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We examine here, by using a simple example, two implementations of the minimum error method (MEM),
a least-squares minimization for scattering problems in quantum mechanics, and show that they provide an
efficient, numerically stable alternative to Kohn variational principle. MEM defines an error-functional
consisting of the sum of the values ti{' — EW)? at a set of grid points. The wave functi®¥, is forced

to satisfy the scattering boundary conditions and is determined by minimizing the least-squares error. We
study two implementations of this idea. In one, we represent the wave function as a linear combination of
Chebyshev polynomials and minimize the error by varying the coefficients of the expansion &tdnidteix
(present in the asymptotic form &F). This leads to a linear equation for the coefficients andRhmatrix,

which we solve by matrix inversion. In the other implementation, we use a conjugate-gradient procedure to
minimize the error with respect to the values¥fat the grid points and thie-matrix. The use of the Chebyshev
polynomials allows an efficient and accurate calculation of the derivative of the wave function, by using Fast
Chebyshev Transforms. We find that, unlike KVP, MEM is numerically stable when we ude-thatrix
asymptotic condition and gives accurate wave functions in the interaction region.

I. Introduction variation term is negligible and this might not be true at certain
energies. To cure this deficiency, Ruégproposed an imple-
mentation of the variational principle in which the second-order
term is forced to be zero. This modification seems to resolve
the deficiencies of the old method: there are no false resonances,
and the phase shifR-matrix, andS-matrix then satisfy (within

the numerical errors) the exact equations connecting them.
However, the additional condition makes the method less
efficient than the traditional Kohn variational principle.

In this article, we examine a method proposed by Bardsley,
Gerjuoy and Sukuma? which requires that the wave function
satisfies the Schidhinger equation, and the boundary conditions,

t a number of grid points, in a least-squares sense. In other

The Kohn variational principle (KVP) has been widely and
successfully~1* used to solve problems in physical chemistry.
However, some difficulties remaitf-1” One of them is the
discrepancy between calculations using different forms of the
asymptotic wave function. One can write the asymptotic form
in terms of a phase shift, aR-matrix or anS-matrix!® The
form of the variational principle depends on the boundary
conditions used: the one using tBematrix differs from the
one using theR-matrix etc. One test of the adequacy of KVP
is that the values of thR-matrix, S-matrix and the phase shift
calculated variationally, must satisfy the exact relationships
connecting them. Often this is not the case, and sometimes, thes ' . AT
differences can be substantial: for example,Rhamatrix may words, we f'n.d the wave function by minimizing the least-
give a false resonance at an energy for which the phase shift jgSquares error.
correct’>17 Such discrepancies signal that the theory has N
numerical instabilities. . F= Wi[(ﬂ _ E)\p]l*[(ﬂ - B, )

Later work—14 has shown that the use of tH&matrix £
boundary condition . .

: . Here, [H — E)¥]; is the value oHW — EW at a grid point;;
w(r)=—e "+ s 1) H is the Hamiltonian an is the total energy. The numbess
are weights, for which various choices are possible. The
)éimplest, is to take them all equal to 1; another is to take them
large for those grid points for which high accuracy is desired,
and small for the others. In what follows we use the weights
employed in the Gauss integration meti#®aVith this choice,
the error (eq 2) becomes a discrete approximation to the
continuum expression,

leads to stable and accurate results and this form has been widel
used in applications. Th&-matrix KVP (SKVP) forces us to
use complex arithmetic, which roughly doubles the computer
time, as compared to th&-matrix, which requires real
arithmetic. One would like therefore to have a reliable variational
principle for theR-matrix.
Some doubts about the reliability of SKVP still per&ist?
on account that KVP assumes that the second-order functional F= m:' _ E)‘I’|(I:| — B WO ©)

89;2%25'22’;9"(‘gof’é‘)‘tggg_i?gi': metiu@chem.ucsb.edu. Phone: (805) This method involves no intrinsic approximation (such as the
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should work equally well with all boundary conditions. Using have chosen this model because it has an analytic solution for

the R-matrix boundary condition, the S-matrix and the wave function in the interaction region.
This is essential, when problems that are likely to be numerically
W(r) = sinkr + Rcoskr 4) unstable are studied, because comparison between numerical

methods is inconclusive due to the possibility that both methods
is then computationally advantageous, because we avoid usinghave errors. In addition, this model has been used extensively
complex numbers in the program. to test various versions of the Kohn variational principté?

