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A method based onoise perturbation in functional principal component analy®i®FPCA) is for the first

time introduced to overcome the noise interference problem in two-dimensional correlation spectroscopy
(2D-COS). By the systematic addition of synthetic noise to the dynamic multivariate spectral data, the functional
principal component analysis (FPCA) described in this report is able to accurately determine which eigenvectors
are representing significant signals instead of noise in the original data. This feature is especially useful for
the data reconstruction and noise filtering. Reconstructed data resulted from the smooth eigenvectors can
produce much more reliable 2D correlation spectra by removing the correlation artifacts from noise, which
in turn enable more accurate interpretation of the spectral variations. The usefulness of this method is
demonstrated with a theoretical framework and applications to the 2D correlation analyses of both simulated
data and temperature-dependent reflectiabsorption infrared spectra of a poly(3-hydroxybutyrate) (PHB)

thin film.

1. Introduction polynomial fitting baseline correctiorf,and data pretreatments,
for example, multiplicative scatter correction (MS€principal

Generalized two-dimensional correlation spectroscopy (2D- component analysis (PCA)-based stratéggnd orthogonal

COS)} is based on the correlation analysis of perturbation- _. | ion (OS@ h b lable f )
induced variations of spectral intensities monitored by an S|gna.correct|on( ¢) ave been avarable for removing or
) ) . . reducing the effects of baseline fluctuations.

electromagnetic probe, for instance, time series spectra produced e ) . .
by an infrared spectrometer frommeasurements at different Noise is often a major obstacle to the interpretation of 2D
frequencies. These spectra with an intrinsic order of sampling correlgtlon patterns, because it introduces artifact peaks, and
are not a simple disjoint set of multivariate observations SOmetimes even causes peaks to enhance or attenuate. Therefore,
commonly dealt with in the classical statistics but in reality a Several approaches have been suggested to handle the noise
discrete representation of a set of continuously observedinfluence on the spectroscopic data prior to the correlation
functions, formulated as a matrix of sizen by m. 2D-COS analysis, including Fourier filterin&, wavelet analysidt smooth-
analysis is primarily focused on dynamic changes in spectral ing techniqué and eigenvector reconstructiéf’* Fourier
intensities during the measurement. The analysis is carried outfiltering uses the cosine/sine function to transform a noisy
by the determination of a complex cross-correlation function spectrum forward first and then inversely back to the spectral
characterizing the relationship among the variables in spectro-domain. The spectrum is, thus, denoised in that when the
scopic data and their temporal physicochemical behaviors in spectrum is taken into the Fourier domain the noise by definition
so-called synchronous and asynchronous 2D spectral entriescannot be adequately modeled. However, the applicability of

Despite its utility and popularity in recent decades, especially Fourier transform filtering heavily depends on the capability in
in vibrational spectroscopy, it has been recognized that therespecifying a level of modeling in the operation. In wavelet
are certain limitations to the use of 2D-COS. Most discussions analysis, the elimination of small wavelet coefficients related
revolve aroundvhat exactly the calculated correlation spectra to the noise of variance spectrum allows the data denoising
represent and how exact they &rd3 The problems of reliability ~ through a basis function. The philosophy behind wavelet analysis
of correlation results can be ascribed to spectral variations with is similar to that of PCA, in which the tradeoff of the irrelevant
respect to signal-related variations, peak shifting, baseline principal components associated with the small eigenvalues
fluctuations, and noise!® As peak shift and distortion are allows the partial elimination of the data noise. However, in
intrinsic to the data, they have to be examined prior to wavelet analysis the definition of an optimal basis function and
correlation procedure and taken into account for accurate the determination of a proper threshold term are problem
interpretation of correlation patterh&!4 16 Baseline correction ~ dependent. Smoothing is a kind of high-frequency filter that
methods, such as perturbation-averaged speéfitand iterative eliminates all signals and noise of high-frequency regardless
of their amplitude or even the integrity of spectroscopic

* To whom all correspondence should be addressed. Fe8t 79 565 information. It is, by its nature, not a true denoising technique.
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Based on the concept of PCA, it uses a few eigenvectors and
capturing almost all variances of the original data to reconstruct
the data at an appropriate level of modeling. Noise is accordingly P = X'NX 4)
removed. It is crucial to find out the appropriate level of
modeling, so that the eigenvector reconstruction is accomplishedFor which the superscript T implies transpose of a matrix or
by the number of factors used against the amount of information vector. For simplicity, the degree-of-freedom terrmL 1) is
capturectl2® This operation may influence much smaller not included here, because it contributes only as a constant
spectral features on the correlation patterns which 2D-COS tendsmultiplier.
to highlight. The noise influence on 2D correlation analysis and ~ The data matrixX can be decomposed into two pans=
the eigenvector reconstruction denoising will be further dis- (Xsignai+ Xnoisd, WhereXsignaiis @ noise-free matrix that holds
cussed in the following section. pure signal information of the measured system, ARgke is

The aim of the present study is to investigate the noise- the matrix consisting of noise. Thus, the synchronous spectrum
filtering effect of eigenvector reconstruction for 2D correlation is given by
analysis. A theoretical basis is provided for ti@ise perturba-

tion in functional principal component analysiNPFPCA) D = (Xgigna T Xnoise)T(Xsignm‘*‘ Xoisd
technique. This variant form of the functional principal com- T T

ponent analysis (FPCA) makes use of the systematic effects of = Xsignal Xsignai T Xnoise Xsignai T

noise, by actually adding synthetic noise to the spectroscopic X X A X IX . (5)
data, rather than relying on the existing random effects in the signal ““noise - “noise “Enoise
data to identify the eigenvectors representing spectral Signals'SimiIarIy

