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This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by
Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different
families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations
or on the deformation ofm-dimensional volume elements (if the manifold ism-dimensional) and of the
complementary (n - m)-elements in the normal orthogonal complement. The latter approach, based on
elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume
elements can be related to suitable local stretching rates, and local analysis can be performed directly from
the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-
infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.

1. Introduction

The geometric description of the structure of invariant
manifolds in chemical reacting systems, divorced from pertur-
bative analyses and expansions, provides many useful sugges-
tions for the understanding of global dynamics.1,2 This is because
complex reacting schemes of physicochemical interest are almost
never expressed in a canonical singularly perturbed form3,4 in
which slow and fast variables area priori identified. Conversely,
geometric methods display a sufficiently high degree of general-
ity to make their results directly applicable to reaction schemes
of practical interest.

Geometric methods applied to invariant manifold reconstruc-
tion have been proposed by Roussel and Fraser,5,6 Davis and
Skodje,1 and Adrover et al.7 by focusing on different specific
features characterizing the invariant structures.

This Article develops further the geometric approach proposed
by Creta et al.8 for 2-D combustion models and extends its range
of applicability to generic dynamical systems of the form

wherez ∈ Rn andn > 2.
The direct extension of the approach developed by Creta et

al.,8 based on the scaling of the ratio of normal to tangent
perturbations, shows some technical and practical shortcomings
for higher dimensional systems, for the simple reason that in
Rn, with n > 2, the tangent spaces and the normal spaces to an
invariant manifold are no longer 1-D. This issue is addressed
in section 2.

The extended method proposed in section 3 makes use of
the tools of exterior algebra10-12 by considering the evolution
of m-dimensional measure elements in the tangent spaces to
the manifold (wherem is the dimension of the manifold) and
(n - m)-dimensional measure elements in the complementary

normal spaces. This approach, which is proposed and analyzed
in section 3, provides a simple and efficient characterization of
the dynamic features of invariant manifolds based on the
properties of suitable Lyapunov-type numbers. Moreover, this
approach is particularly simple and suitable to practical applica-
tion to generic kinetic models, because the relevant quantities
can be obtained exclusively from the local Jacobian matrix, i.e.,
from the local stretching rates for measure-element evolution.

The occurrence of slow manifolds of higher dimensions
makes the bifurcational analysis associated with the behavior
of the equilibria at infinity8 more rich and articulated than in
the 2-D case. Bifurcational properties of the points-at-infinity
controlling the structure of the slow invariant manifold are
illustrated in section 4 by considering the case of a 3-D system
associated with the dynamics of two exothermic reactions in
series. For this system, a complete bifurcational analysis is
presented and the results are explained by means of the
stretching properties experienced by normal and tangential
measure elements along the invariant manifolds.

For a presentation of the relevant mathematical tools associ-
ated with vector dynamics and with the definitions of slow
invariant manifolds, the reader is referred to ref 8.

2. From n ) 2 to Higher Dimensional Systems

Moving from 2- to 3-dimensional systems (or higher), the
extension of the definitions and the characterization of slow
invariant manifolds presented in ref 8 requires a significant
(additional) amount of conceptual and formal complexity. This
is due to the fact that although in 2-D systems the invariant
manifolds W of dynamic interest are 1-D structures, and
consequently, both the tangent subspacesCz and the normal
subspacesNz at any pointz ∈ W are 1-D, this is intrinsically
not true forn > 2.

Consider anm-dimensional invariant manifoldW (m < n)
for the system eq 1 withn > 2, and letz ∈ W be a generic point
of the manifold. In this case, the tangent subspaceCz to the
manifold at z is m-dimensional and invariant under vector
dynamics, and the normal subspaceNz is (n - m)-dimensional
and not invariant. Following Fenichel9 and Creta et al.,8 it is
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still possible to introduce some Lyapunov-type numbers based
on the relative properties of normal and tangent vectors toW.

Let

whereφt is the phase flow associated with eq 1,φt
/(z) ) ∂φt-

(z)/∂z, and Πz indicates the normal projector atz, i.e, the
operator mapping any vector into its component lying in the
normal subspaceNz. The R/ω-Lyapunov-type number can be
defined inRn as

where the supremum is taken over all the initial vectors lying
in the normal subspace (in the numerator) and in the tangential
subspace toW at z (in the denominator).

To analyze how this definition of the Lyapunov-type numbers
applies in practical calculations, consider a 3-D linear constant
coefficient dynamical system,F(z) ) Az, where the coefficient
matrix possesses three distinct negative eigenvalues{-λ1, -λ2,
-λ3}, with λ1 < λ2 < λ3, and let e1, e2, and e3 be the
corresponding eigenvectors. For this system, the invariant
manifolds associated with directions of the eigenspaces are the
three 1-D eigenmanifoldsW h

(1) ) {z|z ) êeh, ê ∈ (-∞, ∞)}, h
) 1, 2, 3 and the three 2-D eigenmanifoldsW h,k

(2) ) {z|z ) êeh

+ ηek, ê, η ∈ (-∞, ∞)}, h ) 1, 2, 3< k. By definition, W 1
(1)

and W 1,2
(2) are respectively the global slow 1- and 2-D mani-

folds of the system.
Table 1 reviews the values of theR/ω-Lyapunov-type

numbers on these eigenmanifolds and on generic 1-D (W (1))
and 2-D (W (2)) invariant manifolds. We observe that fort f ∞
the controlling normal contraction rate isλ1 everywhere except
on W 1

(1) and onW h,k
(2) with h ) 1. Conversely, fort f -∞, the

controlling normal elongation rate, because of stability reversal,
is λ3 everywhere except onW 3

(1) and onW h,k
(2) with k ) 3.

Clearly, for a generic 1-D invariant manifoldW (1) (an orbit),
its behavior fort f ∞ will mimic that of W 1

(1), and for t f

-∞, that of W 3
(1). A similar reasoning applies for a generic

2-D invariant manifoldW (2).
As in the 2-D case,8 a slow invariant manifold is characterized

by R/ω-Lyapunov-type numbers both greater than 1. Moreover,
the discriminating feature of a slow invariant manifold, which
distinguishes it from other invariant manifolds of equal dimen-

sion, is the behavior fort f -∞, i.e., the occurrence of the
highest possible value of theR-Lyapunov numberΛR.

On the basis of the data in Table 1, it is possible to provide
the following definitions of global and generalized slow
manifolds of dimensionm for a genericn-dimensional system.

Given the dynamical system eq 1, a global slow manifold of
dimensionm is an invariant, exponentially attracting, stable
m-dimensional manifold for whichΛR attains its maximum
value greater than 1, andΛω > 1. A globalm-dimensional fast
manifold is an invariant, exponentially attractingm-dimensional
manifold for whichΛR < 1 andΛω attains its smallest value
less than 1. The concept of generalized slow manifolds can be
defined by removing the condition thatΛω should be greater
than 1 from the definition of a global slow manifold.

According to these definitions, the global 1-D slow manifold
for the above linear system is given byW 1

(1), andW 1,2
(2) is the

global 2-D slow manifold.
To give a numerical example of the definition ofR/ω-

Lyapunov-type numbers to nonlinear models, let us consider
the evolution of two exothermic reactions in series Af B f
C in a batch-jacketed reactor,13,14 henceforth referred to as the
3-D Semenov model. This model will be used throughout this
Article as a prototype for higher dimensional combustion
systems as it regards the geometry of the invariant manifolds.
Each reaction step is elementary and of first-order with respect
to its reactant. The balance equations for reactant concentrations
cA andcB read

whereT is the temperature and the specific reaction enthalpies
∆HA and∆HB are negative. With the dimensionless quantities
γA ) EA/RTc, γB ) EB/RTc, t ) τkA

o
e-γA, x ) cA/cref, y ) cB/

cref, andz) (T - Tc)γA/Tc wherecref is a reference concentration
andTc the coolant temperature, eq 4 becomes

where

andú ) kB
o
eγA-γB/kA

o > 0, h ) (-∆HB)ú/(-∆HA) > 0, P )
(-∆HA)crefγA/FcVTc, Q ) UaeγA/FcVkA

o
,ε ) 1/P, andδ ) Q/P.

Figure 1A depicts the phase plot of the 3-D Semenov model
for a fixed set of parameter values, which gives rise to a global
1-D slow manifold. The global 1-D slow manifold is depicted
in panel A with a thicker line and is obtained by means of
material line advection (MLA).8 Figure 1B depicts the ratio
log||nt||/log||ct|| starting from a generic normal vectorn0 ∈ Nz.

