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Binding energies of first row diatomics are revisited within the interacting quantum atoms (IQA) approach.
This is a formalism in chemical bonding theory based upon the quantum theory of atoms in molecules. It is
characterized by the preservation of the energetic identity of atoms within molecules. Quantum mechanically
computed binding energies are recovered in IQA as a sum of small atomic deformation energies and large
pairwise interaction terms. We show how this partition responds faithfully to chemical intuition, and how the
different evolution of deformations and interactions accounts in a unified manner for the subtle variations of
the binding energy of these molecules.

I. Introduction

Developments in quantum chemistry over the last twenty
years have provided us with a set of tools that allows for the
calculation of the electronic structure of small molecules to
chemical accuracy.1 This qualitative computational jump has
not been followed by similar changes at the interpretive level.
The origin of this dichotomy lies in the intrinsic nonseparability
of quantum objects, for many of the basic problems in bonding
and binding rest in understanding the change suffered by a
number of chemical entities upon interaction. This need of
partitioning an interacting system into components is well
supported by simple molecular orbital (MO) models,2 where
electrons occupy independent energy levels, and has contributed
to the success of theories of orbital interactions.3 Other
theoretical schemes like the valence bond (VB) method,4 which
dominated early quantum mechanical interpretations in chem-
istry, have proven much more difficult both to implement
algorithmically and to further provide quantitative partitionings.
As of today, we may say that interpretive quantum chemistry
is still dominated by orbital reasonings, more so after the initial
reticence regarding the use of Kohn-Sham orbitals within
density functional theory (DFT) has mostly dissipated.5

A characteristic of many of the methods of analysis of
molecular binding has been with quantum chemistry since its
inception: binding energies are only a small fraction of the total
molecular energies, so it is very difficult to devise energetic
partitions that do not lead to almost exact cancellations among
large opposite components. As an example, Ziegler-Rauk
energetic decompositions,6,7 very popular these days due to their
generality, wide computational scope, and chemical insight,8-10

define energetic components (i.e., Pauli energy, electrostatic
energy) which are, at most, of the same order of magnitude as
the final molecular binding energy. And this final goal is only
achieved after subtracting even larger terms (i.e., kinetic,
potential energies) from largely arbitrary reference fragments.

Interpretive problems abound even in the simplest first row
homodiatomics. Here, the gap between the naı¨ve proportionality

of atomization energies with the number of bonding electrons
and the actual experimental values is large and difficult to close
by means of simple explanations. For instance, a simple plot
of atomization energies versus the atomic number shows a
triangular evolution of the former on filling thep shell and going
from B2 to F2. However, the binding energies of O2 and F2 are
smaller than those of C2 and B2, respectively. This sequence
has been rationalized within independent electron models as due
to the difference between increasing bond order by filling
bonding states and decreasing it by filling antibonding MO’s.
Nevertheless, this simple image cannot be held after noticing
how badly Hartree-Fock (HF) binding energies perform in these
systems. Actually, difluorine is unstable with respect to dis-
sociation at the HF level, so its low binding energy is exclusively
due to correlations among its electrons. This special place of
F2 was very soon recognized,11,12 for a number of known
relationships fulfilled by the rest of the dihalogen molecules
fail when they are extrapolated to the head of the group. Since
then, a large number of possible mechanisms for this anomalous
behavior have been proposed,13-16 going from the dispersion
energy argument suggested by Pitzer,13 to the excessive lone-
pair repulsions of Jolly and Eyermann.15 Moreover, it was the
study of this and other anomalous systems that led to the charge-
shift bond concept developed by Shaik et. al.,17 a distinguished
example showing us that there is still plenty of room for new,
unexpected ideas even in very simple chemical systems.

