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Reactions with delocalized transition states (plateau reactions) can be characterized statically by their energy
profile along the reaction path, where they exhibit a broad, flat region instead of one or several well-defined
saddle points on the potential energy surface. Employing our new, highly flexible quantum dynamics code to
perform two-dimensional and effective four-dimensional quantum wave packet propagations on ab initio based
model potentials, we show that plateau reactions can also be discerned from the other standard reaction types
by their dynamics.

1. Introduction

Instead of a usual, i.e., localized, transition state, plateau
reactions exhibit a flat region in their energy profile along the
reaction path. This puts them between the textbook case of a
simple barrier reaction (Eckart potential profile) and a two-step
case with a reactive intermediate. First one-dimensional studies
of plateau reactions have revealed that they show quite unusual
features (vide infra) in contrast to standard concerted or stepwise
mechanisms. At the moment, however, little is known about
these reactions. Plateau reactions occur in different double
proton transfer reactions (DPTRs) but also in other cases,1-4

including biochemically relevant ones as the guanine/cytosine
base pair.5 Proton transfer steps not only are important for the
currently frequently studied base pairs6,7 but also often constitute
key steps in chemical reaction mechanisms and biochemical
processes.8-12 Therefore it is important to investigate their
dynamics in detail.

Single proton transfers have been intensely investigated, with
high-level calculations and beyond the one-dimensional picture,
leading to good agreement with experimental results.13,14

Recently, even quantum effects on single proton-transfer steps
in an enzymatic system have been studied.15 In contrast, DPTR
dynamics are much less well studied. Several groups have
examined the formic acid dimer,16-17 but due to symmetry this
is a standard Eckart profile case, offering no insights for plateau
reactions. Two of the present authors have studied DPTR plateau
dynamics within the reaction path Hamiltonian (RPH) using
classical mechanics,19 showing that transition state theory is not
applicable to these systems. The classical dynamics treatment
within the RPH picture does not allow for a consistent
investigation of the dynamical effects associated with the
different potential energy surfaces when switching from a
concerted to a stepwise reaction mechanism. In any case, the
very light masses involved in DPTRs call for a quantum
dynamical treatment. However, no higher-dimensional quantum
mechanical dynamics studies of these systems are known to
us, in fact not even one-dimensional ones.

Due to the size of the systems under consideration, the
quantum dynamical treatment of these reactions will have to

meet several challenges: (1) identification of the degrees of
freedom (DOFs) most relevant to the reaction, (2) calculation
of the potential energy surface in these degrees of freedom, to
sufficient accuracy (presumably possible only on-the-fly), and
(3) actually performing the quantum dynamics in all these
degrees of freedom, which includes the problems of setting up
the kinetic part of the Hamiltonian and of representing the
multidimensional wave function.

Based on our exploratory studies using the RPH formalism,
we expect that these systems will exhibit dynamical features
that differ from both standard textbook cases of a single Eckart
barrier and of a reactive intermediate. Therefore, it is crucial to
characterize plateau dynamics in contrast to these two limiting
cases.

Here, we present first steps toward quantum dynamics of
plateau reactions, solving the challenge of setting up the kinetic
part of the Hamiltonian. We work out first characteristic
differences of this reaction type compared to the standard ones.
To this end, we use both fully realistic ab initio quantum
chemistry potentials and model potentials. The latter not only
were initially fitted to these ab initio data but also offer the
possibility to seamlessly switch between all three reaction types.
All of these reaction types have already been detected by static
energy profile analysis for pyrazole-guanidine clusters with
varying substituent patterns.4,20

The remainder of this paper is organized as follows: In
section 2 we briefly discuss relevant aspects of the theory. In
section 3 we give essential details of our computational approach
and of our test cases. In section 4 we present exemplary
dynamical results for these systems. Section 5 finishes with a
brief summary and conclusions.

2. Theoretical Background

All standard approaches to full quantum dynamics scale very
steeply with the number of DOFs. To be able to focus the
dynamical treatment on the internal DOFs of the molecule, one
is therefore forced to abandon the simple form of the kinetic
part of the Hamiltonian operator in Cartesian coordinates and
to switch to curvilinear coordinates. However, this transforms
the task of finding an analytical representation for the kinetic
part of the Hamilton operator into a real problem.21 Already
for rather small systems, computer algebra programs have been
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employed for this task, resulting in long and complicated
expressions that are awkward to handle.22 Additionally, the
resulting expressions (and computer programs) are not universal
but have to be changed for each new case to be treated. If
constraints need to be added, as in the case of limiting the
dynamics to various active subsets of all DOFs (which is
essentially unavoidable for larger systems), this approach can
become completely impracticable. Active development is being
done in this area,23 but these basic problems of the traditional
approach still persist.