The smooth eigenvectors derived from the FPCA method are '

then used to model the spectroscopic data for data reconstruction _ T

and noise truncation. The resulting data can produce more = Ksignart Xnoisd NKsigrai T Xroisd

reliable 2D-COS results and remove or reduce the correlation =X TNX. 4% TNX. +

artifacts from noise, which enables the spectral variations being signal T signal Lo oee S'gna'T
responsible for the 2D-COS patterns in the concerned system Xsignal NXoise T Xnoise NXoise (6)

to be interpreted more accurately and easily. 2D correlation

analyses of simulated data and reflecti@bsorption infrared ~ From a mathematical perspective, noise is orthogonal or nearly
spectra of a poly(3-hydroxybutyrate) (PHB) thin film observed orthogonal to any signal except itself, and thereby cross-peaks
during a melt process are used to demonstrate the utility of this on the synchronous 2D spectrum attributingt@naX noiseand

approach. Xnoise Xsignay d0 not show up because their intensity may be
too weak compared with that &signal Xsignas When the noise
2. Method level (namely the trace of covariance matdfoise Xnoisd iS

much smaller compared to the magnitude of signals, i.e., trace-

COS a systemic perturbation produces complex 2D correlation (Xnoisd Xnoisd < tracesignal Xsigna), the noise has little interfer-
ence on the synchronous spectrum, and we lBve Xsignar

spectra® + iW, which are separated into real and imaginary 1, . .
component$:# The real componen® gives the information Xs'gna;l On theZ[())ther hand, the 'T‘f::’er;fe of noise on the q
about coincidental or in-phase variations caused by the perturba—async r$ nous spectrTum, especially the portion represente
tion, whose synchronous spectrum can be calculated as _by XSig”a'.NX”"‘SeandX”"‘se NXsignai may become much stronger
if the noise level is very high. This is because of the following
1 o reasons: (1) on the asynchronous 2D spectrum, only the subtle
D(v,v,) = ij(Vl) Xj(Vz) 1) spectral featlurefs that occur out-of-phase bY/(3Qignal NXsigna)
n—15& tend to be highlighted and (2) because of the broadband nature,
noise may very well contain a substantial amount of component
wherev; andv, denote different frequencies, corresponds to ~ Which is 90 out-of-phase with the real signélThus, an
an individual dynamic spectrum, ands the number of spectral ~ €ffective truncation of noise from the data is strongly desired
traces. The variations that occur out-of-phase can be ap-for the 2D-COS analysis.
proximated with the imaginary componehi in terms of 2.2. Principal Component Analysis and Functional Prin-
asynchronous spectrum, such that cipal Component Analysis.In the eigenvector reconstruction
of spectral data based on PCA, the data manipulation involves
1 " n both the determination of significant eigenvector components
W(v,,v,) = —ij(vl) ZNijk(Vz) (2) related with signals in spectroscopic data and the truncation of
n—1% k= eigenvectors merely representing noise. When it comes to the
determination of the significant components, there are roughly
In this equation,Nyc represents thgth row andkth column  two cardinal strategies: eigenvalue analysis and eigenvector

2.1. Two-Dimensional Correlation Spectroscopyln 2D-

element of the discrete HilbertNoda transformation matril, analysis, as pointed out by Malinow3kiand Meloun et a#¢
given by They stated that procedures for determining the number of
. components using a variety of empirical and statistical methods
0; ifj =k have a strong relationship with the consistency of the model
Nj = 1 . otherwise assumption and the property of real data. In case the knowledge
atk —j) of the instrumental error associated with the experimental data

is available, the methods based on eigenvalues such as IND
Alternatively, eqs 1 and 2 can be written in the matrix notation, (indictor function)?® ER (eigenvalue ratid§ and RESO (the
ratio of eigenvalues calculated by smoothed PCA and those by
o =X"X 3) ordinary PCA¥’ or other indices are recommended. When the
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responsive profiles are smooth, the frequency anafjdise alternative set of eigenvectors involving the idea of smoothness.
morphological approaéh and the FPCA30 based on eigen-  The FPCA is very similar to ordinary PCA. The main difference
vectors should be preferred. between the two lies in the addition of roughness penalty in

PCA is a popular method in applied statistical work and data FPCA. FPCA searches for a set of vectt('r =1,2,..,n) by
analyse$>3341t can describe the data in an underlying factor maximizing the objective functiof(r'),
analytic manner and provide information about the number of
components by using a set of eigenvectar§ = 1, 2, ...,n) o) rTXTXr! @)
which maximizes the objectivg (i = 1, 2, ...,n), F) = —=- 1=L1L2..n 8

Jectivé ( ) "¢ + aD D)
TNT
= ﬂ i=1,2,..n @ subject to
it +aDTD)r{={(1)E iy

Here,ri, subject to ; otherwise
Here r{ represents théth smooth eigenvectoll, denotes an