A way out to the general quantum-mechanical nonseparability
as applied to chemical problems is exemplified by topological
approaches to chemical bonding. Because chemists talk about
atoms interacting with each other, forming and breaking bonds,
we should try to leave Hilbert space in favor of the physical
space. These statements have evolved into a number of theories,
among which we single out the quantum theory of atoms in
molecules (QTAM), developed by Bader and co-workers.18 It
provides a generalization of the rules of quantum mechanics to
real space subsystems. A recent account of its underlying
philosophy in comparison to conventional MO theory may be
found in ref 19. The topological method has contributed to
connect the physical world of chemists with quantum mechanics
by providing mathematically rigorous recipes to associate the
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objects of chemistry (atoms, electron pairs, lone pairs, etc.) to
regions of space derivable from wave functions in an orbital
independent manner. However, most known applications of
these ideas to binding have used the immediate one-body
energetic partition provided by topology. This leads to defining
additive atomic energies that may only be used at equilibrium
configurations, on one hand, and that are subject to the same
cancellation problems just discussed, on the other.

We have recently shown20-22 how a chemically meaningful
theory of interacting quantum atoms (IQA) may be constructed
from topologically derived partitions of the physical space. Its
natural, most successful niche is the QTAM, but this ascription
is not compulsory, because our basic arguments hold for general
partitions of the molecular electron density into atomic com-
ponents.23 The basic tenet of the formalism preserves the core
of our chemical intuition by translating into a quantum me-
chanical compliant language the following idea: atoms are
entities that keep their individuality upon interaction to form
molecules. Thus molecular binding energies must contain two
clearly different ingredients: the changes suffered by the self-
energies of the atoms in the interaction process, on one hand,
and the interaction energies by themselves, on the other.

This intuitive notion, so near conventional wisdom, and so
many times explored in the literature under different theoretical
umbrellas (let us just recall McWeeny’s theory of electronic
separability,24 or the atoms in molecules of Li and Parr25), has
not previously found its way further into the topological theories
of the chemical bond.

The purpose of this paper is to show how the straightforward
application of the IQA/QTAM approach to the decomposition
of the binding energy of first row diatomics into self-and
interaction components provides a complementary new way to
rationalize the experimental facts. According to the view that
emerges from our analysis, the variation of the atomic self-
energies along the row is responsible for much of the observed
trends, and displays the familiar double-hump shape related to
the half-filling of atomic shells. Our other factor, the interaction
energy, shows a much smoother evolution and depends basically
on the number of electrons that are shared between the
interacting atoms. Overall, this image, which we stress is
independent of the orbital model, is compatible with a growing
importance of intra-atomic repulsions on moving along the
period. Similar ideas have been proposed repeatedly.15,16

In the rest of the paper we will first introduce a minimal set
of concepts from the IQA approach, followed by a succinct
description of the calculations made in the first row diatomics
to further discuss thoroughly our results.

II. Results and Discussion

A. IQA/QTAM Approach. The IQA/QTAM approach starts
from a partition of the physical space into the atomic domains
provided by the QTAM.18 These domains are separated by
interatomic surfaces that satisfy a zero local-flux condition for
the gradient field of the electron density. We want to notice,
however, that, in the case of homonuclear diatomics, the QTAM
partition coincides with the only one exhaustive atomic partition
compatible with symmetry: a plane bisecting the internuclear
axis separates both atomic domains.26 Using the common
nonrelativistic molecular Hamiltonian, we may write the energy
for a general molecule as follows:

A common notation in which capital letters mark nuclei (atoms),
small letters electron coordinates, andΩA denotes the atomic
domain of atom A has been used.F1 and F2 are the first and
second-order reduced density matrices, respectively.24 If we now
gather all monocentric and bicentric terms together, we get

where we have introduced the kinetic energy of atom A,TA;
the electron-nucleus potential energy between electrons of atom
A and the nucleus of atom B,Ven

AB; the electron repulsion
between the electrons of A and those of B,Vee

AB; and the
nuclear repulsion between nuclei A and B,Vnn

AB. The expres-
sions for all these magnitudes are straightforwardly obtained
from eq 1. Notice that similar partitions have been used in a
DFT context by Li and Parr.25

As we may see, the IQA decomposition does not contain any
extraneous physical force, nor does it depend on reference
quantum mechanical states, so common in other procedures. It
just provides a partition of every physical interaction present
in the Coulomb Hamiltonian into one-center (atomic), and two-
center (interaction) terms. All quantum effects (i.e., antisym-
metry, confinement, etc.) are extracted from the wave function
used in the analysis. Much of the power of our approach comes
from the neat separation between atomic energies and interac-
tions. The molecular energy is just a sum of atomic self-energies,
Eself