KVP has been designed to calculate $amatrix, or the phase  and we can use much of the previous numerical work for
shift, or theR-matrix. Any one of these quantities provides a comparison to the results given by the present method.
complete description of the measurements performed in a
scattering experiment. There are, however, situations for which Il. The Model
the wave function in the interaction region is needed. One
example is photon-induced association of two colliding atoms.
This can take place through photon absorption, by two colliding

The Hamiltonian (in atomic units) for the s-wave scattering
of an electron by an exponential potential is

atoms, to form a bound, electronically excited state of the 2

. . . . a 1 d —r
diatomic molecule, followed by spontaneous emission of a H= 5.5 € (5)
photon to bring the molecule to the bound, electronic ground dr

state. Or, the molecule may be formed due to emission
(stimulated or spontaneous) of a photon during the collision.
These processes play a role in the formation of molecules in
outer space; they can also be performed in the laboratory. To
calculate the rates of these processes, we must know the wave
function of the colliding atoms when they are sufficiently close
to each other to interact. In principle, KVP provides the wave
function in the interaction region but we do not know whether _ _
this is given accurately. The least-squares method forces the (2= FNW) = xa(r) + Coa(1) ()
wave function to satisfy the Schatimger equation everywhere,
in the asymptotic as well as the interaction region.
. The_MEM varies the wave functio¥ to minimize the error 74(r) = (1 — £(r)) sinkr) 25(r) = (1 — £(r)) coskr) (8)
, while making sure thatP also satisfies the scattering
boundary conditiond*26-32 We have experimented with two
methods for minimizing the error. In one we take as variables
the values of the wave function at the grid points and the
R-matrix and vary them untif is minimized. To some extent 11(r) = —(1 — f(r)) expikr)  x,(r) = (1 — f(r)) exp(kr)
this method resembles the discrete variable representation (DVR) (9)
of Light and co-workerg3-35 A key element in our implemen-
tation is the accurate and efficient calculation of the derivatives and c, is the S-matrix. k is the wave vector of the incoming
of the wave function (the kinetic energy operator actingién electron, whose energy B = k/2au.
at the grid points. For this purpose, we use the values of the \We follow ref 15 and use the cutoff function
wave function on the grid to perform a Chebyshev interpolation

The trial wave function, which will be varied to minimize the
errorF, is

Wi(r) = (1 = f(n)W(r) + f(r) Wy(r) (6)

The form of the asymptotic wave functidH, is

When we use th&®-matrix asymptotic wave function, eq 4,

andc is equal toR.
When we use th&-matrix asymptotic form, eq 1,

of the wave function. This can be used to calculate the derivative flry=e™ (10)
of the wave function very accurately, in roughD(N log, N)
operationg>:36-38 Its role is to switchW, smoothly, between¥V, and¥,, asr

In the other procedure, we represent the wave function as aincreases beyond the interaction region. The cutoff also makes
sum of Chebyshev polynomials and vary the coefficients of this (1 — f(r))W4(r) equal to 0 whem is small, allowing us to impose

expansion and th&k-matrix, to minimize the errof~. The the correct boundary condition for= 0 (see below).
Chebyshev representation allows an efficient and accurate We have tried a variety of forms for the cutoff function and
calculation of the derivatives. found that, for this particular problem, the best performance

