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In this article, we discuss the application of master equation methods to problems in gas phase chemical
kinetics. The focus is on reactions that take place over multiple, interconnected potential wells and on the
dissociation of weakly bound free radicals. These problems are of paramount importance in combustion
chemistry. To illustrate specific points, we draw on our experience with reactions we have studied previously.

Introduction there are two special cases for which we can solve a two-
dimensional master equation with and J, the total angular
jmomentum quantum number, as independent variables. The first

reactions are rarely of the type encountered in textbooks. More ©f these cases is the collisionless (or zero-pressure) limit for
frequently, they are complicated processes that take place ove@NY Multiple-well problem; the second is the irreversible, single-
multiple, interconnected potential wells. In combustion, the field Well (but multiple product channel) dissociation (or isomeriza-
with which we are most familiar, such reactions completely tion) of a m_olecule. These special cases provide us \_Nlth_a means
dominate our understanding of how aromatic compounds, for eva_lluatlng when angular mom(_antum conservation is likely
polycyclic aromatic compounds (PAH), and soot are formed in t0 be important. However, more importantly, both cases are
flames!'~7 They are the critical steps in N©@ontrol strategie%,” directly applicable to a wide range of important problems. Of
and they play an important role in sulfur chemistfy?! They particular importance in combustion is the dissociation of weakly
are also pivotal in predicting the chemistry of low-temperature bound free radicals. In the present article, we discuss our
oxidation, cool flames, and engine knot%26 Such reactions  solutions to these two problems as well as the general multiple-
may be bimolecular (i.e., chemically activated), or they may well methodology.
be thermal dissociation/isomerization processes. Some of the Considerable confusion exists concerning the theoretical
former are “collisionless” in that the intermediate complexes description of chemical reactions of the type that concern us in
are so short-lived that they effectively do not suffer any this article, reactions that inherently involve nonequilibrium state
collisions under conditions that are normally of interest. distributions. Most of this confusion stems from the failure to
However, intermediate complexes more commonly live long make a distinction between a rate coefficient and what might
enough to suffer numerous collisions. In such cases, any of apest be called a “flux coefficient”. A flux coefficient is exactly
number of stabilized or bimolecular products may result. These ywhat the name implies: for first-order processes, the product
reactions (unimolecular or bimolecular), which dominate virtu- of a flux coefficient and the reactant concentration gives the
ally all applications of chemical kinetics, require a theoretical fjyx from one molecular configuration to another. For such
description in terms of a time-dependent, multiple-well master rocesses, the flux coefficient is the probability per unit time
equation (ME). _ ~of the reactant making a transformation to the product. A rate
In the pages that follow, we discuss not only the formulation ¢qefficient cannot (in general) be interpreted in this way. All
and solut_lon of the multiple-well master equation but also the yifrerences between the two are connected with weak energy-
systematic procedure we have developed over the past few Ye&l¥ansferring collisions, either in the reactant, the product, or in
for determining phenomenological rate coefficients from such ;. intermediate complex. A succinct, lucid, and insightful
solutions. Of course, it is these rate coefficients asa function discussion of the differences between these two rate parameters
of temperature and pre§surE(T,p), that are required for (and others) is given in a seminal article written by Widom
modeling the macroscopic phenomena of interest. The meth-Over 40 years agd, What we call a flux coefficient is the rate
odology d_iscuss_ed below for_multipl_e-well problems is re_stricted coefficient ‘" in Widom’s paper, although we use the term
to on_e-dlmensmnal .MES In which the tc_>ta| rotational somewhat more generally than Widom does (the term flux
vibrational energyE, is the independent variable. However, coefficient appears to have originated with Aguda and Prit-
*To whom correspondence should be addressed. E-mail: chard®). One goal of the present article is to illustrate with some
jamille@sandia.gov. specific examples the pitfalls and flawed conclusions that can
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In applications of chemical kinetics, such as combustion,
atmospheric chemistry, and chemical vapor deposition, chemica
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occur when one does not make the proper distinctions. This
approach also serves to illustrate the power of the methods
described in the present article.

The mathematical development below is presented using
Dirac notation. For those who are not familiar with this notation,
in the present context, one can simply assume that thévket
represents a column vector and that thelBfaepresents a row
vector. With this small difference, everything else is the same
as in ordinary matrix algebra.

Formulation of the Multiple-Well Master Equation

In the present context, the most primitive form of the master
equation can be written as

dni(t
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an equation of the same form as eq 1 from the Schrodinger
equation describing the time evolution of a many-body system.
Pauli’s equation is valid under conditions that require the
microscopic processes underlying the transition probabilities,
pi, to be chaotic, thus making the equation itself Markovian.
Consequently, the master equation, the Pauli equation, and the
forward equation are really all the same entity.

The populationspi(t), in eq 1 generally refer to quantum
states, or at least to small numbers of quantum states. How-
ever, in principle, any linear system of first-order rate equations
is of the form given by eq 1 and could be called a master
equation. This appears to be the spirit in which the term is used
in treating problems involving atomic clusters, peptides, and
proteins31-33

In molecules other than diatomics, there are too many states
at energies of interest to resolve them all. Since we are primarily
interested in fairly large, polyatomic molecules (or collision
Stephen J. Klippenstein received a B.S. in Chemistry and Mathematics COmplexes), it is necessary to adopt a contracted, coarse-grained
from the University of British Columbia in 1983 and a Ph.D. description of these molecular systems. Instead of solving a
in Chemistry from Caltech in 1988, working under the direction master equation for the popu|ations of individual states, we

of R. A. Marcus. After one year of postdoctoral research with Casey ; ; ; ;
Hynes at the University of Colorado, Boulder, he joined the faculty in formulate our ME in terms of populations of states with energies

the Department of Chemistry at Case Western Reserve University, in P€tweenE andE + dE, or populations of states with energies
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10530 J. Phys. Chem. A, Vol. 110, No. 36, 2006 Miller and Klippenstein

good constants of the motion in the isolated molecule (or We can cast eq 3a in a more usable form by applying

complex), the total energy and the total angular momentum. microscopic reversibility to the R+t m = i reaction, thus

Quite frequently, states are distinguished only by their total replacingks(E,J) prm(E.J)eHQrm(T) by Keq(T) kg (E.J) Fi(E,J),

energy. whereKeq(T) is the equilibrium constant for the R m =i
Generally, the transition probabilities appearing in eq 1 are association reaction arfel(E,J) is the equilibrium population

of only two types, reactive and collisional. In astrophysical distribution in welli at temperaturd

problems, radiative processes can also be significant, but they

are negligible for applications that interest us here. To be Fi(E.J) =pi(E,J)e_ﬂE/Qi(T) 4)

concrete about the problem definition, we envision an experi-

mental situation in which we are trying to measure the rate In eq 4,Q(T) is the vibrationat-rotational partition function

coefficient and product distribution for the reaction for the ith well and pi(E,J) is the corresponding-resolved

density of states. The ME becomes
R + m= products

dn,(E,J)
where the reactants m and R are heavily diluted in a bath of : = ZimePi(Ev‘J;E'vJ') n(EJ) dE' — Zn(EJ) —
the inert gas B. Moreover, as is commonly the case in such  dt Eo
experiments, we assume that one of the reactants, m, is ™ M
maintained at a concentration that is in great excess over that Zkﬂ(E,J) n(E,J) + Zlqj(E,J) nN(EJ) — ky(EJ) ni(EJ) +
of the other, R, thus rendering the reaction pseudo-first-order = = '
in ng, the number density (or concentration) of R. Thus the Np
following inequality holds: Keqka (E:J) Fi(EDngn,, — Zlkpi(E,J) n(E,J)
=

Ng > Ny, > N &) i=1,..,M (3b)

whereng is the number density of the inert diluent ang is Both forms of the association rate term in the master equation

that for the “excess” reactant. Typically, R is a radical and m assume that the reactants, m and R, are maintained in thermal
is a molecule, but the analysis below applies regardless of theequili_brium with the bath gas throughout the course of thg
nature of R and m. The master equation for such conditions is reaction. The form shown in eq 3b has the advantage that it

linear and can be written as does not require the explicit calculation @f«(E,J), which is a
complicated convolution of the state densities of the two
dn,(E,J) . fragments R and m. Nevertheless, we utilize both formulations
= ZiZonPi(E’J;E"J') n(E'\J) dE' — Zny(E,J) — in the discussion below. In chemical kinetics problems, it is
dt ' common to use the one-dimensional form of eq 3b in witich
M M is the only independent variable, rather than the two-dimensional
iji(E,J) n(E,J) + Zkij(E!‘]) n(EJ) — ky(EJ) ni(E.J) + formulation in terms of bottE and J. This is an enormous
1= = simplification. It is useful to write out the one-dimensional ME
s No for clarity:
ED Metprn(E D 1Qan = 3 I, (E N(E) e
p= n, "
i=1,..,M (3a) P Z .. P(EE) n(E) dE' — Zn(E) —
In eq 3a,ni(E,J) dE is the concentration of isomerof the M M
complex (corresponding to thiéh well of the potential) with iji(E) n(E) + Zkij(E) n(E) — kdi(E) n(E) +
an energy betweel andE + dE and with angular momentum = =
quantum numbed; Z is the collision rate of complek with Np
the diluent molecules, is the ground-state energy of isomer Keq-kd‘(E) F.(E)ngn,, — kai(E) n(E)
i; P(E,J;E',J) is the probability that a collision will transfer a p=
molecule in welli from a state with an energy betweEhand i=1,..,M (3c)
E' + dE' and with angular momentum quantum numieto a . . o
state with an energy betwees and E + dE and angular The second of the inequalities (2) implies that= constant,