A , and pair interaction potential energies,Vint
AB:

If binding energies with respect to free atoms are the main object
under study, we may compare directly the changes experimented
by eachEself

A with the chosen atomic reference energy,E0
A. The

binding energy is, then, a sum of atomic energy changesEself
A

- E0
A (we call them atomic deformation energies), and pair-

wise interactions:

Notice that we can gather several atoms together, define a
functional group, and write an equivalent expression, this time
with deformations measured with respect to the reference group,
and interactions being computed between pairs of groups. It is
also illuminating21 to split Vint

AB into a classical contribution, the
purely Coulombic interaction of the joint electron-nucleus charge
distribution of atomic domains A and B, and a quantum
mechanical or exchange-correlation one:Vint

AB ) Vcl
AB + Vxc

AB.
If atoms (or functional groups) may be recognized within

molecules, as is customarily assumed by the science of
chemistry, then most of the cancellations of quantum chemistry
should be hidden in deformation energies, which will then be
small or, at least similar, when compared to total binding
energies.27

Let us end this brief summary by pointing out another simple
byproduct of our procedure. Domain integrations ofF2 itself
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give information about the number of pairs of electrons
contained in an atomic basin, orsharedbetween two basins.
This has been used to define a delocalization index,28,29 δAB,
that measures the number of shared pairs of electrons for a given
bond:

This magnitude plays in orbital-free theories of the chemical
bond a role similar to that for bond orders in conventional MO
treatments. For instance, it turns out to be very nearly the
expected figure associated with standard bond orders if calcu-
lated from HF wave functions.

B. Computational Details. Wave functions for first row
homodiatomics from Li2 to Ne2 have been calculated with the
GAMESS30 code in their respective ground states. Given both
our aim and the rather high computational cost of IQA
decompositions,20 we have chosen complete active space
calculations (CASSCF) with an active space comprising all of
the valence (2s, 2p) orbitals plus theσ s and p MO’s coming
from the M atomic shells. This amounts to including almost all
the static correlation needed to improve the poor HF perfor-
mance, and a bit of dynamical correlation which is essential to
describe reasonably well both O2 and F2. A full valence CI
calculation is presented in Be2 to cope with the delicate 2s-2p
quasidegeneracy. Standard GAMESS TZV(2d,f) basis sets were
used except in Be2 and F2, where cc-PVTZ bases have been
used. Only theoretical equilibrium distances will be discussed,
and as we can see from Table 1, both geometries and binding
energies are reasonable for our interests. We have also included
full CI//cc-PVTZ calculations in the H2 and He2 molecules for
comparative purposes.

IQA analyses have been performed by numerically integrating
the reduced density matrices output by GAMESS over the
atomic basins26 using our PROMOLDEN code. Computational
parameters20 have been chosen so that the integrated net atomic
charges are smaller than 10-3 electrons in every case. This has
been shown to be a good indicator of the global numerical
accuracy of the procedure.

C. IQA Analysis in First Row Diatomics. Table 1 gathers
all the basic data provided by the IQA analysis. The overall
agreement between experiments and calculations is sufficient

for our purposes, allowing us to draw trustworthy conclusions
about trends in the energetic decomposition.

Let us start considering the atomic deformations in detail.
As found and rationalized previously,22 deformation energies
in systems without net charge transfer, and homodiatomics
belong certainly to this class, are necessarily positive. This
translates the physically intuitive notion that an atom should
find itself at its best when isolated. Any perturbation caused by
interaction should increase its self-energy, so binding in these
systems is exclusively due to the attractive interaction potential,
which opposes the repulsive atomic deformations. This is the
first noteworthy result from the IQA decomposition.

According to our eqs 2-4, deformation energies are made
up of the changes that atomic kinetic, electron-own-nucleus
attraction, and intra-atomic electron repulsion energies suffer
upon interaction: Edef

A ) ∆TA + ∆Ven
AA + ∆Vee

AA. All these
quantities may be obtained from the table. It is important to
recall that the individual free atomic values for these components
are very large. For instance,Ven evolves from-628 to about
-195 000 kcal/mol when going from H to Ne. The ability of
the IQA theory to reconstruct,insidemolecules, magnitudes with
the same physical interpretation used in their atomic counterparts
is the most important source of preservation of atomic identities
in molecules. Because the intra-atomic IQA magnitudes domi-
nate the total molecular energy, the comparison of mostly
unchanged atoms is at the root of the energetic cancellations of
quantum chemistry.