We find that, unlike KVP, the minimum error method was obtained by eq 10 witth = 1. With this choice, the cutoff
(MEM), with the boundary condition eq 4, is numerically stable function matches the range of the exponential potential. In
and it gives the wave function more accurately in the interaction calculations on other problems we get better results (i.e., faster
region than th&-matrix KVP (SKVP). In some of the previous  convergence during minimization) by using €1f(r))®4(r) +
work>1122 the wave function in the interaction region was W (r) with a Fermi function forf(r).
represented by a polynomial in the interatomic distan(tbis We determine the wave functioW(r) in the interaction
corresponds to the Frobenius method for solving differential region and the coefficienty (which is either theR- or the
equations). This representation is accurate whisrsmall and S-matrix), by minimizing the error=. We do this by two
deteriorates asincreases. We find that increasing the order of methods:
the “Frobenius polynomial” leads to numerical instabilities. This In one we writeW(r) as a linear combination of Chebyshev
prevents one from testing whether the results are converged.polynomials with unknown coefficien{g;, ...,cn} . Introducing
The Chebyshev basis set represents the wave function wellthe resulting expression fda¥; in eq 3 makes= a quadratic
globally, it is orthonormal and the method of computation is form in {co, ¢y, ..., tn}. Minimizing F with respect to these
stable with respect to the increase in the size of the basis setvariables leads to a linear equation for them, which we solve

Here, we explain how this method is implemented and study numerically by matrix inversion. We call this method a least-
its numerical stability by solving a very simple problem: elastic, squares method with a spectral representation and matrix
s-wave scattering by an exponentially attractive potential. We inversion (MEM-SRMI).
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The second method useg and the values of the function @, () =r* (14)
W, at the grid points; as unknowns. We expregsin terms of *

these quantities and vary them (agg) to minimize it. The  geq py Miller et al! Our purpose was to test whether the

minimization is performed with a preconditioned conjugate- g matrix version of MEM-SRMI has any advantages over the
gradient method. We call this the minimum error method with o cion using theR-matrix. We found that within MEM, the

a pseudospectral representation and conjugate gradient (MEM+, merical stability of th&-matrix procedure is as good as that
PSRCQ). for the S-matrix formulation. TheR-matrix form is preferable
because it avoids using complex numbers.
The MEM-SRMI with S-matrix boundary condition approach
has a major weakness, shared with KVP. The resulting expres-
The trial wave function in this method is sions are rather complicated, there are many integrals to perform
and these require a large number of operations. This is why we
N have decided to develop an alternative method (see section IV).
Wi(r) = (1 = f(r)(a(r) + coxa(r)) +f(r) Z%%(f) (11) This takes advantage of the properties of the Chebyshev
o= polynomials to calculate the derivatives at the grid points and
perform various matrix manipulations M log, N operations.

IIl. Minimum Error Method with Spectral
Representation and Matrix Inversion (MEM-SRMI)

where In addition, the direct matrix inversion is less efficient than the
5 minimization of F by an iterative method, such as the
Polr) = (Ta(gr - ) — T (— 1)) conjugated-gradient method.
x4(r) = sinkr IV. Pseudospectral Representation of the Wave Function
and the Conjugate-Gradient Minimization of F
2o(r) = coskr (12) (MEM-PSRCG)

The unknown quantity in this procedure is the vector
The Chebyshev polynomials,(x) are only defined fox € [—1, a Y P

1]. Because of this, the argumentlip(—1 + 2r/a)is chosen so x={W,, ..., W, C} (15)
that wherr varies from 0 taa, (—1 + 2r/a) varies betweenr-1 2 o
and+1. Herea is the point on the axis where the potential whereW,, i = 2, ..., N, are the values o,(r) atN — 1 grid

becomes zero; we have taken it to #e= 16 au. The term
To(—1) ensures that the interaction wave functiingoes to 0
like r \_/vhenr approaches the origin, as required by the boundary W, =W,,,=0 (16)
conditions for s-wave scattering.
We determine the unknown coefficierts= {co, Cy, ..., Cn}

by introducing eq 11 forW; in the expression eq 2 and
minimizing it with respect to the;'s. The expression obtained
by inserting®; in eq 11 is a quadratic form in the coefficients
Ci:

pointsr;. The boundary conditions give

Note that using the wave function at the grid points as unknown
quantities allows an easy implementation of the boundary
conditions. These reduce the number of unknown quantities;
for higher dimensionality problems, this provides a substantial
advantage over the method that uses the expansion coefficients
N Cy, ..., Cn+1 @S unknowns.
e M. .+ We determine the value of by minimizing F(x). For this
;0 apap we use a conjugate-gradient procedtirashich requires us to
N calculate efficiently=(x) and its derivatives with respect ¥,
(ZOCZNa+ complex conjugate} D (13) vy WNt1, Co. Thg major diff_iculf[y in this (_Ealculation is the
= accurate evaluation of the kinetic energy, lh{ E)¥,, when
we only know the values o, at a set of grid points.
When theR-matrix asymptotic form is used, all quantities in The procedure by which we evalua&€W(2), ....¥'i(N), co)