thus “linearizing” the master equation. Consequently, we need
coefficient for isomerization from wejlto well i; kg is the rate only to add a rate equation fak(t) in order to close the system.
coefficient for dissociation of isomérto the reactants m and Again assuming that the reactants are always in thermal
R; k,(E,J) is the analogous rate coefficient for dissociation from €quilibrium with the bath gas, we can write such an equation
well i to a set of bimolecular productg; N, is the number of N the following form:

such sets of product$/ is the number of wellsky(E,J) is the

momentum quantum numbaérk; (E,J) is the unimolecular rate

M
association rate coefficient for the formation of isom&mom % _ fmkd(E) n(E) dE —
the reactantsQrm(T) is the reactant partition function (including gt ; Eq U !
relative translational motion)rm(E,J) is the corresponding, M
J-resolved density of states; anftl= (ksT)~1, wherekg is S K. [ k.(E)E(E) dE (5
Boltzmann’s constant. In principle, one should also include RimZ equOi EFE ©®)

terms in eq 3a that describe reassociation of the bimolecular

products. We discuss such a formulation for the general caseWe should note that the assumption of thermal equilibrium for
below. However, in practice, we neglect these terms, and the reactants is not very restrictive. All combustion, atmospheric-
consequently, we do not include them in eq 3a or the equationschemistry, and chemical-vapor-deposition modeling makes this
that follow. assumption, and experiment suggests that it is accurate. The
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form of the rate equation fong(t) given in eq 5 is one- variational TST for dissociation/recombination reactions, whether
dimensional; the extension to two dimensions should be the latter have an intrinsic barrier or not. Again, the precise
straightforward. Equations 3 and 5 constitute a seof 1 methodology can vary from application to application, and it is
integro-differential equations for the unknown populations, best to consult specific articles for details of the methods
ni(E) andng in the one-dimensional case. Except for the analysis employedt?-58
of the collisionless limit given below, unless noted explicitly, There is a subtle, but important, point to be made about the
we limit the remainder of our discussion of multiple-well transition probabilitiesp;, and rate coefficients, includinignm
problems to the one-dimensional case. and ZP(E,J;E',J), that appear in the master equations given

The form of the collisional energy transfer term in eq 3c above. These parameters are in fact flux coefficients. They are
implies two assumptions: (1) that any rate coefficient for energy computed on a microscopic level as fluxes from one state to
transfer is factorable into a collision ral&F'), and a probability another, or from one set of states to another. They can be inter-
density function,P(E,E'), (2) and thatZ(E') = Z, a constant preted unambiguously as the probabilities per unit time of mak-
independent of energy. ing the indicated transitions. This is in sharp contrast to the

These assumptions are not restrictive as long as the value ofphenomenological rate coefficients that we derive below from
Z is sufficiently large and as long asandP(E,E') are chosen the master equation. In this latter case, to obtain unambiguous
consistently; that is, one must define a collision the same way results, one must appeal to the fundamental definition of a rate
in calculating both of these two quantitigs38 It is common coefficient in terms of the time evolution of the species con-
practice to takeZ to be Z ; the Lennard-Jones collision rate. centrations in a closed system. In general, this is a fundamental
Such a choice is probably sufficiently accurate for weak colliders distinction between the microscopic master equation and an
(atoms and diatomic molecules), but it fails miserably for large arbitrary system of phenomenological rate equations. One should
molecules and molecules with permanent dipole moménts. be aware that application of the steady-state approximation to
We have takerZ = Z,; in all our work to date. This choice  the master equation (i.e., seeking solutionstima-independent
facilitates comparison of our derived or assumed energy transfermaster equation) is virtually always an attempt to equate a
parameters with those of other workers, who virtually always phenomenological rate coefficient to a flux coefficient. Some-
assume& = Z ; — the Lennard-Jones collision rate has become times this is a valid approach, and sometimes it is not.
a de facto standard.

Similarly, it is common practice in master equation modeling Solving the Master Equation and Obtaining
to assume a single-exponential-down function RE,E"), in Phenomenological Rate Coefficients from Its Solution

which The Limiting Cases. The master equation has been formu-

lated and solved many times in the past in a number of different
exp—AE/a), E<FE (6) ways (the articles by Fernandez-Ramos éfalnd Pilling and
Robertsof give extensive lists of references). There even have
been several attempts to solve the two-dimensional ME in some
special case¥% However, as noted in the Introduction, we
restrict our attention in this article, for the most part, to the
one-dimensional problem. Nevertheless, for bimolecular reac-
tions involving potential wells, there is an important case for
Lo : ; which one can solve the 2-D ME almost as easily as the 1-D
o.. However, it is fairly clear now, both from classical trajectory - e o

problem. That case is the collisionless (or zero-pressure) limit,

gﬁlr(;:tljtl?gsrsggn{;%n;segpb?(g? ?)r;lt:niial E;Egrlrfe rg&r:r zjcr;ctionObtained by taking the limi =0 in the master equation. Many
- y repre . por S important reactions actually occur under nearly collisionless
with a long tail. Thermal dissociation/recombination rate coef-

ficients are not very sensitive to the form B{E,E"), just to conditions in practical applications, particularly reactions that

[AE,Cor [AED) the average energy transferred in all collisions, involve a relatively sm.aII number' of atoms' and relatively
- . . shallow wells. The classic example is the reaction between NH
This may not be the case, however, for bimolecular reactions

. ) : . and NO%78” Moreover, since in the absence of collisiodss
over potential wells, particularly those for which potential energy . . .
. . L : . a good constant of the motion during the entire course of the
barriers to isomerization or fragmentation to bimolecular

roducts lie much lower in enerav than the reactants. An reaction, comparing 2-D solutions of the ME with their 1-D
P . 9y . counterparts might be expected to give the maximum effect of
encumbrance to using more complicated (and accuP4EEE')

angular momentum conservation on the thermal rate coefficients.

functions is that more parameters must be assigned in these In the paper by Hahn et # we derived general expressions
cases, and there are no systematic procedures available fo; paper by Hann et &, . g P
or |kol) the vector (in Dirac notation) of rate coefficients for

giﬁ&%n;'g(;grfgr'g(%egg ria;I. S:S%r(‘jszlqu;igtl)é;gi;'33:;}?&0;;2?al'producing the various sets of bimolecular products in the absence

equation modeling. withe being a function of temperature. or of collisions. This derivation is a generalization of that originally
q 9, €ing P ' given by Miller, Parrish, and Brow#f We summarize the results
temperature and energy, in some cases.

Our master equation model requires rate coefficiek(s,) here. If one takgs the lim& — 0 in eq 3a, the resulting equation
. . o ; . can be written in the vector form
or k(E), for all the various isomerization and dissociation/
recombination processes involved in the reaction. These rate
- : : ) . din(E,J)0

coefficients in turn require accurate information about the ————=
potential energy surface (PES). Discussing electronic-structure dt e
methodology would take us too far afield, so we shall not do —K(E,J)IN(E,J)H ngny|b(E, ) prm(E e I1Qrm (7)
that here. The methods employed for any particular application
are discussed in our papers on those applicatiort§ Values where [n(E,J)is the vector of population densities for given
of k(E,J) are determined from the PES using transition-state values ofE andJ, that is, each component of the vector consists
theory (TST), usually conventional TST for isomerization and of the population of a different well at the particularand J

P(EE) = C.(E)

where Cy(E') is a normalization constant amsE = E' — E.
The activating wing ofP(E,E') is determined from detailed
balance. The use of eq 6 f&(E,E') is simply a matter of
convenience: the parameteris equal tolAE4[) the average
energy transferred in a deactivating collision, as long:'as
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values under consideration. The elements of the m&ifxJ)

Miller and Klippenstein

rate coefficients can be computed simply as “capture” rate

are algebraic sums of isomerization and dissociation rate coefficients, that is,

coefficients; its diagonal entries are all positive, and its off-
diagonal entries are all negative. TH¥E,J)(lvector contains

all of the association rate coefficients (microcanonical,
resolved). Applying the steady-state approximation to eq 7,
solving for|n(E,J)[Jand substituting into the equation describing
the rate of formation of bimolecular products,

diP(E,J0
dt

= D(EJ)In(E. )0 (8)
one obtains an expression for the rate of formation of the
products,

diP(EJ)0
da
D(E,J) K {E.J)Ib(E.J) DN yorn(EJ)e F/Qer(T) (9)

In equations 8 and 9, the component$R(E,J)Care the number
densities per unit energy of the different sets of bimolecular
productsK~(E,J) is the inverse of th&(E,J) matrix, andD(E,J)

is the matrix whosg j element is the dissociation rate coefficient
from well j to producti. Note thatD(E,J), K(E,J), and|b(E,J)0

1
- « —BE
k(M= QRmZ(ZJ +1) [TINEJEEdE  (11)

Note that the components [.(T)Cand|Ny(E,J)Care zero unless
the product of the reaction corresponds to a well that is directly
connected to the reactants. Of course, one can simplify eq 11
further if one chooses to implement conventional transition-
state theory in calculating the fluxes and to neglect tunneling
(in which case the rate coefficients can be expressed in terms
of ratios of canonical partition functions). However, we rarely
choose to implement such approximations. In the present limit,
that is,Z — oo, collisions are so dominant in the complexes
that thermal equilibrium is established before any subsequent
reaction can take place. Therefore, the only products formed
are the initial adducts. A similar situation arises in isomerization.
As Z— o, only isomerization between adjacent configurations
occurs. However, at lower pressures, isomerization can “skip
wells”. We illustrate this point below for allene isomerizing to
propyne and cyclopropene.