In N2, the worst of the systems considered as these sort of
cancellations are regarded,∆Ven

AA = -800 kcal/mol, a number
to be compared withVen(in vacuo)= - 80 000 kcal/mol. Similar
results are obtained for the other intra-atomic quantities, and
this first step washes out 2 orders of magnitude in energies, at
least. A second source of cancellation emerges as the individual
energy variations are added together to form the atomic
deformation energy. On average, finalEdef’s hide an almost 3
orders of magnitude annihilation when compared to their free
atomic components, and top at about 50 kcal/mol in the
molecules under scrutiny, the latter being a typically sized
chemical energetic magnitude. As previously put forward,22 there
are physical forces trying to maintain the self-energy of an atom
close to its in vacuo value. They work as far as the interaction
with other atoms may be considered as a kind of perturbation.
If this holds, the energy change upon interaction will not affect
the self-energies. It must also be taken into consideration that
the nonnegligible values of∆Vee

AA play an essential role in the
final small magnitude of deformations. This is shown in the H2

case,22 where free monocentric electron repulsions are absent.
Thus, the 95 kcal/mol electron repulsions are a consequence of
the electron delocalization between the atoms and, were it not
present, the deformation energy of each hydrogen atom would
be negative and large, darkening most of our arguments.

Figure 1 shows the evolution of our monocentric energies
with Z. Although some of the magnitudes depicted are also
found in Table 1, several facts are uncovered by representing
them graphically. In the first place, we observe the double-hump
shape ofEdef

A , which accounts for the many thermochemical
effects of half-filled shells.31 These are seen to arise from the
change of purely atomic properties as quantum atoms keep track
of their free electron structure upon molecular formation. This
behavior is in sharp contrast with that of each of the components
of Edef

A , which show a triangular evolution centered at N2.
Notice that the double-hump is not present in any of the large
components, so it is to be considered a global effect.

TABLE 1: IQA Analysis for the Diatomics Considered in
This Work a

Re(c) Re(e) De(c) De(e) Edef
A Vint

AB Vcl
AB ∆Ven

AA ∆Vee
AA δAB

H2 0.741 0.741 107.9 109.5 8.0-124.0 26.4 -140.2 95.1 0.851
He2 2.875 2.96 0.0 0.0 0.3 -0.6 0.0 0.1 0.3 0.005
Li2 2.674 2.673 27.7 24.6 16.8-61.2 0.8 -53.7 65.2 0.835
Be2 2.523 2.45 4.1 2.3 26.4 -56.9 2.5 -33.5 57.0 0.589
B2 1.601 1.590 72.9 71.2 47.6-168.0 29.8 -247.0 257.7 1.368
C2 1.254 1.243 147.5 145.9 48.4-244.3 87.4 -524.2 502.6 1.805
N2 1.106 1.098 224.3 228.4 35.7-295.7 137.4 -822.7 747.5 1.952
O2 1.219 1.208 122.7 120.2 51.0-224.8 86.2 -559.7 544.7 1.541
F2 1.399 1.412 42.2 38.3 45.6-133.3 33.1 -255.3 285.2 0.925
Ne2 2.728 3.2 0.6 0.1 1.3 -3.2 0.0 2.2 0.4 0.034

a See the text for computational details.Re andDe ) -Ebind are the
equilibrium internuclear distance and the binding energy, respectively,
with (c) and (e) indicating calculated and experimental magnitudes.
All distances in Å, and all energetic quantities in kcal/mol. Experimental
quantities are taken from ref 33, except those for He2, Be2, and Ne2,
which are taken from the high quality calculations of refs 34-36,
respectively. Atomic energetic variations (inEdef, ∆Vee

AA, and ∆Ven
AA)

have been computed with respect to free ground-state atoms. Numerical
integrations do not exceed the tenth of kcal/mol accuracy, so all energies
have been truncated to the first decimal place.