z

F=

o=

eq 13 are real numbers. and the gradient of

The mathematical structure of these equations is very similar
to that obtained in ref 15. This is not accidental: the least- VF(xk) ={0, oF . 9F ,O,E (17)
squares error functional minimized here is quadratic in the wave oW, (2) W, (N)" "oc,

function, as is the Kohn functional for tt&matrix. This makes
much of the mathematics of the two procedures very similar. is described in Appendix C.

However, we use th&-matrix asymptotic form, avoiding the Normally this is all that is needed for minimizing with

need for complex quantitiesequired in previous workand respect ta¥(2), ..., W|(N), co. Unfortunately, the matrix giving

thus reducing the computational burden. F as a quadratic form in these variables is ill conditioned; its
The minimization ofF leads to a linear equation for tlegs, largest eigenvalue exceeds the smallest one by 8 orders of

whose matrix is ill-conditioned; we invert it my using singular magnitude. This means that without preconditioning the con-

value decomposition. vergence of the conjugate-gradient search will be slow. Pre-
Previous work has found that KVP with thB-matrix conditioning requires that we find a similarity transformation

boundary condition is numerically unstable, producing large that turns the matrix into one whose eigenvalues are of
errors in certain energy ranges. We find no such instability for comparable magnitude to each other. Unfortunately, there is no
MEM-SRMI. Because KVP is stable when th&matrix systematic and logical prescription for doing this; precondition-
boundary conditions are used, we have also performed MEM- ing is an art form, with various recipes offered for each specific
SRMI calculations withS-matrix boundary conditions and the  situation3® The manner in which we precondition the steepest
basis set descent direction is explained in Appendix D.
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TABLE 1: Dependence of the R-Matrix (co) on the Order N
of the Polynomial Used To Represent the Wave Function in
the Interaction Region?

Temel et al.

TABLE 2: Dependence of the R-Matrix (co) on the Order N
of the Polynomial Used To Represent the Wave Function in
the Interaction Regior?

N MEM-SRMI R SKVP Re(R) SKVP Im(R) N MEM-SRMI R SKVP Re(R) SKVP Im(R)

8 —1.72472 —1.74494 7.2080 10 8 2.19872 2.20038 2.841810
12 —1.74517 —1.74494 1.0129 10 12 2.20041 2.20038 1.034910
18 —1.74493 —1.74493 9.5500 1¢ 18 2.20039 2.20038 4.1457 10
19 —1.74494 —1.74490 1.3202 1G 19 2.20038 2.20038 1.133110
20 —1.74494 —1.74467 3.5728 16 20 2.20038 2.20020 17192710
25 —1.74494 —0.68491 82.667 10 25 2.20038 2.15436 6.8327 10
30 —1.74494 —1.60068 4.6443 10 30 2.20038 0.23585 10.55710
aThe SKVP G-matrix Kohn variational principle) results were aSame as Table 1, but= 0.55 (au) and the exact value Rfis R

obtained by using the method of ref 15 to calculate $hmatrix; the = 2.200 38.

R-matrix was calculated with the exact relationship connec8rig ) )
R. MEM-SRMI is the minimum error method with a spectral TABLE 3: R-Matrix Values for the Incident Wave Vectors,

representation and matrix inversion. The wave vector of the incident in Which RKVP Gives False Resonancés

particle isk = 0.15 (au) and the exact value Bfis R = —1.744 94. k (au) 0.28100 0.28101 0.28102 0.28103
C . R-exact —18.9064 —18.9159 —18.9255 -—18.9350
The minimization scheme iterates the vector { W¥», ..., R-KVP 14.3845  74.4587 —161.069 —60.1516
Wy, co} to generate a sequenc®, XD, ..., x®, ... that converges  R-MEM-SRMI  —18.9065 —18.9157 —18.9257 —18.9353
to the value that minimizeB(x). Herex© is a guess that starts ~ R-MEM-PSRCG —18.8880 —18.8086 —18.8821 —18.7409
R—SKVP —18.9066 —18.9162 —18.9257 —18.9353

the iteration. The scheme generating &b value out ofx®
is explained below. First, we calculate a new conjugate-gradient
directiond® by using

aRKVP values are the results of calculations with the Kohn
variational principle for theR-matrix*> (co). R-SKVP values were
obtained by using SKVP to calculate tl$ematrix, which was then
used to obtairR-matrix values. MEM-SRMI and MEM-PSRCG are