TABLE 1: r/ω-Lyapunov Numbers along the Invariant
Manifolds of a Linear Autonomous 3-D System

manifold Λω ΛR

W 1
(1) λ2/λ1 > 1 λ3/λ1 > 1

W 2
(1) λ1/λ2 < 1 λ3/λ2 > 1

W 3
(1) λ1/λ3 < 1 λ2/λ3 < 1

W (1) λ2/λ1 > 1 λ2/λ3 < 1
W 1,2

(2) λ3/λ1 > 1 λ3/λ2 > 1

W 1,3
(2) λ2/λ1 > 1 λ2/λ3 < 1

W 2,3
(2) λ1/λ2 < 1 λ1/λ3 < 1

W
(2) λ3/λ1 > 1 λ1/λ3 < 1

nt(z) ) Πφt(z)[φt
/(z) n0] n0 ∈ Nz

ct(z) ) φt
/(z)c0 c0 ∈ Cz (2)

Λω ) lim
tf∞

supn0∈Nz
log||nt(z)||

supc0∈Cz
log||ct(z)||

ΛR ) lim
tf-∞

supn0∈Nz
log||nt(z)||

supc0∈Cz
log||ct(z)|| z ∈ W (3)

dcA

dτ
) -kA

o
e-EA/RTcA

dcB

dτ
) kA

o
e-EA/RTcA - kB

o
e-EB/RTcB

FcV
dT
dτ

) (-∆HA)kA
o
e-EA/RTcA + (-∆HB)kB

o
e-EB/RTcB -

Ua(T - Tc) (4)

dx
dt

) -fA(z)x

dy
dt

) fA(z)x - ú fB(z)y

dz
dt

)
fA(z)x + hfB(z)y - δz

ε
(5)

fA(z) ) exp( γAz

γA + z) fB(z) ) exp( γBz

γA + z) (6)
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In this case,Λω > 1. A similar analysis performed on the
backward evolution of tangent and normal vectors, not shown
for brevity, yieldsΛR > 1, confirming the global nature of the
1-D slow manifold, depicted in panel A.

The application of the definitions ofR/ω-Lyapunov-type
numbers expressed by eq 3 exhibits some practical shortcomings
in higher dimensional (n > 2) systems that are worth addressing.

Consider the dynamics of tangent and normal vectors along
a 1-D invariant manifoldW (1) (i.e., an orbit) of a generic
n-dimensional system (Figure 2). The tangent sub-bundle to
W (1) is invariant under vector dynamics (i.e., underφt

/(z)), and
the normal sub-bundle is not, this being the reason for the
application of the local normal projectorΠφt(z) in the definition
of nt.

Let us analyze in detail the dynamics of a generic vectorv,
starting from an initial vectorv0 ∈ Tz having components both
in the tangent and in the normal subspaces. For any timet > 0,
let v(t) ) φt

/(z)v0. The vectorv(t) can be expressed as

whereF ) F(φt(z)) is the vector field,a a scalar depending on
time, andvn(t) ) Πφt(z)[v(t)] is the normal component ofv. By
definition, bothv andF satisfy the equation for vector dynamics
describing the evolution of a generic vector in the tangent bundle
under the action of the vector field

whereF*(z) ) ∂F(z)/∂z.
After differentiating eq 7 with respect to time and substituting

into it the expressions for the time derivatives ofv andF (eq
8), it follows that

Equation 9 confirms what was stated above, namely that the
normal sub-bundle is not invariant, as in eq 9 the extra termF
da/dt appears aligned in the tangential direction. To get rid of
this term, take the scalar product with respect tovn, to obtain
(after some steps)

wherev̂n ) vn/||vn|| is the unit vector associated withvn.

Equation 10 is the basic equation for understanding the
difference between two-dimensional and higher models. In fact,
for n ) 2, vn belongs to a 1-D subspace, the unit tangent vector
of which n̂ is uniquely determined by the vector fieldF at the
point. Correspondingly, from eq 10, one obtains

wherez(t) indicates the trajectory along the manifold andων is
the normal stretching rate. It follows that theR/ω-Lyapunov
numbers can be expressed as a function of the tangential and
normal stretching rates because

whereωτ ) (F*ĉ, ĉ) is the tangential stretching rate, withĉ )
F/||F||.

Conversely, ifn > 2, the evolution of the normal component
of a generic vector cannot be expresseda priori with respect to
a given normal stretching rate (unless the vector evolution is
not explicitly accounted for through an expression equivalent
to eq 11), because the normal subspaces are no longer 1-D, and
the unit normal directionv̂n(t) along the orbit depends on the
orientational dynamics within the normal sub-bundle. This
makes the analysis of the evolution of normal perturbations more
cumbersome, unless some form of further specification in the
definition of the characteristic normal stretching rates is not
added. A way for bypassing this shortcoming is discussed in
the next section.

3. m-Forms, Stretching Rates, and Invariant Manifold
Properties

An alternate way to provide a geometrical characterization
of the invariant manifolds is to consider the evolution of
m-dimensional measure elements. This section develops this
approach, which leads to a new definition of the Lyapunov-
type numbers, and analyzes the differences and the advantages
of this approach with respect to the analysis developed in section
2 based on the evolution of the norms of normal and tangential
perturbations.

Consider an invariant, exponentially attractingm-dimensional
manifold W (m) for eq 1 withm < n. The tangent subspaceCz

to W (m) at any pointz ∈ W is m-dimensional and invariant, and
the (n - m)-dimensional normal subspaceNz is not. The idea
is to characterize the dynamical properties ofW (m) by means
of the stretching rates ofm-dimensional measure elements
constructed upon vectors lying onCz (wherem is the dimension
of the manifold itself) and of (n - m)-dimensional measure

Figure 1. (A) 1-D global slow manifold (thicker line) for the 3-D Semenov model withγA ) 5, γB ) 8, ú ) 10,h ) 2, δ ) 1, ε ) 10-3. The figure
depicts some orbits attracted by the manifold. (B) log||nt||/log||ct|| vs t along the invariant manifold depicted in panel A.

Figure 2. Schematic evolution of normal and tangential vectors to an
invariant 1-D manifoldW

(1).

v ) aF + vn (7)

dv
dt

) F*v
dF
dt

) F*F (8)

dvn

dt
) F*vn - F

da
dt

(9)

d||vn||
dt

) (F*v̂n, v̂n)||vn|| (10)

||vn(t)|| ) ||vn(0)|| exp(∫0

t
ων(z(t′)) dt′) ων ) (F* n̂, n̂)

(11)

log(||ct||
||c0||) ) ∫0

t
ωτ(z(t′)) dt′

log(||nt||
||n0||) ) ∫0

t
ων(z(t′)) dt′ (12)
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elements deriving from vectors lying on the normal subspace.
This can be achieved by introducing exterior algebraic concepts
(which are succinctly reviewed in Appendix A).

Let c0
(1), c0

(2), ..., c0
(m) be a family ofm linearly independent

vectors spanning the subspaceCz0 at z0 ∈ W (m), and define
c(h)(t) ) φt

/(z0) c0
(h), h ) 1, ..., m. Because the tangent

subbundle is invariant, eachc(h)(t) lies in the subspaceCφt(z0)

for any timet g 0.
Them-dimensional measure element spanned byc(1), c(2), ...,

c(m) is given by them-form c(1) ∧ c(2) ∧ ... ∧ c(m). The time
evolution of thism-form can be obtained by differentiating it
with respect to time and by enforcing the evolution equation
for each individual vector dc(h)/dt ) F*c(h),

In eq 13, we have introduced the operatorF* ,∧m acting in
the exteriorm-space associated with the tangent subspacesCz

to indicate the action of the differential operator on them-forms.
It should be observed that the action of the operatorF* ,∧m

depends solely on them-form c(1) ∧ c(2) ∧ ... ∧ c(m) and not on
c(1), c(2), ..., c(m) individually.15

By taking the scalar product in them-exterior space (see
Appendix A) with respect toc(1) ∧ c(2) ∧ ... ∧ c(m), we find that
it follows after some algebraic manipulations that

wheret̂(h), h ) 1, ...m is a system ofmorthonormal unit vectors
spanningCz(t), wherez(t) ) φt(z0) and

are the tangential stretching rates that can be defined starting
from this orthonormal tangential system. The value of each
individual ωτ,h depends on the chosen basis, and their sum
(appearing in eq 14) is independent of the orthonormal basis
chosen and is a local intrinsic property of the action of the
dynamical system along the invariant manifold.