In the following, we will briefly review the basic formulas
needed in this context, where for the sake of simplicity we
restrict ourselves to the case of zero total angular momentum
(J ) 0). A detailed treatment including the caseJ > 0 can be
found in references 24 and 25.

Assuming that the configuration for anN-atomic molecule
is appropriately described in terms of 3N - 6 internal
coordinatesq ) (q1,..., q3N-6)T, the general expression of the
kinetic energy operator can be written in a very compact
form24-27

wherep̂i ) -i p∂/∂qi are the conjugate momentum operators,
p̂i

† ) J-1(q) p̂i J(q) are their adjoints, andgij are the contra-
variant components of the metric tensor.J denotes the Jacobian
determinant of the transformation from Cartesian to curvilinear
coordinates.

Expanding eq 2.1 leads to an expression for the kinetic energy
operator which is much better suited for numerical calculations

with

It should be noted here that all the above equations are valid
only if the standard Euclidean volume element dτ ) J(q)dq
has been used to normalize the wave function. In case an
arbitrary weighting functionF is used (i.e.∫ψ*(q)ψ(q)F(q)dq
) 1), the kinetic energy operator in eq 2.1 has to be modified
according toT̂ f T̂F ) J-1/2F1/2T̂J1/2F-1/2. As a consequence,
the substitutionJ f F is necessary in eq 2.4, and an additional
purely multiplicative termVepappears in eq 2.2. The latter, being
a function of the coordinates only, is often referred to as the
extrapotential term.24

However, if the size of the system under investigation exceeds
a number of four or maybe five atoms, and if traditional means
of wave function representation are used (which imply expo-
nential scaling of computational expense), some kind of reduced-
dimensionality approach is clearly unavoidable. One general
strategy is to divide the whole set of degrees of freedom into
an active subset, which is treated explictly (and exactly), and
an inactive/passive subset, where approximations and/or con-
straints are applied to reduce the overall work. Three commonly
used ways of treating inactive coordinates are as follows:

1. The rigid-constraint model:28,29 Within this approach, the
passive coordinates are held fixed, e.g. at their equilibrium
values. The big advantage concerning the quantum chemistry
calculations is, of course, that the PES is needed only in the
active coordinates and only in the form of single-point calcula-
tions. However, freezing the passive coordinates may allow for
energetically unfavorable motions of the molecule. Furthermore,
there are no unique and obvious choices at which values to fix
the passive coordinates.

2. The adiabatically constrained or flexible model:30 This
approach consists of adjusting the variation of the passive
coordinates to those of the few active ones by means of a
restricted local potential minimization. On the quantum chem-
istry side, the local minimizations increase the computational
burden (but not as far as in the next case). They do, however,
provide a unique, well-defined choice of coordinate values for
the passive coordinates. In general, these values of the passive
coordinates are not constant but rather functions of active
coordinates. This may or may not agree with the dynamic
propensities of the system. Therefore, in some cases this model
is known to produce rather large and unrealistic effective masses
and extrapotential terms.31

3. The (harmonic) adiabatic approximation (H)ADA:32-34 In
the adiabatic approximation, the active and passive coordinates
are treated very analogously to the slow nuclei and fast electrons
in the Born-Oppenheimer approximation. The major disad-
vantage is that the full PES for all coordinates is needed. One
possible way to circumvent this problem is to perform a
quadratic (harmonic) approximation of the potential perpen-
dicular to the active minimum energy path or domain. In this
sense the HADA is closely related to the RPH formalism.

But whatever the nature of the constraints, all of the above
considerations concerning the derivation of the kinetic energy
operator become more involved. This applies even if analytical
expressions for the unconstrained system are available.28 The
reason is simply that imposing constraints modifies the metric
of the (unconstrained) configuration space and thus the Jacobian.
Hence, as the above formulas show, the kinetic energy operator
also changes.