Equation 11 has a form similar to that of eq 10b in that both

can be very sparse, because not every well is directly connected@n be viewed as defining operators that transform the micro-

to every other well, and any particular well need not be directly
connected to the reactants or any particular set of products.

If one integrates eq 9 ovét and sums oved, the vector of
thermal rate coefficients is easily identified as the factor
multiplying ngrnm

k(M=

1 o
(23+ 1) [ D(E,J) K{E,J)|b(E.J)pe(E.J)e E dE
QRmmZ S "
(10a)

One can go one step further and eliminate the troublesome den

sity of statesprm(E,J), from eq 10a by substituting the RRKM
expressionk(E,J) = N'(E,J)/ho(E,J), for all the rate coefficients,
whereh is Planck’s constant, anN'(E,J)/h may be regarded

as a flux per unit energy through the relevant transition-state

dividing surface. When this substitution is madkthe densities
of states cancel 0% and we are left with the result

k(M=

l 00
— S (23 + 1) [ Ng(EJ) NXEJI)N(E,I) & PEdE
12 Jo NolED N ’

(10b)

whereNp, N;l, and|NpCare related td, K1, and|blin that
the former contain only the numeratdf(E,J) in the corre-

canonicall-resolved association fluxes into phenomenological
rate coefficients. Alternatively, if one takes the summation over
Jinside the integral in the two equations, it is easy to recognize
that |ko[Oand |k.are both Laplace transforms of functions of
the various fluxes involved in the problem, withbeing the
Laplace transform variable. Note that, because of the nature of
the two limiting conditions, bothlko( and |k.,(J are flux
coefficients. The steady-state approximation is universally
applicable in the collisionless limit, because the lifetime of the
complex is necessarily much smaller than the time between the
formation of complexes under such conditions. In both limits,
thermal equilibrium exists in both the reactants and products,

‘and energy-transferring collisions play no role in determining

the rate coefficientsThe general rule is that the phenomeno-
logical rate coefficient and the instantaneous flux coefficient,
which remains constant in time, are identical if the reactants
and all the products can be assumed to be in complete thermal
equilibrium. Under such conditions, the forward andveese

rate coefficients can be treated independently and approximated
as flux coefficientsThis point is discussed again below. Note
that in this context “complete thermal equilibrium” refers to all
energy levels, not just the low-lying ones that determine the
temperature.

The General CaseAs noted above, in general, it is necessary
to probe the time evolution of the system under consideration
to determine phenomenological or thermal rate coefficients.
However, there are two special cases for which this approach

sponding rate-coefficient expression of the latter. Of course, theis not necessary: a direct abstraction reaction and any simple
components of the vectdko(T)Care the phenomenological rate  association/dissociation or isomerization reaction that is occur-
coefficients for all the bimolecular product channels. The ring in its high-pressure limit. In both of these cases, one can
advantage of eq 10b is that one never has to evaluate thesafely assume that both the reactants and products are in thermal
densities of states of the complexes or the reactants in using it.equilibrium. In such cases, the phenomenological rate coefficient
It can be useful and instructive to think of eq 10 as defining a is equal to the “equilibrium rate coefficientke,, another rate
matrix/integral operator that transforms the microcanonieal/  parameter discussed by Widom. The equilibrium rate coefficient
resolved association rate coefficients (fluxes) into the phenom-is a flux coefficient and is the long-time limit of the instanta-
enological, collisionless-limit rate coefficients. The reader should neous flux coefficient (Widom’sr”) for any two-configuration

be able to write down by inspection the analogous operators elementary reaction. Of course, in general, the latter is time

(and equations) for the case whekés not conserved.
The other limit that is of interest is that correspondingZto
— oo, that is, the high-pressure or infinite-pressure limit. These

dependent.
Now, let us describe how we go about solving the one-
dimensional master equation and obtaining phenomenological
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rate coefficients from properties of its solution. First, let us In eq 16,N is the number of eigenpairsl= 3 N + N, + 1,
consider a slightly more general approach than the one weandN; is the number of grid points in well the 1 is for the
actually use. To this end, assume that we have added terms timolecular reactants.

the ME, analogous to thEeqkqFi(E)nrnm term on the right- The eigenvalues d& are always real (becau&kis Hermitian)
hand side of eq 3c, that describe reassociation of the bimolecularand nonpositive (either zero or negative). In the present
products. Furthermore, let us assume that for each set offormulation, there is exactly one zero eigenvalligs= 0, whose
bimolecular products one of the components is maintained in corresponding eigenvector yields the relative state populations
great excess, analogousrig for the reactants. Of course, we  at complete thermal and chemical equilibrium. The remainder
must add an equation similar to eq 5 for the deficient component of the eigenvalues must be negative

in each of these sets of products. These assumptions maintain

the linearity of the master equation and allow us to treat all the 4<0,j=1..,N-1 (17)
chemical configurations (wells, bimolecular products, and

bimolecular reactants) equally in the analysis. We could ©r the solution to the ME (egs 15 and 16) would blow upt as
relatively easily work with the expanded master equation just — ®. We refer to the second largest (the least negative) eigen-
described, but instead, we assume in practice that any set ofvalue ofG asAs, the third largest aé,, and so on; the corres-
bimolecular products represents an “infinite sink”, that is, that Ponding eigenvectors afg.L]|g.L) and so forth. Once one has
such products, once they are formed, never return to the wells.the solution vector, it is a straightforward matter to obtain the
We describe this approximation after we deal with the more SPecies concentrations (or macroscopic populations) either

general case. directly (for the bimolecular components) or from the integral
Equations 3c, 5, and an equation analogous to eq 5 for the "
“deficient reactant” in each set of bimolecular products can be Xi(t) = L/I;Dxi(E,t) de (18)

combined into one (vector) master equation. After representing
the integrals in these equations as discrete sums using a simplg,; ihe wells. Ultimately

) ) . i it is these species concentrations that
rectangle rule with grid spacingE, one can cast the ME into

interest us, not the individual energy-level populations.

the forn?® Widom?”-69.7%describes the eigenpairs &f A;,|gi[] as “normal
dw(®)D modes of relaxation” of the system, eigenmodes. They describe
. Glw(t)O (12) the system’s approach to complete thermal and chemical equil-

ibrium from an arbitrary initial conditionl, as defined above,

where G is a real, symmetric (and consequently Hermitian) is a_lm_ost always a number in the tho_usands. I_—|owever, the vast
matrix, andjw(t)is a vector containing the (scaled) unknown Mmajority of these modes do not describe chemical change. They
populations simply adjus'_[ the re!atlve populations(E,t), _W|thout S|gn|f|_-
cantly changing the integraX;(t). They describe the relaxation
of the internal (rotationatvibrational) energy of the molecules
W)= [V(Eg), - (ED, - Wi(Ep), - V(B - whose stable structures correspond to the bottoms of the wells.
N o - We refer to these eigenmodes as IEREs (internal-energy
m Xer | (13) relaxation eigenmodes, eigenpairs, or eigenvalues). The remain-
QrmOE R der are CSEs (chemically significant eigenvalues, eigenpairs,
or eigenmodes). Under conditions where a phenomenological
In this last equationy(Et) = x(EN)/fi(E), where fi¥E) = description of the chemical kinetics might normally be expected
Fi(E) Q(T), x(EYOE is the fraction of the initial reactant to apply (i.e., a description in terms of elementary reactions
concentration that is present in welwith an energy between  and rate coefficients), the IERES relax orders of magnitude more
E andE + JE at timet, andXr is the fraction that is presentas  rapidly than do the CSEs. This is enormously useful in
R at timet. Note that the term “reactant” here can refer to R, simplifying the task of obtaining thermal rate coefficients from
one of the other bimolecular configurations, or one of the wells. the eigenvalues and eigenvectorsfin fact, one might argue
The three dots at the end indicate that there is a component ofthat such a separation of time scales is essential for a useful
the vector of the same form as{QrmOE)Y/2Xr for each set of  phenomenological description of the chemical kinetics to apply.
bimolecular products. If there are S species, or chemical configurations, in a
The Hermiticity of the transition matri allows us to solve problem, there are
eq 12 in exactly the same way that one obtains the general
solution of the time-dependent Schrodinger equation. One first Nepem=S—1 (29)

solves for the eigenvalues and an orthonormal set of eigenvectors
of G chemically significant eigenmodes in additionAg |gol] It is

very important to understand whychemis equal toS — 1 and
Glg= 4lg0 (14) what the function is of each of these eigenmodes. Let us answer
the first question first. Although we do not know the rate
Expandingw(t)Cin this basis, one can write the solution vector  coefficients yet, suppose that we attempt to describe the
in the form chemical kinetics of the problem with a set of rate equations.
A Of course, there must &first-order rate equations (including
WO L= Tiw(O)D (15) pseudo-first-order processes), which can be expressed in matrix

where|w(0)Uis the initial-conditions vector and is the time form as

evolution operator
P din0

f

N-1
T=% &g m (16)
JZ) /]

where K; is an Sx S matrix made up of the thermal rate
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coefficients. AlthoughK; is not necessarily Hermitian, we can a; = —AX;, j=0 (23)

