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Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems
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This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by
Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different
families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations
or on the deformation ofm-dimensional volume elements (if the manifold msdimensional) and of the
complementary { — m)-elements in the normal orthogonal complement. The latter approach, based on
elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume
elements can be related to suitable local stretching rates, and local analysis can be performed directly from
the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-
infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.

1. Introduction normal spaces. This approach, which is proposed and analyzed
The geometric description of the structure of invariant In section 3.’ prowdesaswn_ple a_nd eﬁ'c'e_”t characterization of
the dynamic features of invariant manifolds based on the

manifolds in chemical reacting systems, divorced from pertur- roperties of suitable Lyapunov-tvpe numbers. Moreover. this
bative analyses and expansions, provides many useful suggesp P yap P : '

tions for the understanding of global dynamiéThis is because approach is particularly simple and suitable to practical applica-
complex reacting schemes of physicochemical interest are almosltlon to generic kinetic ’.“Ode's’ because the reIeyant quantities
never expressed in a canonical singularly perturbed ¥6im can be obtained exclusively from the local Jacobian matrix, i.e.,
which slow and fast variables aagoriori identified. Conversely, from the local stretching rates f°T measure-e Iemen_t evoll_Jtion.
geometric methods display a sufficiently high degree of general- Tkhe ?r::cubr_rfencet_ of sllow lma_tmfolds .Oft ho'lgh?[; ?kllm(lajnsr:on_s
ity to make their results directly applicable to reaction schemes makes tne biiurcationa’ analysis associated wi € benavior
of practical interest. of the equmbrla_at |nf|_n|t§ more rlch and art|culgted thfan_ in
Geometric methods applied to invariant manifold reconstruc- the 2-D case. Bifurcational properties of the points-at-infinity

tion have been proposed by Roussel and Fra&&ravis and controlling the structure of the slow invariant manifold are
Skodje! and Adrover et al.by focusing on different specific illustrated in section 4 by considering the case of a 3-D system
feature:s characterizing the invariant structures associated with the dynamics of two exothermic reactions in

This Article develops further the geometric approach proposed series. For this system, a complete bifurcational analysis is

by Creta et af.for 2-D combustion models and extends its range presen.ted and th.e results. are explained by means of 'ghe
of applicability to generic dynamical systems of the form stretching properties experle_nced_ by ”Orma' and tangential
measure elements along the invariant manifolds.

dz For a presentation of the relevant mathematical tools associ-
—=F@ 1) ated with vector dynamics and with the definitions of slow
dt ) . . .

invariant manifolds, the reader is referred to ref 8.

wherez € R"andn > 2.

The direct extension of the approach developed by Creta et
al.? based on the scaling of the ratio of normal to tangent Moving from 2- to 3-dimensional systems (or higher), the
perturbations, shows some technical and practical shortcomingsextension of the definitions and the characterization of slow
for higher dimensional systems, for the simple reason that in invariant manifolds presented in ref 8 requires a significant
R", with n > 2, the tangent spaces and the normal spaces to an(additional) amount of conceptual and formal complexity. This
invariant manifold are no longer 1-D. This issue is addressed is due to the fact that although in 2-D systems the invariant
in section 2. manifolds 7 of dynamic interest are 1-D structures, and

The extended method proposed in section 3 makes use ofconsequently, both the tangent subspa€esind the normal
the tools of exterior algebtér2 by considering the evolution  subspaces\, at any pointz € 7/are 1-D, this is intrinsically
of mdimensional measure elements in the tangent spaces tonot true forn > 2.
the manifold (wherem is the dimension of the manifold) and Consider ammdimensional invariant manifold”’ (m < n)

(n — m)-dimensional measure elements in the complementary for the system eq 1 with > 2, and letz € 7/’be a generic point

- - — - ~of the manifold. In this case, the tangent subsp@gé¢o the
M*GCOrrespondmg author. E-mail address: max@giona.ing.uniromal.it manifold atz is m-dimensional and invariant under vector
( 'TD'?bammemo di Ingegneria Chimica. dynamics, and the normal subspagds (n — m)-dimensional

* Dipartimento di Meccanica e Aeronautica. and not invariant. Following Feniclfeand Creta et ab,it is
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2. From n = 2 to Higher Dimensional Systems
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TABLE 1: o/o-Lyapunov Numbers along the Invariant sion, is the behavior fot — —o, i.e., the occurrence of the
Manifolds of a Linear Autonomous 3-D System highest possible value of the-Lyapunov numben.
manifold A© A On the basis of the data in Table 1, it is possible to provide
AV Molia > 1 Aodi> 1 the _ffolllgwir}gd_defini_tionsf of globa! ag_d general;zedtslow
A Ml <1 > 1 manifolds of dimensiom for a generim-dimensional system.

Given the dynamical system eq 1, a global slow manifold of

4 Mz < 1 Aalds < 1 dimensionm is an invariant, exponentially attracting, stable
s Aoldy> 1 Aalds <1 m-dimensional manifold for whichA® attains its maximum
W) Addy > 1 Adldz > 1 value greater than 1, an” > 1. A globalm-dimensional fast
7 Jol2a > 1 Jolda < 1 manifold is an invariant, exponentially attractingdimensional
7P, ilda <1 Aldz <1 manifold for whichA* < 1 andA® attains its smallest value
@ Jalda > 1 Jalds <1 less than 1. The concept of generalized slow manifolds can be

defined by removing the condition tha” should be greater
still possible to introduce some Lyapunov-type numbers basedthan 1 from the definition of a global slow manifold.

on the relative properties of normal and tangent vector#’to According to these definitions, the global 1-D slow manifold
Let for the above linear system is given by, and 7%} is the
global 2-D slow manifold.
n(z) = H(pl(z)[qbf(z) Nyl n,eN, To give a numerical example of the definition ofw-
Lyapunov-type numbers to nonlinear models, let us consider
c(2) =¢;(2c, ¢,€C, @) the evolution of two exothermic reactions in series-AB —
C in a batch-jacketed reactb¥!* henceforth referred to as the
where¢y is the phase flow associated with eqqﬁ[_‘(z) = d¢pr- 3-D Semenov model. This model will be used throughout this

(2)/0z, and I1; indicates the normal projector at i.e, the Article as a prototype for higher dimensional combustion

operator mapping any vector into its component lying in the Systems as it regards the geometry of the invariant manifolds.

normal subspac®l,. The o/w-Lyapunov-type number can be Each reaction step is elementary and of first-order with respect

defined inR" as to its reactant. The balance equations for reactant concentrations
ca andcg read

~sup, .y, loglIn@)l|
A? =lim dCA

== SUR, ¢, logllc(2)l] = —k, % ERTe,
su log||n(2)]|
A% = |lim Fhoen, 109 (2) ze 7 (3) % — K Oe—EA/RT kB . EB/RT
== SUR,c, loglIc ()| K

where the supremum is taken over all the initial vectors lying ,ocgi = (—AH )k, e ®RTe, + (—AHg)ks’e ®Rcy
in the normal subspace (in the numerator) and in the tangential
subspace to”at z (in the denominator). Ua(T — T(.) (4)