If we indicate with µτ,m(t) ) ||c(1)(t) ∧ ... ∧ c(m)(t)||m the
measure of them-dimensional tangential measure element, from
eq 14 it follows that

and therefore

A similar approach applies to the (n - m)-measure element
generated by (n - m) linearly independent vectorsv0

(1), v0
(2), ...,

v0
(n-m) initially lying in the normal (n - m)-dimensional

subspaceNz0 to W (m). The analysis is slightly more elaborate
in this case, because a generic normal vector generates in its
evolution a vector possessing nonvanishing components both
in the normal and in the tangential subspaces of the image point.

Let v(h)(t) ) φt
/(z0)v0

(h), vν
(h)(t) ) Πφt(z0)[v(h)(t)], h ) 1, ...,n -

m, whereΠφt(z0) is the normal projector at the pointφt(z0). The
final result of this calculation is that

whereων,h, h ) 1, ...,n - m are then - m normal stretching
rates defined starting from a generic basis ofn - morthonormal
unit vectorsn̂1, ..., n̂n-m spanningNz

As for the tangential stretching rates, the value of each
individual ων,h depends on the chosen normal basis forNz, and
their sum is independent of the basis itself.

From eq 19, it follows that the (n - m)-measure of the normal
measure elementµν,(n-m)(t) ) ||vν

(1)(t) ∧ ... ∧ vν
(n-m)(t)||n-m,

spanned byvν
(1), ..., vν

(n-m), satisfies the equation

To sum up, the local stretching properties along anm-
dimensional invariant manifold can be expressed by means of
the m- and (n - m)-dimensional stretching rates

which provide an intrinsic dynamical characterization of the
local behavior at pointsz ∈ W (m).

3.1. Exterior Lyapunov-Type Numbers and Invariant
Manifolds. On the basis of the evolution of the measuresµτ,m-
(t) and µν,(n-m)(t) associated with an invariantm-dimensional
manifold W (m), it is possible to introduce the exteriorR/ω-
Lyapunov-type numbersΛE,m

R andΛE,m
ω defined as

The dimensionm and the co-dimension (n - m) of the
manifold W (m) enter explicitly in this definition in order to
“homogenize” the scaling of the measure elements of different

d||vν
(1) ∧ ... ∧ vν

(n-m)||n-m

dt
)

[ ∑
h)1

n - m

ων,h(z(t))]||vν
(1) ∧ ... ∧ vν

(n-m)||n-m (18)

ων,h(z) ) (F*(z) n̂h(z), n̂h(z)) h ) 1, ...,n - m (19)

µν,(n-m)(t) ) µν,(n-m)(0) exp[∑
h)1

n-m∫0

t
ων,h(z(t′)) dt′] (20)

ωτ
(m)(z) ) ∑

h)1

m

ωτ,h(z) ων
(n-m)(z) ) ∑

h)1

n-m

ων,h(z)

z ∈ W (m) (21)

ΛE,m
ω ) lim

tf∞

m log µν,(n-m)(t)

(n - m) log µτ,m(t)

ΛE,m
R ) lim

tf∞

m log µν,(n-m)(t)

(n - m) log µτ,m(t)
(22)

d[c(1) ∧ c(2) ∧ ... ∧ c(m)]
dt

) dc(1)

dt
∧ c(2) ∧ ... ∧ c(m) +

c(1) ∧ dc(2)

dt
∧ ... ∧ c(m) +... + c(1) ∧ c(2) ∧ ... ∧ dc(m)

dt

) F* ,∧m[c(1) ∧ c(2) ∧ ... ∧ c(m)]
(13)

d||c(1) ∧ ... ∧ c(m)||m
dt

) [∑
h)1

m

(F* t̂ (h)(z(t)), t̂ (h)(z(t)))]||c(1) ∧ ... ∧ c(m)||m

) [∑
h)1

m

ωτ,h(z(t))]||c(1) ∧ ... ∧ c(m)||m (14)

ωτ,h(z) ) (F* t̂ (h)(z), t̂ (h)(z)) h ) 1, ...,m (15)

dµτ,m(t)

dt
) [∑

h)1

m

ωτ,h(z(t))]µτ,m(t) (16)

µτ,m(t) ) µτ,m(0) exp[∑
h)1

m ∫0

t
ωτ,h(z(t′)) dt′] (17)
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dimensions. Indeed, the argument of the limits appearing in eq
22 can be expressed as

and therefore, the exterior Lyapunov-type numbers can be
viewed as the ratio of the logarithms of two characteristic vector
lengths in the normal and tangential subspaces, [µν,(n-m)(t)]1/(n-m)

and [µτ,m(t)]1/m, defined starting from the evolution of comple-
mentary measure elements.

It follows from the analysis developed above that the
logarithms appearing in eq 22 can be expressed by means of
the integrals of the stretching ratesωτ

(m) andων
(n-m) (eqs 17 and

20) along system trajectories lying inW (m), i.e.,

This is the main advantage in adopting the definition of an
exterior Lyapunov-type number. Moreover, it follows from the
definition of eq 21 that

where Trace[F*(z)] ) ∑h)1
n F*h,h(z) is the trace of the Jacobian

matrix. Therefore, in practical applications it is not necessary
to estimate bothωτ

(m) and ων
(n-m), but solely one of these

stretching rates, because the remaining one follows from eq 25.
This result is particularly useful in the analysis of 1-D invariant
manifolds because

whereF̂ ) F/||F||.
Let us apply the definition of the exterior Lyapunov numbers

to ann-dimensional linear system dz/dt ) Az, the coefficient
matrix of which admitsn distinct negative eigenvalues-λ1,
-λ2, ..., -λn with λ1 < λ2 < ... < λn associated with the
eigenvectorse1, e2, ..., en. For fixedm > 1, there existn!/m!-
(n - m)! different m-dimensional eigenmanifoldsW i1,...,in

(m)

spanned byei1, ei2, ..., ein with i1 < i2 < ... < in and passing
through the origin. On each of these manifolds, theR- and
ω-exterior Lyapunov numbers coincide and are given by

Specifically, forW 1
(1), W 1,2

(2), ...,W 1,...,n-1
(n-1) (corresponding to

the slow m ) 1, 2, ..., (n - 1)-dimensional manifolds,

respectively), it follows that

Conversely, for any otherm-dimensional invariant manifold
W (m), the exterior Lyapunov numbers attain generically the
expression

Therefore, them-dimensional global slow manifolds are
characterized by the occurrence of the maximum value of the
exteriorR/ω-Lyapunov numbers greater than 1. This gives rise
to the following definition of global and generalized slow
manifolds based on the measure-element scaling.

Given the dynamical system eq 1, a global slow manifold of
dimensionm is an invariant, exponentially attracting, stable
m-dimensional manifold for whichΛE,m

R and ΛE,m
ω are greater

than 1. A globalm-dimensional fast manifold is an invariant,
exponentially attractingm-dimensional manifold for which
ΛE,m

R < 1 andΛE,m
ω < 1. The concept of a generalized slow

manifold can be defined by removing the condition thatΛE,m
ω

should be greater than 1 from the definition of a global slow
manifold.

As an example, Figure 3A shows the behavior of the normal
stretching rateων

(2)(s) along the curvilinear abscissas of the
global slow manifold depicted in Figure 1. As expected,ων

(2)(s)
is uniformly negative, meaning that 2-D normal measure
elements shrink exponentially along the manifold. Figure 3B
shows the stretching ratiorE

(1),

along the manifold. The absolute value ofrE
(1) is reported,

because the tangential stretching rates attain positive values close
to the explosion. It can be observed that there are portions of
the manifold along which the stretching ratio attains values less

m log µν,(n-m)(t)

(n - m) log µτ,m(t)
)

log[µν,(n-m)(t)]
1/(n-m)

log[µτ,m(t)]1/m
(23)

log(µτ,m(t)

µτ,m(0)) ) ∫0

t
ωτ

(m)(z(t′)) dt′

log(µν,(n-m)(t)

µν,(n-m)(0)) ) ∫0

t
ων

(n-m)(z(t′)) dt′ (24)

ωτ
(m)(z) + ων

(n-m)(z) ) Trace[F*(z)] (25)

ωτ
(1)(z) ) (F*(z) F̂(z), F̂(z))

ων
(n-1)(z) ) Trace[F*(z)] - ωτ

(1)(z) (26)

ΛE,m
ω (W i1,...,in

(m) ) ) ΛE,m
R (W i1,..., in

(m) ) )

m
(n - m)[Trace(A) - (λi1

+ ... + λin
)

λi1
+ ... + λin

] (27)

Figure 3. (A) ων
(2) vs the curvilinear abscissas along the global slow

invariant manifold for the 3-D Semenov model depicted in Figure 1.
(B) |rE

(1)| vs s along the same global slow manifold.