(T = { 1 ifi=] identity matrix, andD is a second difference operator of size
11 10; otherwise (m—2) x m. 2738

is theith eigenvector of the dispersion matiXX X associated 1-21 0 ..00 0 O

with the eigenvalud,;. All the eigenvectors are obtained in a 01 —-21 00 O O

numbered order according to the magnitude of eigenvalues D=|... .. PR 9

> A2 = ... = An. This process can be realized by the singular 00 0O O ..1-21 0

value decomposition (SVI_3*}32 of X. o 00 0 0 ..01 —21)mamm

The aim of PCA is to pick the firgp principal components
(ti = Xri,i =1, 2, ...,p) with p < min(n,m) that are relevant  The termrTDD r{ is defined as the roughness penalty of

to the variables of interest for attacking the problems in the giscrete functionr!, anda is a penalty parameter for control-
data, such as those of dimensionality, collinearity, baseline |ing the tradeoff between the fidelity of measured data and

variations and substantial noise. The number of components  roughness, which can be set subjectively or by cross valida-
can be determined by observing the significant eigenvalues tjgp 37.39

obtained. When the data are free from noise, the number of Providing that the eigenvalué is associated Witrr-f, eq 8
eigenvalues larger than zero is equivalenptgroviding that can be changed into the following form, '

the spectra of components are linearly independent. That is,

~p+1=..=4,= 0. However, as real data usually contain XTx rif = /I{T(I + aD'D) r{ i=1,2,..n (10)
experimental noise or random error, the eigenvalues and

eigenvectors sought by PCA are bound to be contaminated byHence, the determination of the smooth eigenvec{and the
noise. Therefore, the number of eigenvalues different from zero smooth eigenvalud! is equivalent to solving a generalized
is usually larger thap. The noise contained within the minor eigenvalue problem.

componentst(= Xr;, i =n—p+ 1, ...,n) with the smallest Letui(i = 1, 2, ...,n) be theith eigenvector of a symmetric
eigenvalue or variance can be extracted or removed from the magrix X(1 + aDTD)~Y%(1 + aDTD)~Y2XT, then,

data by retaining only the firgtcomponents. On the other hand,

the component of noise that mixes into and is carried within rif =(+ aDTD)_leui i=1,2 ..n (11)
the first p principal component eigenvectors cannot be com-
pletely removed from the daf&?® The determination op is for which the superscript-1 implies the inverse of the

not an easy task, although many eigenvalue-based statisticabymmetric matrix ( + oD™D). The vectoru; can be easily
methods have been proposed with varying degrees of succesgbtained by implementing SVD on the mat¥Xl + aDTD)~1/2,
to deal with the problems. If there are minor components with This solution has been documented in refs 27, 30, and 38 and
relatively weak signal contributions, or the signal-to-noise ratio is not repeated here.
of the data set is low, these methods may not perform well.  2.3. Noise Perturbation in Functional Principal Compo-
Some methods fail in determining the realbecause the  nent Analysis. As a matter of fact, the eigenproblem of eq 10
eigenvalues for some true components and noise may be in then FPCA can be regarded as a perturbation of the eigenproblem
same order of magnitudé=> of eq 2 in ordinary PCA. Chen et &l suggested that the number
Besides the information of eigenvalues, the information of components could be determined by observing the ratio
carried out on eigenvectors is also useful for the determination change of,lif/li with the variation of the penalty parameter
of the component number of the spectroscopic data, as well asHowever, a small value af cannot adequately distinguish noise
the confrontation of the aforementioned problems. The spectralfrom signals, and a large value of will make the small
observationsq (i =1, 2, ...,n) often appear as a smooth and  eigenvalues representing signals change significantly. Therefore,
continuous function of frequencies or wavenumbery &s how to select a good. value is not a trivial problem in that
x'(v) = /() + errornoise (v = 1, 2, ...,m). It is natural to there is a tradeoff balance between curve fitting (undersmooth-
assume the componenté(u) (i =1, 2, ..,n) representing ing) and curve distortion (oversmoothing) in any smoothing
spectral data in PCA should also be smooth. If such additional process?
information is effectively utilized, a more accurate determination ~ Motivated by the above dilemma, the concept of so-called
of the number of components may be achieved. The functional noise perturbationinstead of changes in the smooth parameter
principal component analysis (FPCA)3based on functional o, was introduced into the FPCA meth&iIn this scheme,
data analysi838 was introduced to chemistry and chemomet- synthetic random noise is systematically added to the original
rics to deal with the eigenproblem. It is a method of finding an spectroscopic data. The added noise should be small so as not
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to influence the model of the original data too much, but 1.6
sufficient enough to change the structure of the original noise  , ,
in the data. The degree of roughness of eigenveotblis

utilized to determine the significant components in the noise 12|

perturbation in functional principal component analysis (NPF- @ 10/
PCA). An indexc between the eigenvectors;)( sought by =
ordinary PCA and thoserlj by FPCA before and after the £ 8]
noise addition is defined, ;n" 06+
T 0.4}
C=r; 1 i=1,2,..n (12)
0.2f

The added synthetic noise will contribute very little to the 0.0 | i | .

smooth eigenvectors representing signals, and the resualting 1280 1250 1200 1150 1100 1050 1001

(i=1, 2, ..,p) is close to 1. On the other hand, those Wavenumber (v)

representing noise will otherwise change dramatically becauserigure 1. Original noise-free dynamic spectra that were artificially

of the noise addition, therelyy (i =n—p+ 1, ...,n) becomes simulated with four Lorentzian bands increasing or decreasing mono-

much smaller than 1. tonically at different rates.