To analyze how this definition of the Lyapunov-type numbers hereT is the t i dth ii " thaloi
applies in practical calculations, consider a 3-D linear constant wherel Is the temperature and the Speciiic reaction enthaiples

coefficient dynamical systenf(z) = Az, where the coefficient AHa andAHg are negative. With t?e dimensionless quantities
matrix possesses three distinct negative eigenvdlugés, —1s, va = Ea/RTe, 8 = Ea/RT;, t = tka'€7a, X = CalCrer, y = Ca/
—Ja}, with 44 < A, < 13 and letey, &, and e; be the Crer, andz = (T — T¢)ya/Tc Wherecet is a reference concentration
corresponding eigenvectors. For this system, the invariant @ndTc the coolant temperature, eq 4 becomes
manifolds associated with directions of the eigenspaces are the dx
three 1-D eigenmanifoldg/(V = {z|z = &e,, & € (—, )}, h i (D)X
=1, 2, 3 and the three 2-D eigenmanifold&?) = {z|z = &e,
+ 56w £, 1 € (—, @)}, h =1, 2, 3< k. By definition, 7/ N e
and 7//(12,)2 are respectively the global slow 1- and 2-D mani- dt
folds of the system. dz fa(@x+ hiy(2y — oz
Table 1 reviews the values of the/w-Lyapunov-type T . (5)
numbers on these eigenmanifolds and on generic DY)
and 2-D (7//@) invariant manifolds. We observe that fior> o where
the controlling normal contraction rateAs everywhere except
on 7/ and on7/{ with h = 1. Conversely, fot — —e, the _ VaZ £ (g = VBZ
controlllng normal elongat|on rate, because of stability reversal a(2) = ex Atz a(d) = ex yat2Z ®)
is /3 everywhere except on”’{’ and on 7/%) with k = 3.
Clearly, for a generic 1-D invariant maniold’® (an orbit), and& = kg’@a 7elka” > 0, h = (—AHg)&/(—AHa) > 0, P =

its behavior fort — oo will mimic that of 7//{, and fort — (—AHR)Creral pC,Te, Q = Uagr/pc ka’se = 1/P, andd = Q/IP.

—oo, that of 7//g1>. A similar reasoning applies for a generic Figure 1A depicts the phase plot of the 3-D Semenov model
2-D invariant manifold7/ @, for a fixed set of parameter values, which gives rise to a global
As in the 2-D caséa slow invariant manifold is characterized 1-D slow manifold. The global 1-D slow manifold is depicted
by o/w-Lyapunov-type numbers both greater than 1. Moreover, in panel A with a thicker line and is obtained by means of
the discriminating feature of a slow invariant manifold, which material line advection (MLAY. Figure 1B depicts the ratio

distinguishes it from other invariant manifolds of equal dimen- log||n¢|/log||c|| starting from a generic normal vectog € N,.
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Figure 1. (A) 1-D global slow manifold (thicker line) for the 3-D Semenov model with=5, y5 =8, = 10,h=2,6 = 1, = 1073, The figure
depicts some orbits attracted by the manifold. (B)|llogj/log||ci|| vst along the invariant manifold depicted in panel A.

Equation 10 is the basic equation for understanding the
difference between two-dimensional and higher models. In fact,
for n= 2, v, belongs to a 1-D subspace, the unit tangent vector
of which f is uniquely determined by the vector fieidat the

di(z point. Correspondingly, from eq 10, one obtains
Figure 2. Schematic evolution of normal and tangential vectors to an t A
invariant 1-D manifold7~/®. (VDI = [Iv,0)l] exp(ﬁ)wv(z(t')) dt’) w, = (F*A, A)
In this case,A” > 1. A similar analysis performed on the (11)

backward evolution of tangent and normal vectors, not shown wherez(t) indicates the trajectory along the manifold angiis
for brevity, yieldsA* > 1, confirming the global nature of the  the normal stretching rate. It follows that tiéw-Lyapunov

1-D slow manifold, depicted in panel A. numbers can be expressed as a function of the tangential and

numbers expressed by eq 3 exhibits some practical shortcomings

in higher dimensional(> 2) systems that are worth addressing. = "
Consider the dynamics of tangent and normal vectors along Iog(m) = ﬁ)wr(z(t')) at’

a 1-D invariant manifold7” @ (i.e., an orbit) of a generic 0 i

n-dimensional system (Figure 2). The tangent sub-bundle to ] _ et ' )

7/’ is invariant under vector dynamics (i.e., undé(z)), and IOg(||n0||) t/éw”(z(t )t (12)

the normal sub-bundle is not, this being the reason for the

application of the local normal projectdl,,) in the definition wherew, = (F*¢, ©) is the tangential stretching rate, with=

of nq. F/||F|].
Let us analyze in detail the dynamics of a generic veetor Conversely, ifn > 2, the evolution of the normal component
starting from an initial vectov, e T, having components both  of a generic vector cannot be expresaaatiori with respect to
in the tangent and in the normal subspaces. For anyttim8, a given normal stretching rate (unless the vector evolution is
let v(t) = ¢;(2)vo. The vectorv(t) can be expressed as not explicitly accounted for through an expression equivalent
to eq 11), because the normal subspaces are no longer 1-D, and
v=aF+v, () the unit normal directiorvy(t) along the orbit depends on the

orientational dynamics within the normal sub-bundle. This

makes the analysis of the evolution of normal perturbations more
cumbersome, unless some form of further specification in the
definition of the characteristic normal stretching rates is not
added. A way for bypassing this shortcoming is discussed in
the next section.

whereF = F(¢(2)) is the vector fielda a scalar depending on
time, andvp(t) = Iy [v(t)] is the normal component of. By
definition, bothv andF satisfy the equation for vector dynamics
describing the evolution of a generic vector in the tangent bundle
under the action of the vector field

dv dF
a- PV G- FF (8) 3. m-Forms, Stretching Rates, and Invariant Manifold

Properties
whereF*(z) = aF(z)/0z.
Atfter differentiating eq 7 with respect to time and substituting
into it the expressions for the time derivativeswoandF (eq
8), it follows that

An alternate way to provide a geometrical characterization
of the invariant manifolds is to consider the evolution of
m-dimensional measure elements. This section develops this
approach, which leads to a new definition of the Lyapunov-

N da type numbers, and analyzes the differences and the advantages
e F*v,—F o 9 of this approach with respect to the analysis developed in section
2 based on the evolution of the norms of normal and tangential
Equation 9 confirms what was stated above, namely that the perturbations.
normal sub-bundle is not invariant, as in eq 9 the extra term Consider an invariant, exponentially attractmglimensional
da/dt appears aligned in the tangential direction. To get rid of manifold 7™ for eq 1 withm < n. The tangent subspa
this term, take the scalar product with respecv tpto obtain to 7™M at any poinz e 7/is mdimensional and invariant, and

(after some steps) the ( — m)-dimensional normal subspadg is not. The idea
is to characterize the dynamical propertiesf™ by means

dilvyll F )|V (10) of the stretching rates ofn-dimensional measure elements
dt w Vn) Vil constructed upon vectors lying @ (wheremis the dimension

whereV, = v/||vn|| is the unit vector associated with. of the manifold itself) and of{ — m)-dimensional measure
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elements deriving from vectors lying on the normal subspace.