ΛE,1
ω (W 1

(1)) ) ΛE,1
R (W 1

(1)) )
λ2 + ... + λn

(n - 1)λ1

> 1

ΛE,2
ω (W 1,2

(2)) ) ΛE, 2
R (W 1,2

(2)) )
2(λ3 + ... + λn)

(n - 2)(λ1 + λ2)
> 1 (28)

ΛE,n-1
ω (W 1,...,n-1

(n-1) ) ) ΛE,n-1
R (W 1,...,n-1

(n-1) ) )
(n - 1)λn

λ1 + ... + λn-1
> 1

ΛE,m
ω )

m(λm+1 + ... + λn)

(n - m)(λ1 + ... + λm)
> 1

ΛE,m
R )

m(λ1 + ... + λn-m)

(n - m)(λn-m+1 + ... + λn)
< 1 (29)

rE
(1)(z) )

ων
(2)(z)

2ωτ
(1)(z)

(30)
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than 1, indicating that local inversion in the behavior of a
normal/tangential stretching rate occurs. This phenomenon is
thoroughly addressed in section 4, which analyzes the bifurca-
tions occurring in the 3-D Semenov system and how these
bifurcations modify the structure of the slow invariant manifolds.

4. Bifurcations and Slow Manifold Structure

In this section, we analyze the structures and properties of
slow invariant manifolds in the 3-D Semenov model by
combining the compactification technique with the scaling
theory of exterior measure elements developed in section 3.

The properties of invariant manifolds can be further addressed
by considering the compactification of the phase space, i.e., by
introducing the following coordinate transformation

mappingRn onto then-dimensional unit sphereSn ) {u|∑h)1
n

uh
2 e 1}. Correspondingly, the introduction of the Poincare´

projected system (Pp-system) associated with eq 1

and the analysis of its behavior close to the boundary∂S n
1 )

{u|∑h)1
n uh

2 ) 1} permits us to investigate the behavior of the
original system eq 1 at infinity.

The introduction of the Pp-system eq 32 makes it possible
to analyze the structure and properties of global invariant
manifolds of eq 1 in terms of the properties of the equilibrium
points-at-infinity, i.e., the equilibrium pointsueq

∞ ∈ ∂S n
1 of the

associated Pp-system. For example, for a dynamical system
possessing a unique globally attracting equilibrium pointzeq )
0, a global/generalized 1-D invariant manifold is a heteroclinic
orbit of the Pp-system connectingueq ) 0 (corresponding to
zeq in the transformed coordinates) to one of the equilibrium
points-at-infinity ueq

∞ , such that the exteriorR/ω-Lyapunov
numbersΛE,1

ω andΛE,1
R (controlled by the behavior close toueq

andueq
∞ , respectively) possess specific properties.

To comment on this issue, let us consider again an autono-
mous linear system dz/dt ) Az analyzed in section 2. The
associated Pp-system attains the form

Elementary algebraic manipulations yield 2n + 1 equilibrium
points for the Pp-system: (i) the stable equilibrium pointueq )
0 (corresponding to the unique stable equilibrium pointzeq ) 0
of the original system) characterized by the same eigenvalues
{ - λ1, - λ2, ...,- λn}, λ1 < λ2 < ...< λn and eigenvectors{e1,
e2, ..., en} of the original linear system eq 1 and (ii) 2n
equilibrium points-at-infinityueq

∞,( ) (eh, h ) 1, ..., n. The
equilibrium points-at-infinity correspond to the invariant direc-
tions associated with the 1-D eigenmanifolds of the system.

Let ueq,i
∞ be a generic equilibrium point-at-infinity. It can be

shown that ueq,i
∞ is characterized by the following set of

eigenvalues{µ(i)} and eigenvectors{w(i)}

This implies: (1) Each equilibrium point-at-infinity is unstable
on then-dimensional unit sphereSn. (2) Each equilibrium point-
at-infinity can be either a stable one or an unstable one or a
saddle point if one considers the dynamics of the Pp-system
restricted to the boundary∂S n

1 of the unit sphereSn. More
precisely,ueq,1

∞,( are stable nodes,ueq,k
∞,(, k ) 2, ..., n - 1 are

saddle points, andueq,n
∞,( are unstable nodes. (3) The global

invariant 1-D slow manifold of the original linear systemW 1
(1)

) span{e1} is, in the transformed coordinates{uh}, the
heteroclinic orbit of the corresponding Pp-system connecting
ueq with ueq,1

∞ , i.e., with the stable node on∂S n
1. (4) The global

invariant 2-D slow manifold of the original linear systemW 1,2
(2)

) span{e1, e2} is, in the transformed coordinates{uh}, the 2-D
invariant manifold of the corresponding Pp-system intersecting
∂S n

1 at the heteroclinic connection on∂S n
1 between the stable

nodeueq,1
∞ and the first saddle nodeueq,2

∞ (characterized by only
one positive eigenvalue for the dynamics of the Pp-system
restricted to the boundary∂S n

1). For example, Figure 4 shows
the 1-D and 2-D slow manifolds of the Pp-system associated
with a 3-D linear system with eigenvalues{-λ1, -λ2, -λ3} )
{-1, -10, -100} and eigenvectorse1 ) (-1/x5, 2/x5, 0),e2

) (1/x2, 0, 1/x2), e3 ) (0, - 2/x5, 1/x5). The points-at-
infinity are ueq,1

∞,( ) (e1 (points A and B, stable nodes on∂S n
1),

ueq,2
∞,( ) (e2 (points C and D, saddle points on∂S n

1), andueq,3
∞,(

) (e3 (points E and F, unstable nodes on∂S n
1). The 1-D slow

invariant manifold (thick line connecting A and B) is the union
of the two heteroclinic orbits connectingueq ) 0 with ueq,1

∞,+ and
ueq ) 0 with ueq,1

∞,-. The 2-D slow invariant manifold is the

uh )
zh

x1 + ∑
k)1

n

zk
2

h ) 1, ...,n, (31)

duh

dt
) (1 - ∑

k)1

n

uk
2)1/2 [Fh - uh∑

k)1

n

ukFk ] (32)

duh

dt
) ∑

k)1

n

Ahkuk - uh ∑
k,m)1

n

Akmukum (33)

Figure 4. Analysis of the Pp-system associated with a 3-D linear
system. (A)-(F): points-at-infinity. (A) and (B):ueq,1

∞,( ) ((-1/x5,
2/x5, 0) (stable nodes on∂S n

1). (C) and (D): ueq,2
∞,( ) ((1/x2, 0, 1/

x2) (saddles on∂S n
1). (E) and (F): ueq,3

∞,( ) ((0, - 2/x5, 1/x5)
(unstable nodes on∂S n

1). The thick line connecting A and B is the 1-D
slow manifold. The curveγ is the set of heteroclinic orbits connecting
ueq,1

∞,( with ueq,2
∞( on ∂S n

1. The shaded region intersecting∂S n
1 at γ is the

2-D slow manifold. Some orbits of the Pp-system are also drawn in
order to highlight the role of 1- and 2-D slow manifolds.

µk
(i) ) -λk + λi wk

(i) ) ek - (ek, ei)ei

k ) 1, 2, ...,i - 1, i + 1, ...,n

µi
(i) ) 2λi > 0 wi

(i) ) ei i ) 1, ...,n (34)
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plane (shaded region) passing throughueq and intersecting∂S n
1

at the circle γ representing the set of heteroclinic orbits
connectingueq,1

∞,( with ueq,2
∞,( on ∂S n

1.
The introduction of the Pp-system, the computation of

equilibrium points-at-infinity, and the analysis of their stability
play an important role also for nonlinear systems as it regards
the identification and characterization of global/generalized slow
manifolds. For a dynamical system possessing a unique globally
attracting equilibrium pointzeq ) 0, the global/generalized 1-D
slow invariant manifold is, in the transformed coordinates, the
heteroclinic orbit of the Pp-system connectingueq ) 0 to the
equilibrium point-at-infinityueq,1

∞ that is a stable node for the
dynamics of the Pp-system restricted to∂S n

1.
This implies that, in the original coordinates, the global/

generalized 1-D slow invariant manifold is a curve passing
through zeq ) 0 and tangent, at infinity, to the direction
associated with the equilibrium pointueq,1

∞ . Analogously, the
global/generalized 2-D slow invariant manifold is, in the
transformed coordinates, a 2-D surface intersecting∂S n

1 along
the curveγ representing the heteroclinic connection on∂S n

1

between the stable nodeueq,1
∞ and the first saddle pointueq,2

∞ .
This implies that, in the original coordinates, the global/
generalized 2-D slow invariant manifold is a surface tangent,
at infinity, to the plane spanned by the directions associated
with the equilibrium points-at-infinityueq,1

∞ andueq,2
∞ .

