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Hartree —Fock—Heitler —London Method. 2. First and Second Row Diatomic Hydride$
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The Hartree-Fock—Heitler—London, HF—HL, method is a new ab initio approach which variationally
combines the Hartreg~ock, HF, and the HeitlerLondon, HL, approximations, yielding correct dissociation
products. Furthermore, the new method accounts for nondynamical correlation and explicitly considers avoided
crossing. With the HFHL model we compute the ground-state potential energy curves mmg], LiH

[X =], BeH [2=*], BH ['="], CH [?I1], NH [327], OH [2I1], and FH [=*], obtaining in average 80% of the
experimental binding energy with a correct representation of bond breaking. Inclusion of ionic configurations
improves the computed binding energy. The computed dipole moment is in agreement with laboratory data.
The dynamical and nondynamical correlation energies for atomic and molecular systems titel2ctrons

are analyzed. For BeH the avoided crossing of the two lov&s] tates is considered in detail. The HF

HL function is proposed as theero-orderreference wave function for molecular systems. To account for the
dynamical correlation energy a post-HAL technique based on multiconfiguration expansions is presented.
We have computed the potential energy curves fp[lﬂg], HeH [21], LiH [X =], LiH [A =], and BeH

[2=*]. The corresponding computed binding energies are 109.26 (109.48), 0.01 (0.01), 57.68 (58.00), 24.19
(24.82), and 49.61 (49.83) kcal/mol, with the experimental values given in parentheses. The corresponding
total energies are-1.1741,—3.4035,—8.0695,—7.9446, and—15.2452 hartrees, respectively, the best ab
initio variational published calculations,txcluded.

1. Introduction its definition to the complete Hartred=ock? a particular
multiconfiguration expansion yielding nondynamical correlation
in atoms. In this paper the designation HL wave function is
restricted to HL type wave functions which dissociate into HF
atoms in the lowest electronic state. This restriction is introduced
to provide a unique definition for the HL functions designed to
facilitate comparison with HF functions.

From a conceptual point of view the pragmatic rush to de-
velop new techniques and methods has understandably left
numerous gaps. In addition, in the early days the enthusiasm
and a highly competitive atmosphere in the new field of compu-

It is well-known that, at the beginning of quantum chemistry,
two approaches were predominant in the attempts to explain,
with quantum theory, the forces responsible for holding atoms
together as a molecule. These were the linear combination of
atomic orbitals-molecular orbitals= (LCAO-MO) and the
Heitler—Londorf (HL). The two approximations represent two
different implementations of a one-particle model. In time these
techniques evolved into the analytical Hartrde@ock (HF}©
approximation (at the time a most promising method for atomic

—9 i i 15
?I/s;[:een:ﬁ e )Lér;\%_t&%v:rl]znt%ee E?_ngff(e\:eBé gr?li)/r?elea@gr??tﬂ.e but tational chemistry highlighted the differences rather than the
! complementary nature of the two traditional and competing

not sufficiently reliable, approximations, the past 5 decades have ntum chemical roaches. Today. w n afford a mor
seen a strong effort aimed at more accurate quantum mechanicafiiantum chemical approaches. today, we can afford a more

solutions often starting from the two original approximations. relaxed attitude. . . .
The introduction of perturbation methods with Mgller and AS Weﬁ ?7” kn_ow, the computation of the electronic correlation
Plesséf opened new avenu€s8complementing the variational energy:®2'E, is the goal of any post-Hartredock approach.

28 i i i i i
approachesrecently the second-order perturbation theory has Fy”? aas glﬁcttuse Otf |r;ger$legtrciplc dlfstance(sj in the wave
been utilized in the CASPT2 metha®l. unction and Hartree et al?slimination of near-degeneracy

effects with short multiconfiguration (MC) expansions were

We hasten to call to mind that today there are different . .
and appealing alternatives to the approaches mentioned above?Mong the very early attempts to deal with the correlation energy

Relatively recent publicatiod%?! present in detail the evo- prcIJbIer?. ituati the tw ; hemical models. HF
lution and the present status of quantum chemistry. Today, n a few situations the two guantum chemical models,

the methodological effort continues with attempts to extend and _HL_’ fail to provide a theory capable Of predicting (even
the applicability of ab initio methods to larger systems and qualltatlvely) the forces responsﬂ‘;le for holding together atoms
with proposals of increasingly reliable semiempirical in a molecule. It follows that neither one of the two models

method2-25 can be chosen as a general zero-order approximation for

Hereafter, the designation HF is used to indicate the restricted quantum chemlstry, namely, a reference_ functlc_)n which
Hartree-Fock method, but later in this work we shall expand qqahtaﬂvely approximates Iaporatory data with consistency and
with equal accuracy at any internuclear separation.

T Work partially presented at the XIl ICQC Meeting, Kyoto, Japan, May In thi_s v_vork, fOHOWin_g the introductory pr0p033|_ of _ref 29,
2006. we variationally combine HF and HL models yielding the
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Hartree-Fock—Heitler—London model, HFHL, detailed in Y, =det@®,, ..., P, ..., D) 1)
section 2. The latter is proposed at two accuracy levels: the

HF—HL level, which accounts for the nondynamical correlation W, = Zdet((plk, s Piks oo Prrid (2)
corrections, and the post-HHL level, which also accounts

for the dynamical correlation: this partitioning of the correlation
energy corrections in the context of the HHL model is
discussed in section 3.

Above, ®; refers to thath HF molecular orbital angy to the
Ith atomic orbital of thekth determinant in the HL function.
Note that the HL functions are constructed to satisfy the correct
spin coupling constraints.

When at dissociation the atoms in the molecule are in a state
Recall that the HF method fails to reproduce bond breaking, with near-degeneracy, and/or when there is avoided crossing,

even qualitatively. On other occasions the method fails to predict then in egs 1 and 2 ¥z and theWWy, are replaced by very
binding for molecules with known strong laboratory binding shqrt MC expansions to account for near-degeneracy and
energy. Furthermore, avoided state crossing, a rather frequent'jIVOIded crossing. . y . .

molecular event, is ignored. On the other hand, the method The HFHL wave functiony" e is obtained by deter-
applies self-consistently the variational principle to a selected mining variationally the linear combination

electronic configuration, starting with simple trial functions, and " _ ' '

utilizes a robust algorithm constrained, however, by the basis Pl = 6 e 0 )

set ch0|c.e_ (the latter must be adequate to avoid basis Setwhere with the notation?ye and ¥y, we indicate either
superposition errors, B_SSE)j ) ) standard HF and HL functions or very short MBIF and MC-

The HL method at dissociation builds the molecular wave H|_ expansions, when there is near degeneracy and/or avoided
function with functions representing the separated neutral atomsstates crossing; in section 3 we shall introduce a specific notation
with spin and angular momentum selected to ensure correctig gvoid ambiguities.
dissociation products.In this work, the HL function at In eq 3 thec; andc;, coefficients are obtained variationally
dissociation is limited to neutral atomic ground states representedpy solving the equatiofH — SE)C = 0 with H and S the
either with HF functions or with more accurate approximations, interaction supermatrixes containing the Hamiltonian and the
such as configuration interactiSACI, or MC expansions; for  overlap matrix elements, respectively. Tdeorbitals of W'
the latter in this study we use the Dalton computational édde. are a linear combination of a basis set of Gaussian functions,

Since in the HF-HL model we combine the HF and the HL  and the same basis set is also used to expand the ahitaf
functions, we consider the HartreEBock atoms as reasonable ¥'w.. We recall that theD; orbitals form an orthogonal set,
first-order approximations to represent the HL atomic dissocia- whereas thepy orbitals can be nonorthogonal. For the latter
tion products. However, when we consider more accurate wavecase, following Lavdin34 the interaction between two determi-
functions for the HL (or for the HF) model, the HF (or HL) nants,d, andd, is given by
component of the HFHL linear combination is equivalently
improved, to ensure a “balanced HAL representation. (d,|H|d,[=

An important assumption of the HFHL method is that the Zhijgid) 4 Z [0 |kIO- d |kj|;|]gi,kijl) (4)
total molecular correlation energy can be partitioned for example ] i<k7=<I
into the sum of the correlation energy of the separated atoms
and correlation contributions arising from the new electron pairs Where the indice$ andk refer to the occupied orbitals @k
and electronic charge rearrangements concomitant with theandj andl to those ofth; ') andS'*i) are the first- and second-
molecular formation process (hamely, the “molecular extracor- order cofactors of the overlap matr§ constructed with the
relation energy??. The particular decomposition of the cor- ©occupied orbitals ofl, anddy. The cofactors are computed with

relation energy adopted in the HFIL model is exposed in  the algorithm proposed in ref 35, adapting routines from the
detail in section 3. public domain Linpack library®

In eq 3 we have not included ionic structures in the HL
component, since it would account for a fraction of the total
dynamical correlation, a task left for the post-HHL approach.
However, for the hydrogen fluoride molecule (section 10) we
have added two ionic structuf@sobtaining a notable gain in
) ) the computed binding energy.