This can be achieved by introducing exterior algebraic conceptsgenerated byn(— m) linearly independent vectoxél), ng), B

(which are succinctly reviewed in Appendix A).
Let c§”, ¢@, ..., cS"” be a family ofm linearly independent
vectors spanning the subspaCg at zo € 7™M, and define
() = ¢f(z) co™, h 1, ..., m. Because the tangent
subbundle is invariant, eadf’(t) lies in the subspac€s,,,
for any timet > 0.

Them-dimensional measure element spannedByc?, ...,
c¢™ is given by them-form c® A c@ A ... A ¢M. The time
evolution of thism-form can be obtained by differentiating it
with respect to time and by enforcing the evolution equation
for each individual vector dV/dt = F*c®,

dic® AP A Ad™] gc®
_ (2) (m)
=——ACYA...AC +
dt dt
(2) (m)
WA ™ DA @A S
t dt
=F"McD A @ AL A ™
(13)

In eq 13, we have introduced the operakgr"™ acting in
the exteriorm-space associated with the tangent subsp@ges
to indicate the action of the differential operator on tixéorms.

It should be observed that the action of the operdtor™
depends solely on tha-form ¢ A ¢c@ A ... A ¢ and not on
c®, c@, ..., c™ individually 1>

By taking the scalar product in the-exterior space (see
Appendix A) with respect ta® A c@ A ... A ¢M, we find that
it follows after some algebraic manipulations that

diic® A A ™,

dt
[ (I i:\(h)(Z(t))7 f(h)(z(t)))] | | (1) A LA ( )| |
h_—.j C c

= [h;w,,h(za))] HED A oA (14)

wheret®, h =1, ...mis a system ofn orthonormal unit vectors
spanningCyy, wherez(t) = ¢«(zo) and

w2 =F1"2,t1"2) h=1,..m (15

Giona et al.

A similar approach applies to the ¢ m)-measure element

v~ initially lying in the normal @ — m)-dimensional

subspacé\,, to 7M. The analysis is slightly more elaborate

in this case, because a generic normal vector generates in its

evolution a vector possessing nonvanishing components both

in the normal and in the tangential subspaces of the image point.
Let vi(t) = ¢ (zo)v, vI(t) = My [v®)], h=1, ....n —

m, wherell, ) is the normal projector at the poigi(zo). The

final result of this calculation is that

l —
IV A AV

dt

n—m

[ h; @, @OV A AV (18)

wherew,n, h =1, ...,n — mare then — m normal stretching
rates defined starting from a generic basis ef m orthonormal
unit vectorsily, ..., An—m spanningN;

w,(2) = (F*(2) Ny(2), Ny(2) h

1,...,n—m (19)

As for the tangential stretching rates, the value of each
individual w, ;, depends on the chosen normal basisNgrand
their sum is independent of the basis itself.

From eq 19, it follows that then(— m)-measure of the normal
measure element, (-m(t) = (VO A .. A VO] 0-m,
spanned by, ..., v("™™, satisfies the equation

Uy -m® = £y 0-m(O) eXp[Z Jio, @) dt] (20)
h=

To sum up, the local stretching properties along ran
dimensional invariant manifold can be expressed by means of
them and g — m)-dimensional stretching rates

o™(2) = h;wf,h(z) 0" ™(2) = h;wv,h(z)

ze 7/ (21)

are the tangential stretching rates that can be defined starting¥hich provide an intrinsic dynamical characterization of the
from this orthonormal tangential system. The value of each l0cal behavior at points € 7//(™.

individual w.n depends on the chosen basis, and their sum

3.1. Exterior Lyapunov-Type Numbers and Invariant

(appearing in eq 14) is independent of the orthonormal basis Manifolds. On the basis of the evolution of the measutes-

chosen and is a local intrinsic property of the action of the
dynamical system along the invariant manifold.

If we indicate with i, m(t) = [|cO®) A ... A cM()||m the
measure of ther-dimensional tangential measure element, from
eq 14 it follows that

it ()
dt

= [';wr,h(z(t))]m,m(t) (16)

and therefore

Hunl® = () €XPLY [fioz)d] @17
h=

(t) and 1, (—m)(t) associated with an invariamt-dimensional
manifold 7™, it is possible to introduce the exteriovow-
Lyapunov-type numberAg ,, and A, defined as

. m |Og /uu,(n—m)(t)
= lim
t=e (N — m) log u, (1)

w
AE,m

oG, o ()
© (0 — m) 0g i, (1)

o
AE,m

(22)

The dimensionm and the co-dimensionn(— m) of the
manifold 77 (M enter explicitly in this definition in order to
“homogenize” the scaling of the measure elements of different
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dimensions. Indeed, the argument of the limits appearing in eq
22 can be expressed as

m IOg /"v,(n—m)(t)
(n—m) log u, (1)

_10g[i,, oo™
C loglu, 01"

(23)

and therefore, the exterior Lyapunov-type numbers can be
viewed as the ratio of the logarithms of two characteristic vector
lengths in the normal and tangential subspagegs [m(t)]Y™™

and . m(t)]¥™, defined starting from the evolution of comple-
mentary measure elements.

It follows from the analysis developed above that the
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(A)

Figure 3. (A) wf,z) vs the curvilinear abscissaalong the global slow
invariant manifold for the 3-D Semenov model depicted in Figure 1.
(B) Ir'Y| vs s along the same global slow manifold.

respectively), it follows that

logarithms appearing in eq 22 can be expressed by means of

(n—m)

the integrals of the stretching rate§“ andw,
20) along system trajectories lying ir’™, i.e.,

(egs 17 and

i)
%LAJ_L%(M»m
Hooom (t) t (n—m) ' '
Iog(m)zﬂw(v Jz(t)) dt (24)

This is the main advantage in adopting the definition of an
exterior Lyapunov-type number. Moreover, it follows from the
definition of eq 21 that

0™(2) + 0""™(2) = TraceF*(2)] (25)

where Tracef*(2)] = Yn_,F*nn(2) is the trace of the Jacobian
matrix. Therefore, in practical applications it is not necessary
to estimate bothw™ and o™ ™, but solely one of these
stretching rates, because the remaining one follows from eq 25
This result is particularly useful in the analysis of 1-D invariant
manifolds because

oMN(2) = (F(2) F@), F(2))

0" (2) = TraceF*(2)] — 0™(2) (26)

whereF = F/||F||.

Let us apply the definition of the exterior Lyapunov numbers
to ann-dimensional linear systenmzftit = Az, the coefficient
matrix of which admitsn distinct negative eigenvaluesi,
—A2, ..., —An With 41 < A < ... < 1, associated with the
eigenvectorsy, e, ..., &, For fixedm > 1, there exisn!/m!-

(n — m)! different m-dimensional e|genman|fold3///(”’"‘)uy
spanned by, e,, ..., 6, with iy <i; < ... <i,and passmg
through the origin. On each of these manifolds, theand
w-exterior Lyapunov numbers coincide and are given by

AL 15 = AEl .

m |'Trace(A) =+t A)
(n—m)[ A+t

(27)

Specifically, for 778, 7%, ..,
the slow m 1, 2,

77" 1, (corresponding to
, 6 — 1)-dimensional manifolds,

) dpt ot
AL (1) = AL (7P = (n——l)/lln
20+ ot 4)
ALATRY) = AL (WD) =— T >1 (28
E,2( 1,2) E, 2( 1,2) ( _ 2)(11 + 12) ( )
., . (n— 1)1,
AE,n*l( c///g.rj:ll;l)*l) = Ag,nfl( (///(n l) l) A + + in 1 =

Conversely, for any othen-dimensional invariant manifold
7/ (M, the exterior Lyapunov numbers attain generically the
expression

Moy + o+ A)
AL, = >1
n—m@A, +..+1,)
mA, + ...+ A4 _
g = e )L (29)

(= M)Ay + ot A)

Therefore, them-dimensional global slow manifolds are

‘characterized by the occurrence of the maximum value of the

exteriora/w-Lyapunov numbers greater than 1. This gives rise
to the following definition of global and generalized slow
manifolds based on the measure-element scaling.