Similarly, the m-dimensional slow manifold (withm < n)
turns out to be a hypersurface tangent, at infinity, to the
hyperplane spanned by the directions associated with the stable
nodeueq,1

∞ and the firstm - 1 saddle pointsueq,2
∞ , ..., ueq,m

∞ .
The nature “global” or “generalized” of invariant slow

manifolds can be defined by computing the exteriorR/ω-
Lyapunov numbersΛE,m

ω (controlled by the behavior close to
zeq andΛE,m

R (controlled by the behavior at infinity), i.e., along
the asymptotic directions associated with the equilibrium points-
at-infinity).

Moreover, given the fundamental role of the equilibrium
points-at-infinity, it is possible to investigate the influence of
model parameters on the global behavior of the system and on
its invariant manifold structures by analyzing possible local
“bifurcations” of the points-at-infinity occurring when model
parameters vary. This issue will be addressed in the next
subsection where the 3-D Semenov model is analyzed in detail
enforcing the observations presented above.

4.1. Three-Dimensional Semenov Model.The 3-D Semenov
model eq 5 possesses a unique stable equilibrium pointzeq ) 0
characterized by the following eigenvalues/eigenvectors

whereC1 andC2 are normalization constants.
The analysis of the Pp-system is particularly simple for the

3-D Semenov model as forz f ∞, fA(z) f eγA ) f A
∞, fB(z) f

eγB ) f B
∞, and therefore, the behavior at infinity is described by

the linear system dz/dt ) A∞z, where

The matrixA∞ admits the following eigenvalues and eigen-
vectors

The equilibrium points-at-infinity of the Pp-system are
associated with the eigendirections ofA∞, i.e., ueq,h

∞,( ) (eh
∞, h

) 1, ..., 3. By considering the dynamics of the Pp-system
restricted to the boundary∂S 3

1 of the unit sphere, we find that
the stability of the equilibrium points-at-infinity, according to
eq 34, is controlled by the following eigenvalues

In order to illustrate how the relative position and stability
of points-at-infinity actually controls the global behavior and
the structure of invariant manifolds of the 3-D Semenov model,
let us consider the following set of parameter values 1< ú and
f A

∞ < úf B
∞ and analyze system properties by letting the

parameterδ/ε vary in the rangeú < δ/ε < ∞.
4.2. Transcritical Bifurcations at Infinity. Given that 1<

ú < δ/ε, at the equilibrium pointzeq ) 0, span(e1) represents
the 1-D slow eigenspace, and span (e1, e2) is the 2-D slow
eigenspace.

At infinity, i.e., on the boundary∂S 3
1, the position and

stability of the equilibrium points forf A
∞ < úf B

∞ are sum-
marized in Table 2 where the symbolF indicates the physical
region F ) {(u1, u2, u3)|u1 > 0, u2 > 0}, i.e., the region of
positive concentration values.

For ú < δ/ε < f A
∞, the equilibrium points-at-infinityueq,3

∞

andueq,1
∞ are a stable node and a saddle point, respectively. The

u3-axis (corresponding to thez axis in the original coordinates)
is an invariant 1-D manifold for the Pp-system. Forú < δ/ε <
f A

∞, it represents the heteroclinic connection between the stable
nodeueq,3

∞ and the equilibrium pointueq ) 0. Therefore, the
z-axis, in the original coordinates, is the generalized slow
manifold of the Semenov model forú < δ/ε < f A

∞ because it is

λ1 ) -1 e1 ) C1((δ - ε)(ú - 1)
ú - 1 + h

,
(δ - ε)

ú - 1 + h
, 1)

λ2 ) -ú e2 ) C2(0,
δ - ε ú

h
, 1)

λ3 ) -δ/ε e3 ) (0, 0, 1) (35)

A∞ ) (-f A
∞ 0 0

f A
∞ -úf B

∞ 0

f A
∞
ε

-1 hf B
∞
ε

-1 -δε
-1) (36)

TABLE 2: Position and Stability of Equilibrium
Points-at-Infinity of the 3-D Semenov Model for 1< ú < δ/E
< ∞a

δ/ε stable saddle unstable

ú < δ/ε < f A
∞ ueq,3

∞ ∈ F ueq,1
∞ ∉F ueq,2

∞ ∉F

f A
∞ < δ/ε < úf B

∞ ueq,1
∞ ∈ F ueq,3

∞ ∈F ueq,2
∞ ∉ F

úf B
∞ < δ/ε ueq,1

∞ ∈ F ueq,2
∞ ∈F ueq,3

∞ ∈F

a The symbolF ) {(u1, u2, u3) | u1 > 0, u2 > 0} indicates the
physical region of positive reactant concentrations.

λ1
∞ ) -f A

∞

e1
∞ ) C1

∞((δ - εf A
∞)(f A

∞ - úf B
∞)

f A
∞(f A

∞ - úf B
∞ - hf B

∞)
,

-(δ - εf A
∞)

f A
∞ - úf B

∞ - hf B
∞, 1)

λ2
∞ ) -úf B

∞ e2
∞ ) C2

∞(0,
δ - εúf B

∞

hf B
∞ , 1)

λ3
∞ ) -δ/ε e3

∞ ) (0, 0, 1) (37)

ueq,1
∞,( ) (e1

∞ µ2
(1) ) λ2

∞ - λ1
∞ ) (f A

∞ - úf B
∞)

µ3
(1) ) λ3

∞ - λ1
∞ ) (f A

∞ - δ/ε)

ueq,2
∞,( ) (e2

∞ µ1
(2) ) λ1

∞ - λ2
∞ ) -(f A

∞ - úf B
∞)

µ3
(2) ) λ3

∞ - λ2
∞ ) (úf B

∞ - δ/ε)

ueq,3
∞,( ) (e3

∞ µ1
(3) ) λ1

∞ - λ3
∞ ) -(f A

∞ - δ/ε)

µ2
(3) ) λ2

∞ - λ3
∞ ) -(úf B

∞ - δ/ε) (38)
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an invariant 1-D manifold characterized by the following
exteriorR/ω-Lyapunov numbersΛE,1

ω andΛE,1
R

By increasing the value ofδ/ε, we find that the point-at-
infinity ueq,1

∞ moves towardueq,3
∞ . For δ/ε ) f A

∞, the points-at-
infinity ueq,1

∞ and ueq,3
∞ coincide and a transcritical bifurcation

occurs on the boundary∂S 3
1 corresponding to an exchange of

stability between the stable node and the saddle point. Actually,
for δ/ε > f A

∞, the pointsueq,3
∞ and ueq,1

∞ have exchanged their
stabilities and the pointueq,1

∞ has moved into the physical
region, becoming the stable node.

Figure 5 shows how the point-at-infinityueq,1
∞ moves on∂S 3

1

for increasing values of the parameterδ/ε and how its stability
changes, from saddle point (dotted curve) to stable node
(continuous line) after the bifurcation point (δ/ε ) f A

∞, ueq,1
∞ )

ueq,3
∞ ).
Therefore, for δ/ε > f A

∞, the u3-axis ceases to be the
generalized slow manifold because there exists a global 1-D
slow manifold representing the heteroclinic connection between
ueq,1

∞ and the equilibrium pointueq ) 0. In the original
coordinates, this 1-D global slow manifold is a curve passing
throughzeq ) 0 (tangent atzeq to the slow eigendirectione1)
and tangent, at infinity, to the directione1

∞ associated with the
stable nodeueq,1

∞ ∈ F.
Figure 6 shows the 1-D global slow manifold forf A

∞ < δ/ε
< úf B

∞ together with some system orbits highlighting also the
structure of the 2-D global slow manifold tangent, at infinity,
to the hyperplane span(e1

∞, e3
∞) (spanned by the directions

associated with the stable nodeueq,1
∞ and the saddle pointueq,3

∞ )
and tangent, at the equilibrium pointzeq ) 0, to the hyperplane
span(e1, e2) (spanned by the slower eigendirectionse1 ande2).

The dot-line portion of the 1-D slow manifold indicates the
region where the global slow manifold is inverting, as can be

also noticed by observing the spatial behavior of a system orbit
(broken line) that, starting close to the inverting region, evolves
almost parallel to the manifold in the inverting region.