2.1. First Step: the HF—HL Model. In the first HFHL 2.2. Post HF-HL. Since both the HF and the HL methods
step we variationally combine the HF and the HL functions, o pe extended in order to include dynamical correlation, the
the latter being built with HF aton?, thus obtaining by ey ivalent feasibility exists for the HFHL method. Keeping
constructlo.n cqrrect dISS.OCIatIOI’I prqducts. Further the HF and i, mind the decomposition of dynamical correlation energy into
HL approximations are improved with short MC expansions, o components, namely, a molecular component (the molecular
to introduce near-degeneracy correlation energy (for details, seeaytrg correlation) and a second one resulting from the sum of
section 3). Finally, if the state in consideration results from an phe dynamical correlation energy of the separated atoms (see
avoided potential energy curve crossing, then both statesgection 3), we envision two steps in the post-H#L method.
participating in the crossing are explicitly considered. In this  The dynamical molecular extra correlation energy is computed
way we account for the nondynamical correlation in the-HF  jn the second HEHL step (to obtain accurate binding energies)
HL function. and the atomic dynamical correlation in the third step (to obtain

Formally, we start by defining with obvious notation the HF, accurate total energies). The correlation techniques adopted in
Wy, and the HL, Wy, functions given in eqs 1 and 2, the second and third steps are MC expansions complementing
respectively: each other. Thus, presently, the post-HfL method makes

2. HF—HL Computational Method

The HFHL approach is proposed as a three-step process
with increasing accuracy at each successive step. This work is
mainly concerned with the first step presented in section 2.1.
In section 2.2 we present a post-HHAL algorithm (HF—HL
steps 2 and 3) to obtain the dynamical correlation correction.
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use—with variants—of avenues tested in post-Hartreleock (like HF, HL, and HFHL) brings about energy differences
computations. relative to the energies obtained (a) with the exact one-electron
In the post-HFHL method, the dynamical correlation nonrelativistic model, difference called nondynamical correla-
correction is introduced by replacing in eq 3 &, function tion, E¢(nondyn), and (b) with the exact many-electron non-
with an extended MEHF linear expansion of HF-type func-  relativistic model, the total correlation enerdy, The difference
tions, Zpa,WpHr), andW®'y. with an MC—HL expansion of HL- between the total and the nondynamical correlation energies is
type functions ZqbgW gi): the dynamical correlation enerds(dyn).
However, if we stress the viewpoint that molecules are
Wi = Zapll‘p(HF) + qu‘Pq(HL) (5) composed of atoms, then the correlation energy can be broken
P q down into two components: on&ae,, for the sum of the

o _ ] ] ] ) correlation corrections for the separated atoms and the second,
The p, g indices define excited configurations in the MC . for the molecular extracorrelation energy. The two view-

expansions, and, b, are the corresponding variational  points are complementary and therefore the partitioning of the
eXpanSlOn CoeffICIentS. The two MC eXpanS|OnS C0mp|e- CO"re'a‘tion energy |s a|so Comp|ementary

ment each other. Equation 5 constitutes the seconetHHF The nondynamical correlation errors in the HF model are due
step. o ) . ) to (1) neglect of near-degeneracy, (2) the constraint of doubly

The remaining dynamical correlation energy is computed by orpjtal occupancy for molecular systems near dissociation, and
solving eq 6, the third step of the HFHL approach: (3) neglect of avoided curve crossing.

) We consider near-degeneracy. The nondynamical correlation
Wien = ZaPIPP(HF) + quqjq(HL) + Zbrlpr(HL) (6) has been taken into account by Hartree ét\aith short MC
a r expansions of the near-degenerate configurations. Later, a

. - different approach based on perturbation methods was proposed
In €q 6 the indes replaces the of eq 5 to indicate a new first by Sinanoglé!#2and later by other&4> Following Hartree

and more extended expansion. For the HL component we use,, al.? Veillard and Clementf computed, with Slater-type

two MC—HL linear expansions, oriqgbq'¥'q (present in eq 5) functions, the nondynamical correlation in the second row atoms

with optimized atomic orpitals, the secormb’, ¥ (gen- and ions using MC expansions of two configuratieds?2s
erally an extended expansion) constructed by adapting-MC 20" and the nearly degenerate’a€2p™2

HF functions originally computed for the separated atoms. The We have recomputed, with the Gaussian basis set defined in

latter can be determined once and for all and can be used Oversection 4. the near-degeneracy energy correction for the around
and over for different molecules in HMHL computa- ) 9 Y gy 9

: - . 7 state of the BeS], B [?P], and C $P] atoms, obtaining the

gogiific(::c;rt]itgénI?k?ug(r)grllssf::ggIet:hf?or?amolggmget:) ?nncillleitjall;e as following nondynamical correlation energies: 0.043 72, 0.034 81,
P e . . .’ 77 and 0.019 36 hartree, respectively, in substantial agreement with

exemplified by the HFHL computations on the LiH and i ) - -

molecule<d the computation by Veillard and Clemefti.In the MC

For very few electron svstems the dvnamical correlation can expansion the coefficients of the near-degenerate configuration
Ty Tew Sy y ; 1€292p™2 are 0.25, 0.17, and 0.15 for Be, B, and C,
be obtained with the first term of eq 5, namely, via Cl or

CASSCF computations. For polyatomic systems the transfer- respectively. A relatively small amount of mixing is sufficient .
i, ’ . to remove near-degeneracy errors in atoms and, as shown in
ability of =b'W,) becomes more and more important the

. . ) section 9, also in molecules.
Iarg.e.r.the system. The.qomputaﬁépf I."H and Li; provides Concerning the constraint of doubly orbital occupancy, we
an initial example (additional work is in progress).

Recall that in the post-HFHL method the dynamical recall that the HF model approaching dissociation can become

correlation can be introduced with a variety of alternative unstable, leading to grossly incorrect energies. The use of the
) . S . s 3; unrestricted HF algorithm avoids this catastrophic behavior, but
techniques either ab initio or semiempiricadf?e The exten-

; . : . . : the resulting wave function is incorrect. The alternative,
sive computations by Lie and Clementi for diatomic homo- . 40; e ; .

. proposed by Lie and Clemeffti*is of difficult implementation
polar molecule® and hydride® have clearly shown that den- X ) : X
. ) : . . for molecule larger than diatomic, particularly for multiple
sity functional corrections applied to short MC expansions

(used to correct the HF function near dissociation) yield bonds. For example, even in the ground state of 10
- ) y configurations are needed to obtain correct dissociétimnbe
most reasonable binding and total energies. Note that for

HF—HL functions the correct dissociation is ensured by compared to only two configurations (one from HF and one

construction; thus, the available and tested semiempirical den-from HL) in the HF-HL model, where the correct dissociation

sity functional$®-4° can be used to deal with the dynamical 'S oEtalr;:_ed by constrlfjctlon. ical lation is rel
correlation. The third source of nondynamical correlation is related to

the degeneracy at the crossing of states with the same
3. Dynamical and Nondynamical Correlation Energy in Symmetry-a situation very common ln_exmted states, but also
_ frequently present in ground stafess in, for example, BeH
the HF—HL Model 4
o ) (see section 7).

The standard definition of the correlation energy relates to  |n the HL approximation, the nondynamical correlation error
the HF method. Therefore, we need more general definitionsijs due (1) to the neglect of near-degeneracy, (2) to the
for the correlation energy, an appropriate notation and a detailedconstrained selection of the lowest atomic state at dissociation,
description on the specific partitioning of the correlation energy and (3) to the neglect of avoided state crossing.

adopted in the HFHL model. In summary, we partitiorE. as

Since molecules are systems of nuclei and electrons, the
correlation energy can be defined with reference to an expansion E = Z€a+ N 7)
into one-, two-, ..., many-electron energies obtained by solving 3

the corresponding one-, two-, ..., many-electron exact solutions.
The approximated solution from a given nonrelativistic model Further, we distinguiskcr) from Ecr), Since the correlation
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Figure 1. Nondynamical correlation. Left: first and second row ground-state atomic correlation energy with and without near-degeneracy correction.

Right: correlation energy for Hfrom Hartree-Fock, Heitler-London, and HartreeFock—Heitler—London.

TABLE 1: Laboratory Molecular Binding Energy (kcal/mol), Ep, Laboratory Equilibrium Distance (bohr), R, Total
Nonrelativistic Energy at Equilibrium, Er(Re), and at Dissociation,Et(R.), Atomic HF Energies (hartrees),Ene (Limit), and Epr

(This Work)
Ene (limit)
molecule Ep2 Re? Er(Re) Er(R-) Ere (this work)
H, [lzg] 109.48 1.4 —1.174 4757 —1.000 000 H1S] —0.500 000 -0.499999
HeH =] 0.01 7.00 —3.403 7459 —3.403 7243 He'lg] —2.861 680 -2.861679
LiH [=H] 58.00 3.0150 -8.070 491 —7.978 062 Li gs] —7.432727 -7.432721
BeH =] 49.83! 2.5371 —15.246 772 —15.167 363 BelS] —14.573 023 -14.573016
BH [1=H] 84.1° 2.3289 —25.287 95 —25.153 93 B1P] —24.529 061 -24.529036
CH [11] 83.9 2.1163 —38.478 69 —38.344 99 CiPl —37.688 619 -37.688616
NH [327] 80.5 1.9582 —55.217 54 —55.089 25 N{S] —54.400 934 -54.400924
OH [211] 106.6 1.8324 —75.737 08 —75.567 2 OiP] —74.809 398 -74.809384
FH [*=1] 1419 1.7325 —100.459 2 —100.2337 F1P] —99.409 349 -99.409343

aReference 472 Reference 48 Reference 49 Reference 50¢ Reference 51f Reference 529 Reference 53.

We indicate the HR), HL(m), and HF~HL(n,m) correlation
energies akomr)(N), Ecru) (M), Ecr—nu) (n,m); these are defined
as the energy difference betweEne(n), En (M), Eqr—pL(n,m)
and the exact nonrelativistic energy.

In Figure 1 we report two examples to typify the nondy-
namical correlation energy. In the left inset we present the
correlation energy for atoms with and without near-degeneracy.
The dashed line denotes the dynamical correlation energy
obtained by subtracting from the total correlation the near-
degenerate correlation energy of Be, B, and C. In the right inset,
we report the correlation energy from the HF, the HL, and the
HF—HL models in H [1231. The usual definition of correla-
tion energy related to the HF model is clearly unsatisfactory,
since, at dissociation, the correlation energy ggHRould vanish.