go about solving eq 20 in exactly the same way that we solved

the ME itself, that is, by diagonalizing, and expandingnin where AX; is the population change of thi¢gh species that
terms of these eigenvectors. Barring special circumstamGes, accompanies the time evolution of tfie eigenpair front = 0

will have Seigenvalues an8linearly independent eigenvectors, tot = . The values of the\X;'s thus depend on the initial
and the solution will be expressible as a linear combination of condition, but they can be readily calculated from the solution
exponential functions of the forn¥ie wherey; is an eigenvalue  to the ME. Theg;’s and thel;’s are the fundamental quantities
of K.. There must be amo = 0 in order to force the needed to calculate the phenomenological rate coefficients.
concentrations to approach constant, nonzero (equilibrium) We have derived two different methods of obtaining the rate
values ag — . The remainingS — 1 eigenmodes oK, are coefficients from the chemically significant eigenpairs. The first
macroscopically equivalent to t® — 1 CSEs of the master  method, which we call the initial-rate method, utilizes different
equation. It is this macroscopic equivalence that allows us to initial conditions in evaluating tha;'s in eq 22. Differentiating
relate the rate coefficients to the eigenvalues and eigenvectorghis equation with respect to time and taking the litnit- O

of G. In fact, we can infer that; = #;, which of course must  results in the rate-coefficient expressiehs

be rigorously true, since both solutions are unique for a given

set of initial conditions and describe the same physical processes. Nehem 0
Now let us answer the second question posed above. The ki = Z;LjAXij
establishment of chemical equilibrium occurs in well-defined =
stages. Each of the chemically significant eigenmodes describes (24)
the approach to chemical equilibrium of one species with one Nehem 0
or more other species (although other chemical change can occur k= — Z leXIj
=

simultaneously). To understand this point, it is helpful to
consider a simple, but nontrivial example. Suppose at4,
and let us call the four speci&, S, S5, andS,. One way of
approaching equilibrium is for the fastest-relaxing CSE to
equilibrateS, with S,.. Then, 4,,|g.0could equilibrateS; with
the S, pair, and the slowest-relaxing mode could equilibrate
S, with the other three, thus establishing complete chemical
equilibrium. Alternatively Az,|g.0could equilibrateS; with S,
and 11,|g:0) the slowest-relaxing CSE, would then equilibrate
the S,S pair with the $,S; pair. Obviously, other ways of
establishing equilibrium can be envisioned in the present
example simply by permuting the subscripts on$se In more
complicated problems, the number of possible ways that
chemical equilibrium can be reached is quite large. Nevertheless
there are alway$ — 1 chemically significant eigenmodes.

For a problem withS species, there ar®k reversible
elementary reactions occurring simultaneously, where

whereks; is the total rate coefficient for converting specige
all products andk; is thei — | rate coefficient. The superscript
“(i)” on AX; andAX; indicates that specieésnust be the initial
reactant. This method is applicable only as lond/as,..| <
[ANgerst1]» SINCE T = 0” must be well defined. In other words,
there must exist a time period when all the IEREs have relaxed
to zero, but no reaction has occurred. In general, this condition
is not considered to be very restrictive. It is frequently presumed
to be a necessary condition for a rate-coefficient description of
the kinetics to apply.

The second approach is what we call the long-time method.
It consists of recognizing that eq 22 is of the same form as the
'solution to eq 20, that is, the solution to a system of first-order
rate equations. The task is to solve the inverse problem of
finding the phenomenological rate coefficients for the system
of reactions that generated the particular solution at hand. We

s1 gS-1) solved thi_s .problem and obtained the following results for the
No=SYn=—— (21) rate coefficient$?
'S 2
Nchem
If S= 2, Nk = Nenem= 1, and we can obtain both the forward kyj = — Z)ijaijbji
and reverse rate coefficients from the single eigenvalyend 1=
the equilibrium constant. However, in our recent study of (25)
propargyl recombination, there were 12 wells and two sets of Nehem
bimolecular products, making = 15, Nehem = 14, andNx = ki = Z;Ljaijbji
&

105. The actual value dflk is almost always slightly smaller
than that given by eq 21 because of our assumption that the
bimolecular products constitute an infinite sirtevertheless,
it is this large number of elementary reactions, all occurring
simultaneously, that makes it difficult to obtain the phenom-
enological rate coefficients directly from the time histories that
come from the solution to the master equation.

Under conditions where the IERESs relax faster than the CSEs
the macroscopic populations can be written as

In egs 25, if theg;'s are taken to be the elements of a matrix,
A, theby's are the elements of its invers®,= A~1. Equations
25 applies to all initial conditions, and more importantly, eq 22
(and thus the rate coefficients derived from it, eqs 25) is
applicable as long a®lnge < [ANgentil, @ l€SS restrictive
condition than that necessary for the initial-rate method to apply.
'As long as the vibrationalrotational relaxation period is over
before the chemistry is complete, there will be at least a short
Nenem period of time, late in the course of the reaction, when a
Xi(t) = Z ai-e’“t, i=1,..,M,Rpy, .. (22) phenomgnological desc!ription o_f the chemical k_inetic; _wiII
= ! apply, with the rate coefficients given by egs 25. It is sufficient
that there exist a distinguishable period of time, however small,
after the IEREs relax to zero. Th®g's (o = 1, ...) represent  when eq 22 applies.
the different sets of bimolecular configurations other than R.  For most conditions, the initial-rate method and the long-
The coefficientajo = Xj() is the equilibrium population of the  time method give the same values for the rate coefficients.
ith species, and However, as the magnitude @f .. increases and approaches

'chem
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that of Ang.+1 at high temperatures, the long-time method M
continues to yield good values for the rate coefficients when (AXg + AX, + ZAXi)J- =0 (28)
the initial-rate method fails. Nevertheless, the initial-rate ap- i=

proach is most commonly the method of choice, simply because o )
it is easier to apply. Thus, after obtaining\Xg; and AX; from the solution to the

ME, one can calculat&X,; from eq 28. These results, coupled

) ”n . . )
Blitz et al?! recently derived different, but equivalent, with the obvious long-time limits,

expressions for the long-time rate coefficients. They worked
directly with the ME, rather than with its solution. Thus, there
was no constant of integration requiring an initial condition.
As a result, they were able to show explicitly that the rate
coefficients obtained are independent of the initial condition.
In a seminal paper in 19_74, Bartis and .W.idﬁnmsed an Xo(00) = X(0) =0, i=1,..,M (29)
approach to the rate-coefficient problem similar to the long-
time method descr!bed above: bu.t with an an|t|ona| assumptlon.can be inserted into eqgs 24 and 25 to obtain the thermal rate
The essence of this assumption is that, during the course of thecoefficients.
reaction, the state populations are not perturbed greatly from 5 o+ glightly more difficult to obtain the\X's for the
thqr ethbnum values..\'/vnh this as'sumptlon, Bartis and bimolecular products and tfte~ c population limits when there
Widom glenved rf'ate-coefﬂment expre§3|on§ analogous to eq 25is more than one set of such products. We shall not discuss this
that ?"?“Sfy Qe_teuled balance exactly; that |s,_the forward rate case here. The derivation is given in detail in our paper on
coeff_lcu_ant divided by the reverse rate coe_ff|C|ent equals the reactions that occur on agB, potential®®
equilibrium constant. Although no proof exists that the rate-

e . . . ; It happens frequently in practical applications that at high
coefficient expressions given above s_atlsfy detailed bal_ance, theytemperatures the large separation between the magnitudes of
normally do, at least to within numerical error. We believe that th

detailed bal . - I lid althouah . P e CSEs and those of the IERES ceases to exist. What happens
etailed balance Is uryversa y valid, alt ”oug MO rgorous proot js that a CSE increases in magnitude with temperature until it
exists for more than “two-configuration” problems.

approaches the quasi-continuum of IEREs and then becomes
The rate coefficients that one derives from eqs 24 and 25 arejndistinguishable from them. We can still determine rate
first-order or pseudo-first-order rate coefficients. In cases where coefficients under such conditions. One must first identify the
the reactions are really bimolecular, one must divide these ratefunction of the particular eigenpair that is being absorbed by
coefficients byny or its equivalent to obtain the true rate the IEREs, and then at higher temperatures we combine the
coefficients. The device introduced above to linearize the mastertwo (or more) species being equilibrated into one compound
equation, particularly that of including a species in excess for species. One then can proceed as described above with the
all the bimolecular products, may seem somewhat artificial at values of S and Nenem reduced by 1. The conditions of
first. However, one must bear in mind that our objective is to applicability of the two methods of determining the rate
obtain the rate coefficients, which are assumed to be transport-coefficients must then be reinterpreted in terms of the reduced
able to other environments, not to simulate the time evolution set of species. The modification to the procedure required for
corresponding to any particular experimental condition. the initial-rate method is trivial; the number of terms in the sum
In practice, we do not use the above methods exactly. Instead,is reduced by 1 (reinterpretation of the&X’s for the compound
we approximate all but one set of bimolecular fragments, the species is also required in principle). The modification to the
reactants R and m, as infinite sinksHow does this change long-time method, in general, requires a reformulation of the
the procedures discussed above? Not very much it turns out.problem. This makes it more difficult to implement, making
With the infinite-sink approximation, two differences appear the initial-rate method the method of choice for most problems
in the above analysis: the system does not approach chemicaht highT.
equilibrium at long times, and one cannot compfd§; for the By the phrase “a reformulation of the problem” in the last
sinks explicitly from the solution to the ME. However, one can paragraph, we mean that, in the long-time method, one must
still obtain these quantities in a relatively straightforward examine the solution, reconstruct thendB matrices defined
manner. Assume that there is only one set of bimolecular above, and recalculate the rate coefficients from eq 25. This
products. The macroscopic populations satisfy the global involves considerably more effort than is required for the initial-