The presence of an inverting region along the global 1-D slow
manifold is confirmed by the analysis of the quantityων

(2)/(2
ωτ

(1)) along the manifold itself (in Figure 7 , it is shown as a
function of thez-coordinates, monotonically increasing along
the manifold fromzeq to infinity). It reveals the presence of
two consecutive regions where the manifold is inverting: region
a whereων

(2)/(2ωτ
(1)) < 1 and region b whereων

(2)/(2ωτ
(1)) < 0.

By further increasing the value ofδ/ε, another transcritical
bifurcation occurs forδ/ε ) úf B

∞, involving the two points-at-
infinity ueq,2

∞ andueq,3
∞ that exchange their stability so that, for

δ/ε > úf B
∞, the pointueq,2

∞ ∈ F has become the saddle belonging
to the physical region and the unstable node. Figure 5 shows
how the point-at-infinityueq,2

∞ moves on∂S 3
1 for increasing

values of the parameterδ/ε and how its stability changes, from

Figure 5. Movements of points-at-infinityueq,1
∞ and ueq,2

∞ on the boundary∂S 3
1 for increasing values of the parameterδ/ε. Arrows indicate

increasing values ofδ/ε. Pointsueq,1
∞ (saddle point forδ/ε < f A

∞, dotted line) andueq,3
∞ (stable point forδ/ε < f A

∞) coincide forδ/ε ) f A
∞ and then

exchange their stabilities. Pointsueq,2
∞ (unstable node forδ/ε < úf B

∞, dot-line curve) andueq,3
∞ (saddle point forf A

∞ < δ/ε < úf B
∞) coincide forδ/ε )

úf B
∞ and then exchange their stabilities. The dot-line curve, dotted line, and continuous lines indicate unstable, saddle, and stable points,

respectively.

ΛE,1
ω ) -1 - ú

2(-δ/ε)
< 1 ΛE,1

R )
-f A

∞ - úf B
∞

2(-δ/ε)
> 1 (39)

Figure 6. 1- and 2-D global slow manifolds for 1< ú < δ/ε and f A
∞

< δ/ε < úf B
∞. The 2-D slow manifold is tangent, at infinity, to the

hyperplane span(e1
∞, e3

∞) (spanned by the directions associated with the
stable nodeueq,1

∞ and the saddle pointueq,3
∞ ) and tangent, at the

equilibrium pointzeq ) 0 to the hyperplane span(e1, e2) (spanned by
the slower eigendirectionse1 ande2). The dot-line portion of the 1-D
global slow manifold indicates the region where the manifold is
inverting.
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unstable point (dot-line curve) to saddle point (dotted line) after
the bifurcation point (δ/ε ) úf B

∞, ueq,2
∞ ) ueq,3

∞ ).
This second transcritical bifurcation influences solely the

structure of 2-D slow manifolds. Forf A
∞ < δ/ε < úf B

∞, the 2-D
slow manifold is a surface tangent, at infinity, to the hyperplane
span(e1

∞, e3
∞). After this second transcritical bifurcation, forδ/ε

> úf B
∞, the 2-D slow manifold is a surface tangent, at infinity,

to the hyperplane span(e1
∞, e2

∞) (spanned by the directions
associated with the stable nodeueq,1

∞ and the new saddle point
ueq,2

∞ ∈ F) and tangent, at the equilibrium pointzeq ) 0, to the
hyperplane span(e1, e2) (spanned by the slower eigendirections
e1 ande2, see Figure 8).

This bifurcation analysis of the equilibrium points-at-infinity
is supported and confirmed by the analysis of the exterior
R-Lyapunov numbersΛE,m

R , for m ) 1 and 2, computed along
the 1- and 2-D manifolds defined by the asymptotic directions
associated with the equilibrium points-at-infinity.

Figure 9A shows the behavior ofΛE,1
R computed along the

three different asymptotic directionse1
∞, e2

∞, and e3
∞, as a

function of the bifurcation parameterδ/ε. It can be observed
that, for δ/ε < f A

∞, i.e., whenueq,3
∞ is a stable node, thenΛE,1

R (
e3

∞) > 1 and it attains the largest valueΛE,1
R (e3

∞) > ΛE,1
R (e1

∞) >
ΛE,2

R (e2
∞). For δ/ε > f A

∞, i.e., after the first transcritical bifurca-
tion whenueq,1

∞ becomes a stable node, thenΛE,1
R (e1

∞) > 1 and
it attains the largest valueΛE,1

R (e1
∞) > ΛE,1

R (e3
∞) > ΛE,2

R (e2
∞).

In a similar way, we computed the exteriorR-Lyapunov
numbersΛE,2

R (see Figure 9B) along the three different planes
span(e1

∞, e2
∞), span(e3

∞, e1
∞), and span(e3

∞, e2
∞) spanned by the

three different asymptotic directions, as a function of the
parameterδ/ε. It can be observed that, forδ/ε < úf B

∞, ΛE,2
R (e3

∞,
e1

∞) > 1 attains the largest values, and forδ/ε > úf B
∞, i.e., after

the second transcritical bifurcation,ΛE,2
R (e1

∞, e2
∞) > 1 attains the

largest values.
To sum up, we have shown that the first transcritical

bifurcation (the exchange of stability between the stable node
and the saddle point-at-infinity) influences the structure of the
1-D slow manifold, and the second transcritical bifurcation (the
exchange of stability between the saddle point and the unstable
node) influences the structure of the 2-D slow manifold. This
analysis has been performed by assuming 1< ú < δ/ε. The
complete bifurcation diagram for the 3-D Semenov model is
presented and discussed in the next section.

4.3. Bifurcation Diagram. Figure 10 shows the locus of
bifurcation points in the parameter spaceú-δ/ε for γA < γB.
The general features of the diagram are not dependent upon
the value of the parametersε and h. Continuous thick lines
indicate the occurrence of the first transcritical bifurcation, i.e.,
the exchange of stability between the stable node and the saddle
point. Broken lines indicate the occurrence of the second
transcritical bifurcation, i.e., the exchange of stability between
the saddle point and the unstable node, that influences the
structure of the 2-D slow manifold.

In the parameter spaceú-δ/ε, it is possible to identify 17
different regions corresponding to different features of the 1-
and 2-D slow manifolds, as reviewed in Tables 3 and 4.

Gray regions (A, C, E-G, J-L, O-Q) are characterized by
the existence of a global 1-D slow manifold. For example,
Figures 6 and 8 show the 1-D global (and inverting) slow
manifold for (ú, δ/ε) ∈ O and P, respectively.

In the three gray regions A, G, and L, thez-axis plays the
role of the global noninverting 1-D slow manifold, and in the
white regions B, D, H, I, M, and N, thez-axis represents the
generalized 1-D slow manifold.

All the regions, except E, D, I, and N, are characterized by
the existence of a 2-D global slow manifold (see, for example,
Figure 6 for region O and Figure 7 for region P).

When the 1- or 2-D slow manifold is a generalized manifold,
the local behavior of the system close to the equilibrium point

Figure 7. |ων
(2)/(2ωτ

(1))| vs z along the 1-D global slow manifold for 1
< ú < δ/ε and f A

∞ < δ/ε < úf B
∞. There are two consecutive regions

where the manifold is inverting: region a, whereων
(2)/(2ωτ

(1)) < 1, and
region b, whereων

(2)/(2ωτ
(1)) < 0 (dotted line).

Figure 8. 1- and 2-D global slow manifolds for 1< ú < δ/ε andδ/ε
> úf B

∞. The 2-D slow manifold is tangent, at infinity, to the hyper-
plane span(e1

∞, e2
∞) and tangent, at the equilibrium pointzeq ) 0 to the

hyperplane span(e1, e2) (spanned by the slower eigendirectionse1 and
e2). The dot-line portion of the 1-D global slow manifold indicates the
region where the manifold is inverting.

Figure 9. ΛE,m
R vs δ/ε, for m ) 1 and 2, computed along the 1- and 2-D manifolds identified by the asymptotic directionse1

∞, e2
∞, ande3

∞ associated
with the equilibrium points-at-infinity.
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zeq is controlled by the occurrence of a transient (or Hartman-
Grobman) 1- or 2-D slow manifold.8 This phenomenon can be
appreciated by observing the phase-space portrait of the 3-D
Semenov model corresponding to parameter valuesú - δ/ε
falling in region D (see Figure 11).