δAB ) 2|∫ΩA
dr1 ∫ΩB

dr2 (F2(r1,r2) - F1(r1) F1(r2))| (5)
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The two humps inEdef are not exactly symmetric. We find a
group of molecules that includes C2, N2, O2 (and also H2) with
|∆Ven

AA| > |∆Vee
AA|. And a second family formed by Li2, Be2,

B2, and F2 with the opposite behavior, signaling probably too
large intra-atomic electron repulsions. This is consistent with
the accepted role of lone pair repulsions in first row diatomics.15

Let us also mention two other facts that reveal the compliance
of deformations with chemical thinking. Noble gas molecules
(He2, Ne2) display very small deformation energies, and the
negligible value found in He2 is in agreement with a practically
noninteracting system. Be2, on the other hand, has a rather high
Edef that might be traced back to the need of 2s, 2p mixing for
efficient bonding, and to its associated intra-atomic promotion
energy. In no way can it be considered a weakly closed-shell
interacting system.

A final remark concerning the atomic deformations is put
forward by considering the electronic share inEdef. Figure 1
seems to indicate that the deformation energy per electron is a
much more slowly varying quantity thanEdef itself, pointing
toward a certain extensivity of deformations that deserves further
investigation. Should the generality of this result be confirmed,
the role of intra-atomic electron crowding (repulsion) upon
molecular formation might need a revision.

Turning now to the interaction potential,Vint
AB is proportional

to the classical number of bonding electrons. This is not a
surprise but clarifies its role in bonding. Because this is the
attractive term in our partition, it must reflect the strength of
the bond.

A gross examination of Figure 2 shows that both the
exchange-correlation (Vxc) and the classical (Vcl) contributions

to the interaction potential display a triangular evolution on
filling the 2p shell, much as the final binding energies, and in
sharp contrast with the behavior of the atomic deformations.
However, bothVcl and Vxc are much more symmetric with
respect to N2 than toDe. For Vcl this follows from its classical
nature, which does not discriminate much B2 from F2, or C2

from O2. It is noticeable how its magnitude is not negligible at
all. Actually, its origin is very easy to grasp: the first nonzero
multipole of the atomic charge distribution in a homodiatomic
is a dipole. In this way, the classical interaction of two head to
head facing dipoles is repulsive and scales asR-3. This is clearly
seen in Figure 3.

The high symmetry exhibited in the classical contributions
is lost inVxc, which is appreciably more stabilizing in diboron
and dicarbon than in their counterparts, dioxygen and difluorine.
In a MO language we might say that|Vxc| increases from Be2
to N2 by means of new bonding contributions and decreases
back to F2 by adding antibonding electrons, the latter effect being
more destabilizing than stabilizing is the former. After the data
in Figure 3, we have a clear distinction between the behavior
of atomic-like deformations and interaction-like energies. Most
of the reasonings that are made from the examination of orbitals
in MO treatments are mapped here intoVint, and this is a
particularly satisfying feature of the present procedure. Figure
3 also shows howVint seems to scale as the inverse power of
the internuclear equilibrium distance on filling the 2p shell. We

Figure 1. Variation of the atomic deformation energy and its
components with atomic number,Z: (a) total deformation energy,Edef

A

(0), and its share per electron,Edef
A /Z (O); (b) -∆Ven

AA (×), ∆Vee
AA (4),

and∆TA (2). Notice the double-hump shape ofEdef, and the order of
magnitude energy difference in the two energy scales.

Figure 2. Variation of the interaction potential and its components
with atomic number,Z: total interaction,Vint

AB (×); -Vcl
AB (4); Vxc

AB

(0). The experimental binding energies,-De(e), are also shown (b)
for comparison purposes.

Figure 3. Evolution of the interaction energy components with the
internuclear distance from B2 to F2. The full line corresponds toVcl

and must be read on the top-right scales. The dotted one isVint and is
to be read on the left-bottom scales. Individual systems may be located
in conjunction with Table 1, noting that N2 is located at the vertex of
both lines.
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have not found an easy way to rationalize this fact, which
deserves future consideration.