Given the dynamical system eq 1, a global slow manifold of
dimensionm is an invariant, exponentially attracting, stable
m-dimensional manifold for which\g ,, and Ag,, are greater
than 1. A globalm-dimensional fast manifold is an invariant,
exponentially attractingm-dimensional manifold for which
Agn < 1L andAg,, < 1. The concept of a generalized slow
manlfold can be defined by removing the condition thgt ,
should be greater than 1 from the definition of a global slow
manifold.

As an example, Figure 3A shows the behavior of the normal
stretching ratan'?(s) along the curvilinear abscissaof the
global slow manifold depicted in Figure 1. As expect@{f,)(s)
is uniformly negative, meaning that 2-D normal measure
elements shrink exponentially along the manifold. Figure 3B
shows the stretching ratid®,

0?(z)
20{(2)

rP) = (30)

along the manifold. The absolute value df is reported,
because the tangential stretching rates attain positive values close
to the explosion. It can be observed that there are portions of
the manifold along which the stretching ratio attains values less
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than 1, indicating that local inversion in the behavior of a
normal/tangential stretching rate occurs. This phenomenon is

thoroughly addressed in section 4, which analyzes the bifurca- us
tions occurring in the 3-D Semenov system and how these 1
bifurcations modify the structure of the slow invariant manifolds.

0.5

4. Bifurcations and Slow Manifold Structure

In this section, we analyze the structures and properties of 0
slow invariant manifolds in the 3-D Semenov model by
combining the compactification technique with the scaling 0.5
theory of exterior measure elements developed in section 3.

The properties of invariant manifolds can be further addressed -1
by considering the compactification of the phase space, i.e., by
introducing the following coordinate transformation

z, ]- _. _.___--/_._.__________J_,_____"_._ i 0.5
U=——"—"—"—"" h=1,..,n, (32) 0.3 0 "_f}“j—ll
n u B
1+ szz Figure 4. Analysis of the Pp-system associated with a 3-D linear
k= system. (A)-(F): points-at-infinity. (A) and (B):u"e";fl = £(—1V/5,
2/1/5, 0) (stable nodes ot/%). (C) and (D): uSh = +(1/v/2, 0, 1/

. . . . N eq,2
mappingR" onto then-dimensional unit spheré, = {u|yp_; V2) (saddles om./%). (E) and (F): Ugis = (0, — 2IV/5, 11/5)
uﬁ < 1}. Correspondingly, the introduction of the Poincare (unstable nodes oi/). The thick line connecting A and B is the 1-D
projected system (Pp-system) associated with eq 1 slow manifold. The curve is the set of heteroclinic orbits connecting

ugs with ug,0n 3. The shaded region intersectiag’; aty is the

2-D slow manifold. Some orbits of the Pp-system are also drawn in

du, n n it .
order to highlight the role of 1- and 2-D slow manifolds.

—=a- k;uf)”z [F, — uhk;ukm (32)

eigenvalueg ™} and eigenvectorgw®}
and E]he aznilyss of |t_s behawpr cloge to the boundi_a/rﬂ( = ug) =2+ W|(<i) =g — (6, €)¢
{u]¥p=,un® = 1} permits us to investigate the behavior of the k=12 i—-1i4+1 n
original system eq 1 at infinity. T e ' A
The introduction of the Pp-system eq 32 makes it possible #i(i) =21.>0 Wi(i) =e i=1,..n (34)

to analyze the structure and properties of global invariant
man|fo|ds Of eq 1lin terms Of the pl’OpertIeS Of the equl“bnum Th|s |mp||es (1) Each equ|||br|um p0|nt_at_|nf|n|ty |s unstable

points-at-infinity, i.e., the equilibrium pointsg, Y of the on then-dimensional unit spheré,. (2) Each equilibrium point-
associated Pp-system. For example, for a dynamical systemat-infinity can be either a stable one or an unstable one or a
possessing a unique globally attracting equilibrium paigt= saddle point if one considers the dynamics of the Pp-system

orbit of the Pp-system connectingq = 0 (corresponding to precisely,u”: are stable nOdesJZ’ﬁ, k=2 ..n—1are
J P ) saddle points, andig,
points-at-infinity ug, such that the exterioo/w-Lyapunov

= spadey} is, in the transformed coordinatefun}, the
To comment on this issue, let us consider again an autono-ueq with u%, , i.e., with the stable node ah/%. (4) The global

€., Vi

= spaf e, &} is, in the transformed coordinatésy}, the 2-D
n n
e kZlAh‘yk =t > Adtiln (33) nodeug,,; and the first saddle node, , (characterized by only

Elementary algebraic manipulations yield-2 1 equilibrium ' .

points for the Pp-system: (i) the stable equilibrium paigj= the 1-D and 2-D slow manifolds of the Pp-system associated

0, a global/generalized 1-D invariant manifold is a heteroclinic restricted to the boundar§/? of the unit sphere/;. More
. . i eqgl
Zeq in the transformed coordinates) to one of the equilibrium ooqin are unstable nodes. (3) The global
numbersA”, andA¢, (controlled by the behavior close tn invariant 1-D slow manifold of the original linear systef{"
E1l E1 q
andu,, respectively) possess specific properties. heteroclinic orbit of the corresponding Pp-system connecting
. _ . . eq,n
amsosl:)?:ig?ee da:D;}/ss;gg rﬁ”;tt;inéztr?:?gined in section 2. The i ariant 2-D slow manifold of the original linear systemi?)
q invariant manifold of the corresponding Pp-system intersecting
Uh 3% at the heteroclinic connection @h/> between the stable
km=1 - . .
one positive eigenvalue for the dynamics of the Pp-system
restricted to the bounda@/‘ﬁ). For example, Figure 4 shows
0 (corresponding to the unique stable equilibrium paigt= 0 with a 3-D linear system with eigenvalugs iy, —4z, —As} =
of the original system) characterized by the same eigenvalues{ —1, —10, —100 and eigenvectors, = (—1W/5, 2K/5, 0), &

{ = A1, — A, o= A}, A1 < A2 < ..< Jnand eigenvectorser, = (N2, 0, 1M2), &3 = (0, — 2//5, 1A/5). The points-at-
&, ..., &} of the original linear system eq 1 and (iln2  infinity are ug;; = e, (points A and B, stable nodes on}),
equilibrium points-at-infinityug;” = +e,, h = 1, ..., n. The ugs> = € (points C and D, saddle points @n'7), andug;;
equilibrium points-at-infinity correspond to the invariant direc- = +e; (points E and F, unstable nodes &m‘ﬁ). The 1-D slow

tions associated with the 1-D eigenmanifolds of the system. invariant manifold (thick line connecting A and B) is the union
Let u,,; be a generic equilibrium point-at-infinity. It can be  of the two heteroclinic orbits connectingq = 0 with uZJ{ and

eqi
shown thatug, is characterized by the following set of = ueq = 0 with ug;. The 2-D slow invariant manifold is the

eqi
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plane (shaded region) passing throughand intersectin@fﬁ

at the circley representing the set of heteroclinic orbits
connectingugy; with ugy; on /7.