Xp(OO) =1

and

conservation equation rate method and is difficult to automate in a computer
calculation. In the cases where we have gone to the trouble of

M doing this reformulation for the long-time method, the two
Xt X+ H»X=1 (26) approaches yield the same rate coefficients. Of course, for

= problems with a large number of wells, and consequently a large
number of CSEs, one could conceivably encounter a situation
Differentiating this equation with respect to time and then where, for a given pressure, it was not possible to find a

integrating fromt = 0 tot = o, one obtains temperature where the initial-rate method was applicable. In
such situations, it would be necessary to use the more robust
M long-time approach. However, we have not yet encountered such
AXg + AX,+ » AX =0 (27) a situation.

i= At low temperatures, it can be difficult numerically to obtain
accurate eigenvalues and eigenvectoi@.8¥7294This problem
Because the terms in eqgs 16 and 22 are linearly independentan be overcome in either of two ways:
functions of time, at least as long as no two eigenvalues are (1) By doing the diagonalization in quadruple-precision
equal, eq 27 must be satisfied by each eigenpair individually, arithmetic, rather than double precisi&®* This approach is
not just globally, that is, limited to relatively small problems.
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(2) By integrating the ME directly in tinfé using an ODE
solver, resorting to the “exponential decay” appréaéhto
determine rate coefficients and product distributions. This
approach is generally adequate at sufficiently low temperatures,
where the CSEs are well separated in magnitude and “interfer-
ence effects” such as those described in ref 51 can be avoided
We have used both of these methods successfully at various§
times. =
Before going on to consider some examples it is useful to E
review the relationship between a rate coefficient and a flux
coefficient. In doing so, we draw heavily upon Widom'’s
discussion. Consider a first-order (or pseudo-first-order) reaction,

A = B involving only the two configurationé andB. The net CHyCHO + OH

rate of formation ofB (i.e., the net flux fromA to B) can be Figure 1. Potential energy diagram for thelds + O, reaction.
written as

CaHg + HO,

CyH4 O + OH

dng dn, Eigenvalues

ot at kina — kg (30) i EREGontauh L el
The question is “What aré and k?” One is instinctively " e oM
tempted to identifykina andkng as the individual forward and ¢ T A
reverse fluxes, respectively. In which cageandk. are the 3 N CHH0, <>CHO,
probabilities per unit time of aA — B andB — A transition; = No
that is, they are flux coefficients. The problem with this £ k. >
identification is that in generdt andk. are both time dependent, g ™ e
and they do not satisfy detailed balance. The true rate coef- = .
ficients satisfy eq 30, are not time dependent, and do satisfy 4% f___}
detailed balance. However, with the true rate coefficients * M N,
inserted into eq 30, the two terms on the right-hand side cannot CH.O, ->CH +HO, N
be interpreted as the individual forward and reverse fluxes. That ~ 10™

0.0005 0.001 0.0015 0.002 0.0026

is the central issue. However, for many cases, the instantaneou:
flux coefficients and the rate coefficients are virtually indistin- AT

guishable. For simple abstraction reactions and high-pressurefigure 2. Eigenvalue spectrum for 85 + O, atp = 1 atm. The
limit, unimolecular isomerization or dissociation reactions, they glognesrgﬁltues are divided by, to show their relationship to the decay
are identical, because thermal equilibrium is suitably maintained, '
or assumed to be maintained, throughout the course of the
reaction. The equivalence of the two rate parameters in these

special cases is probably the origin of the confusion that exists

on this issue. The situation for nonequilibrium problems is

high-pressure limit

counterintuitive even in the two-configuration case; one must ¢ L peilatm g T e —
expect it to be even more so for an arbitrary number of El _ o e
configurations. $ p=1 atm {.-" R
In many circumstances, we write the rate law simply as ﬂg_ ;’ e
dn, E 10" p=20Torr L e =
T = kn, (31) = \h}/ k,(E conser\red)— —Y

. - . . . . / Ll
We might write it this way, as in the theoretical analysis of \_‘J: P~ i /
thermal dissociation, because we believe the reverse proces: 1o ! et k, ( E,J conserved)
has no effect on the rgt_e coefficient, or it can be th_gt the second S Ui Wiia dka: linen Wewiidees GEd
term in eq 30 is negligible. In calculating the equilibrium rate AIT(K)
coefficients mentioned just above, the fluxes in the two

directions are independent and can be calculated separately’'9uré 3. Decay constants as a function of temperature at various
. . . pressures for §s + O..
Thus, we are always dealing with a rate law in the form of eq

31. In all such cases where eq 31 applies, the net flux and the ,athods described above is the reaction g Owith O,. The
forward flux are identical, making the flux coefficient and the peg g depicted diagrammatically in Figure 1. We shall be
rate coefficient the same parameter. Of course, the negligibility .on-armed here only with the bimolecular channel leading to
of the second term in eq 30 is the idea behind the exponential CHs + HO, (and only the initial GHsO, adduct): it is

decay approach to measuring the rate coefficients at 1ow o enyheimingly dominant under the conditions of interest
temperatures. Equation 30 also gives an exponential decay ory oy The bimolecular products are incorporated into the
the reactant, but the decay is not to zero, and the decay ConStanzSnalysis as an infinite sink. Thus, we haSe= 3, Nepem = 2

is not simply the rate coefficient.

andNg = 3. For future reference, the eigenvalue spectrui@ of
is plotted in Figure 2 for a pressure of 1 atm; the equilibration
functions of the CSEs are shown on the diagram.

The Reaction between Ethyl and Molecular OxygenA Figure 3 displays the limiting rate coefficienkg(T) and
particularly simple and instructive example of the power of the k.(T) and “rate coefficients’kex, derived from the exponential

Examples
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decay of R, the reactant, at three different pressures (20 Torr, T=1000 K
1 atm, 10 atm). Both the 1-D and 2-D valuesKg(T) are shown

on the plot. At 250 K, the smallest temperature shown, the 1-D
solution for ko(T) is about 15% larger than the 2-D solution; ., high-pressure limit
the difference gradually becomes even smaller as the temper- 0

ature increases. Although in general such differences dependw
on a number of factors, most notably the potential energy <
difference between TS-1 and TS-2 (transition states 1 and 2, &
respectively) and the corresponding rotational constants, the g
present result is fairly typical. Consequently, angular momentum g
conservation is usually not an important factor for bimolecular <

reactions producing bimolecular products. 10 C,H.+0,-> C H +HO,
The exponential decay rate coefficients shown in Figure 3 £

display some intriguing features. At temperatures uf te

575 K, one obtains excellent exponential decays, and the 107

distribution of products accumulated at the end of the decay

period depends on both temperature and pressure. The bimc._Fi ure 4. Rate coefficients as a function of pressurél'at 1000 K

lecular prodU(':t.s @H, + HO, are dominant at lower pressures, fo? CHe '+ 0y — CoHsO, and GHs + Op — C§H4 + HO».

and the stabilized adduct,850, becomes more and more .

prevalent as the pressure is increased. Of course, this is thecontribute to the decay of R, the reactant, and hence, we get

expected behavior. In the temperature range roughly betweenmexpo_nennal_decays. When the two CSEs emerge from the

575 and 700 K, the good exponential decays disappear. Instead’@nsition regime at highf, some important changes have

the reactant decay becomes biexponential. Then, agaihor occurred. Thely,|g.0eigenpair stllll desgrlbes the eqylllbranon

700 K, nearly perfect exponential decays of the reactant return. CoHs + O = CoH5O,, but now this equilibrium heavily favors

However, now the rate coefficient becomes equat(d), and CoHs + Oy; that is, the equilibrium has shifted. Als@; and

the only products are £, + HO,, independent of temperature 19:0stil describe the equilibration of €5 + O, and GHsO;
and pressure. with C;H4 + HO,, but because the equilibrium mixture oG

. . . . . + O, and GHsO;, is virtually all the former, this eigenmode
The beha_lwor at high temperature described m_the PreVIOUS oqits in nearly perfect exponential decays of the reactant. The
paragraph is remarkable. Some comments are in order. The

. o . . _reason the apparent rate coefficients deduced from the reactant
exponential decay approach to obtaining rate coefficients is

) ) oy decays in this high-temperature region are all equaty(®),
equivalent to computing a flux coefficient from a steady-state independent of pressure, is discussed in detail in ref 55. We
energy distribution in the well. The discussion centered around o

31 indicat learly that h fficient indeed b shall not repeat that discussion here.
eq Indicates clearly that such COelicients can Indeed De e the flux coefficients that are deduced from the exponential
interpreted as (constant) probabilities per unit time of making d

the indicated t ¢ f At least for th f the,C ecays in the high-temperature regime rate coefficients, or are
€ indicated transformations. At east for the case o .m“. they not? It should be clear now that the answer to this question
+ HO, products, this is not exactly what Widom had in mind

; - o - L is that they are not. The observed behavior is a consequence of
for his flux coefficients, but his discussion does not anticipate Y q

. ) . two processes (both of which can occur simultaneously): the
the necessity of passing through two transition states to get from b ( V)

reactants to products. The important question is “Have we really elementary reaction £ts + O, ~ CzHs + HO; and the two-
. o step process, + O, == C,Hs0; followed by GHsO, —
determined rate coefficients?” bp £is + O, 252 Y “aris2