The finalVint values correlate rather neatly with the computed
delocalization indices,δAB. It is noteworthy that all the three
systems to which we would blindly assign a bond order of about
one, H2, Li2, and F2, do actually haveδAB values only a little
bit smaller than 1.0, this decrease being a consequence of
electron correlations acting as a localizing force that diminishes
the interatomic charge fluctuations of covalent bonds.32 Some
other trends are also quite visible. For instance, correlation
decreases electron sharing more intensely in multiple than in
single bonds, though our N2 value is perhaps too small in view
of the somewhat greater than 2δAB value reported by Fradera29

using a CISD wave function. It is also to be noticed how noble
gas diatomics display negligibleδAB values, and how bonding
in Be2 cannot be considered a van der Waals-like interaction.

TotalVint’s are proportional toδAB’s, as one can extract from
Table 1. Actually, all our systems seem to group into different
sets that satisfy aVint ) RδAB correlation. One of such groups
is made up of H2, He2, Ne2, F2, O2, and N2, and another is
composed of Be2, B2, and C2. Li2 has no partner. The accuracy
and generality of this assertion still need further confirmation
but signal the existence of different types of bonding energetics.
For instance, H2 and Li2 have a very similar electron sharing,
δAB ) 0.84( 0.01, but completely different interaction energies.
This means that sharing a (mainly) 2s electron pair in Li2

generates a much smaller attraction in Li2 than sharing a 1s
pair in H2. In other words, the single bond in Li2 is weaker
than in H2.

Final binding energies result from adding the deformation
suffered by both interacting atoms to the interaction energy.
As has become clear at this point, we have two possible extreme
behaviors. In one of them the deformation energy is negligible
with respect to the interaction. In the other, as large as, or even
larger thanVint

AB. The first limit is difficult to attain, but the
second turns out to be quite general. It is satisfying that common
chemical intuition may be used predictively here. “Difficult to
deform”, for instance, is a term that many chemists would
associate to noble gas atoms. Because interaction is not possible
without deformation, it is not at all surprising that more than
90% of Vint is canceled out by deformation in He2 and Ne2,
leaving very small residual binding energies. Similar arguments,
this time taking into account the necessary 2s-2p promotion
in the Be atom, may be used to rationalize the small binding
energy of Be2. De is not small due to a weak interaction. On
the contrary, its magnitude at the large Be2 equilibrium distance,
around 60 kcal/mol, is as stabilizing as in Li2. It is the large
deformation energy that decreases this value. These systems
display throttled bonds, because the way toward their natural
internuclear distances and binding energies dictated by interac-
tions is strangled by a large rise in atomic self-energies as both
atoms approach each other.

The overall trend toward greater deformation on increasing
the number of electrons explains the rest of the numbers. Let
us just consider in some detail the difluorine case. On going
from N2 to O2, and finally to F2, we face a shrinking interaction
energy asδAB values decrease, together with a coupled rise in
deformation. This is not very important in O2, for its interaction
energy is still large. But in F2, the totalEdef is 70% the absolute
value of the interaction, leaving only 30% of it asDe. Though
the actual value ofDe in F2 is really small, we understand it as
the result of two clear competing trends, and not as an anomaly.
The relation of all these ideas with known explanatory models

of the difluorine binding energy is of great interest and will be
the object of future studies.

III. Conclusions

There is a simple lemma that summarizes our results: atoms
have to deform and increase their self-energies to interact
efficiently. Were the sphericity of their densities conserved upon
interaction, for instance, no binding would take place. Therefore,
binding energies behave in the way we see because there are
two basically uncoupled contributions to them. An energetic
deformation, which is atomic in nature and keeps memory of
the electronic structure of the atoms that interact, and an
interaction component, which is attractive at equilibrium and
depends on the binding abilities of the atoms. Both components
depend on fundamentally different (though related) properties
and evolve in a different (but related) manner. We are able to
understand very simply their trends when taken separately, and
it is only when they combine that an apparent complexity
appears. These are common qualitative notions that receive here
an energetically quantitative and rigorous quantum-mechanical
foundation thanks to the chemically meaningful partition of
space provided by the QTAM.

We believe that the ideas explored in this paper provide a
fresh description of the energetic phenomena that characterize
the formation of chemical bonds. The ability of the IQA
approach to generate sensible atomic self-energies that hide all
the important cancellations of the usual energetic terms of
quantum chemistry may well be used to introduce new
complementary ways of understanding a wealth of chemical
phenomena.
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