The introduction of the Pp-system, the computation of

equilibrium points-at-infinity, and the analysis of their stability

play an important role also for nonlinear systems as it regards
the identification and characterization of global/generalized slow
manifolds. For a dynamical system possessing a unique globally

attracting equilibrium pointeq = 0, the global/generalized 1-D

slow invariant manifold is, in the transformed coordinates, the

heteroclinic orbit of the Pp-system connecting, = 0 to the
equilibrium point-at-infinityu:ql that is a stable node for the
dynamics of the Pp-system restrictedata‘)‘ﬁ.

This implies that, in the original coordinates, the global/
generalized 1-D slow invariant manifold is a curve passing
through zeq = 0 and tangent, at infinity, to the direction
associated with the equilibrium poimﬁqyl. Analogously, the
global/generalized 2-D slow invariant manifold is, in the
transformed coordinates, a 2-D surface interseoaim‘b along
the curvey representing the heteroclinic connection &m‘ﬁ
between the stable nod€,; and the first saddle poinig,,.
This implies that, in the original coordinates, the global/

generalized 2-D slow invariant manifold is a surface tangent,

J. Phys. Chem. A, Vol. 110, No. 50, 20063469

TABLE 2: Position and Stability of Equilibrium
Points-at-Infinity of the 3-D Semenov Model for 1 < § < dle
< oo@

Ole stable saddle unstable
E<ole<fy Ugg3€ 7 Ugg 107 Ugy 207
fa<ole<(ifg Ugq1€ 7 Ugq3€7 Uggo O 7
tfg < ole Ugq1€ 7 Ugq2€7 Ugqa €7

aThe symbol7 = {(u1, Uz, U3) | Uz > 0, u; > O} indicates the
physical region of positive reactant concentrations.

The matrixA. admits the following eigenvalues and eigen-
vectors

=1
L fe—anai g —0-dd
1_C1 00 /g 00 00 ooy’ £ 00 o oo’l
fa(fo—Cfg—hfg) fo—Cfg—hfg
o0 —elfg
=gt & =C O,ﬁ,l
hf
o=-0le  &=(0,0,1) (37)

at infinity, to the plane spanned by the directions associated The equilibrium points-at-infinity of the Pp-system are

with the equilibrium points-at-infinityg, ; and ug,.
Similarly, the m-dimensional slow manifold (witim < n)

associated with the eigendirectionsAd, i.e., ug, = €, h
=1, ..., 3. By considering the dynamics of the Pp-system

turns out to be a hypersurface tangent, at infinity, to the restricted to the boundary/’; of the unit sphere, we find that
hyperplane spanned by the directions associated with the stablahe stability of the equilibrium points-at-infinity, according to

o

nodeug, ; and the firstm — 1 saddle pointsig,,, --., Uggm:

The nature “global” or “generalized” of invariant slow
manifolds can be defined by computing the exteriot-
Lyapunov numbers\g ,, (controlled by the behavior close to
Zeqand Ag , (controlled by the behavior at infinity), i.e., along

the asymptotic directions associated with the equilibrium points- .+

at-infinity).
Moreover, given the fundamental role of the equilibrium
points-at-infinity, it is possible to investigate the influence of

model parameters on the global behavior of the system and onU:c},sz +6§

its invariant manifold structures by analyzing possible local
“bifurcations” of the points-at-infinity occurring when model

parameters vary. This issue will be addressed in the next

eq 34, is controlled by the following eigenvalues

R (P )
u§=a3 =25 = (3= ole)
W =05 =0 = (3 &)
u§) =23 =23 = (&f g — ole)
W =27 =25 =—(f3 — ole)

U =25 — 25 = (&t g — ole) (38)

o+ __ 00
ueo,l - :l:el

+€

eqg2

In order to illustrate how the relative position and stability

subsection where the 3-D Semenov model is analyzed in detail of points-at-infinity actually controls the global behavior and

enforcing the observations presented above.

4.1. Three-Dimensional Semenov Model he 3-D Semenov
model eq 5 possesses a unique stable equilibrium pgjst 0
characterized by the following eigenvalues/eigenvectors

_ _~[O0=e(—-1) (06—¢)
M=t ei_cl( C—1+h 'z;—1+h’1)
l=—C &= cz(o, 0 < & 1)
Ja=—0lc  &=(0,0,1) (35)

whereC; and C, are normalization constants.

The analysis of the Pp-system is particularly simple for the
3-D Semenov model as f@— o, fa(z) — &2 =3, fg(2) —
e’s = f 5, and therefore, the behavior at infinity is described by
the linear systemazidt = A.z, where

—f2 0 0
A, =[fe  —f2 0

foet hige ™ —pet

(36)

the structure of invariant manifolds of the 3-D Semenov model,
let us consider the following set of parameter values & and

fa < ¢fg and analyze system properties by letting the
parametew/e vary in the rangel < d/e < oo.

4.2. Transcritical Bifurcations at Infinity. Given that 1<
& < dle, at the equilibrium poinzeq = 0, spané;) represents
the 1-D slow eigenspace, and spam, ) is the 2-D slow
eigenspace.

At infinity, i.e., on the boundarya,/‘é, the position and
stability of the equilibrium points forf ; < {fg are sum-
marized in Table 2 where the symb@lindicates the physical
region 7 = {(uy, Uy, Ug)luy > 0, u, > O}, i.e., the region of
positive concentration values.

For { < dle < f,, the equilibrium points-at-infinityug,s
anduf;’ql are a stable node and a saddle point, respectively. The
us-axis (corresponding to theaxis in the original coordinates)
is an invariant 1-D manifold for the Pp-system. Bor d/e <
f . it represents the heteroclinic connection between the stable
node ug,; and the equilibrium pointieg = 0. Therefore, the
z-axis, in the original coordinates, is the generalized slow
manifold of the Semenov model fgr< o/e < f, because it is
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dle <l fy Sle< 1,

05 ..
=

11

Figure 5. Movements of points-at-infinit)u‘;°ql1 and eroq,z on the boundaryi,f‘é for increasing values of the parameték. Arrows indicate
increasing values ab/e. Pointsug, ; (saddle point fow/e < 3, dotted line) andig, 5 (stable point ford/e < f3) coincide ford/e = f and then

exchange their stabilities. Point§, , (unstable node fod/e < f g, dot-line curve) andig, ; (saddle point foff ;; < d/e < ¢f g) coincide ford/e =

¢fs and then exchange their stabilities. The dot-line curve, dotted line, and continuous lines indicate unstable, saddle, and stable points,
respectively.

an invariant 1-D manifold characterized by the following , e
exterior a/w-Lyapunov numbers\g ; and Ag ; '
IOZU
—f® Cf 0 100 | inverting
E1= 1 C<1 gl:u>l (39)
2(—dle) ’ 2(—dle)