3. Computational Details

For our current and future work on quantum dynamics of
plateau DPTR reactions, we need an efficient route for testing
different sets of active DOFs and for treating passive coordinates
on different levels as described in the previous section. The
importance of these choices has been nicely pointed out in the
recent literature, for example by Luckhaus.35 Instead of deriving
analytical expressions for the kinetic energy operator, we have
therefore decided to adopt an alternative approach of Lauvergnat
et al.36,37 They have shown that it is possible to calculate the
coefficients needed in the general expression for the operator
of the kinetic energy, eq 2.2, numerically (but exactly), as a
function of the current geometry. This also allows for a
comparatively simple restriction of the dynamics to arbitrary
subsets of active DOFs. (For brevity, in the following text, we
use the designation TNUM both for this approach and for its
implementation as a computer subroutine by Lauvergnat et al.)

We have joined the TNUM program of Lauvergnat et al. with
state-of-the-art quantum wave packet propagation technology
already present in our group, including various basis, grid, and
DVR representations of the vibrational wave function as well
as the most important time propagation algorithms (split-
operator, symplectic, short iterative Lanczos, Chebyshev). The
resulting quantum dynamics program can be used unchanged
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to perform quantum dynamics for quasi-arbitrary choices of
coordinates and active/passive DOF subsets, including differing
numbers of DOFs. Of course, since for the present study we
employ traditional direct product bases, practical applications
here are still limited to relatively few DOFs.

As a standard case for a plateau system we are employing
here the pyrazol-guanidine cluster, for which one- and two-
dimensional potential energy surfaces are available from prior
ab initio quantum chemistry calculations.19,38 Along the one-
dimensional reaction path (with all other coordinates relaxed),
this system exhibits an almost exactly flat plateau. With the
two NH-distances as active coordinates (and again with all other
coordinates relaxed), the plateau stretches in two dimensions
but is slightly less pronounced than in the 1D picture. This
indicates that the plateau is not just a 1D feature (a valley with
a level floor but steep walls) but a multidimensional one.
Naturally, however, it does depend on the choice and treatment
of coordinates: With the passive coordinates fixed at their values
at the (formal) transition state, the plateau gives way to a well
with a depth of 5 kJ/mol. The choice of passive coordinate
treatment is further discussed below.

We know from previous work4,19 that more than two
coordinates are significantly involved in the reaction path,
including heavy-atom motions such as relative translation and
angular motion of the two monomers (which parallels findings
on similar systems in the literature35,39,40). At the present state
of propagation technology, we therefore see little chance for a
full investigation of the dynamics of this system, including all
48 degrees of freedom. Hence, we have resorted to fitting a
two-dimensional model surface to the ab initio data, consisting
of a flexible set of Gaussians and polynomial functions.
Variations of the fitting parameters allow for all deformations
of the model surface needed in this context.

In section 4, we present quantum dynamics on this model
surface, for five selected cases: (1) Thenormal plateau system,
which is the original fit of the model potential to the ab initio
data. Since the other coordinates were relaxed in the ab initio
calculation but are held fixed here, the dynamics on this potential
corresponds to a hypothetical system exhibiting a realistic
plateau in two active coordinates. (An example for the effects
of geometry relaxation in the kinetic energy operator is presented
in section 4.3.) (2) Theextended plateau system, in which the
model potential of case (1) has been modified such that the
plateau is considerably broader, exaggerating its dynamical
effects. This situation has been found and studied for the system
fluoropyrazol-guanidine.20 (3,4) TwoEckart systems, in which
the plateau is replaced by a single Eckart-type barrier in two
different ways. (5) ThereactiVe intermediate system, where a
well appears in place of the plateau. Figure 1 shows one-
dimensional cuts along the minimum-energy paths for all five
cases. As discussed in previous work,4,19,20,41these energy profile
variations can be understood as arising from the presence of
two single-barrier reaction steps which can occur simultaneously
(Eckart cases (1) and (2)) or successively (case (5)). The plateau
cases (1) and (2) arise between these two limiting cases.