For the HF-HL model the correlation energy of;Hs reduced
to the dynamical component (see eq 9). In the inset the dotted
lines are interpolations from shortliiternuclear distance values

: _— - _ to the united atom, He'§].
We now introduce definitions and a specific notation needed ¢l

to ensure a coherent discussion in the following of this work.
We indicate as M&HF and MC-HL multiconfiguration
expansions of HF type and HL type functions, respectively.
When needed, we use the specific notationmHdL(m), and
HF—HL(n,m) to designate ME&HF expansions o configura-
tions, MC—HL expansions ofn configurations, and HFHL
function composed by the linear combination of HFg¢nd HL-
(m). The energie&nr(n), EqL(m), andExg—pL(n,m) correspond Ep, equilibrium internuclear distanceR,, and “exact” nonrela-
to the wave functions HRj, HL(m), and HFHL(n,m), tivistic energies at equilibriuntr(Re), and at dissociatiorE-
respectively. Equivalent notation is used for the computed (R.), obtained from recent tabulations of atomic eneRfiead
binding energiess, and the correlation energids, To indicate the numerical HF energy limit for ator¥¥s/ery close to previous
a specific electronic configuration within a given MC expansion, analytical HF computation®.Er(Re) is obtained by adding the
we use the notation HR; HL-m. laboratory binding energy tBr(R-), the “exact” nonrelativistic

energy is an error specific for a given model, and write

Ectin = zea(HF)(nondyn)+ zea(HF)(dyn)J’_

a a

Mwr(nondyn)+ 17y we(dyn) (8a)

Ecpy = zea(HL)(nondyn)+ zea(HL)(dyn) +
a

a

Mgy (nondyn)+ 1744, (dyn) (8b)

For the HFHL methodZaea(nondyn) is taken into account
by including near-degeneracy and avoided crossing rand
(nondyn) by ensuring correct dissociation: thus for theHF
HL model the correlation is reduced to

Ecrr-ny = Mvpe—np(dyn) + zea(HF—HL)(dyn) )
a

4, HF—HL Method for First- and Second-Period
Monohydrides

In this work we stress the HFHL approach, since we are
searching for a reference function for molecular computation.
We consider as a test case the first and second row diatomic
hydrides. In Table 1 we list laboratory binding enerdies?
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energy of the separated atofid-or the molecules considered TABLE 2: Hydrides: Characterization for Hartree —Fock
here and for the accuracy at which we are aiming (0.001 hartree)and Heitler—London Functions

the relativistic contribution to the molecular binding is negli- [case Hartree-Fock Heitler-London diss. & pairs
gible, even when the relativistic atomic correcfibis compa- configuration
rable to the molecular binding energy. For example, feDHt LH['ZT [HF-1: 207 HS]Li[’S}: (15'1)H (1252_251)u
equilibrium geometry the relativistic correctfdrio the binding BeH 2] | HF-1: 207307 H ST Be [131:_('1515): (fg'zzsz)Be
energy is—0.000 582 hartrees. However, we recall thaf at 12 — 2Spe2Sge
; H it H HF-2: 267301 — 15

13 the atomic cor_relatlon energy and the relativistic correction H 28] Be ['S): (151*)'H (1822050
are nearly equal in value. HF-3: 20" 3040’ — 2pBe2Pse

We qsed the foII_owing basis sets: for_ the H atom [10,5,4,/ H [25] Be [3;]: 2‘1521)H(1822812p1)59
6,5,4] in the hydrides and [10,5,4,4] in the, Find HeH — 1512Pge
molecules; for the He atom [14,9,8,5,2]; for the Li atom [15,- — : - S
10,6,1/10,8,6,1]; for the Be atom [17,8,6,3/11,8,6,3]; for the B BH[Z'] | HF-A: 20°30" HISIBI P]_(jzs):z(;: 220
atom [15,11,7,5/9,8,6,4]; for the C atom [17,13,6,5/11,8,5,4]; HF-2: 20° 30? 1 e o T 18H2P8
for the N and O atoms [17,13,5,4/9,7,5,4], and for the F atom HE-3: 20" 302 171" HISIBI P]’_(fzgzz(;: e
[18,13,5,4/12,6,5,4]. These basis sets yield the HartFeek e o ASH2D8
atomic ground-state energies given in Table 1. HF-4: 20" 30'40 HISIBPI: (132)@”H (21: 2s°2p°)s

- B<MB

We have tested our proposal by comparing laboratory and i . o lsu2ss
computer data for diatomic hydrides in the HF, HL, and-HF ~ CHITI  [HF-1: 20°3c*1m HISICI P]:_£12ss)+é§1s 25°2p°)
HL models. Data from a large number of potential energy curves HF-2: 26° 31T = Is2p
are analyzed. For each potential curve we compute the energy . 20" 301 z 2o
at 30-40 internuclear distances, stressing equally short and large HF-3: 20" 3071 HISICI P]._g;p();gcs 2P
internuclear distances, the latter essential for understanding the HF-4: 20 30’401’ — 1su2pc

: i ; . . 2p

formation an'd breaking of bonc!s. Notg that in the fllgures H[ZS]C[3P]:(1s‘)(.:4 (15%25'2p9)c
throughout this paper the marks (circles, diamonds, and triangles —2pe2pPe
etc.) on the potential energy curves indicate internuclear —>;SH2SC
distances for which a computation has been carried out. In REpsTTHFT. 202307 72 H[ZS]N[‘S]Es?ﬁ (1525525
addition, in a given inset all curves are obtained with the same — 2528y
number of computed points (but in a given inset the marks might - ;ZHsz
only be given on one curve). _,gpN"

In this work we search for a method that is (a) equally valid | OH[TI | HF-1: 20°30* 17 H['S]0 [SPE(;zggs(;szzszzp‘)o
in the full range of internuclear separations from near equilib- — 2po2po
rium to dissociation, (b) valid for ground and excited states, —>21$H 2po
(c). gomputationally easy, (d) of immediate physical ipterpret- HFIT] ARt 2073021 AESIF [2P]:Es"))?+ (15225229
ability, (e) more accurate than the HF and HL approximations, —.zzspzz.e,p
and (f) easily extenda_lble to higher accuracy, leading eventually 223;23:
to exact wave functions. We have listed above the general — 184 2p¢

characterization of a molecular “reference function”. In this work
we prove that the HFHL function fulfills all the criteria listed 5. H, [l):;“] and HeH [*X*] Ground States
above. The search for a proper reference function is not a new
topic in quantum chemistry. We refer, for example, to papers
by Lie and Clement#?*° Fritsche3® and Valderrama et &P

We recall that the most accurate computations for the second
row hydrides are the quantum Monte CaH®QMC, limited to extended for HF, HL, and HFHL computations, but likely fall

the experimental equilibrium internuclear distance. short for computations with accuracy superior to our threshold

In Table 2 we provide the electronic configuration of the HF - of 0.001 hartrees. For very accurate computations we refer for
and HL functions needed in the HHL computation of H, [1=/] to Kolos et al.%8 and to QMC daté? for HeH [Z=+].
monohydrides. To introduce near-degeneracy correlation, we | t?le top left inset of Figure 2 we report the, HS.]
have to consider more than one dissociatior_l product and'ground-state potential energy curves for the HF, HL, angirHF
therefore, more than one set of HF and HL configurations. The |y anproximations. In this work we have extended our previous
same holds true for state crossing. For the HF type functions pagis s@® by uncontracting the s functions and by adding four
the characterization is provided by the molecular orbital 4f Gaussian functions. The new binding energy is 109.26 kcal/
electronic configuration. For the HL method we specify the mol, which can be compared to the previous v&lwd 108.56
atomic states used to construct the Heitleondon function at  kcal/mol and to the exact value of 109.48 kcal/mol. We postpone
dissociation followed by the list of the spin pairs. For example, analyses of the computed data to the end of the paper, where
for LiH [1Z*] we give the two atomic states at dissociation H we compare the entire set of computed hydrides (section 11).
[*S] and Li [’S], the corresponding electronic configurations  The HeH p=*] molecule is included in this work to provide
(1) and (182¢"); and the spin pair 1®s;. For the XH data for a three-electron diatomic hydride, thus, completing our
hydrides considered here, the lowest doubly occupied orbital, study on diatomic hydrides from 2 to 10 electrons. The HeH
10? (HF language) and the 3selectron pair of the X atom  [2=*] molecule has one of the weakest bonds in chemistry (even
(HL language), is not reported, since it is tacitly understood to among van der Waals bonds) in the range 0.000 6215
be present. 0.000 0227 hartreé%in agreement with QMC computatiof,

In this section we report on computations with the post-HF
HL method for the H [12;’] and HeH E=*] ground state (see
ref 29 for preliminary computations).

The basis sets we have selected for this work are sufficiently
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Figure 2. Potential energies from HF, HL, and HHL models for H [*Z4"] (top left panel), for HeH3="] (top right panel; square marks are for
QMC computations?® and the arrow indicates the experimental véludPotential energies from HF, HL, and HFL for LiH [X =] (bottom left
panel), HFHL from first, second, and third steps for LiH {X*] and LiH [AXZ"] (bottom right panel).

yielding 0.000 0216 hartrees. In the top right inset of Figure 2 55.25 kcal/mol (see curve HFHL(1,4) in the bottom left inset
we report the HF, HL, and the “simple” HFHL computations, of Figure 2).

yielding essentially three indistinguishable repulsive curves. |nthe bottom right inset of Figure 2 we compare the potential
Post-HF-HL computations and the QMC resufsthe latter  energies computed with the HFL approximation and with
indicated by square marks, are also reported in the inset. Forpost-HF-HL second and third steps. Concerning the second
HeH [?x"] the MC expansion (eq 5) yields a binding energy of step we obtain aR = 3.015 bohr a binding energy of 57.32
0.000 0211 hartrees, which is in agreement with experimental icaj/mol (the experimental value is 58.00 kcal/mol) and a total
data. The total energies computed at the equilibrium distance gnergy of—8.024 07 hartrees; 7.932 72 hartrees at dissociation.

