disrupted. As a
consequence, it becomes very difficult to discern spectral
features on the 2D-COS maps, not to mention reasonably
interpreting the temporal behaviors of spectral variations. It is
obviously necessary to remove noise from the input data before
2D correlation analysis so as to reduce the noise influence on
the 2D correlation spectra as much as possible.

The eigenvector reconstruction is thus considered for filtering
noise. Pursuant to the determination of significant eigenvectors
of the noisy dataX of 0.05 noise level exemplified previously,
four ordinary eigenvectors (r i, i ) 1, ..., 4) obtained by PCA
and those smooth eigenvectors (r i

f 0, i ) 1, ..., 4) obtained by
NPFPCA have undertaken reconstructing the data withXev )
X[r1, r2, r3, r4][ r1, r2, r3, r4]T and Xev ) X[r1

f 0, r2
f 0, r3

f 0,

r4
f 0][ r1

f 0, r2
f 0, r3

f 0, r4
f 0]T, respectively. Afterward, these two

reconstructed data are used for the 2D-COS calculation, i.e.,Φ
) Xev

TXev andΨ ) Xev
TNXev. Figures 4c and 5c exhibit the

synchronous and asynchronous 2D spectra derived from the data
reconstructed by the four ordinary eigenvectors. Those from
the four smooth eigenvectors are displayed in Figures 4d and
5d. The striking contrast between the 2D correlation spectra
presented in Figures 4 and 5 reveals that the eigenvector
reconstruction based on NPFPCA has removed the noise
influence from the 2D correlation spectra much more effectively,
and all the real correlation peaks are recovered clearly. This
result strongly supports that the four smooth eigenvectors have
rationally extracted the pertinent signal information even from
the noisy spectra, which can be used to explain with a higher
level of confidence the physical phenomena happening in the
dynamic system. Other eigenvectors are regarded as noise
representatives and hence truncated for noise filtering. In
contrast, the 2D correlation spectra that are resulted from the
ordinary PCA eigenvector reconstruction have not been im-
proved so much. The asynchronous spectrum is still unaccept-
able, and the fringes of peaks in Figure 5c are worse. A possible
reason is that the ordinary eigenvectors obtained by PCA still
include some noise, which cannot be completely eliminated from
the data, as delineated in Figure 6.

If eigenvectors other than significant eigenvectors are reserved
for data reconstruction, the reproduced correlation peaks become
worse and more spurious peaks appear. Figures 4e and 5e show
the synchronous and asynchronous 2D correlation spectra
derived from the reconstructed data using six ordinary PCA
eigenvectors. It is noted that the information about correlation
peaks of the reconstructed data has been contaminated by more
noise. On the other hand, an incorrect elimination of significant
eigenvectors, for example, only two ordinary PCA eigenvectors
used for data reconstruction, may lead to a distinct distortion
of the resulting 2D correlation spectra (see Figures 4f and 5f)
because some real information about the system behavior is lost.
The spectral features on such 2D-COS maps may not be used
to determine correct spectral temporal behaviors.

Due to the limitation of space, further discussions of the noise-
filtering effect of the NPFPCA and ordinary PCA in relation to
the other noisy data of three noise levels 0.001, 0.005, 0.01 are
not shown here. In general, the synchronous 2D spectrum is
less sensitive to noise. The noise does not influence the
asynchronous 2D spectrum much if the noise level is weak.

Figure 6. Plot for the first four eigenvectors obtained by ordinary
PCA from simulated noisy data of the 0.05 noise level.

Figure 7. Reflection-absorption infrared spectra of a PHB thin film
measured in the temperature range 30-190 °C, increasing at a step
rate of 2°C.
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However, the influence of noise on the asynchronous 2D
spectrum becomes serious in the case of heavy noise. It can
introduce artifact peaks, cause correlation peaks to change, or
sometimes make the asynchronous 2D spectrum useless. By
using smooth eigenvectors obtained by NPFPCA to reconstruct
the spectroscopic data, it is possible to reduce the serious noise
interference on 2D correlation spectra much better than the
ordinary PCA.