It should be emphasized here that the model potentials for
all cases (2)-(5) were generated from case (1) by applying the
smallest possible amount of deformation, keeping all other
features of the two-dimensional PES (in particular including
those away from the reaction path) as close to the original ab
initio form as possible. For this reason, these deformed potentials
can be expected to be good models for real DPTR systems
exhibiting these energy profile features.4,19,20,41For the same
reason, however, the profiles classified as “Eckart” here do not

have pure Eckart form in the 1D cuts of Figure 1; in this sense,
we use “Eckart” as a shorthand for a typical single barrier case.
For simplicity, in the following we use the term “plateau region”
not only just for the true plateau region of case (1) (correspond-
ing to the reaction path interval [-0.25 Å,+ 0.25 Å] in Figure
1) but also for the same spatial region in all other cases. In the
present work, we are only interested in the dynamics in this
plateau region; therefore, the form of the potentials beyond the
reactant/product minima (outside of the reaction path interval
depicted in Figure 1) is irrelevant to us and will be eliminated
from the dynamics by absorbing potentials (see below).

These five prototype cases allow us to search for characteristic
differences in the dynamical behavior of plateau reactions versus
single and double Eckart barriers. One obvious candidate for
marked differences in behavior is the residence time in the
plateau region. Two of us have already investigated this quantity
by approximate classical mechanical RPH dynamics.19 From
these studies, and from straightforward physical intuition, we
expect it to be very small in cases (3,4) and large in case (5).
However, it is a priori unclear whether a plateau system will
be close to one of these two cases or between. As a simple but
meaningful check for this situation we place an initial packet
on the formal transition state, with a width on the order of the
plateau width (case 1). To arrive at a meaningful comparison,
we use the same initial wave packetψ(‚, t0) for all cases, chosen
to be a two-dimensional Gaussian

centered at coordinatesq̃ j ) 1.45 Å and with widthsσj ) 0.15/
x2 Å. Figure 2 depicts this initial wave packet on a two-
dimensional view of the PES for case (1), in the NH-distances
qj ( j ) 1, 2).

It should be pointed out that this initial packet is not merely
a technically helpful construction but simultaneously a proposal
for future experiments: As pointed out in previous work,38,41

the PES of certain excited states of plateau systems appear to
be mirror images of the ground state PES, with a broad
minimum in the region of the ground state plateau. Thus it
appears possible that the initial state we are using here may
actually be accessible to experimental preparation via suitably
designed laser pump-dump schemes involving such an excited
state.

Figure 1. Energy profiles along the minimum-energy paths of the 5
model reaction types used here.

ψ(q, t0) ) ∏
j)1

2 ( 1

πσj
2)1/4

exp(-
(qj - q̃ j)2

2σj
2 ) (3.1)
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As measures for the retention of the initial wave packet in
the plateau region we employ the autocorrelation function and
the quantum mechanical flux leaving the plateau area. The
autocorrelation functionA is defined as

where we have used the Wilson normalization convention,42,43

i.e., F(q) ) 1 w dτ ) dq. Due to the specially chosen spatial
extent and location of the initial packet, the absolute value of
A already provides indications for the retention time of the
packet in the plateau region. However, sinceψ(q, t) and hence
also A(t) are complex quantities in general, it is not strictly
conclusive to examine|A(t)| (a single real function) alone. Or,
in other words, a decrease in|A(t)| can be caused by decrease
of overlap betweenψ(q, t) andψ(q, t0) in coordinate space or
in momentum space (or both).

In earlier cases,44 we have also examined the phase ofA(t)
to overcome this ambiguity. Instead, in the present case of more
complex dynamics, we additionally monitor the quantum
mechanical flux leaving the reaction barrier region. For this
purpose, we have defined this region as a simple square areaA
≡ {q ∈ R2|∀j ∈ {1, 2}: qj g 1.2 Å ∧ qj e 1.7 Å}. The flux
through the boundaries∂A of this area, denoted asF, can then
be written as

and the common notations for the flux densityj , the outward
pointing unit normaln and the surface element dS. We have
tested different reasonable sizes and shapes for the areaA,
ensuring that the results are qualitatively independent of the
special choice made in the current presentation.