In region D, the points-at-infinityueq,3
∞ and ueq,2

∞ are the
stable node and the saddle point, respectively, so that the
invariant z-axis and the invariant plane (0,y, z) are the
generalized 1- and 2-D slow manifolds. Actually, thez-axis is
inverting forz∈ [0, zmax], wherezmax is determined by enforcing
the condition

Phase-space orbits starting far from the equilibrium point
rapidly relax onto the 2-D generalized manifold (0,y, z), and

orbits starting close to the equilibrium point settle down onto
the transient manifold represented by a finite portion of the plane
span(e2, e1), e2 ande1 being the two slower eigendirections of
the equilibrium pointzeq. Similarly, a finite portion of the linear
manifold span(e2) is the 1-D Hartman-Grobman manifold.

5. Concluding Remarks

This Article has completed the analysis developed in ref 8
on the geometric characterization of slow invariant manifolds
extending it to high dimensional systems.

The use of tools and methods deriving from exterior algebra
provides a simple way to characterize stretching dynamics and
the relative contraction of normal measure elements compared
to tangential ones along genericm-dimensional invariant
manifolds.

This Article has thoroughly examined the bifurcational
properties of a 3-D prototypical combustion system, showing
how the local bifurcations of the equilibrium points-at-infinity

TABLE 3: 1- and 2-D Slow Manifolds for Different Values of the Two Parametersú and δ/Ea

parameters local eigendirections 1- and 2-D slow manifolds

A δ/ε < ú < 1 e3, e2, e1 W (1) ) span{e3} ) span{e3
∞} ) (0, 0,z) global

A δ/ε < úf B
∞ < f A

∞ e3
∞, e2

∞, e1
∞ W (2) ) span{e3, e2} ) span{e3

∞, e2
∞} ) (0, y, z) global

B ú < δ/ε < 1 e2, e3, e1 W (1) ) span{e3
∞} ) (0, 0,z) generalized

B δ/ε < úf B
∞ < f A

∞ e3
∞, e2

∞, e1
∞ W (2) ) span{e2, e3} ) span{e3

∞, e2
∞} ) (0, y, z) global

C ú < δ/ε < 1 e2, e3, e1 W (1) ) [e2 r e2
∞] global

C úf B
∞ < δ/ε < f A

∞ e2
∞, e3

∞, e1
∞ W (2) ) span{e2, e3} ) span{e2

∞, e3
∞} ) (0, y, z) global

D ú < 1 < δ/ε e2, e1, e3 W (1) ) span{e3
∞} ) (0, 0,z) generalized

D δ/ε < úf B
∞ < f A

∞ e3
∞, e2

∞, e1
∞ W (2) ) span{e3

∞, e2
∞} ) (0, y, z) generalized

E ú < 1 < δ/ε e2, e1, e3 W (1) ) [e2 r e2
∞] global

E úf B
∞ < δ/ε < f A

∞ e2
∞, e3

∞, e1
∞ W (2) ) span{e2

∞, e3
∞} ) (0, y, z) generalized

F ú < 1 < δ/ε e2, e1, e3 W (1) ) [e2 r e2
∞] global

F úfB < f A
∞ < δ/ε e2

∞, e1
∞, e3

∞ W (2) ) [{e2, e1} r {e2
∞, e1

∞}] global
G δ/ε < ú < 1 e3, e2, e1 W (1) ) span{e3} ) span{e3

∞} ) (0, 0,z) global
G δ/ε < f A

∞ < úf B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e3, e2} r {e3
∞, e1

∞}] global
H ú < δ/ε < 1 e2, e3, e1 W (1) ) span{e3

∞} ) (0, 0,z) generalized
H δ/ε < f A

∞ < úf B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e2, e3} r {e3
∞, e1

∞}] global
I ú < 1 < δ/ε e2, e1, e3 W (1) ) span{e3

∞} ) (0, 0,z) generalized
I δ/ε < f A

∞ < úf B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e2, e3} r {e3
∞, e1

∞}] generalized

a Refer to Figure 10 for the identification of the different regions, from A to I. The local eigendirections{ei} (at zeq) and{eh
∞} (at infinity) are

ordered from the slowest to the fastest one. The symbol [ei r eh
∞] indicates that the 1-D slow manifold is tangent atzeq to the eigendirectionei and

tangent, at infinity, to the directioneh
∞ associated with the point-at-infinityueq,h

∞ . The symbol [{ei, ej} r {eh
∞,ek

∞}] indicates that the 2-D slow
manifold is tangent, at infinity, to the plane span (eh

∞, ek
∞) (spanned by the directions associated with the points-at-infinityueq,h

∞ and ueq,k
∞ ) and

tangent, at the equilibrium pointzeq ) 0 to the hyperplane span(ei, ej) (spanned by the eigendirectionsei andej).

TABLE 4: 1- and 2-D Slow Manifolds for Different Values of the Two Parametersú and δ/Ea

parameters local eigendirections 1- and 2-D slow manifolds

J ú < 1 < δ/ε e2, e1, e3 W (1) ) [e2 r e1
∞] global

J f A
∞ < δ/ε < úf B

∞ e1
∞, e3

∞, e2
∞ W (2) ) [{e2,e1} r {e1

∞, e3
∞}] global

K ú < 1 < δ/ε e2, e1, e3 W (1) ) [e2 r e1
∞] global

K fA < úf B
∞ < δ/ε e1

∞, e2
∞, e3

∞ W (2) ) [{e2,e1} r {e1
∞, e2

∞}] global
L δ/ε < 1 < ú e3, e1, e2 W (1) ) span{e3} ) span{e3

∞} ) (0, 0,z) global
L δ/ε < f A

∞ < ú f B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e3,e1} r {e3
∞,e1

∞}] global
M 1 < δ/ε < ú e1, e3, e2 W (1) ) span{e3

∞} ) (0, 0,z) generalized
M δ/ε < f A

∞ < ú f B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e1, e3} r {e1
∞, e3

∞}] global
N 1 < ú < δ/ε e1, e2, e3 W (1) ) span{e3

∞} ) (0, 0,z) generalized
N δ/ε < f A

∞ < úf B
∞ e3

∞, e1
∞, e2

∞ W (2) ) [{e1, e3} r {e3
∞, e1

∞}] generalized
O 1 < ú < δ/ε e1, e2, e3 W (1) ) [e1 r e1

∞] global
O f A

∞ < δ/ε < úf B
∞ e1

∞, e3
∞, e2

∞ W (2) ) [{e1, e2} r {e1
∞, e3

∞}] global
P 1< ú < δ/ε e1, e2, e3 W (1) ) [e1 r e1

∞] global
P f A

∞ < ú f B
∞ < δ/ε e1

∞, e2
∞, e3

∞ W (2) ) [{e1, e2} r {e1
∞, e2

∞}] global
Q 1 < δ/ε < ú e1, e3, e2 W (1) ) [e1 r e1

∞] global
Q f A

∞ < δ/ε < ú f B
∞ e1

∞, e3
∞, e2

∞ W (2) ) [{e1, e3} r {e1
∞, e3

∞}] global

a Refer to Figure 10 for the identification of the different regions, from J to Q.

ων
(2)

2ωτ
(1)|0,0zmax

)
fA(zmax) + úfB(zmax)

2δ/ε
) 1 (40)

13472 J. Phys. Chem. A, Vol. 110, No. 50, 2006 Giona et al.



modify the occurrence and the dynamic properties of invariant
slow 1- and 2-D manifolds. A complete bifurcational analysis
in the parameter space has been obtained and the results
explained by means of the stretching properties experienced by
normal and tangential measure elements along the invariant
manifolds. In the 3-D Semenov system, the bifurcations of the
points-at-infinity, which modify the structure of the slow 2- and
3-D invariant manifolds, are much more complex than those in
the classical 2-D Semenov system studied by Creta et al.8 The
bifurcational analysis developed in this Article is, to the best
of our knowledge, the first complete bifurcational characteriza-
tion of a 3-D chemical system as it regards the existence and
the properties of the global/generalized slow manifolds.

The analysis developed for the 3-D Semenov model can be
extended in principle to generic reactive schemes of practical
interest. Indeed, albeit the apparent formal complexity, the use
of exterior Lyapunov-type numbers is sufficiently simple from
the computational point of view to be applied without any major
problem to higher dimensional kinetic models. This will be
developed in future works with particular emphasis on combus-
tion and on biochemical reaction networks.

Appendix A

Exterior algebra is the algebra of the exterior forms (or
measure elements) and is the natural algebraic generalization

of the elementary concepts of the cross-vector product inR3

and determinant algebra.10-12

Let E be the tangent space at a pointz of then-dimensional
phase spaceRn; E is ann-dimensional vector space. It is possible
to introduce a family of new vector spaces,E∧,1, E∧,2, ..., E∧,m,
the elements of which are the measure elements of dimension
1, 2, ...,n at z.