By increasing the value obd/e, we find that the point-at-
infinity ug, q1MOVes towardlg, 5 For d/e = f, the points-at-
infinity ueq pandug, commde and a transcritical bifurcation
occurs on the bounda@t/ corresponding to an exchange of
stability between the stable node and the saddle point. Actually,
for o/e > f,, the pointsug,; and ug, , have exchanged their

stabﬂmes and thethpO'TUBf-l haj moved into the physical hyperplane spagf, €]) (spanned by the directions associated with the
reglpn ecoming the stable no e.. e 1 stable nodeue 1 and the saddle poinu qg) and tangent, at the

Figure 5_5h0WS how the p0|nt-at-|nf|n|t;{gq’1m0\(es onjJ'3 equilibrium pomtzeq = 0 to the hyperplane spas( &) (spanned by
for increasing values of the parameéée and how its stability the slower eigendirections ande;). The dot-line portion of the 1-D
changes, from saddle point (dotted curve) to stable node global slow manifold indicates the region where the manifold is
(continuous line) after the bifurcation point/é = f 3, ug, ;= inverting.
u°e°q'3).

Therefore, fordle > fy, the ugaxis ceases to be the
generalized slow manifold because there exists a global 1-D | ¢ llel to th told in the i " :
slow manifold representing the heteroclinic connection between aimost paraflel to the 'manllo n ) € Inverting region.

Uqu and the equilibrium pointueg = 0. In the original The presence of an inverting region along the global 1-D slow

coordinates, this 1-D global slow manifold is a curve passing Manifold is confirmed by the analysis of the quaniia/(2

Figure 6. 1- and 2-D global slow manifolds for ¥ { < d/e andf
< ole < ¢fg. The 2-D slow manifold is tangent, at infinity, to the

also noticed by observing the spatial behavior of a system orbit
(broken line) that, starting close to the inverting region, evolves

throughzeq = 0 (tangent ateq to the slow eigendirectiory) o ;) along the manifold itself (in Figer 7 , |t.|s shown as a

and tangent, at infinity, to the directia associated with the functlon of thez-coordinates, monotonically increasing along

stable nodess,, € 7 the manifold fromzeq to infinity). It reveals the presence of
eq o

Figure 6 shows the 1-D global slow manifold fof < ole two conse((Z:)utive(lr)egions where the manifold i(sé)invel(r}i)ng: region
< £f % together with some system orbits highlighting also the & Wherew,”/(20;”) < 1 and region b where,”/(2w;”) < 0.

structure of the 2-D global slow manifold tangent, at infinity, By further increasing the value d¥e, another transcritical

to the hyperplane spaefl, €;) (spanned by the directions bifurcation occurs fov/e = ¢f 5, involving the two points-at-
associated with the stable nodg, ; and the saddle point}, ) infinity ug,, andug,; that exchange their stability so that, for
and tangent, at the equilibrium poing; = 0, to the hyperplane  d/e > {f g, the pointug,, € 77has become the saddle belonging
spané;, &) (spanned by the slower eigendirectimsande;). to the physical region and the unstable node. Figure 5 shows

The dot-line portion of the 1-D slow manifold indicates the how the point-at-infinityug,, moves ona S5 for increasing
region where the global slow manifold is inverting, as can be values of the parametéfc and how its stability changes, from
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Figure 7. |0@1(20™)| vs z along the 1-D global slow manifold for 1
< ¢ < ole andfy < dle < ¢fy. There are two consecutive regions
where the manifold is inverting: region a, whes&/(20®™) < 1, and
region b, wheren®/(20®™) < 0 (dotted line).

€

10" + inverting
100 b
1010 b
102
1020
104 s

! I

Figure 8. 1- and 2-D global slow manifolds for ¥ { < d/e anddle
> {f 5. The 2-D slow manifold is tangent, at infinity, to the hyper-
plane sparg, €) and tangent, at the equilibrium poing; = O to the
hyperplane spag{, &) (spanned by the slower eigendirecti@sand
&). The dot-line portion of the 1-D global slow manifold indicates the
region where the manifold is inverting.

unstable point (dot-line curve) to saddle point (dotted line) after
the bifurcation pointd/e = {f 5, Uggr = Ugga)-

This second transcritical bifurcation influences solely the
structure of 2-D slow manifolds. Fdiy < d/e < f 3, the 2-D
slow manifold is a surface tangent, at infinity, to the hyperplane
span€y, €;). After this second transcritical bifurcation, féfe
> ¢f g, the 2-D slow manifold is a surface tangent, at infinity,
to the hyperplane spagf, €) (spanned by the directions
associated with the stable nodg, ; and the new saddle point
u°e°que ) and tangent, at the equilibrium poirdg = 0, to the
hyperplane spag(, &) (spanned by the slower eigendirections
e; ande,, see Figure 8).

This bifurcation analysis of the equilibrium points-at-infinity
is supported and confirmed by the analysis of the exterior
a-Lyapunov numbers\g ,, for m= 1 and 2, computed along
the 1- and 2-D manifolds defined by the asymptotic directions
associated with the equilibrium points-at-infinity.

Figure 9A shows the behavior @fz, computed along the

(A) 10" (B) 10"
Res s .
108 2 107 [HeTel)
104' - 10*
r El L
d<:1” ol p a<E 10°
10 ’ 1074 {e;e;}
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three different asymptotic directions’, €, and €, as a
function of the bifurcation parametéye. It can be observed
that, fordle < f, i.e., whenug,; is a stable node, theAg (
€;) > 1 and it attains the largest valuet (€5) > Agy(€) >
Ag,(€)). Forole > £, i.e., after the first transcritical bifurca-
tion whenug,, becomes a stable node, thag,(€7) > 1 and

it attains the largest valuAg ,(€7) > Ag4(€5) > Ag,(€).

In a similar way, we computed the exteriarLyapunov
numbersAg , (see Figure 9B) along the three different planes
span€;, €), span€;, €)), and sparg;, €) spanned by the
three different asymptotic directions, as a function of the
parametep/e. It can be observed that, fore < &f g, Ag (€5,
€7) > 1 attains the largest values, and &de > Zf g, i.e., after
the second transcritical bifurcatioNg ,(€7, €) > 1 attains the
largest values.

To sum up, we have shown that the first transcritical
bifurcation (the exchange of stability between the stable node
and the saddle point-at-infinity) influences the structure of the
1-D slow manifold, and the second transcritical bifurcation (the
exchange of stability between the saddle point and the unstable
node) influences the structure of the 2-D slow manifold. This
analysis has been performed by assuming £ < d/e. The
complete bifurcation diagram for the 3-D Semenov model is
presented and discussed in the next section.

4.3. Bifurcation Diagram. Figure 10 shows the locus of
bifurcation points in the parameter spaed/e for ya < vs.

The general features of the diagram are not dependent upon
the value of the parameteesand h. Continuous thick lines
indicate the occurrence of the first transcritical bifurcation, i.e.,
the exchange of stability between the stable node and the saddle
point. Broken lines indicate the occurrence of the second
transcritical bifurcation, i.e., the exchange of stability between
the saddle point and the unstable node, that influences the
structure of the 2-D slow manifold.