The results presented in the following section are all obtained
on a spatial grid betweenq min

j ) 0.6 Å andq max
j ) 2.4 Å,

using 80 gridpoints per dimension. Convergence of the results
is checked with higher numbers of gridpoints up to 100× 100.
For time propagation, we use the short iterative Lanzcos
scheme45 with dimension 12 for the Krylov subspace and a time
step of 0.1 fs. Without the absorbing potential, deviations from

energy conservation are then ensured to stay below 10-5

kJ/mol. For the absorbing potentialV, we apply the complex
version of Manolopoulos46 and Zhang47

The starting coordinates of the absorbing potential are set to
q 0

j ) 2.15 Å. The amplitudes of the real and imaginary part
areVR,j ) -0.127Et,max andVI,j ) -0.994Et,max, respectively.
For the dimensionless parameters in the exponents we useRR,j

) 0.739 andRI,j ) 3.071. Under these conditions, we have
verified that no parts of the wave packet reach the grid
boundaries.

4. Results

4.1. Plateau vs Eckart.Figure 3 shows snapshots of the
propagation of our initial packet on the plateau PES (case 1).
A considerable amount of a surprisingly long-time retention of
the wave packet in the (blue) plateau region is visible, but in
this presentation this effect is obscured by other features of the
evolving wave packet that are irrelevant for our purposes.

Since it is difficult to easily show the differences between
the various cases in this form of presentation, we focus on more
condensed but also clearer information in the following. Figure
4 shows the modulus of the autocorrelation functions for 2D
quantum dynamics for the five test cases described in section
3. As explained there, due to the spatial extent of the initial
packet, the autocorrelation function is a good measure for the
retention time of the packet in the plateau region. The fluxes
provide a complementary view and ensure that the autocorre-
lation data are not misinterpreted.

As expected, in the two Eckart cases (3) and (4), the
autocorrelation falls off to almost zero without noticeable
features within 5-10 fs, corresponding to a fast and essentially
complete departure of the initial packet from the plateau region.
This is confirmed by the strong initial flux peaks, followed by
a quick return to the baseline. Apparently, the dynamical
differences between the two Eckart cases are only minor. At
about 30 fs, the wave packets have oscillated back and forth in
the reactant/product minima (black regions in Figure 2) and
partially return to the plateau region. To prevent this, we have
applied absorbing potentials at the boundaries of the propagation
grid. The remaining increase of the autocorrelation functions
at about 30 fs is largely due to a partial revival based on
oscillation in the symmetric stretch mode (along the bisectoring
line). In any case, the dynamics beyond 30 fs is not dominated
by the shape of the PES in the plateau region anymore.
Therefore we focus the following discussion only on the initial
time up to 30 fs.

The autocorrelation function for case (1) (corresponding to
the original ab initio data of pyrazol-guanidine) strongly differs
from both Eckart cases. Besides falling off more slowly, this
initial falloff is only to a value of 0.2, indicating retention of a
surprisingly large part of the wave packet on the plateau, which
disappears only on a longer time scale. Correspondingly, the
initial flux peak at 3 fs is much smaller than in both Eckart
cases, and the following falloff to zero is less rapid and more
structured.

This is again clearly different from case (5) (reactive
intermediate). There, we find retention to a much higher level
of 0.4 in the autocorrelation. As an additional signature of a

Figure 2. Initial wave packet in the plateau region of the 2D potential
energy surface (case (1)). The potential is depicted with a color code
(in kJ/mol). The two stretch coordinates are shown in Å.

V (q) ) ∑
j)1

2

VR,j exp(-RR,j κj) + iVI,j exp(-RI,j κj)

with κj )
q max

j - q j

q j - q 0
j

(3.4)

A(t) ) ∫ψ*(q, t0) ψ(q, t ) dq (3.2)

F (t) ) I∂A j ‚n dS) ∫A
∇‚j dq

with ∇‚j ) 2p Im(ψ(q, t) T̂ ψ(q, t)) (3.3)
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potential well, two peaks of a vibrational movement in this well
with a period of about 10 fs are visible (at 22 and 32 fs). Again,
both features (higher retention and systematic oscillations) are
also visible in the flux data.

This strong retention effect is induced by a comparatively
small well (cf. Figure 1). Or, viewing the situation from a
different perspective, getting the same amount of retention using
a plateau without any well is surprisingly difficult. Of course,
retention on a plateau increases if the plateau is extended.
However, as case (2) shows, even if the length of the plateau
along the reaction path is doubled, the retention effect is still
clearly below that of the reactive intermediate case (5) (and
discernible by the shape of the autocorrelation and flux data).

Therefore, plateau reactions are not just an elusive borderline
phenomenon but presumably constitute a class of their own,
distinct from the two textbook cases of a single Eckart barrier
and of a reactive intermediate.