By definition,E∧,1 ) E, andE∧,p is a vector space composed
of elements (referred to as skew-symmetricp-forms or simply
p-dimensional measure elements) defined starting fromp vectors
v(1), ..., v(p) of E, composed through an exterior (or wedge)
product∧:

The wedge product of vectors belonging toE satisfies the
following conditions, which define it uniquely. (1) It is
multilinear; i.e., it is linear in all of itsp entries. This means
that if c1 andc2 are two real constants

Analogous relationships hold for the linearity referred to the
second, third, andpth entry. (2) It is skew-symmetric, i.e.,

The latter condition implies thatv(1) ∧ ... ∧ v(p) changes sign
whenever two vectorsv(i), v(j) permute. Equations 42 and 43
are the natural conditions arising from the definition of
p-dimensional measure elements starting fromp vectors. For
example, if the vectorsv(1), ..., v(p) are linearly dependent, it
follows from eqs 42 and 43 that the resultingp-form is
identically equal to zero.

Let {ei}i)1
n be an orthonormal basis forE. A basis forE∧,p is

given by the family of wedge products

and whereik ) 1, ...,n with k ) 1, ...,p. The dimension ofE∧,p

equals the number of combinations ofn elements of classp,
i.e., dim(E∧,p) ) n!/(p!(n - p)!). For n ) 3, for example,E∧,1

) E, dim(E∧,1) ) 3 and the canonical basis forE∧,1 is trivially
{e1, e2, e3}. Similarly, dim(E∧,2) ) 3 and the canonical basis
for E∧,2 is {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3}, whereas dim(E∧,3) ) 1
with the only element{e1 ∧ e2 ∧ e3} in its basis.

A generic measure element belonging toE∧,p can be expressed
as a linear combination of elements of this basis

where the summation symbol over the indicesi1 < ... < ip
indicatesp summations with the condition thatip > ip-1 > ...
> i2 > i1.

From the definition, eqs 42 and 43, it follows that, ifap )
v(1) ∧ ... ∧ v(p), the coefficientai1,...,ip of ap with respect to the
natural basis{ei1,...,ip} of E∧,p is given by the determinant

Figure 10. Locus of bifurcation points in the parameter spaceú-δ/ε
for γA < γB. The general features of the diagram are independent of
the value of the parametersε andh. Continuous thick lines: exchange
of stability between the stable and the saddle points (it affects 1-D
slow manifolds). Broken lines: exchange of stability between the saddle
and the unstable points (it affects 2-D slow manifolds). The 17 different
regions, from A to Q, are characterized by different features of the 1-
and 2-D slow manifolds, as reviewed in Tables 3 and 4. Gray (white)
regions are characterized by the existence of a global (generalized) 1-D
slow manifold. Regions D, E, I, and N are characterized by the existence
of a generalized 2-D slow manifold.

Figure 11. 1- and 2-D generalized and transient slow manifolds forú
< 1 < δ/ε and δ/ε < úf B

∞ < f A
∞ (region D). 1-D generalized slow

manifold:z-axis. 1-D transient slow manifold: finite portion of the linear
manifold span(e2). 2-D generalized slow manifold: plane (0,y, z). 2-D
transient slow manifold: finite portion of the plane span(e2, e1).

ap ) v(1) ∧ v(2) ∧ ... ∧ v(p) ap ∈ E∧,p v(R) ∈ E (A.1)

(c1v
(1) + c2w

(1)) ∧ v(2) ∧ ... ∧ v(p) ) c1

(v(1)∧ v(2)∧ ... ∧ v(p)) + c2(w
(1) ∧ v(2) ∧ ... ∧ v(p)) (A.2)

v(1) ∧ v(2) ∧ ... ∧ v(p) ) 0 if v(i) ) v(j) for i * j (A.3)

ei1,...,ip
) ei1

∧ ei2
∧ ... ∧ eip

with i1 < i2 < ...< ip (A.4)

ap ) ∑
i1<...<ip

ai1,...,ip
ei1,...,ip

ap∈ E∧,p (A.5)
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The orthonormal nature of the basis{ei}i)1
p for E induces the

orthonormal nature of{ei1,...,ip} as a basis forE∧,p. This means
that an inner (scalar) product (‚, ‚)p can be defined forE∧,p

with respect to this representation as

and the norm of a measure elementap ) v(1) ∧ ... ∧ v(p) ∈ E∧,p

can be deduced from this definition of a scalar product

The norm||ap||p geometrically represents thep-dimensional
measure of the measure element spanned byv(1), ..., v(p).

As an example, consider a 3-D vector spaceE, such as any
tangent space at some point of a 3-D phase space. An element
a ∈ E∧,2 is just an area element that can be constructed starting
from two vectorsv, w ∈ E asa ) v ∧ w. In a 3-D space, an
area element is specified by three entries,a ) a12(e1 ∧ e2) +
a13(e1 ∧ e3) + a23(e2 ∧ e3), where, as already pointed out,{e1 ∧
e2, e1 ∧ e3, e2 ∧ e3} is the canonical basis ofE∧,2 associated
with the basis{e1, e2, e3} of the vector spaceE. From eq 46, it
follows that the entries ofa can be expressed as a function of
the entriesVh, wk of v andw as

In a 3-D vector space, the definition of area elements via
exterior algebra is identical to the corresponding definition via
elementary vector algebra, which makes use of the concept of
vector (cross) product (i.e.,a ) v × w). However, there are at
least two main motivations for the use of the wedge product
and exterior algebra: (i) the cross product of elementary vector
algebra can be defined only for 2- and 3-D vector spaces (it
makes no sense in higher dimensional systems, and the exterior
definition via the wedge product has general validity), and (ii)
the definition of an area elementa as a vector belonging to
E∧,2 permits us to highlight thata, although possessing three
entries, is a geometrical object altogether different from a vector
belonging toE.

In a similar way, an elementb ∈ E∧,3 (whereE is 3-D) defines
a volume element. If the volume element is constructed starting
from three vectorsu, v, w, thenb ) b123 (e1 ∧ e2 ∧ e3), where

This definition is identical to the triple-product definitionu‚(v
× w) of elementary vector algebra.

Consider now a dynamical system dz/dt ) F(z) defined in a
3-D phase spaceR3, and letv, w be two non collinear vectors
belonging to the tangent spaceT at some pointz ∈ R3. The
evolution equation for the area elementa ) v ∧ w can be
obtained straightforwardly by enforcing the dynamic equations
for the two vectors forming it

and by considering that bothv andw evolve according to vector
dynamics, i.e., dv/dt ) F*(z)v, dw/dt ) F*(z)w.

By making use of the definition A.9, and after some algebra,
it follows that the evolution equation fora can be directly
expressed as a linear differential equation for its entriesa12,
a13, a23; i.e., it does not depend onv andw separately,

whereFhk
/ ) ∂Fh/∂xk. Equation A.12 shows that the evolution

equation for a is completely different from the evolution
equations of the vector belonging to the tangent bundle.

In a similar way, the evolution equation for a measure element
b ) u ∧ v ∧ w ) b123 (e1 ∧ e2 ∧ e3) can be obtained from the
vector dynamics applied tou, v, andw and reads

These results can be generalized to arbitrary measure elements
defined in genericn-dimensional spaces, although the expression
for their evolution equations becomes slightly more elaborate.
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ai1,...,ip
) |Vi1

(1) Vi2

(1) ... ... Vip

(1)

Vi2

(2) Vi2

(2) ... ... Vip

(2)

... ... ... ... ...
Vi1

(p) Vi2

(p) ... ... Vip

(p)
| (A.6)

(ap, bp)p ) ∑
i1<...<ip

ai1,...,ip
bi1,...,ip

(A.7)

||ap||p ) [(ap, ap)p]
1/2 ) [ ∑

i1<...<ip

ai1,...,ip

2]1/2 (A.8)

a12 ) V1w2 - V2w1 a13 ) V1w3 - V3w1

a23 ) V2w3 - V3w2 (A.9)

b123 ) |u1 u2 u3

V1 V2 V3

w1 w2 w3
| (A.10)

da
dt

)
d(v ∧ w)

dt
) dv

dt
∧ w + v ∧ dw

dt
(A.11)

da
dt

) d
dt(a12

a13

a23
) ) (F11

/ + F22
/ F23

/ -F13
/

F32
/ F11

/ + F33
/ F12

/

-F31
/ F21

/ F22
/ + F33

/ )(a12

a13

a23
)

(A.12)

db123

dt
) (F11

/ + F22
/ + F33

/ )b123 ) Trace(F*)b123 (A.13)
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