for HF, HL, and HFHL are essentially equal in value and The third step adds inner shell correlation. For this step we

amount to —3.361 6665 hartrees—3.361 6793 hartrees at .
dissociation); for the post-HFHL computation the computed add to the HF function of the second step an HL component

energy is —3.403 4746 hartrees—@.403 4535 hartrees at ga Eu lting I)rfo;n éw'lc')he'vgstHel;( 2?2%%8'(?0””?5:2“% EI(;‘—{E)OT?];?dUI’a-
dissociation). The correlation energy for the HF, HL, and-HF ti(r)nrswrém% we (I?la\./e considererc)i 2444 terms in the secong since
HL function amounts to—0.041 646 hartrees, essentially the o . . . ) ’
He [S] value. frpm this computation we obtain also the f|r§t gxcned state_
discussed below. For the ground state the binding energy is
56.83 kcal/mol, the total energy at equilibrium +8.067 63
and—7.977 07 hartrees at dissociation (see bottom left inset of
The LiH [X1=*] dissociates into Li3S] and H PS] and the Figure 2) not far from the exact energies of Table 1. Note that
[A1Z*] state dissociates into in LPP] and H BS]. The LiH the loss of 0.5 kcal/mol in the third step binding energy relative
[12+] ground_state potentia] energy curves are reported in the to the second Step, Implles that the inner shell correlation is
bottom left inset of Figure 2 for the HF, HL, and HFL more accurately accounted for in the Li atom (LiH at dissocia-
approximations. The HF, HL, and HfHL curves yield at the tion) than in the LiH molecule at equilibrium. This calls for an
equilibrium distance a molecular binding energy of 34.27, 43.11, extension of the MEHL expansion oEqbqqnu) type and then

6. [X1X*] and [A1X*] States for LiH

and 43.66 kcal/mol and a total molecular energy-Gt987 34, eventual improvements in the remaining MC expansions.

—8.001 42, and-8.002 30 hartrees, respectively. However, first of all we must examine our basis set ability to
To exemplify the energy gains, one can obtain with relatively Yield inner shell correlation energy.

short MC-HL expansions oZqbsyqnL) type, we have per- For the systems listed in Table 3, we have performed HF

formed computations with a four-configuration optimized MC ~ and CASSCF computations, with all the available orbitals in
HL function (threeo and oner) obtaining a binding energy of  the active space. Therefore the total energies are equal to those
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TABLE 3: HF and CASSCF Data for LiH and BeH and Related Species

index system R (bohr) —Ene (hartrees) —Ecasscr(hartrees) —Ecor.(hartrees)
a Li [?S] 7.43272 7.477 08 0.044 36
b Li [?P] 7.365 04 7.409 11 0.044 07
c Lit [*S] 7.236 41 7.278 98 0.042 57
d LiH [X 1=1] 3.015 7.987 34 8.068 89 0.081 55
e LiH [X =] 40.00 7.93272 7.977 09 0.044 37
f LiH [X 1=*]2 3.015 7.987 34 8.024 07 0.044 82
g LiH?" [15] 3.015 6.906 02 6.948 62 0.042 60
h LiH?* [1Z] 40.00 7.211 41 7.253 98 0.042 57
a Be [S] 14.573 02 14.665 99 0.092 98
b Be ['S] 14.573 02 14.616 74 0.043 72
c Bet [1S] 13.611 30 13.654 63 0.043 33
d Be [P] 14.511 33 14.565 77 0.054 44
e Be PP]2 14.511 33 14.518 42 0.007 09
f BeH [=7] 2.538 15.153 17 15.245 22 0.091 97
g BeH P=1] 40.00 15.073 02 15.165 99 0.092 98
h BeH P=f]2 2.538 15.153 17 15.198 31 0.045 14
i BeH [2=1]2 40.00 15.073 02 15.119 03 0.046 02
J BeH" [1=1] 2.538 12.823 94 12.867 28 0.043 34
k BeHt [1X7] 40.00 13.561 30 13.604 63 0.043 33

anner shell electrons not correlated.

one would obtain with full ClI computations. Note that careful proximation and that very accurate nonrelativistic energies can
atomic tabulatioff reports a correlation energy 6f0.043 50 be determined with the post-HHL method.

hartrees for Li'[1S]. From Table 3 we conclude that (1) the

inner shell correlation energy is essentially a constant for the 7. BeH [X2X"] Ground State

ground states of Li [1S] and LiH+ [X1Zf] at different

internuclear separations, (2) ourL['S] result compared to Th? Iltefrature on t;%E%H ground state is extensive; we refer
ref 54 is in error by—0.000 92 hartrees, hereafter denoted “basis to only a few papers: PR .

set deficiency error”, BSDE, and (3)0.043 50 hartrees is In the HF ”?°de' the BeH [%'] bmdlng energy is larger
assumed to be the exact value for th@ dsrrelation in LiH than the experimental, a rather rare event in molecular computa-

[1=]. Note that this value does not include the interpair tions, even if not too surprising since the variational prin_ciple
correlation energy(lo—20); from Tables 1 and 3 we obtain h0|d.‘°‘. fo_r the total energy of the system and not for arbitrary
¢(1o—20) = —0.002 22 hartrees at equilibrium ard.001 79 pal”'“ﬁ“'g% A A s . o

at dissociation, the latter to be compared with.001 83 hartrees n the d dt eor?,_g ebBeH [ E]groun Istate ,tf;fu ts from
from ref 54. Finally, from Tables 1 and 3, we obtain for LiH an avoided crossift§ between the two lowes states
[X13+] at dissociation a BSDE 0f0.000 97 hartrees. Note that analyzed below and more extensively in section 8. The ground
the BSDE relates to total energies, whereas the basis setate of this molecule is most interesting since to form a bond
superposition error, BSSE, refers mainly to binding energies. we need 2p atomic orbitals which are not present in the

. . . dissociation products Be-$](1s2<) and H BS](1s), nor in
An attempt to improve the basis set by decontracting the S o L nor in the HL approximations, unless we consider (a)
and p functions of our basis set and by adding four new 4f and atomic near-degeneracy, B&S|(12<) with Be ['S](1$2p),

two 5g Gaussian functions with optimized orbital exponents ) e jnclusion of molecular 2p polarization functions, and
yields a ground-state binding energy of 57.68 kcal/mol, a total (c) avoided curve crossing with the nearést excited state
energy at equilibrium of-8.069 50 and-7.977 67 hartrees at |, i, 2p orbitals.

dissociation; the BSDE is reduced-t®.000 49 hartrees. Handy . . . .

X g - Near equilibrium the HF(1) function (see inset a of Figure
et al83reported—8.069 04 hartrees at eqwhbrlum and a binding 3) makesquse of the 2p ba(sii functions( on the Be atom ?n the
of 57.45 kcal/mol, Cencek and Rychlgv@kreported a total 20 and 3 molecular orbitals. The ® electron population is
energy of—8.069 221 hartrees at equilibrium. Recall that after 0.47 for 2., 0.28 for 2pe, and 1.21 for 1s; the 37 population
rather easy initial energy gains the total energy improvement is' 0.77 fore’2§. and 0 Ss?for 29'6 Namelg/ there is 25 2p

. . . e . . y
from MC expansions becomes a progressively hard computa- 54 og 2p hybridization with bond formation for@and

tional task. nonbonding single occupation for3Around the internuclear
Concerning the [AX"] excited state we have computed the  separation of 4.2 bohr (near the crossing of the i/ostated®?)
potential energy curve, see Figure 2, directly at the post-HF  the HF(1) solution becomes unstable with a clear discontinuity.
HL accuracy level. This computation is an example of post- The binding orbital & becomes a 2s orbital on Be losing the
HF—HL for an excited state. The computed binding and total 2p population and the nonbonding Becomes the 1s on the H
energies are 24.10 kcal/mol antl7.945 74 hartrees, respec-  atom loosing the 2s and 2p population on Be.
tively, to be compared with the a “recommended value” by  with respect to the discontinuity, Mulliken’s HF computa-
Stwalley and Zemke of 24.82 kcal/mol. The computed atomic  tiongs® reported a slight peak at 4.28 bohr. We recall a detailed
Li [2S] to Li [*P] excitation energy is 0.067 97 hartrees to be giscussion by Bagus et &.on the abrupt changes in the
compared with the experimental value of 0.067 91 hartfees. glectronic structure at internuclear distances between 4 and 6
The potential energy has a very flat minimum; with a computed pohr. Mulliken’s maximum in the HF approximation disappears
minimum at 5.00 bohr, to be compared with the “recommended jn C| computation§®-72 From Figure 3a (curve designated HF-

value'®® of 4.91 bohr. (1)) we see clearly the strong binding and the discontinuity in
The above computations on LiH demonstrate that reasonablethe region around 4.2 bohr (in the figure a vertical line indicates
zero-order energies can be obtained with the—HIE ap- the discontinuity point). With our basis set we obtain HF
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Figure 3. BeH [’=*] ground-state potential energy curves: (a) HF, HL, and-IE(1,1); (b) HF(2), HL(2), HF-HL(1,2), and HF-HL(2,2); (c)
HF(3), HL(3), and HFHL(3,3); (d) nondynamical and dynamical HF correlation energy contributions; (e) nondynamical and dynamical HL correlation
energy contributions; (f) nondynamical and dynamicaHHE correlation energy contributions.