4.3. Application of Noise Perturbation in Functional
Principal Component Analysis to Reflection-Absorption
Infrared Spectra of a PHB Thin Film. Thin film technique is
very interesting in the studies of physical behavior and me-
chanical properties of polymers because of its restricted

geometric effects.40,41 Fourier transform infrared spectroscopy
is a very sensitive technique to probe submolecular and
segmental constituents of polymeric system during the phase
transition, but for thin film samples, the signal-to-noise ratio of
infrared spectra is not always satisfactory. PHB is one of the
thermoplastic polymers of considerable industrial interest due
to its biodegradability42,43 and has been a subject of active
scientific investigations.44-46 Herein, the reflection-absorption
infrared spectra of a PHB thin film were chosen for demonstrat-
ing the noise-filtering effect of the NPFPCA method for 2D
correlation analysis.

Figure 7 shows temperature-dependent reflection-absorption
infrared spectra of the PHB thin film. From this figure, it can
be seen that distinct spectral variations take place in several
regions with temperature. Particular attention should be paid to
the spectral changes in four characteristic regions, 3030-2840,
1790-1700, 1340-1150 and 1000-800 cm-1, where bands are
ascribed to the C-H, CdO, C-O-C, and C-C stretching

Figure 8. (a) Reflection-absorption infrared spectra in the region
3030-2840 cm-1 of a PHB thin film, (b) spectra reconstructed from
the first three ordinary eigenvectors obtained by PCA, and (c) spectra
reconstructed from the first three significant smooth eigenvectors
obtained by NPFPCA

Figure 9. 2D correlation spectra calculated from original reflection-
absorption infrared spectra in the region 3030-2880 cm-1 of a PHB
thin film: (a) synchronous; (b) asynchronous. Solid and dotted lines
represent positive- and negative-going peaks.
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vibrations reflecting largely the melting behavior of semicrys-
talline PHB thin film.44 It is relatively easy for the three regions
1790-1700, 1340-1150 and 1000-800 cm-1 to be directly
subjected to the 2D correlation analysis, because their responsive
intensities are strong enough not to be interfered with by noise.
However, in the region 3030-2840 cm-1 the situation is
different. The original reflection-absorption infrared spectra
are very noisy, perhaps due to the low signals, as shown in
Figure 8a. These spectra should present a significant challenge
to 2D-COS. The NPFPCA method is exploited to filter the data
to remove noise as much as possible. The penalty parameter
value of R ) 2 and 49 synthetic perturbations of noise with
zero mean and standard deviation of 0.01 of the maximum band
absorbance are used for NPFPCA. Three significant smooth
eigenvectorsr i

f 0 (i ) 1-3) are obtained and used for the data
reconstruction and noise filtering. For comparison, the same
spectra are reconstructed by three ordinary PCA eigenvectors
for noise filtering. Parts b and c of Figure 8 show the resulting

data. The data reconstructed from the three smooth eigenvectors
obtained by NPFPCA appear rather smooth, as shown in Figure
8c, and look much better than the original spectra in this region
(Figure 8a) or those reconstructed from first three ordinary
eigenvectors obtained by PCA (Figure 8b). Note that by using
NPFPCA the primary spectral features remain intact, while noise
is selectively filtered.

The synchronous 2D correlation spectrum generated from the
reconstructed spectra obtained by three ordinary PCA eigen-
vectors is still slightly interfered with by noise. The effect of
noise is much worse on the asynchronous 2D correlation
spectrum, for the original infrared spectra in the 3030-2840
cm-1 region (Figure 9), as well as for the reconstructed data
using ordinary PCA (Figure 10). In contrast, there is an obvious
beneficial reduction of spectral artifacts or spurious correlation
peaks on the 2D-COS maps derived from the reconstructed
spectra obtained by three smooth eigenvectors of NPFPCA, as
illustrated in Figure 11. Figure 12 shows the comparison of slice

Figure 10. 2D correlation spectra calculated from reconstructed data
obtained by three ordinary eigenvectors of PCA: (a) synchronous; (b)
asynchronous. Solid and dotted lines represent positive- and negative-
going peaks.