C,H4 + HO», both of whose rates are controlled by the same
A critical point to bear in mind in answering this question is  transition state, TS-2 of Figure 1. (An elementary reaction is a
thatexponential decay of the reactant indicates that the reaction chemical process whose rate can be characterized by a single

is controlled by a Single Chemica"y Signiﬂcant eigenmode of phenomenok)gical rate Coefﬁcien{cT’p)’ under all therma”y

G, not by a single elementary reactigfsingle-channel or  equilibrated conditions, that is, wheflecan be defined.) The
multiple-channel). At low temperatures, the two generally elementary reaction is dominant at low pressure, and the two-
coincide very closely, that is, eigenmode multichannel  step sequence is dominant at high pressure. The steady-state
elementary reaction, at least partly because the CSEs are widel\anergy distribution in the well varies from a chemically activated
separated in magnitude. However, this is not always the case,one at low pressure to a completely thermally equilibrated one
particularly at highT. Referring to Figure 2, one can see that gt high pressure, just as at low temperature. Remarkably, simply
A2,/g20describes the equilibration ofz8s + O, with CzHsO; observing the decay of the reactant concentration and the rise
(CoHs + HOz can also be formed as a product). At low of the products is insufficient to distinguish one mechanism from
temperatures, the reactant concentration decays exponentiallfhe other. However, the methodology described above for
to zero, because the equilibrium constant is so large, at a rategetermining the rate coefficients can make the distinction.
determined exclusively by,. The 11,|g:Cleigenpair describes In Figure 4, we plot the rate coefficients for the two reactions,
the “equilibration” of GHs + O, and GHsO, with the GH4 + CoHs + O — CoHs + HO2 and GHs + O, — CHs0;,, as a

HO; infinite sink. At low temperatures, this eigenmode can be function of pressure for a temperature of 1000 K. A relatively

10 G0, 2 L R0,

cul

collisionless limit

1 10 100 1000 10* 10° 10" 10" 10°
pressure( Torr)

very closely identified with the thermal dissociation oHzO, small fraction of the @HsO, formed from the stabilization
to form GH, + HO, again because the;8s + O, = CoHsO, reaction dissociates thermally to formHg, -+ HO; most of it
so heavily favors the adduct under such conditions. just dissociates back to,8s + O». For the stabilization reaction,

From Figure 2, one can see that and A, approach each  the only one for which we can calculate forward and reverse
other in the 575 K< T < 700 K range (they approach more rate coefficients, detailed balance is satisfied to the numerical
closely as the pressure is redut®dundergoing what might  accuracy of the calculation.
be called an avoided crossing. In this region, what we have Allene—Propyne Isomerization.Perhaps the most counter-
previously called the transition regime®¢ both eigenmodes  intuitive phenomenon associated with the multiple-well master
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~ 3
C3Hp+H,
¢ — CgHy+H,

Energy (kcal/mole)

Figure 5. Potential energy diagram for thesld, surface.

equation is arisomerization reaction that skips one or more

wells. Although in principle such a reaction is no different from

an association/dissociation reaction that skips a well, the
isomerization is more unexpected to the average chemical | e pmmnTEE
kineticist. Such reactions are the best illustrations we have of
the difference between the rate coefficients, or transition
probabilities, that appear in the master equation and the rate@ 4
coefficients that appear in macroscopic rate laws. The former &

are course-grained, statistical substitutes for dynamics, and2 A, i J e
consequently, they connect only adjacent configurations. TheE (<> [/ a ‘ ol
latter are purely phenomenological and are not bound by such ™ g (l <_,’") X F 4
a constraint. / oy

As an illustration of an isomerization reaction that skips @ 4ggq / / [I+II+I;I+R >P)
well, consider the isomerization of alléfe(CsHsa). The ! /' /'
potential on which we base our analysis is illustrated in Figure 444 ! 2 -
5. The diagram shows a number of configurations on the singlet 500 1000 1500 2000 2500
potential and indicates the possibility of a hydrogen abstraction Temperature(K)
reaction, GHz + H — 3CgH, + H,, where®CqH, is triplet Figure 6. Eigenvalue spectrum for thes8, potential energy surface.

propargylene, on a triplet potential. This latter reaction will not  The eigenvalues in the diagram are labeled by their function. In a similar

concern us further in this article. On the singlet PES, there are diagram in ref 50, we simply labeled the eigenvalues by their magnitude.

seven distinct molecular configuration§, = 7. However,

because we lump all three sets of bimolecular produ€sH, T=1300K

+ Hj, IH,CCC + H,, and ¢c-GH; + H,) into an infinite sink,

our master equation recognizes oly= 5, and consequently, 100 |________Digh-pressurefimt |

Nehem = 4. If we were to takeS = 7, there would bé\, = 21 i

forward elementary reactions going on simultaneously. How- CHa->CHp

ever, because of the infinite-sink approximatidi,= 18. The s .

three reactions that are missing are ones that have sink specie 100

both as reactants and products. Moreover, any reaction that ha@

a sink configuration as a product has its reverse reaction missing.g-
The eigenvalue spectrum pt= 1 atm for the problem at

hand is shown in Figure 6. The equilibration functions of the %

chemically significant eigenmodes are given on the plot. At low

temperatures, the fastest-relaxing CSE equilibratg$; G H

(R) with CsHap (1). The second fastest equilibrates R and | with

1

cyclopropene (lll). The third fastest equilibrates these three 1 10 100 1000 10  10°  10° 10 10
configurations with allene (Il), and the slowest of the CSEs pressure( Torr)
“equilibrates” R, I, I, and Il with the bimolecular sink. Because Figure 7. Rate coefficients for gHsa— CsHap and GHsa— c-CsH,

we have labeled the eigenvalues in the diagram by their as a function of pressure at= 1300 K.

functions, not by their magnitudes, there is some magnitude

switching at hightl. Nevertheless, the diagram is labeled clearly shown in Figure 7 as a function of pressure at a temperature of

and correctly. 1300 K. Before going any further, it is important to point out
That brings us to the 481,a<== C3Hyp isomerization. The rate  that TS-4 in Figure 5 is inconsequential to the analysis. We

coefficients for both gHsa— CsH4p and GH4a— c-C3H, are could increase its energy to arbitrarily large values without
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changing the results of Figure 7. All the propyne formed in the From the first of these, one finds that, during the steady-state
reaction goes through the cl@, well. At low pressures, the  dissociation process, population of bound states near the
c-C3H4* complexes do not suffer enough collisions for any dissociation limit below their equilibrium values can reduce the
significant amount of stabilization to occur. Because of the dissociation rate coefficient (in the low-pressure limit) by as
deeper well, GHp* complexes live longer, and stabilization much as 2 orders of magnitud&The two-well isomerization

in this well dominates the reaction. As the pressure increasesis primarily responsible for our realization that rate coefficients
up to about 16 Torr, both rate coefficients increase, a are functions of all the transition probabilities in the system,
consequence of increasing thermal excitation of the allene. Of not just those of the reactafftQuack* and Lin and Laidlef®
course, this is the same phenomenon as the one that occurs ishowed that, for specific reactions, the forward rate coefficient
thermal dissociation. Beyond this pressure, the@&— C3Hap at low pressures can be controlled primarily by deactivation of
rate coefficient drops off with increasing whereas that for highly excited states of thproduct. Of course, both of these
CsH4— ¢-G3H4 continues to rise. The latter reaction increasingly phenomena can be derived as special cases of the multiple-
robs flux from the former. As discussed above, at infinite well formalism described above. Nevertheless, we want to

pressure, the rate coefficient approackefT), and the only

consider the thermal dissociation problem in more detail. This

product corresponds to an adjacent configuration, cyclopropeneinterest stems from our concern witleakly bound free radicals

in this case. Of course, one should realize that thd.€—
c-CsH,4 reaction would be totally invisible in a normal kinetics
experiment, because equilibrium overwhelmingly favors the
reactant, with c-gH4 thermally isomerizing back to allene as
fast as it is formed.

It is tempting to try to analyze the present reaction using
methods similar to those used for thermal dissociation. One
could apply the steady-state approximation to the allene well
and then calculate the flux coefficient for passage through TS-3
(NL = NLNLJ(NL, + NL) in our analysi). The only objec-
tive approximation one could make about this flux is that it all
leads to c-@Ha, which of course is wrong. One might then try
to make assumptions concerning complex lifetimes {e€
and GH4p*) and collision rates, e.g., the strong-collider or
modified strong-collider assumption. However, such assump-
tions are unreliable and too arbitrary to form a basis for a
fundamental theory of reaction rates.

The GH, potential contains a wealth of interesting illustra-
tions of the multiple-well ME methodology. From Figure 6,
one can see (fgp = 1 atm) that afl ~ 2150 K43 merges with
the continuum of IEREs, indicating that the gHG == CgH4p
isomerization equilibrates on internal-energy relaxation time
scales. Thus, for kinetics purposes, gH4¢and GH4p cease to

which we define as free radicals that dissociate primarily to a
stable molecule and a radicdfather than two free radicals).
The bond energies for such dissociations are generally small,
and consequently, such radicals dissociate rapidly in flames,
fast enough that thermal dissociation is their primary fate under
many conditions. Examples of such radicals include vinyl, ethyl,
vinoxy, acetyl,i-C4Hs, n-C4H3, i-C4Hs, n-C4Hs, allyl, and other
C3Hs isomers. Therefore, we want to understand as much as
possible about these simple reactions.