energies in close agreement with those of ref 70. From our (Figure 3a, curve designated “HF(no 2p funct.)”), the second
computation we conclude that the HF model is characterized containing only s type functions (i.e., no 2p, no 3d, and no 4f,
by a discontinuity between 4.20 and 4.28 bohr and a barrier of Figure 3a, curve “HF(s funct.)”). The first computation yields
~2.40 kcal/mol, not far from Mulliken’s barrier of 2.3 kcal/  a very weak molecular binding, 6.4 kcal/mol; the second yields
mol. The HF(1) binding energiynr amounts to 50.29 kcal/  no binding, but a marginal repulsion of 5.2 kcal/mol.
mol, obtained as usual by subtracting the sum of the atomic To recover the near-degeneracy correlation, a two-configu-
ground-state HF energies of BéS] and H BS] from the ration MC wave function, labeled HF(2), is obtained from HF-1
molecular HF energy at equilibrium, but neglecting the discon- and HF-2 (see Table 2). The corresponding curve is given in
tinuity implications (for more details, see the extensive discus- Figure 3b; it dissociates properly (see Table 4) into the energy
sion given in the next section). sum of the BeIS] with inclusion of near-degeneracy correlation
The presence of the 2p functions in the basis set is essentialand H BES], but we see once more the discontinuity at 4.2 bohr.
in order to yield the reported HF binding. To clarify this point, The binding energy of HF(2) is 38.17 kcal/mol, which is
we have performed two new sets of HF computations, one with obtained by explicitly including near-degeneracy both at dis-
the basis set detailed in section 1 but deleting the 2p functions sociation and at equilibrium. The near-degeneracy stabilization
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TABLE 4: Binding Energies (kcal/mol), Total Energies (hartrees), and Correlation Energies (hartrees) from the First Step
HF—HL Approximation

computation BeHE"] computation BH="] CH [21]
(a) Without Near-Degeneracy
Eorenu(1,1) 50.35 (40.43) Eprrny(1,1) 72.69 67.02
Enr(1) 50.29 (40.23) Enrir(1) 64.35 57.14
Epuy(1) —29.25 Epuy(1) 72.16 65.82
Enr-ny(1,1) —15.153251 Err-ny(1,1) —25.144948 —38.295442
Enr(1) —15.153165 Enry (1) —25.131587 —38.279666
Emy(1) —15.026465 Emuy (1) —25.144110 —38.293515
Enr-ny(1,1)Re) —15.073009 Err-—ru(1,1)Re) —25.029109 —38.188632
Eciery(1,1) —0.093518 Ecr-ry(1,1) —0.143002 —0.183250
Ecre(l) —0.093607 Ecrr(l) —0.156363 —0.199026
Ec(1) —0.220307 Ecrny(2) —0.143840 —0.185177
(b) With Near-Degeneracy in the HL Component
Eb(HPHL)(l,Z) 24.93 Eb(HPHL)(ly3) 76.08 67.33
Epiu(2) —17.65 Epu(3) 75.54 65.93
Enr-H1(1,2) —15.156455 Ewr—+1)(1,3) —25.185088 —38.313400
Eny(2) —15.088603 Eny(3) —25.184222 —38.311167
Enr-ny(1,2)Re) —15.116733 Err-+u(1,3)Rw) —25.063842 —38.206103
Ecreny(1,2) —0.003204 Ecrenn(1,3) —0.102862 —0.165292
Ecip(2) —0.158169 Eciu(3) —0.103728 —0.167525
(c) With Near-Degeneracy in the HF Component
Epenn(2,1) 38.79 Epre-ny(4,1) 77.08 69.91
EnHr(2) 38.65 Eovr(4) 77.08 69.73
Enr-y(2,1) —15.178555 Ewr—+u)(4,1) —25.187442 —38.317605
Enp(2) —15.178325 Ewr(4) —25.186678 —38.317225
Ene-ny(2,1)Re) —15.116733 Emr—y(4,1)Re) —25.063842 —38.206194
Ecir-ry(2,1) —0.068217 Ecir-ry(4,1) —0.100508 —0.161085
Echr(2) —0.068447 Ecnrf(4) —0.101272 —0.161465
(d) With Near-Degeneracy in the HF and HL Components

Eoenu(2,2) 40.50 EnHe-nu)(4,3) 77.78 70.03
Enr-n0)(2,2) —15.181269 Enr-nuy(4,3) —25.187796 —38.317713
Enr-ny(2,2)Re) —15.116733 Err-ru(4,3)(Rw) —25.063842 —38.206109
Ec-rir(2,2) —0.065503 Ec-nim(4,3) —0.100154 —0.160979

aRationalized HF and HFHL binding energies from HF(3) and HHL(3,3).

at dissociation is-0.042 72 hartrees (exactly equal to the value tions (18)4(1£29)e and (18)n(12p)ee Yields no bond
for the Be [[S] atomic near-degeneracy) but onh0.025 16 formation, but the repulsion is reduced to about 16 kcal/mol
hartrees at equilibrium (notably smaller than at dissociation, at (see Figure 3b, curve labeled HL(2)). In the latter case the
equilibrium “the Be atom in the molecule” is “less near- nondynamical correlation penetrates from very large to shorter
degenerate” relative to Be at dissociation since with larger internuclear separations, and at near equilibrium position it
energy difference). produces an inflection point (see Figure).3mclusion of the
In Figure 3c, we present a three MC configuration computa- third configuration leads to HL(3) (see Figure 3c), which is
tion, labeled HF(3), where we have extended the previous two bound by 37.37 kcal/mol. We shall discuss in detail the avoided
MC configurations by including HF-3 (see Table 2); the latter crossing in the next section.
contains a & molecular orbital belonging to the first excited In the HF—HL approximation we have performed three
BeH [C?=™] state, which dissociates into BéP] and H [S]. computations reported in Figure 3: HFL(1,1) given in panel
The motivation for this computation is to verify that the a, HF—HL(1,2) and HFHL(2,2) given in panel b, and HF
discontinuity and the energy barrier originate from state crossing. HL(3,3) given in panel c. From Figure 3 it is evident that the
Indeed, the inclusion of this configuration leads to the HF(3) HF—HL energies are lower than the corresponding HF or HL
computation with the elimination of the discontinuity and a energies. Panel a shows that the-H#L_(1,1) potential curve
decrease on the barrier height. The binding of HF(3) is 40.23 suffers from the HartreeFock discontinuity problem; the
kcal/mol, and the energy at dissociation-i$5.116 73 hartrees  binding energy is 50.35 kcal/mol. The function HAL(1,2)
(as for HF(2), see Table 4). yields a binding energy of 24.93 kcal/mol, and again it shows
We now consider the HL approximation. We note that BeH the discontinuity. In addition it presents a rather anomalous
[X2=H](1s229)se(1sh)H has an electron pair 2s localized on Be behavior in the region of 3:44.0 bohr (see panel b). We
and a single electron on H. The near-degenerate state BeHattribute this anomalous behavior to the lack of balance between
[CZ=F](12P)se(15Y)H has a pair 2p on Be but again a single HF and HL components; inclusion of nondynamical correlation
electron on H; in both situations there is no electron on Be free in only the HL (or in only the HF function) brings about an
to form a bond with the (134. Therefore, we expect a repulsion  “unbalanced” situation. The HFHL(2,2) balanced computation
in the HL approximation from the configuration B&S)(12- (see Figure 3b) appears more reliable; it provides a reasonable
29)g. either with or without addition of the BE'$)(1$2p%)ge computed binding, 39.99 kcal/mol and has no anomalous
near-degenerate configuration. Indeed, the HL computationsbehavior in the region of 3:44.0 bohr, but it does show the
yield no binding, and we obtain a repulsion of about 29 kcal/ discontinuity.
mol at the laboratory equilibrium internuclear distance (see Inclusion of the third configuration leads to HF(3), HL(3)
Figure 3a, curve labeled HL(1)). Also inclusion of the near- discussed above and to a two-root solutionsHE(3,3)-a and
degenerate state B&J](1$2p?)ge in two MC—HL configura- HF—HL(3,3)-b (Figure 3c) generating avoided crossing. The
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lower root HF-HL(3,3)-a eliminates the discontinuity and RTY- N Sk AARAL AL RALAARRLARARLALARLRALELRALARRARE:
brings about a binding of 42.71 kcal/mol to be compared with E g\ 3
40.23 kcal/mol for HF(3) and 37.37 for HL(3). The molecular _14.99 E HL(1)\, \a 3
extracorrelation energy is 7.12 kcal/mol and the barrier height E §k B <Ao—b’ 3
is 0.92 kcal/mol. The upper root HHL(3,3)-b dissociates into ~ -15.02 Yo T E
Be [FP](1£2s2ph) and H BS] (1€) and its minimum energy is 1505 §§ S _HL-3 3
shifted to about 4.2 bohr, which is the crossing point. T EE 4 B 3
In Figure 3d-f we analyze in detail the contributions related -15.08 §§ 3
to the nondynamical correlation energy for the HF (panel d), Ew 3
HL (panel e), and for the HFHL functions (panel f). In panel -1511 g 3
d, the energy differences [HF@2HF(1)] is the nondynamical _15.14 = 3
HF correlation energy, which is approximately constant until TF 3
the discontinuity and thereafter increases to 0.043 72 hartrees, —15.17 E 3
the same value we have computed for the near-degeneracy - R(bohr) 3
correlation in Be S]. The difference [HF(3YHF(1)] represents ~ ~15.20, " o 5'6' S ':,"6 S "7'6' S 'é'(;' =

the sum of the nondynamical correlation discussed above a_md':i ure 4. BeH E=H: HL potential eneray for HL(1). HL(2). HL-3

of the clorrelatlon galned by including aVOIde.d crossing. This angd avoided sta[tze c]rossings. Curves a zgr)a;jeaobta(ingd by( v)é\riatior;-
correlation correction pattern follows the previous one but has 4y combining HL(1) and HL-3; those indicated with b ant by
amarked increase in the region of the discontinuity, confirming variationally combining HL(2) and HL-3.

that avoided crossing is needed to eliminate the discontinuity.

In the figure the avoided crossing energy stabilization is tions required for the three MC expansions of the second and
designated HF(3)HF(2). third HF—HL steps (egs 5 and 6).