K — _we® (K) y(k—1)
d \ +ﬁ d defined in the article.

(18)
—VF® is the steepest descent direction at the pgifit and

. : directly theS-matrix and has no specific requirements for the
AW is calculated with the FletcheiReeves formufd y b g

accuracy of the wave function in the interaction region. As one
can see below (Figures 2a,b), an SKVP calculation that provides
a numerically exact value for th&matrix produces an inac-
curate wave function, whereas the MEM wave function is very
accurate.
GW is the preconditioned gradient at the poii®, whose Because we know the exact wave functihwe can fit it,
evaluation is explained in Appendix D. This is where the and various terms diW, to find out why so many Chebyshev
conjugate-gradient procedure used in the present work differs polynomials are required for a good fit. Three Chebyshev
from the standard on€.Next, we set polynomials give an excellent fit of the exact wave function.
The most demanding part in the calculatiort3¥ is the kinetic
energy d¥/dr2. An accurate fit ofF requires 18 Chebyshev
. ) , polynomials, mostly because the square 8¥Ir2 is present
ar:(d ckalcu_latex(k) by minimizing, with Brent's method] F(x¥ + in it and we need to represent it correctly at all grid points.
ad®) with respect toa®. _ The “ordinary” power series expansion used sometimes in
The iteration scheme is initialized, by guessing the values of gx\/p pecomes very inaccurate as the highest exponent in the

Wi(2), ... PiN), Co. We do this .by assuming thait; is equal expansion increases (see Table 1). This happens because the
o'W, and by givingco a physically reasonable value. The o (1) does not go to zero fast enough withwhenn is

efficiency of the scheme is not very sensitive to the initial choice. |56 ‘Because of this, the interacting wave function spills into
The preconditioned conjugated gradient scheme is particularly 4, o asymptotic region and this causes errors. The Chebyshev

efficient for minimizing quadratic functions of many variabfés. polynomials do not have this problem because they take values
between—1 and+1.

B. Numerical Stability of MEM with the R-Matrix

A. Convergence with Respect to the Basis Sein MEM- Asymptotic Wave Function. Several studi¢§ 1" have shown
SRMI we represent the wave function in the interaction region that KVP with the R-matrix asymptotic wave function is
as a sum of Chebyshev polynomials. Previous calculafibns, numerically unstable at certain incident energies. The use of
using SKVP, wrote it as a sum of powersrofin Tables 1 and KVP became possible only after it was discovéréuht the
2 we show how the two methods converge with the maximum S-matrix version is numerically stable. To determine whether
number of polynomials used to represent the wave function, MEM-SRMI and MEM-PSRCG are stable, when used with the
for two different wave vectors. In both cases, the MEM-SRMI R-matrix asymptotic wave function, we have calculafedith
requires a sum of 18 Chebyshev polynomials, whereas SKVPthese methods, at incident energies for which RKVP has
obtains results of the same accuracy with an ordinary polynomial difficulties.> The results of these calculations are presented in
of order 8 (note, however, that the accuracy involved is much Table 3. A plot ofR versusk is shown in Figure 1. Both MEM
higher than that needed in applications). This is puzzling, methods with thék-matrix asymptotic condition have excellent
because a sum of Chebyshev polynomials represents morestability. This is gratifying because we no longer need to use
accurately a function than an ordinary polynomial of the same complex numbers in the calculation, thus cutting the computer
order#? Our method requires a larger basis set because it is moretime by half.
demanding: it demands that the wave function is well repre-  C. Accuracy of the Wave Function.As we have explained
sented everywhere. The SKVP, on the other hand, calculatesin the Introduction, in some cases one is interested in obtaining