To make an objective determination of significant compo-

nents, the Monte Carlo method is adopted for the synthetic noise

addition. That iS, the noise of the same level is generated by 3.1. Simulated Data.The data set consisted of 45 simulated

different random seeds and added to the détaSuch an  dynamic spectra. Each spectrum had 280 variables {001,

experiment is repeatetium times, and then a statistical ... 1280). The frequency axis was arbitrarily designated for the

parameter of the standard deviationopfs calculated as spectral variablesy. Four Lorentzian band shapes located at
1050, 1115, 1198, and 1220 data point were created in these

1 num . 1 num . 2 . noise-free spectra. Figure 1 shows these series noise-free
d=— Z G — —1 ZOCi i=12,..n simulated spectra. The intensities of overall bands increased or
UM = num-+ 145 (13) decreased monotonically at different rates. Normally distributed

noise of four different levels was then added to these data series
If ¢ is close to 1 and remains rather stablerinm noise to produce noisy spectra. A Gaussian noise generator was used
additions, the value of the standard deviatibapproaches zero  to randomly generate the noise with zero mean and four different
until i = p. Wheni =n— p+ 1, ...,n, the values ofl; become standard deviations of 0.001, 0.005, 0.01, and 0.05 of the
very large becausg (i =n— p + 1, ...,n) varies dramatically maximum band absorbance. To avoid any kind of noise
with the noise addition. As a result, the figseigenvectors are  structure, each noise level was repeated 20 times and the
accurately determined as the significant components representingaveraged noise was used. Another 20-time-averaged noise with
signals and should be retained for data reconstruction. On thezero mean and standard deviation of 0.01 of the maximum band
other hand, all the other eigenvectorgi =n—p+ 1, ...,n) absorbance and a proportionality factor 2 dependent on the
are cutoff for noise filtering. It is noted that the smooth absorbance magnitudes were together used to make a heterosce-
eigenvectorsr(® i =1, 2, ...,p) obtained by the FPCA before  dastic noise addition into individual data series.

the synthetic noise addition rather than thasel & 1, 2, ....) 3.2. Temperature-Dependent Infrared Spectra of a PHB

directly obtained by the ordinary PCA should be used to - ) .
. .~ Thin Film. Bacterially synthesized poly(3-hydroxybutyrate)
reconstruct the datX, because the latter still has some noise (PHB) with M, = 2.9 x 105 andM,, = 6.5 x 10F was obtained

component, especially if the noise level is high. The resulting L .
reconstructed dataX¢,) based on the smooth eigenvectors from the .F.>rocter &.Gaml.ale Cc.)" C!ncmnatl, OH. The sample
was purified by first dissolving in hot chloroform, then

precipitating in methanol, and finally drying in a vacuum at 60
°C for 24 h. A thin film of PHB was prepared by the spin coating

. o . of an about 1.0 wt % PHB chloroform solution at a speed of
are thgn used in egs 3 and 4 for 2D'COS analysis, in V_Vh_'ch the 3000 rpm for about 40 s onto an Au-coated glass wafer. The
noise influence on the 2D correlation patterns can be minimized. wafer was cleaned in a fresh piranha solution (309®#ixed

in a 1:5 ratio with concentrated,80y) prior to the spin coating.
[Caution: Piranha solution reacts violently with organic matter
The performance of the NPFPCA method is evaluated by and should be handled with extreme care!] Consequently, the

using both simulated data and real noisy experimental spectra,thin film was kept under vacuum at 8C for 48 h to completely
which were selected to show the effectiveness of noise reduction.emove the residual solvent.

in the eigenvector reconstruction for 2D-COS analysis. This

experiment specifically covers some noise situations difficult Reflgction—absorption infrared §pect'ra were recorded by
to be handled by the ordinary PCA filtering. averaging 32 scans a 2 cnt* resolution with a Thermo Nicolet

MATLAB 5.3 (The MathWorks Inc., Natick, MA) was used ~Magna 470 spectrometer equipped with a MCT detector. The
to implement the in-house programs for calculations of simulated incidence angle was 84and the polarization of the incoming
and real data sets, running on a personal computer with Pentiumpeam was parallel to the plane of incidence (p-polarized). The
1.7 GHz CPU and 512 MB RAM under the Microsoft Windows infrared spectra were collected at@ intervals with a heating
XP operating system. The 2D-COS software was developed onstep rate of 2C min-* from 30 to 190°C using a homemade
the Hilbert-Noda transformation as well as the NPFPCA routines variable temperature cell. Baseline correction was performed
in our laboratory. for each spectrum prior to data analysis.

Xoy = X[y o r A el e (14)

3. Experimental and Data Analysis
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1.0 —— 1.0 TABLE 1: Determination Results of Significant
a Eigenvectors of the Simulated Spectra with Artificial Noise
0.8 0.8 Addition of Four Different Levels Obtained by Five Indices
06 06 noise level IND IE ER VPVRS NPFPCA
s S 0.001 6 4 3 4 4
0.4 0.4 0.005 4 4 3 4 4
0.010 4 4 3 4 4
02 02 0.050 3 3 3 3 4
0.0 0.0 :
0 2 4 6 8 10 6 2 4 6 8 10 reconstruction. Of course, too small noise will not provide
Eigenvector number Eigenvector number enough perturbation. One can try different levels of noise to
1.0 1.0 discern how the added noise influences the determination of
08 08 significant eigenvectors.
4.2. Simulated Data.To the simulated noise-free dynamic
. 06 . 06 data shown in Figure 1 we added four different levels of noise
Q Q . . . . . .
04 04 as described in experimental section. Now, the data with a noise
level of 0.05 are taken to illustrate how the NPFPCA procedure
0.2 0.2 determines the significant eigenvectors.
0.0 ] 0.0 i According to egs 7 and 11, the data matkdxwith a noise
0 2 4 6 8 10 0 2 4 6 8 10 level of 0.05 are first decomposed by ordinary PCA and FPCA
Eigenvector number Eigenvector number

using SVD. The first 10 ordinary eigenvectaré = 1, 2, ...,

Figurebz._ Eigenvector i”d?X(O_V‘?rIS“S;ig?”VGCtor num??r fordnf?ise 10) obtained by PCA are selected, as well as the first 10 smooth
perturbation experiments for simulated noisy spectra of four different . for . . .
noise addition levels: (a) 0.05 level; (b) 0.001 level; (c) 0.005 level, eigenvectors; (i = 1, 2, ..., 10) obtained by FPCA in which