The remainder of this article is concerned with two issues:
(1) an approximate solution to the two-dimensional, single-well,
multiple-channel master equation for thermal dissociation and
(2) an evaluation of when and if the dissociation rate coefficients
derived from an irreversible ME (i.e., the unidirectional flux
coefficients) represent accurate rate coefficients for the two-
configuration problem.

We also discuss the issue of when and if the thermal
dissociation and reverse association rate coefficients satisfy
detailed balance. Specifically, we want to understand the
limitations of calculating the dissociation rate coefficients from
an irreversible master equation and determining the reverse
association rate coefficient from detailed balance.

Approximate Solution to the Two-Dimensional Master

compound species (dominated by propyne) at higher tempera-dimensional master equation for tireeversible dissociation
tures. Also, for temperatures greater than about 1800 K, alleneOf & molecule (or radical) immersed in an inert gas can be written

equilibrates with propyne (and thus also with cyclopropene)
faster than dissociation togls + H can occur;—4; < —A4. At

T = 2200 K,A,/14 ~ 6. At such temperatures (where dissociation
rate coefficients might be measurable), determining the indi-
vidual dissociation rate coefficients becomes problematic; most
experiments will be sensitive only ty, which describes the
dissociation of the three equilibrated isomers. In fact, before
reading this article, one might be tempted to look at Figure 5
(where all the isomerization barriers lie well below the dis-
sociation limit) and question whether individual dissociation rate
coefficients for the isomers even exist. Of course, they do exist.
Our calculations indicate that allene dissociates 20% faster
than propyne for 1800 K< T < 2500 K, whereas the
experiments of Kiefer et dF indicate the reverse. Either could
be correct; the difference is well within the uncertainties of the
theory and the experiment.

Thermal Dissociation and Association

Virtually all of our understanding of nonequilibrium phe-
nomena in chemical kinetics comes from analyzing two-
configuration problems, specifically tlee versibledissociation
of a molecule or radical (which actually involves only one
configuration) and the two-well isomerization reactfén’’

as
dx(E,J 1)

P zZ fEO[P(E,J;E’ JYXE I 1) —

Np

P(E',J;E,J) X(E,J,n]dE — ka(E,J) X(E\Jt) (32)
=

where the symbols are defined above. For the simplification
described below to be realized, it is important that the association
terms corresponding to the reverse of #¢E,J) terms in eq

32 be absent. Smith and Gilb®tvere the first to realize that

if the energy transfer functioR(E,J;E',J") could be written in

the special form

P(E,J;E'\J) = P(EE) ¢(EJ) (33)

the two-dimensional master equation, eq 32, could be reduced
to an equivalent 1-D ME. Equation 33 requires that the
distribution after a collision be independent of the angular
momentum of the molecule before the collision. In what we
call our E,J model, we assume thai{(E,J) is given by

P(EJ) = (23 + 1) p(E,J)/p(E) (34)
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where

p(E) = Z(ZJ +1) p(EJ) (39)

The physical implication of this assumption is that rotational
energy is transferred in quantities similar to those for vibrational
energy and that the postcollisiod distribution is simply
proportional to the number of states in the vicinity of day
andJ. The approximation is consistent with classical trajectory

calculations in that a collision usually results in comparable =

guantities of rotational and vibrational energy being transferred.
Moreover, values of AEsC0deduced from applying this model

to thermal dissociation experiments are similar to those deter-

mined from direct experiments and from trajectory calcula-
tions/8

The mathematical details of reducing eq 32 to its equivalent
1-D form are given by Miller et al® and Miller and Klippen-
stein*® The derivation offers no mathematical or conceptual
difficulties and is omitted here. Although some subtle effécts
are missing from this model, it allows us to include all the effects
on unimolecular rate coefficients normally associated with
molecular rotation.

Another approach to the problem at hand is to takendJ

as the independent variables in the master equation, rather tha

E andJ, wheree is the energy in the “active” degrees of freedom

e=E—BJJ+1) (36)

Miller and Klippenstein

H+C _H_+He -> C_H +He
2 2 23

~

N

0%

« 1-D ME (E model)
~N

2g)

2
]

®/molecule

E 10—31
o

o
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500 1000 1500 2000 2500
T(K)
Figure 8. Low-pressure-limit rate coefficient&y(T), for H + C;H>

+ He — C,H; + He.

In principle, one could use a variety of functions #(E,J)
and®(¢,J) in egs 34 and 38 and get different results. However,
the distributions assumed above appear to be the only ones that
are consistent with detailed balance in that they ensure that

rqotational equilibrium would be approached at long times in

the analogous reversible, two-configuration problem.

In Figure 8, we explore the effects of angular momentum
conservation (and tunneling) on the dissociation of vinyl, a good
example of a weakly bound free radical. These effects manifest

andB is the appropriate rotational constant. This is the approach themselves most visibly at the low-pressure limit. Consequently,

taken by Smith and Gilbeff. It is equivalent to partitioning
the total energy into two types, whereas #é model is not.
The master equation in this approach is identical in form to eq
32, with € replacing E. Smith and Gilbert reduced the two-
dimensional ME to an equivalent 1-D form by making a “strong-
collisions-inJ” approximation (thes,J model), whereby

P(e,J;e',J) = P(e,e') D(€,d) (37)

and

D(e, )= (23 +1) p(e,J)e*ﬂEJ/Z(zJ +1) p(e,d)e P& (38)

In eq 38,E; = BJJ + 1) andp(e,d) is the density of states of
the inactive (rotational) degrees of freedom with angular
momentum quantum numbek (this formulation is actually
slightly more general than the one used by Smith and Gilbert).
This model forces complete “rotational” equilibrium to be re-
established after every collision.

In studying the dissociation of methane in the low-pressure
limit,”® we used the,J model, theE,J model, and thé& model
(the one-dimensional ME witk being the independent variable)
to analyze the best experimental results available. Hhenodel

we focus our attention on the low-pressure-limit rate coefficient,
ko(T) (not to be confused with the collisionless-limit rate
coefficient discussed above), for the association reactioi, H
C,H, + He— C,H3 + He, plotted in Figure 8. The association
rate coefficient is obtained from the dissociation rate coefficient,
calculated using th&,J andE models just described, and the
equilibrium constant using the detailed balance condition. The
validity of this approach is discussed below. Figure 8 shows
that angular momentum conservation reduces the rate coefficient
by a factor of 3.5 at 250 K. This difference becomes smaller as
the temperature is increased up to 2500 K, but it never quite
disappears. The difference between tBgd and E model
predictions is 21% at 2500 K. These results are fairly typical.

An even more intriguing effect on the rate coefficient is that
of tunneling. The dissociation of a weakly bound free radical
virtually always has an intrinsic potential energy barrier (a
barrier in the exothermic direction). If one of the dissociation
products is a hydrogen atom, tunneling through the barrier is
an extremely important effect. Figure 8 shows that tunneling
increases that rate coefficient at 250 K in the present case by
almost 4 orders of magnitude; the effect decreases of course as
the temperature increases. Most interestingly, the inclusion of
tunneling causek, always to be a decreasing function’gfno
matter what the size is of the intrinsic barrier. The rate

and theE model produced very similar results, at least at high coefficient behaves as if the barrier is not there! Upon first
temperatures, indicating that the rotational degrees of freedomglance, this result is surprising, but upon reflection, it is not.
behave as if they are active. Unlike tBe) andE models, the Viewed from the dissociation direction, the low-pressure limit
€,J model caused us to deduce from the experiments unrealisti-is reached (by definition) when dissociation above threshold
cally small values ofAe4l) as small as a few cnd under some becomes infinitely fast compared to collisional excitation and
conditions. Although we have not investigated this point in any de-excitation. For the present reaction, and others like it, the
detail, it appears likely that this effect arises from the strong- dissociation threshold is just the bond energy, not the bond
collision-in-J approximation forcing rotationally equilibrated energy plus the barrier. However, dissociation just above the
populations on bound states near the dissociation limit, thus threshold is extremely slow in such cases, because it occurs
artificially increasing the rate coefficient. As a result, the values strictly by tunneling. Consequently, the low-pressure limit is
of [AeqIthat we deduced are much too small. approached very slowly by these reactions.
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Reversible and Irreversible Dissociation: The Detailed Non-equilibrium factors
Balance Condition. It is rather remarkable that it has become 12
common practice in chemical kinetics to approximate a dis-
sociation rate coefficient as the flux coefficient obtained from 1
treating the dissociatioirre versibly and then to compute the
recombination (or association) rate coefficient from detailed
balance. It is common to do this even when equilibrium heavily
favors the recombination product. One would not think of
applying such a procedure universally to the two-well isomer-
ization problem for reasons noted above. Consequently, it
appears to be worthwhile to inquire about when and if such a *°
procedure produces accurate rate coefficients.

mensionless)

0.6

T

The question of whether, for diatomic molecules, the dis- 82
sociation and reverse association rate coefficients satisfy detailec
balance was discussed extensively in the 1950s and 19%0% 0

0 500 1000 1500 2000 2500 3000

The issue arose, at least partially, from the realization of the
Temperature(K)

point mentioned above, that the populations of bound states neai
the dissociation limit are substantially depleted below their Figure 9. The nonequilibrium factorf., for several weakly bound
equilibrium values during the steady-state dissociation process.Te€ radicals at a pressure of 1 atm.
There was a point of view that such states must maintain
equilibrium populations for detailed balance to be satisfied.
Arguments in favor of the applicability of detailed balance
ultimately won out. However, these arguments were largely
qualitative or semiquantitative and universally imposed the
condition thatr,/z; < 1, wherez, is the vibrational relaxation
time andz, is the characteristic time for reaction to occur.
Important contributions to our understanding of this issue were
made by Keck and Carri#&rand particularly by Ricé&®

In 1989, Smith et a® made a pivotal contribution to our

populations significantly depleted by dissociatidi,is very,
very close to unity. This is the normal situation for stable
molecules.