In the parameter spade-dle, it is possible to identify 17
different regions corresponding to different features of the 1-
and 2-D slow manifolds, as reviewed in Tables 3 and 4.

Gray regions (A, C, EG, J-L, O—Q) are characterized by
the existence of a global 1-D slow manifold. For example,
Figures 6 and 8 show the 1-D global (and inverting) slow
manifold for ¢, d/€) € O and P, respectively.

In the three gray regions A, G, and L, tkexis plays the
role of the global noninverting 1-D slow manifold, and in the
white regions B, D, H, I, M, and N, the-axis represents the
generalized 1-D slow manifold.

All the regions, except E, D, I, and N, are characterized by
the existence of a 2-D global slow manifold (see, for example,
Figure 6 for region O and Figure 7 for region P).

When the 1- or 2-D slow manifold is a generalized manifold,
the local behavior of the system close to the equilibrium point

Figure 9. Ag,vsdle, form=1and 2, computed along the 1- and 2-D manifolds identified by the asymptotic direefiogfs ande; associated

with the equilibrium points-at-infinity.
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TABLE 3: 1- and 2-D Slow Manifolds for Different Values of the Two Parameters¢ and d/e?

parameters local eigendirections 1- and 2-D slow manifolds
A ole<f<1 €3 €, € 9/ = sparfes} = sparf€;} = (0, 0,2 global
A Ole < Lfg <fy & & € 7/%) = spaf{ &, &} = spaf€;, &} = (0,Y, 2) global
B E<ole<1 €, 63 & 9/ = spaf €5} = (0, 0,2) generalized
B ole < ffg <fy € &, € 7/ = sparfe,, e} = sparfe;, &} = (0,y,2) global
c E<ole<1 €, €3, €1 9D = [& — €] global
c g <ole<fy &, €, € 92 = spaf e, &5} = spafe;, €5} = (0,Y, 2) global
D §<1<ole €, €1, & 90 = spafe;} = (0, 0,2) generalized
D Ole < Gfg <fy € &, € 912 = spaff €, €} = (0,Y, 2) generalized
E L<1<odle € €1, €3 70 = [e— &~] global
E g <ole<fy &, €, € 7/ = spai &, €5} = (0,Y, 2) generalized
F {<1<odle €, €1, & 9D = [g— €] global
F Cfg <fx < ole €, €1, & 70 = [{e &} —{€, €}] global
G ole<f<1 €3 €, € 9/ = sparfes} = sparf€;} = (0, 0,2 global
G dle<t5 <t & €€ 70 =[5 ) — (&, €)] global
H f<dle<1 €, €3, € 9/ = spaf €5} = (0, 0,2) generalized
H dle <15 <t & €€ 70 = [{e e} — (&, )] global
| §<1<ole €, €1, & 9/0 = spafe;} = (0, 0,2) generalized
| ole <fy <({fg €, €, & 70 = [{e, e} — {5, €7} generalized

2 Refer to Figure 10 for the identification of the different regions, from A to I. The local eigendiredtisingat z.q) and{e;} (at infinity) are
ordered from the slowest to the fastest one. The syneéhet[e]] indicates that the 1-D slow manifold is tangentzafto the eigendirectios and
tangent, at infinity, to the directios; associated with the point-at-infinitye,,. The symbol {e, g} — {€],}] indicates that the 2-D slow
manifold is tangent, at infinity, to the plane spaaf,(€f) (spanned by the directions associated with the points-at-inﬂuﬁ&){ and u:qk) and
tangent, at the equilibrium poizty = 0 to the hyperplane spag(g) (spanned by the eigendirectiogsande).

TABLE 4: 1- and 2-D Slow Manifolds for Different Values of the Two Parameters{ and d/e?

parameters local eigendirections 1- and 2-D slow manifolds
J E<1l<odle €, €1, 6 9D = [g,— €] global
J fa<ole<(fg e, 6,6 72 = [{exe} —{€7, €5}] global
K E<1<dle €, €1, 6 9D = [e,— €] global
K fa < Lfg < ole €66 70 =[{ee} —{€, &} global
L dle <1<¢ 6, €1, & 7/ = spaf e} = spaf€;} = (0, 0,2) global
L dle <fr<cfy &6 ¢ 70 =[{ese1) —{€5.6)] global
M 1<dle<¢ e, 6, & 9/ = sparf€;} = (0, 0,2) generalized
M dle <fr<cfy &6 ¢ 7O =[{ey, e} —{&, )] global
N 1<g<dle €1, €, € 7/ = spaf €} = (0, 0,2) generalized
N dle <fy<ify €, €, 9 = [{ e, &3} —{ €5, €7} generalized
0 1< <dle €, &, & 9D = [&— €] global
o foa<ole<(fg €, 6, € 9 = [{ e, &} —{€], &}] global
P 1< g <dle €1, €, €3 7V = [er— e global
P fo<Cfg<ole €. 6.6 7O =[{ey, & —{&, &}] global
Q 1<éle<§g €1, 6 & 9D = [g — €] global
Q fa<ole<(fg e, 6,6 9/ = [{ e, &5} —{€, &}] global

a Refer to Figure 10 for the identification of the different regions, from J to Q.

Zeqis controlled by the occurrence of a transient (or Hartman  orbits starting close to the equilibrium point settle down onto
Grobman) 1- or 2-D slow manifol®iThis phenomenon can be the transient manifold represented by a finite portion of the plane
appreciated by observing the phase-space portrait of the 3-Dspané,, e1), &, ande; being the two slower eigendirections of
Semenov model corresponding to parameter vaflies d/e the equilibrium pointeq Similarly, a finite portion of the linear
falling in region D (see Figure 11). manifold sparg) is the 1-D HartmarGrobman manifold.

In region D, the points-at-infinityug,; and ug,, are the

stable node and the saddle point, respectively, so that the®: Concluding Remarks

invariant z-axis and the invariant plane (G, 2) are the This Article has completed the analysis developed in ref 8
generalized 1- and 2-D slow manifolds. Actually, thaxis is on the geometric characterization of slow invariant manifolds
inverting forz e [0, ZnaJ, Wherezmaxis determined by enforcing ~ extending it to high dimensional systems.
the condition The use of tools and methods deriving from exterior algebra
provides a simple way to characterize stretching dynamics and
) . ;
w(v ) B fo(Zra) T Cfa(Zima) B the relatlve. contraction of normal measure glements co'mpared
D0 P~ >olc =1 (40) to tangential ones along generi-dimensional invariant
2w; manifolds.