(d) 0.01 level. the penalty parameter is setdo= 2. The indexc; between the
PCA-based eigenvectar and the smooth eigenvecto}0 is

0.04 a 0.08 b consequently calculated with the increase in the eigenvector
0.03 0.06 number from one to ten. Then, synthetic noise with zero mean
and standard deviation of 0.001 of the maximum band absor-
S 0.02 < 004 bance, randomly generated by a Gaussian noise generator, is
added to the datA as a perturbation. It should be pointed out
0.01 / 0.02 that this synthetic noise may be of different level, and one can
manipulate the noise level to achieve an optimal result. The
0.00 0.00 noise-perturbed data are also decomposed by FPCAaowith
6 2 4 6 8 10 0 2 4 6 8 10 2, and another 10 smooth eigenvectdts= 1, 2, ..., 10) are
Eigenvector number Eigenvector number acquired. Likewise, the same levels of noise generated by
0.12 0.08 different random seeds in the Monte Carlo method are added
¢ d to the dataX. There are total of 50 experiments, and synthetic
0.08 0.06 noise is added to 49th one (namelyym = 49). For each
- - experiment of noise perturbation, the indexbetween the
F" S 004 ordinary eigenvectors; and the smooth eigenvectoré ob-
0.04 0.02 tained by FPCA after the synthetic noise addition are calculated
' versus increasing eigenvector number. Finally, the standard
0.00 0.00 deviationdi(i = 1, 2, ..., 10) of individual eigenvector index
0 2 4 6 8 10 0 2 4 6 8 10 is calculated, as referred to eq 13. We plot all the indged
Eigenvector number Eigenvector number 50 experiments and their standard deviatidngersus increasing
Figure 3. Standard deviationd() of eigenvector indexd) versus eigenvector number, as displayed in Figures 2a and 3a. As seen

eigenvector number for noise perturbation experiments for simulated from Figure 2a, the values ofare close to 1 as the eigenvector
goaz{ﬁgsgf_r?cgf éog(;g'lzsg‘zé‘)oésg f‘?g&g?“ levels: (a) 0.05level; (b) hymper goes from 1 to 3, whereas a sharp decline appears from
' ’ ' ' ' ' 4 to 5. Between the eigenvector number of 3 and 4, the value
4. Results and Discussion of ¢ declines a little due to heavy noise. In Figure 3a, one can
observe a flat line from 1 to 4 (eigenvector number) at which
the corresponding; remains close to 0, followed by a dramatic
change from 4 to 5. This result points to the conclusion that
the number of significant eigenvectors representing signals of
the noisy spectra equals 4, because the smooth signals are
satisfactory result, which well balances between curve fitting usually unaffecteq by thls perturbation, whereas those eigen-
and curve distortion in the smoothing process. In this study, it vectors representing noise are affected.
was set to 2. Fortunately, the NPFPCA method is not very In the same way, the numbers of significant eigenvectors
sensitive to the level of perturbation noise, which is an attractive representing signals of the other three noisy data sets with
feature in practice. Whatever the level of noise is added smaller noise of 0.001, 0.005 and 0.01 levels are all determined
synthetically to the data, it does not influence much the result to be 4. The results are also shown in Figures 2 and 3. In these
of the determination of significant eigenvectors for data three cases, we kept the conditionsocof= 2 and the level of

4.1. Two Key ParametersTwo parametersy and the noise
level for synthetic perturbation addition, are important for the
NPFPCA performance and have to be ascertained in advance
Our experience points to the conclusion that the value of the
penalty parameteo. within the range +10 can lead to a
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Figure 4. Synchronous 2D-COS spectra resulted from (a) noise-free simulated spectra, (b) directly simulated noisy spectra with the 0.05 level
noise added, (c) reconstructed spectra with the first four ordinary eigenvectors obtained by PCA, (d) reconstructed spectra with the first four
significant smooth eigenvectors obtained by NPFPCA, (e) reconstructed spectra with the first six ordinary eigenvectors, and (f) reconstructed
spectra with the first two ordinary eigenvectors. Solid and dotted lines represent positive- and negative-going peaks.

synthetic noise used for perturbation experiments being 0.001the covariance matriXTX obtained by SVD. These indices
of the maximum band absorbance. These results all indicateare calculated as
that four significant eigenvectors should be utilized when using
eigenvector reconstruction to filter the input noisy data for 2D- n 12
Cos. 2.4

Comparison has been made between the NPFPCA and IND, = g/ I(n— i)2 i=1,2,..,n—1 (15)
ordinary PCA for the determination of significant eigenvectors m(n — i)
of noisy spectroscopic data used for the eigenvector reconstruc-
tion. Four often used indices in the ordinary PCA, i.e., IND, i i
ER, IE (imbedded errot) and VPVRS (variance percentage to
variance sumj>2”are described below to determine significant Ei=|—— i=1,2,..n—-1 (16)
eigenvectors according to the eigenvaligé = 1, 2, ...,n) of nm(n — i)
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data is small. IE and VPVRS are slightly inferior to NPFPCA

ER = 1. i=12..n-1 (17) in the four cases. However, these two methods fail to determine
L the significant eigenvectors when the noise level increases to a
Ai = Aisq _ high degree. NPFPCA works best because it utilizes eigenvector
VPVRS = A i=1,2,..,n—-2 (18) information rather than eigenvalue information. A possible
i+ i+

Here,n andm mean the same as before.