From eq 40, one can readily make the identification that
= ky andkagq = fneKedku. Except for the annoyiné,e factor in
kaga these rate coefficients would satisfy detailed balance. As
it is, eq 39 is satisfied only if\e is equal to unity, which is at
odds with the work on diatomic molecules mentioned above.
If one takes the limit of eq 40 @s— «, one obtains the relation

understanding of the problem at hand, not limiting their Ne(®)
considerations to diatomic molecule dissociations. From a fikeq™ — = (42)
suitably formulated master equation, they attempted to derive Nin(%0) NR(%0)

the detailed balance condition ) o
Thus, the system described by eq 40 approaches equilibrium

Kogq at_ long times_ only iffqe = 1. Clearly, t_his cannot be_correct._
- = Keq (39) Either eq 40 is not applicable at long times or it applies only if
Ky fne = 1. One can also conclude simply from taking this limit
that if the system obeys a phenomenological rate law at long
for the reversible reaction, R m = C, whereKeq is the times, the rate coefficients must necessarily satisfy detailed

equilibrium constant for the association reaction. Under the samebalance.
conditions as those described just above, they derived the rate Smith et a®%%tindicate thafyeis equal to unity in most cases

equation and emphasize this condition. However, such is not the case
for weakly bound free radicals at high temperatures, an

dn.(t) important application for combustion. In Figure 9, we have

a —kne(t) + frdkKegm(t) Nk(t) (40) plottedf,. for a number of radicals as a function of temperature

at a pressure of 1 atm. In all caség,deviates from unity to
some extent folT > 1000 K. The worst cases are for large
molecules with weak bonds, where the peak in the Boltzmann
distribution can lie close to the dissociation threshold, or even
above it. The nonequilibrium factor gets smaller as the pressure
is reduced, an important consequence for low-pressure flame
experiments. Of course, ps— o, ¢(E) — F(E), andf,. becomes
identically equal to unity. One should not confuse this effect
(fre < 1) with that discussed above, i.e., the reduction of the
dissociation rate coefficient in the low-pressure limit due to
underpopulated bound states near the dissociation threshold. One
can have substantial reduction of such rate coefficients and still
havef, ~ 1, because states near the dissociation limit are not
m@c(E) dE (41) highly populated at equilibrium in such cases.
BF(E) One can begin to resolve the issue discussed above by
applying the general multiple-well methodology to the reversible
From eq 41, one can see tHatis a measure of the degree to association/dissociation problem. We shall omit the details, but
which dissociation perturbs the equilibrium distribution of both the long-time and initial-rate methods vyield rate coef-
the dissociating molecule, 8 f,. < 1.7890.92f only the states ficients that satisfy detailed balance, eq 39, exatljhe fact
that are not heavily populated at equilibrium have their that the long-time rate coefficients satisfy detailed balance

wherek, = —&;, andé; is the largest (least negative) eigenvalue
of the transition matrixG' of the ME describingrre versible
dissociationG' is the same a& described above except that
the reverse association rates are missing. The “nonequilibrium
factor”, fne, is a function of the steady-state energy distribution,
c(E), of the dissociating molecule during its irreversible dis-
sociation. This distribution can be obtained simply by unscaling
the vector|g;[g; /w(0)L] where |g;0is the eigenvector o5’
corresponding ta%;. If c(E) is suitably normalized so that
Je, ¢(E) dE = 1, fne can be written as

fo=1/
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indicates that, no matter how much of the reaction takes placetemperatures, where-1 f,c begins to deviate significantly from
during the vibrationatrotational relaxation period, the last stage zero, the facton,Keq (an effective, pseudo-first-order equilib-
of the reaction always satisfies a phenomenological rate law rium constant) is so small thatbecomes even smaller than it
with rate coefficients that satisfy detailed balance. One might is at low temperatures. Consequently, to a good approximation,
also have drawn the same conclusion simply by extending ky = ky andkaqa= kiKeqe€ven wherfre = 1. Approximating the
Widom’s analysis of first-order reactiofito pseudo-first-order  dissociation rate coefficient as a unidirectional flux coefficient
processes. and calculating the reverse association rate coefficient from
Smith et al. did not pose the problem as we have. They detailed balance is almost universally valid, as long as we
assumed the reaction to be approaching equilibrium from the understand that these rate coefficients may apply only to the
association directiomc(0) = 0, and took the association rate very last (perhaps inconsequential) stage of the reaction.
terms to be an external source in the master equéti¥hin The analysis described above has two intriguing features.
this approach, they must evaluaigt) from an integral, and in First, ky = ki/[1 + nmKeql — fad] and kaga = kiKed[1 +
so doing, they assumed that allmf(t) was produced through  nuKe1 — fog] are composition dependent (througiy,).

the slowest-relaxing eigenmode of the systé&mand |g;0] It However, this composition dependence is so weak that it is
turns out that this is completely equivalent to assumingftRat  unlikely to be detectable under ordinary experimental conditions.
= 1, it is also equivalent to taking the limi/§; — 0,] = 2. More interestingly, wherf,e begins to deviate from unity, eq

Therefore, withf,e = 1, for the same conditions as those 44 indicates that higher-order eigenvectors compensate so that
described above, /T, < 1, Smith et al. established the important  detailed balance is satisfied exactly. This suggests correctly that
result thatky = k, = —&; andkaga= KkiKeq Moreover, they did fre = 1 indicates that some part of the reaction occurs as part
it without assumingnm, > ng, that is, without imposing pseudo-  of the vibrationat-rotational relaxation process.
first-order conditions. While fne is not a measure of the degree to which detailed

To go beyond the Smith et al. analysis, it is necessary to balance is satisfied by andkagq it is nevertheless an important
assume that the reaction is pseudo-first-order. One can thenparameter. It measures the extent to which dissociation keeps
express the integral mentioned above as a sum of series in theollisional processes from establishing thermal equilibrium in
small parameters5i/§j, j = 2. The next higher-order terms  the dissociating molecules. It is also the fractional contribution
beyond those included by Smith et al. can be evaluated exactly,to kygq0f the slowest-relaxing eigenmode of the system, so that
and the ones beyond that can be evaluated approximately, thug — f,. is the fractional contribution t&.gq of the IERES?
allowing the series to be summed and expressed in closed form. | their landmark text on unimolecular reactidisGilbert
The resulting phenomenological rate law, analogous to eq 40,and Smith, p 304, suggest that detailed balance is not a well
is% established physical law for association/dissociation reactions
outside the high-pressure limit. We hope that we have corrected
that misconception, which ultimately is tied to confusing flux
dt dt coefficients with rate coefficients. We prefer the statement made

N by O. K. Rice in his seminal 1961 pap#r;...if unambiguous

K £0) reaction rate constants can be found, then the quotient of the

kKed ) Fro)
&

dng dng

experimentally determined constants will give the equilibrium
Ne — NNk (43) constant.”

N N
1+ anquf v 1+ anquf 9 Concluding Remarks
= =

) Combustion chemistry, probably more so than other fields,
whereN is the number of eigenvectors Gf, andfﬂé forj =2 relies heavily on theory for kinetic and thermochemical infor-
is defined for the higher eigenvectors in exactly the same way mation. Typically, for any elementary reaction, experimental
thatfpe = fﬁ,le) is defined for|g;[] Equation 43 was derived to be ~ data exist, at most, over narrow temperature and pressure ranges.
applicable at long times, completely analogous to the long-time From this information, one must infer the rate coefficié(t,p),
rate coefficients discussed above. Therefore, it must apply asfrom 250 to 2500 K and from 10 Torr to 100 atm. To do so
the system approaches equilibrium. The only way that the correctrequires a reliable theoretical apparatus. For reactions over
limit can be approached as—  is if multiple, interconnected potential wells, we have now provided

such an apparatus. Ultimately, one would like to extend the
N " present formalism to two dimensions (withandJ being the
Zf ne— 1 (44) independent variables), but until that is done, the one-
= dimensional methodology discussed here appears to be quite
satisfactory. Actually, the extension to two dimensions of the
formalism for obtaining rate coefficients from the solution to
dng dn. the ME should be straightforward.
@ The dissociation of weakly bound free radicals at high
temperatures is another important issue for combustion chem-
Ky Ne — kuKeq nne (45) istry. The result that one can, under virtually all conditions,
[1+ NpKeg(1 = foo)l [14 n Kl =] ™ R calculate the dissociation rate coefficient from an irreversible
master equation (for single-well problems), and the reverse
Equation 45 is the extension, for pseudo-first-order reactions, association rate coefficient from detailed balance, means that
of the Smith et al. result to conditions whefg = 1. The we can use our approximate 2-D solution of the master equation
parametery = nnKe(1 — fne) plays a key role. It is typically a  almost universally. However, it is necessary to realize that these
very small number. At low temperaturds, is so close to unity rate coefficients apply only to the last stage of the reaction.
that 1 — fqe is difficult to compute accurately. At high  Whenf,. deviates significantly from unity, reaction interferes

Using eq 44 in eq 43, one obtains the particularly simple result
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