The nondynamical correlation associated with the HL func- | Taple 3 we report HF, CASSCF, and correlation energy
tions is considered in Figure 3e. The main resultis that the HL gat5 all obtained with the same basis set (section 1) at 2.583
nondynamical correlation is notably larger than the correspond- oy (equilibrium distance) and at 40 bohr (full dissociation).
ing HF quantities. Note the large contribution at short inter- The CASSCF computations have been carried out with all the
nuclear separations. At equilibrium the near-degeneracy stabi-ayajlable orbitals in the active space, except for cases f and g,
lization is 0.062 14 hartrees, notably higher than for HF. where 80 active orbitals hae been considered. The computed

Finally in Figure 3f, we report the cumulative HF and HL  molecular dissociation energy values are confirmed by atomic
correlation correction gains obtained from the HfL ap- computations. Further, to analyze the correlation energy data,
proximation. The HFHL data resemble more those for HF  \ye include computations with frozen core (eithe? ts 102)
than those for HL, since the correlation diagrams do not add and those for the ions Be [1S] and BeH* [1=*]. To each
up the separated effects (panels d and e) due to the differenicomputation we assign an alphabetical index from “a” to “k”.
weights of the HF and HL components in the HRL function Concerning the binding energy the computed value (from f
at different internuclear separations. . o and g in the table) yields 49.72 kcal/mol very close to the

. A summary of Fhe c_omputed total energies at the eCI_U”'b”Um experimental value of 49.83 kcal/mol. The frozen core computa-
distance and at dissociation, the corresponding correlation energyfions h and i yield a binding of 49.75 kcal/mol. The computed
contributions, and the binding energies are given in Table 4. oy citation energy Be'] to Be PP] is 2.727 eV (from a and d)
to be compared to 2.725 eV from laboratory dagnd to 2.675
eV by using frozen core energies (b and e).

The computed total energy at equilibrium 4s15.245 23
hartrees, to be compared t615.2457(2) and—15.2231(8)
hartrees, from diffusion quantum Monte Carlo and variational
qguantum Monte Carlo computatiofs respectively. To our

8. BeH: Binding Energy of the [X2£*] State and Avoided
Crossing with [C?X]

We consider in detail the avoided state crossing of tHfE[X
ground state with the first excited state?§C] using the HL
approximation, which allows us to follow very nicely this

process. On the contrary, note the difficulties in following the
crossing within the HF approximatidi.In Figure 4 we report
the previous HL computations for HL(1) and HL(2) and a new
computation for HL-3 (see Figure 4), which dissociates into
Be [PP](12s'2ph) and H BES](1s). We have computed the
avoided crossing by making the linear combination of HL(1)
and HL-3, yielding a lower and an upper solution (curves labeled
a and § with binding energies of 41.39 and 9.26 kcal/mol at

an internuclear separation of 2.8 and 5.0 bohr, respectively.

Further, we have considered the linear combination of HL(2)

knowledge, this is the most accurate computation in the literature
for the BeH [X¢=*] binding and total energies from ab initio
variational methods. Among the many previous computations
we recall bindings of 48.77 and 48.88 kcal/mol! and the
corresponding total energies 6f15.196 35 and—15.196 76
hartrees, both obtained with the frozen core approximation.
The computed correlation energies for B&][and for BeH
[X2=*t] are—0.092 98 and-0.092 06 hartrees, respectively (see
a and f). From the data in Table 3 we can decompose the Be
correlation energy into the pairg1$) and ¢(28%) and the

and HL-3, thus including the effect of near-degeneracy (solutions interpaire(1s—2s). For BeH the pairs ar€lo?) ande(202) and

designated b and'}o For HL-b and HL-b the minimum is
shifted to~2.6 and 4.4 bohr, the binding energies are 31.41
and 17.81 kcal/mol, respectively.

the interpairs:(10—20), e(lo—30), ande(20—30). For Be [IS]
we obtaine(1) = —0.043 33 hartrees (from entry c in Table
3), €(28) = —0.043 72 hartrees (from b), andls—2s) =

The determination of the ground-state binding energy requires —0.005 93 hartrees (subtracting b and c from a). For BeH

a post-HFHL computation. First, we verify the capability of

our basis set to yield accurate binding and total energies,

[X2=] we obtaine(18?) = —0.043 34 hartrees (from j)¢(20?)
+ €(20—30)] = —0.045 14 hartrees (from h)([lo—20) + -

adopting a well-established MC approach, the CASSCF. We (16—30)] = —0.002 70 hartrees (subtracting i and j from f).
expect to obtain energies at the same accuracy level one would\ote thate(1) ande(10?) are essentially equal, as found for

obtain by performing the somewhat more laborious computa-

LiH. The correlation energy differencAg, for Be ['S] and BeH
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Figure 5. BH ['='] (left panel) and CH qI1] (right panel) potential energy curves for HF, HL, and HHAL approximations with and without
nondynamical correlation, unbalanced or balanced.

[X2=™], namely, the molecular extra correlation energy, amount binding energy is once more suggested by comparing data for
to 0.0009 hartrees (analyzed later). the full set of monohydrides. The value of 40.23 kcal/mol is
Thus, we have verified that our basis set is adequate to yield therefore reported in Table 4 in correspondence of the HF
accurate binding energy determinations and very reasonable forbinding energy.
nonrelativistic total energy computations. Note that these computations bring us once more to the
In the previous section we have reported an HF binding conclusion that the physically meaningful reference function
energy of 50.29 kcal/mol obtained as usually done by subtractingfor BeH can be neither the Hartre€ock function, which is
the sum of the atomic ground-state HF energies for 8 [ plagued by instabilities and ambiguities, nor the Heitler
and H PS] from the molecular HF computed energy at London, which is incapable of yielding molecular binding.
equilibrium. The above binding energy value appears rather . 5
anomalous since (1) it is obtained assuming a regular molecular®: BH ['X"] and CH [I1]
HF function, rather than the one with a discontinuity (resulting ~ The BH [[=*] and the CH {I1] analysis is relatively simpler
from state crossing) and likely contaminated by near-degeneracythan that for BeH 4=*] since there is 2p atomic orbital
(2) it is very close (indeed larger) to the laboratory value of availability for bond formation both in B2P](1$2s2p!) and
49.83 kcal/mol, and (3) the molecular extracorrelation energy in C [3P](1£25°2p?) and since the near-degeneracy in the B and
is exceptionally a positive, even if small, value, 0.58 kcal/mol. C atoms is relatively weaker than in the Be one. However, the
We can follow two paths to explain the rather surprisingly BH [*="] and the CH fI1] computations of the near-degeneracy
binding energy value. The first simply states that the correlation require two added configurations, the?a$2p® and 182s'2p?
energy of the five electrons in BeH at the equilibrium geometry for the B atom and the 22°2p* and 132s'2p? for the C atom.
is nearly equal to the correlation energy of the four electron In Figure 5, we report the HF, HL, and HFHL potential
atom Be [S]. This appears to be in contrast with the generally energy curves for BHE"] (left inset) and for CH I1] (right
accepted rule according to which the correlation energy increasesnset). The computed HF, HL, and HHL bindings for BH
with the number of electrons. However, exceptions to the above ['="] are 64.36, 72.16, and 76.08 kcal/mol. respectively, at the
rule have been recently reported in atomic systémith near- internuclear separation of 2.329 bohr. In computing the HF near-
degeneracy effects, similarly to the BeH case. degeneracy, we include a forth function, HF-4 (see Table 2),
The second paths considers an artifact the HF correlation needed to yield a correct dissociation. The BBE']] correlation
energy obtained following the traditional definition, in the case energies in the HF(4), HL(3), and HHL(4,3) functions are
of BeH, since the HF(1) solution exhibits a singularity at the —0.101 27,—0.103 73, and-0.100 15 hartrees, respectively,
curve crossing. This alternative path stresses the existence ofind the binding energies are 77.08, 75.54, and 77.78 kcal/mol,
the HF discontinuity with two and not one HF solution, and respectively.
the consequent need to account for the avoided crossing before The HF—HL(1,3) combination of the HF(1) function and HL-
computing the correlation energy. We recall that, since long (3) functions yields a binding of 76.08 kcal/mol; note however
ago? it was proposed that a single determinant is only one that this is an unbalanced computation. A balanced computation
among several formulations of the general HF model: in HF—HL(4,3) yields a binding energy of 77.78 kcal/mol. This
particular situations (such as for near-degeneracy in atomic computation has been performed for three points in the
systems) short MC functions are the HF-type functions of neighborhood of the equilibrium internuclear separation and
preference. Curve crossing is another particular situation of high differs only slightly from HFHL(Z1,3).
relevance in molecular systems. The HF(3) function appears to The CH BII] potentials, reported in Figure 5, are computed
be a reasonable replacement for the HF(1) function for the with and without inclusion of nondynamical correlation. These
correlation energy computation of BeH. Its binding energy of computations follow the same pattern as those for the BH
40.23 kcal/mol eliminates the problem related to a positive value molecule. The computed HF, HL, and HHL bindings for
of the extracorrelation energy. The correlation and molecular CH [2IT] are 57.14, 65.82, and 67.82 kcal/mol, respectively, at
extracorrelation energy are thus0.065 49 and—0.014 66 the internuclear separation of 2.122 bohr. The €H[dynami-
hartrees, respectively. Note that this value is indirectly supported cal correlations energies in the HF(4), HL(3), and -HffL-
by the computed binding energies 37.37, 41.39, and 42.71 kcal/(4,3) functions are—0.161 48, —0.167 53, and—0.160 97
mol from HL(3), from the combination of HL-3 with HL-1 and  hartrees, respectively, and the binding energies are 69.73, 65.93,
from HF—HL(3,3), respectively. In section 11 the rationalized and 70.03 kcal/mol, respectively.
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-54.86 T TABLE 5: Binding Energy, Epmr-n(1,1) (kcal/mol), Total
- 9 — HE(1) . Energy (hartrees) at Equilibrium, E(HF_HLf (L,DRe), and at
- o HL(1) 3 Dissociation, Eqr-ny(1,1)Rx), and Correlation Energy
C ——- HF-HL(1,1) . Ecrr-H1) (1,1)Re) from the First Step HF—HL
-54.90 | < 90006 —0—0--0-—8—8—p Approximation
C 9% ] computation H['E'] LiH[!Z'] NH[2I] OH[Z] HF[=']
& . En(Hr—HL) 9450  43.66 60.29 79.62 108.36
5494 £ & ] Eb(r) 83.83  34.27 48.59 70.16 101.23
= : Eb(ri) 9428 4311 57.30 72.26 92.17
- W . —Enr-ny 1.150595 8.002298 54.997006 75.437153 100.084049
- . —Enr 1.133599 7.987338 54.978355 75.421187 100.070665
C ] —Eny 1.150247 8.001415 54.992242 75.425426 100.058248
-54.98 I ] —Egr-ny(Re) 0.999999 7.932719 54.900922 75 99.911365
C ] —Ecpery  0.023873 0.068193 0.220534 0.299927 0.375151
C ] —Ecrr) 0.040872 0.083153 0.239185 0.315893 0.388535
e e tasiatiasyy, R(BORY) 3 —Ecn) 0.024221 0.069076 0.225298 0.311654 0.400952
-55.02
0.0 20 40 6.0 8.0 _ _ _
N 4,1 for BH and CH), and (d) |.ncllu5|on of near-degeneracy in
E 3 the HF and HL components (indices 2,2 for BeH, 4,3 for BH
—75.26 — HF(1) E and CH).
3 ° HL() 3 The tabulation of the four cases has been reduced in length
-75.30 | —== HF-HLOL) E by reporting specific energy data only for the first presence in
F 099-P-0->-o-—e—e-e--9 the table; for example the HF(1) energy is relevant in the a and
F $ ] b subtabulations but is given only in a.
-7534 FE 3
5« 10. HF—HL Model for NH [ 3X~], OH [2IT], and HF ['X7]
-7538 3 For the ground-state molecules NEE[], OH [2I1], and HF
: 3 [1=1], the HF—HL computations are equivalent to those for LiH,
-75.42 é - since there is no near-degeneracy in the'8],[O [P], and F
F 3 [2P] atoms. Therefore, for these molecules the only contribution
ittt ittt ittt tassy, Ribohn) 3 to the nondynamical correlation energy is that gained by mixing
'75'460'0 20 4.0 6.0 8.0 HF and HL functions. The computed HF, HL, and HHAL
potential energy curves are reported in Figure 6. In Table 5 we
SRR ALY AL report, for the experimental equilibrium distance, the binding
9984 [ — :Eg)) . energies (in kcal/mol)Es(r—+u), Eor, and Epguy; the total
E —— HF-HL(1,1) energies '(|n' hartreeslEHr-HL), E(|'-|F), Emy), gnd Err—ry (Re)
-99.89 | ! . at dissociation; and the correlation energi€gur—r), EcHr),
C n and Ecy. In Table 5 we also report data for,H
-99.94 }§ 3 For NH [B=7], OH [A1], and HF [=*] the HF binding
:E . amounting to 48.59, 70.16, and 101.23 kcal/mol, respectively,
-99.99 ELEU, 3 increases to 60.29, 79.62, and 108.36 kcal/mol, respectively, in
u . the HF—HL approximation. The HL binding is deeper than the
-100.04 F . HF binding for H, LiH, NH, and OH but not for HF.
- 3 We conclude that, for all the hydrides considered in this work,
-100.09 F 3 the HF—HL approximation is superior to either the HF or the
- Rybenn) 3 HL approximations. _ _
—100.14 Corvonteve it ten e ten et ea e i Furthermore, we recall that, in the present-HL first-step
0.0 20 4.0 6.0 8.0 approximation, we have not considered ionic structures for the
Figure 6. HF, HL, and HF-HL potentials for NH fX7] (top panel), HL component. Inclusion of two of these structures for the HF
OH [1] (middle panel), and HF'E"] (bottom panel) molecule leads to a HFHL computation with five configura-