The ability of these five methods to determine the significant
eigenvectors of noisy spectra of four different noise levels has
been investigated and the results are listed in Table 1. The result
show that IND and ER are hardly able to determine the correct

explanation may be that noise does affect the eigenvalues of
ordinary PCA but has less influence on the significant eigen-
vectors. This result suggests that the eigenvalue-based methods
are not suitable for determining the significant eigenvectors for
dhe data with heavy noise.

As for 2D correlation, the mean of the series spectra is taken

significant eigenvectors, even when the interfering noise in the as a reference spectrum to create dynamic spectra. Both
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Figure 5. Asynchronous 2D-COS spectra resulted from (a) noise-free simulated spectra, (b) directly simulated noisy spectra with the 0.05 level
noise added, (c) reconstructed spectra with the first four ordinary eigenvectors obtained by PCA, (d) reconstructed spectra with the first four
significant smooth eigenvectors obtained by NPFPCA, (e) reconstructed spectra with the first six ordinary eigenvectors, and (f) reconstructed
spectra with the first two ordinary eigenvectors. Solid and dotted lines represent positive- and negative-going peaks.
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Figure 6. Plot for the first four eigenvectors obtained by ordinary Figure 7. Reflection—absorption infrared spectra of a PHB thin film
PCA from simulated noisy data of the 0.05 noise level. measured in the temperature range-390 °C, increasing at a step
rate of 2°C.

synchronous and asynchronous 2D spectra are calculated for
2D-COS analysis complying with egs 3 and 4. Figure 4a shows FLO][rflo, rf20, rf30, rzo T, respectively. Afterward, these two

a synchronous 2D correlation spectrum constructed from the o ;o4 cted data are used for the 2D-COS calculationdi.e.,
original noise-free spectra. Four autopeaks (peaks at diagonal)_ X e Xy and W = Xo,"NXe,. Figures 4c and 5¢ exhibit the

and six cross-peaks are developed on this 2D contour plot, Thesynchronous and asynchronous 2D spectra derived from the data

positive correlation peaks are plotted solid, and the negative reconstructed by the four ordinary eigenvectors. Those from
cross-peaks dotted. A positive synchronous cross-peak a

” S . . "y Yhe four smooth eigenvectors are displayed in Figures 4d and
position ¢, .UZ) indicates t_hat t_he intensity varlatlons_zatand 5d. The striking contrast between the 2D correlation spectra
v proceed in the same direction, whereas a negative synchrp- resented in Figures 4 and 5 reveals that the eigenvector
nous cross-peak reveals that the changes are in opposit

o e econstruction based on NPFPCA has removed the noise
directions. It can be found from this figure th&(1050, 1115) : . .
< 0, B(1050, 1220)< 0, (1115, 1198)< 0, (1115, 1220) influence from the 2D correlation spectra much more effectively,

X and all the real correlation peaks are recovered clearly. This
> 0, #(1198, 1050)> 0, and®(1198, 1220)< 0. This result ;
is in accordance with the simulation setting that two bands at result strongly supports that the four smooth eigenvectors have

. . . . i Il h i i | inf i f
1050 and 1198 data points intensify gradually while the other rationally extracted the pertinent signal information even from

wo bands d in intensitv. Th di h the noisy spectra, which can be used to explain with a higher
0 bands decrease In Intensity. 1ne corresponding asyncirosq, o1 o confidence the physical phenomena happening in the
nous 2D spectrum is depicted in Figure 5a, where six cross-

4 ; - dynamic system. Other eigenvectors are regarded as noise
peaks are present on account of different rates of intensity y y g g

it f the four bands. F the si £ th h representatives and hence truncated for noise filtering. In
variations ot the four bands. -rom the sign ot these asynchro- contrast, the 2D correlation spectra that are resulted from the
nous cross-peaks together with that of the synchronous cross-

ks. it is deduced that the t | behavi  their oh ordinary PCA eigenvector reconstruction have not been im-
Eﬁgﬂ;é; IsccﬁrLijr?ethe cidereofTszc())riosg f“ﬁrls;; 1fg8p aseproved so much. The asynchronous spectrum is still unaccept-

. X : . le, the fri f peaks in Fi A ibl
which agrees with the simulated rates. This example reveals{jlbe and the fringes of peaks in Figure Sc are worse. A possible

the fact that th h °D ¢ ticular! reason is that the ordinary eigenvectors obtained by PCA still
€ fact that the asynchronous Spectrum can particuiarly ;i o qe some noise, which cannot be completely eliminated from
reflect some subtle spectral features taking place in dynamic