4.2. Quantum vs Classical Mechanics.The main aim of
the present work is to show that plateau reactions form a class
of their own, with distinctive features in their dynamics, as
compared to single-barrier and reactive-intermediate situations,
even in a quantum dynamical treatment, as it is appropriate for
dynamics mainly dominated by light hydrogen atoms. This has
been demonstrated by the result presented above. As additional
aspect, one may ask if this special status of plateau reaction
dynamics has quantum or classical mechanical origins. In our
previous work,19,20 we have already performed classical-
mechanical dynamics, albeit for an RPH representation of these
systems, which is not directly comparable to the models studied
here. Therefore, we have also performed classical trajectory
calculations for the present model cases.

Specifically, we have run large swarms of trajectories with
initial conditions sampled from a Wigner quasi-probability
distribution W, which for the initial wave packet (eq 3.1) is
given by

The average values for the momentap̃k are zero, and all other
parameters are the same as described in section 3.

The classical Hamilton functionH here reads

whereg is again the contravariant metric tensor from eq 2.1.
To solve the canonical equations of motion

and

We also need the derivatives of theg metric with respect to the
active coordinatesqj. These are also easily computed with the
TNUM code.

Figure 3. Propagating wave packet on the 2D plateau potential (case (1)). Presentation as in Figure 2.

Figure 4. Absolute value of the autocorrelation functions (left-hand) and quantum mechanical fluxes (right-hand) for 2D dynamics of the 5 model
reaction types used here plotted against the propagation timet.
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For the classical time propagation we use a fourth-order
Runge-Kutta algorithm with a time step of 0.1 fs. This ensures
energy conservation to within 10-3 kJ/mol.

Figure 5 shows direct comparisons between the quantum
mechanical and classical probability measuresµQM(A, ‚) )
∫A|ψ(q, ‚)|2 dq andµCM(A, ‚) ) ∑i)1

Ntj ΘA(i, ‚) as functions of
the propagation time. Here, the functionΘA(‚, t) counts the
numbers of trajectories inside the spatial areaA (the same area
as the one described in section 4.1) at timet, where the total
number of trajectoriesNtj for each case is 215 760 sampled from
eq 4.1. In order not to overload the figure we do not show the
second Eckart case (case (4)) here, as the results are qualitatively
the same as for case (3).

Obviously, the differences between classical and quantum
mechanical dynamics are completely negligible for the Eckart

case(s). Here, it is important to remember that we are using
very special initial conditions (“on top of the barrier”), and
therefore tunneling through the Eckart barrier is not expected
to be an issue. Likewise, effects from vibrational zero-point
energies are not expected to induce qualitative changes in
dynamical behavior.

For the case (1) plateau, classical and quantum mechanics
again are identical within the trajectory sampling error. As
expected for a broader barrier, and as explicitly demonstrated
in our previous work,4 tunneling is unimportant for plateau cases,
even for different initial conditions (corresponding to a full
reaction, i.e., from one minimum over the barrier to the other
minimum).

First differences between classical and quantum mechanics
are visible for the still broader case (2) plateau, and they become
significant for the case of a reactive intermediate. In the latter
case, tunneling out of the shallow reactive intermediate well
contributes to this effect. In both cases, however, also variations
of vibrational zero-point energy along the reaction path have
decisive effects. As we concluded in ref 20, this can transform
shallow reactive intermediate wells into effective plateaus or
even small effective barriers or vice versa. In fact, this
conclusion was our main reason for switching from classical to
quantum mechanical dynamics with the present work.

In summary, the presence of a plateaulike energy profile is
also qualitatively discernible in a classical trajectory treatment.
However, clear distinctions between true plateau cases and
deviations from them toward small single or double barrier cases
can only be made with a quantum dynamical treatment.

4.3. Rigid vs Flexible Model.As an example for the effects
of incorporating geometry relaxation of inactive coordinates into
the kinetic part of the Hamiltonian, we use the flexible model
for the two angular coordinatesRi ) ∠(Hi, Ni, Ci), depicted in
Figure 6. From our previous studies,19 we know that these two
coordinates are among those with larger contributions to the
reaction path. Numerical single-point information on the
dependence of these two passive coordinates on the values of
the two active stretch coordinates was extracted from the
available ab initio data. Analytical fits of simple polynomials
to these data enabled us to provide analytical derivatives of these
dependencies, which is necessary input information for incor-
poration of these two DOFs as flexible passive ones into the
numerical kinetic energy part of the Hamiltonian.