0 VE®.GW

~ yEkD.gkD) (19)

N CE N RN () (20)

V. Results
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Figure 1. Dependence of th®-matrix on the wave vector of the Figure 3. Evolution of the functionaF (in au) as a function of the
incident electron, around a resonance. number of iterations in the conjugate-gradient minimization. The
connected line with boxes is without preconditioning and the line with
a 5 triangles is with preconditioning.
| F is a bilinear function of the unknown parameters in the trial
8 wave functionW;. Often using a nonlinear dependence on
g 0 parameters is advantageous, because it provides a more flexible
® representation of:. In such cases it is best to determine the
g 1 parameters by a method that minimiZesdirectly. In addition,
exact even whenF is bilinear and the matrix inversion method is
5 MEM-SRMI oo o applicable, the minimization by conjugate gradient is more
MEM-PSRCG 444 efficient than matrix inversion. As a rule, if matrix inversion
0 2.5 5 7.5 10 125 15 requires N® operations, the conjugate gradient requitds
r (au) operations’
b — For these reasons, we have explored the possibility of
41 Exact —— -7 minimizing F by the conjugate-gradient method. Given the
SKVP o o -
3 e history of numerical instabilities of KVP with afR-matrix
= 5 N e asymptotic wave function, we were worried that MEM with
g 7 L7 conjugate gradient may also turn out to be unstable. We found
g1 // ¥ 7 that this is not the case: the method converges efficiently even
2o . = A ,’ for those energies for which KVP gives large errors. This
E \ ’ ‘\ ’ indicates that preconditioning is not obligatory, but our calcula-
e ! ,' ° A ’ tions show that it can speed up the convergence. In Figure 3
2 \' - ‘ < ’ we show a typical history of the conjugate-gradient convergence

with the number of iterations. The iteration was started by
assuming that the asymptotic wave function is valid in the

) ) . ) ) ) interaction region and by taking (cp in our notation) to be
Figure 2. Wave functions in the interaction region. (a) Exact wave s
function (full line) and the ones obtained with MEM-SRMI (boxes) equal to_ 5 (the exact value at the incident wave vekte# .
and MEM-PSRCG (full triangles), for two incident wave vectdts<( 0.15 au is~1.744 94). These are as unreasonable starting points
0.15 au and = 0.55 au). The high energy wave functions have more as one is likely to get in any other system. We required the
oscillations. (b) Real part of the wave function in the interaction region iterative scheme to stop when the difference between the last
obtained by SKVP for the same incident wave vectors as in (a). The two iterated values of became equal to 18. Figure 3 shows
full line is the exact wave function, and the dashed line is the one that poth searches converge and the preconditioned method
calculated by SKVP. The high energy wave functions have more .. q qes faster. Although in this simple problem the advantage
oscillations k = 0.15 au andk = 0.55 au). s . o

of preconditioning is not great, it turns out to be essential in

more complicated problems, where it reduced the number of
iterations by a factor between 7 and 20 (depending on the
energy), and the magnitude of the reduction increases with the
number of dimensions.

0 25 5 75 10 125 15
r (au)

not only theR- or S-matrix but also the wave function. Both
KVP and MEM allow the calculation of the wave function. Here
we examine how accurate these wave functions are, when
obtained in calculations that give tfie or the S-matrix very
accurately.

The exact wave functions, obtained by using Rwenatrix
asymptotic condition, are plotted in Figure 2a, along with the ~ we have shown that the least-squares method (with either
wave functions generated by MEM-SRMI and MEM-PSRCG. matrix inversion or conjugate-gradient minimization), used with
The agreement with the exact wave functions is excellent. The the Chebyshev polynomials as the basis set, enables one to
real parts of the wave functions produced by SKVP are shown optain accurate phase shifts and wave functions for elastic
in Figure 2b. The errors of the wave functions in the interaction s-wave scattering. Compared to the SKVP method, the MEM
region are quite large. These “numerical experiments” indicate provides a better representation of the wave function in the
that SKVP can give erroneous wave functions in calculations interaction region. Because it uses real algebra, it is faster and
that give excellent results for ti&matrix. more efficient in terms of the computational time and storage

D. Convergence of the Conjugate-Gradient MethodThe than SKVP. Even though we use dtmatrix asymptotic
matrix inversion method is applicable only when the functional condition, we find no numerical instabilities.