A detailed analyses of the computed energies shows a nearl)}i_orl‘s_ (HF, HL _cova;ent, HLki0r|1ic FIH+’ and HL ion_ic PHY),
constant nondynamical correlation energy for any internuclear Y/€!ding @ binding of 132.5 kcal/mol. A very extensive CASSCF

distance. The variation of the weights for the HF and HL (8:22) computation (8 electrons into an active space of 22

components show a dominant HL presence from short distanceC"2itals, generating over 13 million determinants) yields a

to dissociation. binding energy of 131.99 kcal/mol. This comparison shows that
In Table 4 for BeH 2], BH [=*], and CH PII], we very compact HFHL functions can yield not only correct

summarize the HFf), HL(m), and HF-HL(n,m) computational dissociation but also reasonable binding energies.
data at dissociation and at the experimental equilibrium distance

(the latter given in Table 1). For each molecule, we report the 11. HF, HL, and HF—HL Binding Energies

binding energies (in kcal/molEyHr-HL), Eprr), andEpgy; the In Figure 7 we consider two quantities: In the top panel the
total energies (in hartree§gr—nu), Enr, Ery, andEpr—y (Re) binding energies from HF, HFHL, and the experimental data,
at dissociation; and the correlation energi€gr—ry), Ecrr), in the bottom panel the molecular extracorrelation energy from

andEcH). We tabulate the following separately: (a) the energies the HF and the HFHL models. Concerning the binding energy,

without near-degeneracy, (b) near-degeneracy in the HL com-we recall that the HeH and the NeH have exceedingly small
ponent (indices 1,2 for BeH, 1,3 for BH and CH), (c) inclusion binding energies (not visible on our scale), marking the
of near-degeneracy in the HF component (indices 2,1 for BeH, beginning and the end to the second period hydrides. The
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Molecular Extra Correlation ]
-+ HF -~ ; in evidence of the shortcoming of the HF model and the relative
e—e HF-HL - - superiority of the HF-HL model.
3 In Figure 8, using data from Tables 1, 4, and 5, we report
3 the E¢(n) values in the ordinate versmsn the abscissa, where
n represents the number of electrons both in the atomic and in
molecular systems. In addition, the abscissa represents the
internuclear distances: for a XR)(hydride,E¢(n) varies from
E the internuclear separatidX(XH) = 0 bohr plotted ah on the
3 abscissa, tdR(XH) = 10 bohr made to correspond to— 1.
3 Alternatively stated, each interval,to n — 1, also represents
: Z the scaled internuclear separations frRxXH) = 0 to R(XH)
a0 T S D& g S : = 10 bohr, which correspond tially to di iati
0 1 2 9 4 5 6 o A S - Al T ) ) ponas essentially to aissociation.
Figure 7. Top: Hydride binding energies from the HF and -HRAL In Figure 8 we plot the total HF atomic correlation energies
approximations and from experiments. Bottom: Molecular extracorre- (full bullet) without and with near-degeneracy. In addition, for
lation energy from the HF and HFHL models. the hydrides at a few internuclear separations, we report the
correlation energieB.r) connected by a dashed line, the total
seemingly irregular behavior of the experimental data is a EqnrHy) (Square marks connected by a solid line), and the
manifestation of an empirical rule for th&equencef homo- dynamicalEcrHy) (triangle marks connected by a solid line).
geneous molecules, the monohydriddsr a given period of The atomic correlation energy value for the atom vdth nis
the atomic table the hydrides with the same spin multiplicity equal to the correlation energy of Xg)(at the united atom,
have binding linearly increasing with the number of electrons, R(XH) = 0, both in the HFHL and HF approximations. In
and the higher the spin multiplicity, the higher the binding addition, the atomic correlation energy value for the atom with
Recall that the ground state for LiH, BH, and HF is a singlet Z = n — 1 corresponds to the correlation energy of XHét
state, for BeH, CH, and OH is a doublet state, and for OH is a dissociation,R(XH) = o in the HF—HL approximation, but
triplet state. (A nearly equivalent rule is known from correlation not for the HF approximation, which breaks down approaching
energy studies in atomic sequen®sThe HF—HL model dissociation (exception made for BeH). The HF correlation
predicts a binding energy pattern which closely follows the energy increases sharply concomitant with the HF model
experimental one, with 81% average agreement. For the HFbreakdown; in the graph we have reported the HF correlation
and HL models the computed binding has an average agreemenat the united atom, at the equilibrium internuclear distance, and
of 69 and 66%. In computing the above average errors, we haveat R(XH) = 10 bohr. The HFHL correlation energy is reported
not considered the repulsive energies. at the united atom, at the equilibrium internuclear distance, at
In the bottom panel of Figure 7 we display the molecular R(XH) = 3Re and atR(XH) = 10 bohr. Note that aR(XH) =
extracorrelation energy, namely, the error of the HF and-HF ~ 3Re the HF—HL correlation is essentially equal to its value at
HL computed molecular binding. ForzHnd LiH the binding dissociation.
energy errors are approximately equal, 14.5 and 15.3 kcal/mol  From the figure it is evident that the atomic correlation energy
from HF—HL computations, and 35.6 and 23.73 kcal/mol from is the dominant component of the hydrides total molecular
HF computations, respectively. For bonds formed with 2p correlation, exception made for those containing very few
electrons (and this includes also BeH due to the near- electrons. Note that the difference in spin multiplicity comparing
degeneracy) both models, HF andHFAL, present correlation ~ the XH molecule and the X atom faor= 6 (P and'X) andn