Figure 7 shows the autocorrelation functions and fluxes for
this new case (using again the same initial wave packet), in
direct comparison to the previously shown case (plateau case

Figure 5. Quantum mechanical (solid lines) and classical (dashed lines)
probability measures (normalized to one) for four of the test cases
plotted against the propagation timet in femtoseconds.

Figure 6. The two angular coordinates (R1,R2) incorporated into the
dynamics via the flexible model.

Figure 7. Absolute value of the autocorrelation functions (left-hand) and quantum mechanical fluxes (right-hand) for all passive coordinates taken
as rigid (red lines), compared with two angular coordinates treated as flexible (green lines).

Fingerprints of Delocalized Transition States J. Phys. Chem. A, Vol. 110, No. 48, 200613019



(1) in Figure 4) where these two passive coordinates were rigid
(as all the other passive ones).

Clearly, the difference in the autocorrelation functions
between these two ways of treating the passive coordinates in
a plateau reaction is smaller than the differences for different
reaction types (cf. Figure 4). They are also smaller than those
observed for tunneling splittings in an Eckart-potential energy
profile.35 However, they clearly are far from negligible. An
analysis of the corresponding wave packet movement (not
shown) reveals that in the flexible case the effective 2D wave
packet spreads more slowly (corresponding to a larger effective
mass), in particular in the asymmetric stretch direction (per-
pendicular to the bisectoring line). This causes the higher
retention effect visible in the autocorrelation function during
the first 30 fs. This analysis is confirmed by the flux data, which
exhibit a more significant difference.

Whether a rigid, a flexible or an (harmonic) adiabatic
treatment is more appropriate for the inactive coordinates, and,
even more importantly, how many and which coordinates should
be active, depends on the dynamical propensities of the system
under study. It has to be determined either a priori by educated
guesses or a posteriori by investigating the convergence of
dynamical properties upon increasing the number of active
coordinates. Only an analysis of the dynamics in such a fully
converged set of active coordinates will then reveal the true
character of the reaction. This will then also be a more reliable
indicator than the static, effective 1D picture of energy profiles
along the reaction path given in Figure 1, which is biased by
the particular definition of the reaction coordinate or by the
desire to achieve a unique 1D cut in an electronic structure
calculation.

For the present case of a plateau DPT reaction, our chemical
intuition tells us that it is presumably correct to include the two
angular DOFs as flexible passive coordinates, since the effective
masses associated with them presumably are small enough to
adapt to the proton movement. In contrast, we expect that this
approach may be invalid for other dynamically important DOFs,
for instance for those linked to relative translational movement
of the whole pyrazole and guanidine fragments. An a posteriori
confirmation of these hypotheses, however, can only be given
after further method development toward quantum dynamcis
for significantly more degrees of freedom.

5. Conclusions

We have linked state-of-the-art quantum wave packet propa-
gation technology with a flexible numerical representation of
the kinetic part of the Hamiltonian by Lauvergnat et al.,
establishing a first version of an all-purpose quantum dynamics
program. Using available ab initio data on the paradigmatic
DPTR plateau case of pyrazol-guanidine, we have constructed
a 2D model potential energy surface that can be used as a
tunable system, to seamlessly switch between various plateau
types and the standard textbook cases of a single Eckart barrier
and of a reactive intermediate. We have used these two
ingredients to demonstrate special dynamical characteristics of
plateau DPTR reactions, in contrast to those two standard
textbook cases. It turns out that already simple measures such
as retention times of a wave packet in the TS region allow for
a differentiation between the dynamics of these three reaction
types, putting them into three distinct classes.

Besides treating the passive degrees of freedom as rigid, we
have also examined modeling them as flexible, which turns out
to have visible influence on the dynamics without disrupting
our reaction type classification. Ongoing work in our labs

establishes higher-dimensional but sparse representations of
vibrational wave packets48 and system-specific global reopti-
mization of parameters in semiempirical methods.49 Combina-
tion of these techniques with those presented here will allow
for a quantum dynamical treatment of plateau DPTR reactions
in all relevant degrees of freedom. This will be the topic of our
future work.
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