VI. Conclusion
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Appendix A. Equations Defining Mgg, Moo, Moo, No, Ng
and D

To obtain eq 13, we insert the wave function given by eqs
11 and 12 in eq 2 foF. This gives the following equations for
Maﬂ, Moo, Mog, No, Ng and D.

N

Mg = ) W(H — E)p JiT(H — B)pgl; (A1)
N

Moo = 2 W[(H — E)x,liI(H — E)xal; (A2)
N

Mo = SWlH ~ Bl - Bgli  (A3)
N

No= SwiH - Bl - Bl (A9)
N

N, = SWIH - BlilH - B, (A9)
N

D= "% W[(H — E)y,l{T(H — E)x4; (A6)

The expressions f{ — E)¢]i mean the value of{ — E)¢ at

Temel et al.

The more delicate part in this calculation is the evaluation
of the derivative of; from its values at the grid points. The
finite difference method of low order is inaccurate and high
order calculations are inefficient. A better method is explained
below.

We expandW¥; as a sum of Chebyshev polynomials.
Because the Chebyshev polynomidlgy) are defined only for
y € [—1, 1], we perform the change of variable:

r=30+1) (B4)
The function®(y) defined by
w0 =5y + 1) = 00) (B5)
is expanded as a sum of Chebyshev polynomials
¢ X Oy
(B6)

o(y) = E + azzcu-ra(yi) + 7TN+1(yi)

The coefficientsc, are obtained iN log, N operations, from
knowledge ofd(y;) at the grid points, by using a fast Chebyshev
transform. The availability of a fast transform is the main reason
for preferring the Chebyshev polynomials over other orthogonal
polynomials.

The grid pointsy; are given by (the extrema grid)

the grid pointr;. Because the sums above are the Gaussian-
quadrature approximations for various matrix elements, we use (i— 1)
the grid points and the weights appropriate for this procedure. Y = CO{ N )
These are provided by the Mathematica function Gaussian-

QuadratureWeights. , , We use this extrema grid (as opposed to the “root grid”) of
To evaluate the expressions being summed, we need Ochebyshev polynomials because it allows us to impose the
calculate the kinetic energy operator acting on the test function boundary conditions at = a andry+, = 0 easily.

Y. We have performed all the derivatives analytically using Having chosen this grid, we must use the corresponding
the equation weights (in the expression fd)

i=1,.,.N+1  (B7)

dTn(X) _ n[Tnfl(X) - Tn+1(X)]
dx 2(1— )

a 2 N+1
Wi =_-—
2Np &

(A7) —1+ cosfnr)

m(m — 2)
For more demanding examples one should use the method
explained in Appendix B. wherep; is 2 for the first and the last terms and is otherwise 1.
These weights are computed once at the beginning of the
calculation.
To evaluate the derivatives &F; with respect tar (needed
for the kinetic energy), we use

— T (Vi) (B8)

pm— 1

Appendix B. Calculation of F and the Derivatives in It

Trial wave function is

Wi(r) =f(r) W(r) + (1 — f(r) W) (B1)
. o d¥(r)| _ 2[dd(y)
We are only interested in its valug¢¥ (1), ..., ¥ ,(N + 1)} at S v (B9)
the grid pointsry, ..., In+1.
The boundary conditions require and calculate @(y)/dy from the expression
Y1)=¥Y(N+1)=0 (B2) dw] d, N dy
Therefore we only need to minimiZe with respect to d_y i - E + ZdaTa(yi) + ETN(yi) (B10)
&
x={¥,(2),....W (N and ¢ B3 ) _ .
() (N} 0 (83) with d, obtained from the recursion formula:

The minimization algorithm starts with a guess foand co _ _
and generates better values iteratively. At each iteration we startdn1 =0 dy = NGy.y
with known (but approximate) values &fandcy and need to d,=d,,,+ (20c, ;) a=N-1,..,1 (B11)

evaluate- and VF. Having these allows us to generate a better
approximation forx and co.
Here we explain how we calculakeand VF from x andcy:

This process involves only operations and it is very accurate.
When we apply the recursion twice, we obtain the coefficients
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of the second derivatives. The evaluation of the sum in eq B10 The functional derivative becomes

is performed with an inverse fast Chebyshev transform.