This Article has thoroughly examined the bifurcational
Phase-space orbits starting far from the equilibrium point properties of a 3-D prototypical combustion system, showing
rapidly relax onto the 2-D generalized manifold {0,2), and how the local bifurcations of the equilibrium points-at-infinity
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Figure 10. Locus of bifurcation points in the parameter spgee/e

for ya < ys. The general features of the diagram are independent of

the value of the parametessandh. Continuous thick lines: exchange

of stability between the stable and the saddle points (it affects 1-D

slow manifolds). Broken lines: exchange of stability between the saddle

and the unstable points (it affects 2-D slow manifolds). The 17 different
regions, from A to Q, are characterized by different features of the 1-
and 2-D slow manifolds, as reviewed in Tables 3 and 4. Gray (white)
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of the elementary concepts of the cross-vector produdtsin
and determinant algebt&:12

Let E be the tangent space at a parf the n-dimensional
phase spack™ E is ann-dimensional vector space. It is possible
to introduce a family of new vector spacés,!, Er2, ..., EM™
the elements of which are the measure elements of dimension
1,2, ...,natz

By definition, E*1 = E, andE*P is a vector space composed
of elements (referred to as skew-symmetriforms or simply
p-dimensional measure elements) defined starting foomectors
v@, .., v of E, composed through an exterior (or wedge)
productA:

VW eE (A1)

=V AVA A L AVP a,e E'P

The wedge product of vectors belonging Eosatisfies the
following conditions, which define it uniquely. (1) It is

regions are characterized by the existence of a global (generalized) 1-Dmuyltilinear; i.e., it is linear in all of it entries. This means
slow manifold. Regions D, E, |, and N are characterized by the existence that if ¢; andc, are two real constants

of a generalized 2-D slow manifold.

.Z=Z|TI ax

Figure 11. 1- and 2-D generalized and transient slow manifold<for
<1 < dle andodle < ¢fg < f3 (region D). 1-D generalized slow
manifold: z-axis. 1-D transient slow manifold: finite portion of the linear
manifold spang;). 2-D generalized slow manifold: plane (9,2). 2-D
transient slow manifold: finite portion of the plane spané,).

modify the occurrence and the dynamic properties of invariant
slow 1- and 2-D manifolds. A complete bifurcational analysis

VD + WY AV A L AVvP =,
VIAVEA LAVOY + WP AVE A L AVP) (A2)

Analogous relationships hold for the linearity referred to the
second, third, angth entry. (2) It is skew-symmetric, i.e.,
VOAVEOA AVP =0 it V0=V for i=j (A3)

The latter condition implies thaf® A ... A v changes sign
whenever two vectors®, vi) permute. Equations 42 and 43
are the natural conditions arising from the definition of
p-dimensional measure elements starting frpmectors. For
example, if the vectors®, ..., v are linearly dependent, it

follows from eqs 42 and 43 that the resultingform is
identically equal to zero.

Let{e}], be an orthonormal basis f& A basis forE*P is
given by the family of wedge products

in the parameter space has been obtained and the results

explained by means of the stretching properties experienced by &,..j, = & A&, A A& with iy

<iy<.<i, (A4)

normal and tangential measure elements along the invariant
manifolds. In the 3-D Semenov system, the bifurcations of the g, wheréy =1, ....nwith k= 1, ...,p. The dimension oE"P

points-at-infinity, which modify the structure of the slow 2-and - gqals the number of combinations mflements of clasp
3-D invariant manifolds, are much more complex than those in i.e., dimE"P) = nl/(p'(n — p)!). For n = 3, for exampleE1

the classical 2-D Semenov system studied by Creta®Thé
bifurcational analysis developed in this Article is, to the best
of our knowledge, the first complete bifurcational characteriza-

tion of a 3-D chemical system as it regards the existence and

the properties of the global/generalized slow manifolds.

The analysis developed for the 3-D Semenov model can be

= E, dim(E"Y) = 3 and the canonical basis fart is trivially
{ey, &, e3}. Similarly, dimE"?) = 3 and the canonical basis
for Er2is{ey A e, €1 A 63, & A €3}, whereas dinf"8) = 1
with the only elemenfe; A & A e} in its basis.

A generic measure element belongindete can be expressed

extended in principle to generic reactive schemes of practical @ & linear combination of elements of this basis

interest. Indeed, albeit the apparent formal complexity, the use

of exterior Lyapunov-type numbers is sufficiently simple from
the computational point of view to be applied without any major
problem to higher dimensional kinetic models. This will be

developed in future works with particular emphasis on combus-

tion and on biochemical reaction networks.

Appendix A
Exterior algebra is the algebra of the exterior forms (or

=y a8, &<E’ (A.5)
i1<..<ip
where the summation symbol over the indidggs< ... < ip

indicatesp summations with the condition that > ip-1 > ...
> o > 1.

From the definition, eqs 42 and 43, it follows thatajf =
viD A A VP, the coefficienta;, . j, of &, with respect to the

measure elements) and is the natural algebraic generalizatiomatural basiqe,, _;} of E*P is given by the determinant



13474 J. Phys. Chem. A, Vol. 110, No. 50, 2006 Giona et al.

OIS o) This definition is identical to the triple-product definitian(v
'(12) '(22) """ '(;) x W) of elementary vector algebra.
a = Ui,” Ui, e Yiy (A.6) Consider now a dynamical systera/dt = F(z) Qeflned ina
N ) 3-D phase spack?, and letv, w be two non collinear vectors
NORN0 o belonging to the tangent spadeat some pointz < R3S The
i Tip e ip evolution equation for the area elememt= v A w can be

obtained straightforwardly by enforcing the dynamic equations
The orthonormal nature of the bagis}”_, for Einduces the for the two vectors forming it
orthonormal nature ofe,, i} as a basis foEAP. This means

that an inner (scalar) product, (-), can be defined foEAP da_dvAw) _dv Ay A W (A11)
with respect to this representation as dt dt dt dt '
b).= b . A7 and by considering that bothandw evolve according to vector
(& by)y i1<Z<i &g hardy A7) dynamics, i.e., @dt = F*(z)v, dw/dt = F"(2)w.

P By making use of the definition A.9, and after some algebra,
and the norm of a measure elemept= Vi) A A VP € EAP it follows that the evolution equation foa can be directly
can be deduced from this definition of a scalar product expressed as a linear differential equation for its entaigs

ay3, ags; i.e., it does not depend onandw separately,
1/2 27112
= [(a, = L A.8 "
||a‘p||p [(ap aP)D] [I <Z<I a'll ..... Ip] ( ) a12 F11+ FZZ ;3 _ ?—3 alz
1=.~lp da_ d _ " « < %
) ) ) a - & &3 32 1utFs Fpp A3
The norm||ay||, geometrically represents tipedimensional Ay3 —F 5  +FL Ay

measure of the measure element spannedy..., v,
As an example, consider a 3-D vector sp&;euch as any (A.12)

tangent space at some point of a 3-D phase space. An elemenwhereF;, = dFy/dx. Equation A.12 shows that the evolution

a e E~2is just an area element that can be constructed startingequation fora is completely different from the evolution

from two vectorsv, w € Easa = v A w. In a 3-D space, an  equations of the vector belonging to the tangent bundle.

area element is specified by three entriéss ajs(e1 A &) + In a similar way, the evolution equation for a measure element

a,(e1 A &) + axa(& A €3), where, as already pointed ofig; A b=uAvAwW=Dbis(e: A & A e3) can be obtained from the

&, € A 6, & A 63} is the canonical basis d&"2 associated vector dynamics applied to, v, andw and reads

with the basiq e;, e, e} of the vector spack. From eq 46, it db

follows that the entries of can be expressed as a function of 123 e« * * — *

the entriesun, Wy of v andw as dt (Fiy  Fop + Fagbyps = Tracef) bp; - (A-13)

Ay, = W, — W, Ay = VW, — UW, These results can be generalized to arbitrary measure elements
defined in generia-dimensional spaces, although the expression

B3 = VW5 — UgW, (A.9) for their evolution equations becomes slightly more elaborate.
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