- .~ the data, as delineated in Figure 6.
spectra. .Hereof, thg asynchronous 2D spectrum is susceptible If eigenvectors other than significant eigenvectors are reserved
to e.xpenmental noise. for data reconstruction, the reproduced correlation peaks become
Figures 4b and 5b show the synchronous and asynchronousygrse and more spurious peaks appear. Figures 4e and 5e show
2D spectra directly derived from the noisy spectra with a noise ¢ synchronous and asynchronous 2D correlation spectra
level of 0.05. The noise introduqes many serious art[fact peaks derived from the reconstructed data using six ordinary PCA
and obscures the 2D correlation spectra. In particular, the gigenvectors. It is noted that the information about correlation
asynchronous 2D correlation patterns are badly disrupted. As apeaks of the reconstructed data has been contaminated by more
consequence, it becomes very difficult to discern spectral hyise. On the other hand, an incorrect elimination of significant
features on the 2D-COS maps, not to mention reasonably gigenvectors, for example, only two ordinary PCA eigenvectors
interpreting the temporal behaviors of spectral variations. It is used for data reconstruction, may lead to a distinct distortion
obviously necessary to remove noise from the input data before ot the resulting 2D correlation spectra (see Figures 4f and 5f)
2D correlation analysis so as to reduce the noise influence onpecayse some real information about the system behavior is lost.
the 2D correlation spectra as much as possible. The spectral features on such 2D-COS maps may not be used
The eigenvector reconstruction is thus considered for filtering to determine correct spectral temporal behaviors.
noise. Pursuant to the determination of significant eigenvectors  Due to the limitation of space, further discussions of the noise-
of the noisy datX of 0.05 noise level exemplified previously, filtering effect of the NPFPCA and ordinary PCA in relation to
four ordinary eigenvectorsi( i = 1, ..., 4) obtained by PCA  the other noisy data of three noise levels 0.001, 0.005, 0.01 are
and those smooth eigenvector$®(i = 1, ..., 4) obtained by ~ not shown here. In general, the synchronous 2D spectrum is
NPFPCA have undertaken reconstructing the data With—= less sensitive to noise. The noise does not influence the
X[ry, o, I3, rgry, ra, r3, rg7 and Xey = X[rflo, rf2°, rf3°, asynchronous 2D spectrum much if the noise level is weak.
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Figure 8. (a) Reflection-absorption infrared spectra in the region . 041 . .
3030-2840 cnt of a PHB thin film, (b) spectra reconstructed from geometric effectd®4! Fourier transform infrared spectroscopy

the first three ordinary eigenvectors obtained by PCA, and (c) spectraiS a very sensitive technique to probe submolecular and
reconstructed from the first three significant smooth eigenvectors segmental constituents of polymeric system during the phase
obtained by NPFPCA transition, but for thin film samples, the signal-to-noise ratio of
infrared spectra is not always satisfactory. PHB is one of the
However, the influence of noise on the asynchronous 2D thermoplastic polymers of considerable industrial interest due
spectrum becomes serious in the case of heavy noise. It carto its biodegradabilit$?#3 and has been a subject of active
introduce artifact peaks, cause correlation peaks to change, orscientific investigationd*46 Herein, the reflectiorabsorption
sometimes make the asynchronous 2D spectrum useless. Bynfrared spectra of a PHB thin film were chosen for demonstrat-
using smooth eigenvectors obtained by NPFPCA to reconstructing the noise-filtering effect of the NPFPCA method for 2D
the spectroscopic data, it is possible to reduce the serious noiseorrelation analysis.
interference on 2D correlation spectra much better than the Figure 7 shows temperature-dependent refleetalvsorption

0.0051

ordinary PCA. infrared spectra of the PHB thin film. From this figure, it can
4.3. Application of Noise Perturbation in Functional be seen that distinct spectral variations take place in several
Principal Component Analysis to Reflection-Absorption regions with temperature. Particular attention should be paid to

Infrared Spectra of a PHB Thin Film. Thin film technique is the spectral changes in four characteristic regions, 3@840,
very interesting in the studies of physical behavior and me- 1790-1700, 1346-1150 and 1006800 cnt?, where bands are
chanical properties of polymers because of its restricted ascribed to the €H, C=0, C-0-C, and C-C stretching
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Figure 10. 2D correlation spectra calculated from reconstructed data Figure 11. 2D correlation spectra calculated from reconstructed data
obtained by three ordinary eigenvectors of PCA: (a) synchronous; (b) obtained by three smooth eigenvectors of NPFPCA: (a) synchronous;
asynchronous. Solid and dotted lines represent positive- and negative-(b) asynchronous. Solid and dotted lines represent positive- and
going peaks. negative-going peaks.

vibrations reflecting largely the melting behavior of semicrys- data. The data reconstructed from the three smooth eigenvectors
talline PHB thin film24 It is relatively easy for the three regions  obtained by NPFPCA appear rather smooth, as shown in Figure
1790-1700, 1346-1150 and 1006800 cn1! to be directly 8c, and look much better than the original spectra in this region
subjected to the 2D correlation analysis, because their responsivgFigure 8a) or those reconstructed from first three ordinary
intensities are strong enough not to be interfered with by noise. eigenvectors obtained by PCA (Figure 8b). Note that by using
However, in the region 30362840 cnt! the situation is NPFPCA the primary spectral features remain intact, while noise
different. The original reflectiorabsorption infrared spectra is selectively filtered.

are very noisy, perhaps due to the low signals, as shown in  The synchronous 2D correlation spectrum generated from the
Figure 8a. These spectra should present a significant challengaeconstructed spectra obtained by three ordinary PCA eigen-
to 2D-COS. The NPFPCA method is exploited to filter the data vectors is still slightly interfered with by noise. The effect of
to remove noise as much as possible. The penalty parametenoise is much worse on the asynchronous 2D correlation
value ofa = 2 and 49 synthetic perturbations of noise with spectrum, for the original infrared spectra in the 362840

zero mean and standard deviation of 0.01 of the maximum bandcm~! region (Figure 9), as well as for the reconstructed data
absorbance are used for NPFPCA. Three significant smoothusing ordinary PCA (Figure 10). In contrast, there is an obvious
eigenvectorsifo (i = 1-3) are obtained and used for the data beneficial reduction of spectral artifacts or spurious correlation
reconstruction and noise filtering. For comparison, the same peaks on the 2D-COS maps derived from the reconstructed
spectra are reconstructed by three ordinary PCA eigenvectorsspectra obtained by three smooth eigenvectors of NPFPCA, as
for noise filtering. Parts b and ¢ of Figure 8 show the resulting illustrated in Figure 11. Figure 12 shows the comparison of slice
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x10° with those located at 3009 and 2997 ¢imThese observations