Appendix C. Functional Derivatives
The functionalF is given by

N+1
F=Yw[(H - BW,)]’

(C1)

The derivative with respect to interaction wave function is

9F N+1

oW, (m) - 2;

The only difficulty in the above equation is the calculation of
the terms involving kinetic energy. Formally, we can write

(A = B)Wy); [wi(H — B,

(C2)
W (m)

N+1
[ ] (a)ZD"“’tWJ ©3
d’w, |2 N+1 N+
dr2 i= a ]; Z D;iDyn P'i(yn) (C4)

This matrix notation is useful for the derivation that follows.
However, the whole point of the derivation is to avoid ma-
trix multiplication and find an ordemMN procedure of the
evaluation.

We denote
A(i) = w[(H — EW )], (C5)
and rewrite the functional derivative formula as
9F N+1 R
H—E)W.()|A(
- (m) [alp = )\( )W () [AG)
2 2 N+1 N+1
=2|- D.D, W.(n) +
(a) IZ qul(m) (J ij~in (n)
V(i) W (i) — EW(i) [A®)
2 N+1[ [N+1 oW (n)
Z ZDU Jn A(l)
N+ awt(u) _aw ()
Z V(i) A(i)| (C6)
= oW (m) aIP( m)
Next we define
N+1
D@ = ZD” hn (C7)
and make use of
W (n) _
alpl(m)_ nm (C8)

oF
oW, (m)

N+1
( (a) f(rno D@AG)| +

2f(rm) V(m) A(m) — 2f(r, ) EAIm) (C9)

Because we do not want to perform matrix operations, we
rewrite this equation as

2\2 N+1
=(2(;) f(r) 'S DEAG) | +

¥, (m)
2f(r.) V(m) A(m) — 2f(r,,) EA(m) (C10)
To evaluate the sum, we use the following algorithm: fast
Chebyshev transforrA(i) to calculate the coefficienta, in
N
All) =a, + ZaonTa(yi) +ay () (C11)
&
Then apply the recursion
b,=0 b,=a,
b, +1=b,_,+ 2a, a=2,..,N (C12)
to calculateby, oo = 2, ...,N
Then perform the multiplication
b,=b(a—-1) a=2,..,N+1 (C13)
to calculateb,. Then use the recursion
c,=0 c,=Db
Ca+1=Ca_1+2ba o=2,..,N (C14)
and the multiplication
C,=Cy(— 1) a=2,..,.N+1 (C15)

These coefficients are used to calculate the second derivative
from

(C16)

CO N
(D(Z)TA)m = Z + QZ\ a(ym) + TN+1(ym)

The sum is performed with an inverse fast Chebyshev transform.
Note that the first and the last elements of the summations in
egs C11 and C16 are multiplied by constants different from
those of the other summations we perform throughout the
calculation. The difference comes from the applicatioD&¥"
operator.

The derivative ofF with ¢y is

N+1
=2 AG)H-E)[(1 — f(r))) coskr)]

c &

(C17)

Appendix D. Preconditioning in the Conjugate-Gradient
Method

Experimenting with various possibilities, we have found that
we only want to precondition the gradient componei&W,
., OF/dWn+1 and notaF/acy. For this purpose, we will drop
the aF/acy term in VF = {0, aF/0Wy, ..., aF/0Wy, O, dF/dco}
while preconditioning the gradient. After the selected compo-
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nents of the gradient have been preconditioned, we add backand therefore makes the matrix (in the quadratic fofnless

the aF/aco component. ill conditioned. The preconditioning does reduce the number
Preconditioning is performed through a sequence of opera- of iterations in the conjugated gradient search. However, this
tions, each involving eitheX or N log, N operations. reduction is not sufficiently dramatic to prompt us to experiment
First, we evaluate the vector further with better preconditioners. Applications to high dimen-

sionality, more complex problems may require a search for better
p,= {0, a8y, % . dvay OF } (D1)  Preconditioners.
2
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