Figure 11. 2D correlation spectra calculated from reconstructed data
obtained by three smooth eigenvectors of NPFPCA: (a) synchronous;
(b) asynchronous. Solid and dotted lines represent positive- and
negative-going peaks.
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spectra at 2985 cm-1 for the synchronous and asynchronous
2D correlation spectra resulted from the original spectra and
reconstructed data obtained by ordinary and smooth eigenvec-
tors. It is apparent that the slices of correlation spectra from
the original spectra and ordinary PCA eigenvector-reconstructed
data are almost the same. They both contain a similar level of
noise interference, which results in spectral artifacts in the
synchronous and asynchronous 2D correlation spectra, especially
in the region 2960-2935 cm-1 (Figures 9 and 10). It is very
hard for the PCA eigenvector reconstruction to filter the noise
influence from the spectra in this situation. Not only is the noise
influence reduced much from the 2D correlation spectra but
also the primary informative features of the input spectra are
well preserved. The quality of the correlation spectra resulted
from the reconstructed data by three smooth eigenvectors of
NPFPCA, in particular the asynchronous 2D spectra, is im-
proved to a legible level. The spectral variations occurring in
this region are much easier to interpret according to the
correlation patterns.

Four autopeaks are clearly observed at around 3009, 2985,
2945, and 2922 cm-1 on the synchronous map. The peak located
at 2985 cm-1 together with two bands at 2945 and 2922 cm-1

share three positive cross-peaks at (2985, 2945), (2985, 2922),
and (2945, 2922) cm-1. Also, they share negative cross-peaks

with those located at 3009 and 2997 cm-1. These observations
suggest that the three bands at 2985, 2945, and 2922 cm-1 vary
in the same direction, opposite to those at 3009 and 2997 cm-1.
As the temperature increases, the former are intensified.
Therefore, we conclude that the bands at 2985, 2945, and 2922
cm-1 are all associated with the amorphous part of PHB. On
the other hand, the intensities of bands at 3009 and 2997 cm-1

decrease, indicating they are from the crystalline state of PHB.
In the asynchronous 2D spectrum, the amorphous band at 2985
cm-1 shares positive cross-peaks with the crystalline bands at
3009 and 2975 cm-1, suggesting that the amorphous phase does
not appear simultaneously with the disappearance of the
crystalline state. Furthermore, there is no asynchronicity between
any of crystalline bands (3009, 2997, and 2975 cm-1) in this
spectral region. As a result, it is revealed that the intensity
changes of the crystalline bands in this region likely occur
simultaneously.

The bands in the 3030-2840 cm-1 region are mainly due to
the CH3 stretching, CH2 stretching and CH stretching modes.
The 2985 cm-1 band is ascribed to the amorphous part and those
at 3009 and 2975 cm-1 are from the PHB crystal structure. For
PHB, the CH3 group exists only on the side chain and the CH2

group is located on the skeletal chain. The unusual appearance
of the CH3 asymmetric stretching band at 3009 cm-1 is attributed
to the existence of a C-H‚‚‚OdC hydrogen bonding in this
system.44,45

5. Conclusion

The present study discusses how the presence of heavy noise
influences 2D-COS results. It was demonstrated that the
NPFPCA method effectively filters out a significant amount of
the noise from the spectral data for more reliable 2D correlation
analysis. This method is able to accurately determine the number
of significant eigenvectors representing signals. The technique
was especially effective for the reflection-absorption infrared
spectroscopic data of a very thin polymer film interfered with
heavy noise, by providing a set of smooth eigenvectors to
reconstruct the data. The resulting reconstructed data free from
the noise effect can lead to more reliable 2D correlation spectra,
enabling much easier and accurate interpretation.
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