i i ' i suggest that the three bands at 2985, 2945, and 2922\ary
a in the same direction, opposite to those at 3009 and 299%.cm
As the temperature increases, the former are intensified.
Therefore, we conclude that the bands at 2985, 2945, and 2922
cm ! are all associated with the amorphous part of PHB. On
the other hand, the intensities of bands at 3009 and 2997 cm
decrease, indicating they are from the crystalline state of PHB.
In the asynchronous 2D spectrum, the amorphous band at 2985
cm~1 shares positive cross-peaks with the crystalline bands at
3009 and 2975 cn, suggesting that the amorphous phase does
not appear simultaneously with the disappearance of the
crystalline state. Furthermore, there is no asynchronicity between
any of crystalline bands (3009, 2997, and 2975 &nin this
spectral region. As a result, it is revealed that the intensity
changes of the crystalline bands in this region likely occur

151

original

NPFPCA

! L !

3030 3000 2970 2940 2910 2880 simultaneously.

Wavenumber (cm™) The bands in the 30382840 cn! region are mainly due to
5 the CH; stretching, CH stretching and CH stretching modes.

The 2985 cm! band is ascribed to the amorphous part and those
at 3009 and 2975 cm are from the PHB crystal structure. For
PHB, the CH group exists only on the side chain and the,CH
group is located on the skeletal chain. The unusual appearance
of the CH; asymmetric stretching band at 3009 dis attributed

to the existence of a €H---O=C hydrogen bonding in this
systent445

of NPEPCA 5. Conclusion

Intensity

The present study discusses how the presence of heavy noise
influences 2D-COS results. It was demonstrated that the
NPFPCA method effectively filters out a significant amount of
the noise from the spectral data for more reliable 2D correlation
analysis. This method is able to accurately determine the number
of significant eigenvectors representing signals. The technique

2t

1

3030 3000 2970 2940 2910 2880 was especially effective for the reflectierabsorption infrared
Wavenumber (cm™) spectroscopic data of a very thin polymer film interfered with
Figure 12. Slice spectra at 2985 crhextracted from (a) synchronous ~ N€avy noise, by providing a set of smooth eigenvectors to
and (b) asynchronous 2D correlation spectra obtained from the original reconstruct the data. The resulting reconstructed data free from
spectra in the region 303@880 cni* and the corresponding PCA  the noise effect can lead to more reliable 2D correlation spectra,
and NPFPCA eigenvector-reconstructed data, respectively. enabling much easier and accurate interpretation.

spectra at 2985 cmt for the synchronous and asynchronous
2D correlation spectra resulted from the original spectra and . . . . .
reconstructed data obtained by ordinary and smooth eigenvec-SOUth University, P. R. Chlna, for the valuable d'SCUSSLO“ on
tors. It is apparent that the slices of correlation spectra from the NPFPCA me}hOd'. This stud_y was s_uppqr_teo! by Open
the original spectra and ordinary PCA eigenvector-reconstructed Research _Center Project for_ P_nvate Unlversmes. matching
data are almost the same. They both contain a similar level offund SUbS'.dy from MEXT (Ministry of Education, Culture, .
noise interference, which results in spectral artifacts in the Sports, Sugnce 'and Technology), 2001'2095’ af?d by Kwanse
synchronous and asynchronous 2D correlation spectra, especiall "?"‘“'“ Unlversny" Special Research Project “Environment
in the region 29662935 cnt! (Figures 9 and 10). It is very riendly Polymers”, 20042008.
hard for the PCA eigenvector reconstruction to filter the noise
influence from the spectra in this situation. Not only is the noise
influence reduced much from the 2D correlation spectra but (1) Noda, I.J. Am. Chem. Sod.989 111, 8116.
also the primary informative features of the input spectra are ~ (2) Noda, I.Appl. Spectroscl993 47, 1329. ,
well preserved. The quality of the correlation spectra resulted Amé\?i%:aonzl?ligtizj.t’e,\i)(f)dlfl“lylgirg\sl?_B:er\r/]vegzlgkr,]égoggrrelanon Spectroscopy
from the reconstructed data by three smooth eigenvectors of ~ (4) Noda I.; Ozaki, Y.Two-Dimensional Correlation Spectroscopy:
NPFPCA, in particular the asynchronous 2D spectra, is im- Applications in Vibrational and Optical Spectroscopjohn Wiley &
proved to a legible level. The spectral variations occurring in 50”55:‘ %h'ChESti‘Tv 5'%20(14'5 0561998 52, 1583
this region are much easier to interpret according to the &3 H;?rriﬂgtcor';, B e B‘).?Urbg;cAﬂ.);STandler, B Cremom. Intell Lab.
correlation patterns. Syst.200Q 50, 149.

Four autopeaks are clearly observed at around 3009, 2985, (7) Meier, R. J.; Steeman, P. A. Mippl. Spectrosc2002 56, 401.
2945, and 2922 crit on the synchronous map. The peak located ~ (8) Noda, I.; Ozaki, Y Appl. Spectrosc2003 57, 110.
at 2985 cm! together with two bands at 2945 and 2922 ¢ém mok(e%)ms:z%%% 5'6" E';"l‘jl"g_o"' S.; Coleman, M. M.; Painter, P. 1gacro-
share three positive cross-peaks at (2985, 2945), (2985, 2922), (1) Czarnecki. M. A Appl. Spectrosc2003 57, 107.
and (2945, 2922) cni. Also, they share negative cross-peaks  (11) Czarnecki, M. AAppl. Spectrosc2003 57, 991.
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