T
»
L

&

15.0

50 F

energy patterns that smoothly increase vidth = 7 (*S and) appears to be rather unimportant, at least for
the energy scale of the figure. The role of the molecular
12. HF and HF—HL Correlation Energies extracorrelation in molecular binding is evident, but at the same

time the overall graph shows that the XH systems are essentially
It is of interest to compare (1) atomic and molecular perturbed atoms, especially for large valuesnofinally, the
correlation energiesEq(n), in systems characterized by graph clearly points out that the HF representation becomes
electrons and (2) in the hydrides the value&gh) at the united physically meaningless shortly after equilibrium (approximately
atom, at equilibrium and at dissociation. The comparison brings after R(HX) = 2R.) up to dissociation, whereas the HAL
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TABLE 6: Dipole Moments (D) from HF, HL, SimpleHF—HL, and Experiments

model LiH BeH BH CH NH OH HF
HF u(Re) 6.00 0.14 1.31 1.31 1.61 1.76 1.92
Au 0.25 0.09 0.17 0.20 0.03 0.05 0.10
HL u(Re) 5.72 0.06 1.37 1.37 1.55 1.79 1.75
Au 0.18 0.08 0.14 0.15 0.05 0.03 0.02
HF—H L u(Re) 5.83 0.15 1.32 1.33 1.57 1.75 1.85
Au 0.21 0.10 0.14 0.17 0.05 0.04 0.07
expt 5.88 1.27+0.2P 1.46 1.39° 1.67 1.83

aReference 762 Reference 77¢ Reference 78.

representation is realistic from the united atom to dissociation. same time the physical interpretability of the two original
The fact that HFHL is the model of preference at any contributions. The combination of the two methods into the HF
internuclear distance shows that it is the “reference function” HL approach eliminates grossly unphysical aspects, particularly

for molecular systems. at large internuclear separations, and accounts for nondynamical
For BeH [X2&=*] we have plotted fom = 4 ton = 5 the correlation and state crossing. Furthermore, the-HE ap-
value for the correlation energy which corresponds to the proach systematically predicts molecular binding more correctly
rationalized binding energy of 40.23 kcal/mol. than those obtained from either the Hartré®ck or the
Heitler—London models. Finally, by reducing the correlation
13. Dipole Moment for the Second Row Hydrides energy error to its dynamical component, it simplifies the

computational task in post-HFHL computations.

Therefore, the HFHL approach provides a reliable “zero-
order reference wave function”, while maintaining mathematical
simplicity and immediate physical interpretability based on the
two traditional chemical models, LCAO-MO and VB.

We have shown that, at a very moderate incremental cost in
computational complexity, the HFHL model notably improves
the realism in bond energy prediction, from united atom to
dissociation, relative to the HF and HL models. The dipole
moment, u, is another basic observable in modeling the
electronic structure of molecules. The dipole moment for the
hydrides of the second row, reported in Table 6, is obtained
from computations in the HF, HL, and HFHL models and
from experiment$®-78 The HF-HL method appears reliable
also for dipole moment computations. In addition we stress that
the computed HFHL dipole moment in the HFHL ap-
proximation goes correctly to zero at dissociation, whereas the
HF model often yields dipole moment values totally unphysical gg H‘d’l‘lﬁ(eﬁ ';-Zé';hhyss-lgzez fg'zggzz' 186
at large internuclear separations. o . 3) Herzberé, .G.épeztr.a of Diatomic MéleculesVan Nostrand:
The reported values qi are for the equilibrium distance;  Princeton, N J, 1951; and references cited therein.

we recall tha varies strongly with the internuclear distances, (4) Heitler, W.; London, FZ. Phys.1927, 44, 455.
(5) Roothaan, C. C. Rev. Mod. Phys 1951, 23, 69.

Acknowledgment. It my pleasure to thank Enrico Clementi
for suggesting the topic, for help in the manuscript preparation,
and for providing some of the computational facilities. A grant
from MIUR-2004034838 is acknowledged.

References and Notes

yielding maxima and minima. This obse_rvation suggests to (6) Roothaan. C. C. Rev. Mod. Phys 1960 32, 179.
report thelAu| for two distance®; andRy, with Ry < Re < R» (7) Hartree, D. RProc. R. Soc. London, Ser. #9033 141, 269, and
andAR = R; — R, = 0.2 bohr. From the table we see that the refezg)ncFes Eits/dzthgﬁin'lgsq 62 795

ing i ock, V.Z. Phys : .
compgted value of:, taking into accouniAyu| brackets the (9) Hartree, D. R.; Hartree, W.; Swirles, Rhilos. Trans. R. Soc.
experimental value. London, Ser. A1939 299, 238.

(10) Pauling, L.J. Am. Chem. Sod 931, 53, 1357.

14. Conclusions (11) Slater, J. CPhys. Re. 1932 33, 255.

(12) Wheland, G. WResonance in Organic Chemistiyiley: New
We have presented a new variational computational method, York, 1955; and references cited therein.

_Heitlar— (13) Bobrowic, F. B.; Goddard, W. A. INlethods of Electronic Structure
the HartrgeFock Heitler—London and compared Hartree Theory Shafer. H. F. Il Ed.: Plenum: New York, 1977: p 79,
Fock, _He|tle|LLondon, and Ha_rtreeFock—Heltler—_London_ (14) Cooper, D. L.; Gerrat, J.; Raimondi, M. Walence Bond Theory
potential energy curves for the first and second period hydrides.and Chemical StructureKlein, D. J., Trinajstic, N., Eds.; Elsevier:
Keeping in mind preliminary computatiotfsfor Li, and R, Amsterdam, 1990; p 287.

we conclude that neither the HF nor the HL approximation is (15) Gerrat, J.; Raimondi, MProc. R. Soc. London, Ser. 198 371,

capable of systematically reproducing, at least qualitatively, the (ie) Maller, C.; Plesset, M. Shys. Re. 1934 46, 618.
basic molecular binding features known experimentally (bond  (17) Paldus, J. ITheory and Applications of Computational Chemis-

; ; try: The First 40 YearsDykstra, C. E., Frenking, G., Kim, K. S., Scuseria,
breaking '?md bor.]d formatlon.)' Further, the HF model breaks G. E., Eds.; Elsevier: Amsterdam, 2005; Chapter 7, p 115.
down at dissociation, preventing any assessment of the correla- (18 Bartlett, R. J. InTheory and Applications of Computational

tion correction for internuclear separations larger than about Chemistry: The First 40 Year®ykstra, C. E., Frenking, G., Kim, K. S.,

twice the equilibrium distance. The two traditional methods, Scuseria, G. E., Eds.; Elsevier: Amsterdam, 2005; Chapter 42, p 1191.

however, have the high merits of mathematical simplicity and 96(11%)1gfndersson’ K. Malmavist, P. A.; Roos, B. D Chem. Physl992

immediate physical interpretability and, because of these two  (20) Fundamental Work of Quantum ChemistBrandas, E. J., Kry-
basic qualities, have historically provided two distinct quantum aszlz% E-hs-, EdS-c:] ﬁ'UV\Il_er tAcadeffng BOSttOtn, 2?0035 <t The First

; « » : : _ eory and Applications of Computationa emistry: e Firs
chemlcal referepce wave functlons for theoretical and com 40 Years Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds.:
putational chemistry. More importantly, the two methods are gjsevier: Amsterdam, 2005.

at the origin of the most basic concepts in physical chemistry  (22) Clementi, EProc. Nat. Acad. Sci. U.S.A972 69, 2942.
and in chemical physics. (23) Kryachko, E. S.; Luden E. V.Energy Density Functional Theory

. . of Many-Electron System&luwer Academic: London, 1990.
The HF-HL method merges the two historical paths, at @ ~ (24) parr, R. G.; Yang, WDensity Functional Theory of Atoms and

marginal increase in computational complexity, retaining at the Molecules Oxford University Press: Oxford, U.K., 1985.



11598 J. Phys. Chem. A, Vol. 110, No. 40, 2006

(25) Allinger, N.-L.; Ghen, K. S.; Lii, J. HJ. Comput. Chem1996
17, 642.

(26) Wigner, E.Phy. Re. 1934 46, 1002.

(27) Lowdin, P.-O.Adv. Chem. Phys1959 2, 207.

(28) Hylleraas, E. AZ. Phys 1928 48, 469.

(29) Corongiu, Gint. J Quantum Chen005 105 831.

(30) Shavitt, I.Methods of Computational PhysjcAcademic Press:
New York, 1963; Vol. Il.

Corongiu

(52) Hofzumahus, A.; Stuhl, Rl. Chem. Phys1985 82, 5519.

(53) Zemke, W. T.; Stwalley, W. C.; Coxon, J. A.; Hajigeorgiou, P. G.
Chem. Phys. Lettl991, 177, 412.

(54) Chakravorty, S. J.; Davidson, E. R.Phys. Cheml996 100,6167.

(55) Fisher, C. FComput. Phys. Comm 991, 64, 369, and references
cited therein.

(56) Clementi, E.; Roetti, CRoothaan-Hartree Fock Waefunctions

Special Issue of Atomic Data and Nuclear Data Tables; Academic Press:

(31) Helgaker, T.; Jensen, H. Ja. Aa.; Jgrgensen, P.; Olsen, J.; Ruud,New York, 1974.

K.; Agren, H.; Anderson, T.; Bak, K. L.; Bakken, V.; Christiansen, O.;
Dahle, P.; Dalskov, E. K.; Enevoldsen, T.; Fernandez, B.; Heiberg, H.;
Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen,
K. V.; Norman, P.; Packer, M. J.; Saue, T.; Taylor, P. R.; Vahtras O.
DALTON, an ab Initio Electronic Structure PrograrRelease 1.0; Oslo,
Norway, 1997.

(32) Clementi, EJ. Chem. Physl1962 36, 33.

(33) Pauncz, RThe Symmetric Group in Quantum ChemistBRC
Press: Boca Raton, FL, 1995.

(34) Lowdin, P.-O.Phys. Re. 1955 97, 1474.

(35) Prosser, F.; Hagstrom, $. Chem. Phys1968 48, 4807.

(36) Linpack Fortran Subroutines Library, available from http://ww-
w.netlib.org.

(37) Hiberty, P. C.; Humbel, S.; Byrman, C. P.; van Lenthe. JJH.
Chem. Phys1994 101, 5969.

(38) Clementi, E.; Corongiu, Gnt. J. Quantum Chen2005 105, 709.

(39) Lie, G. C.; Clementi, EJ. Chem. Phy4974 60, 1275.

(40) Lie, G. C.; Clementi, EJ. Chem. Phys1974 60, 1288.

(41) Sinanoglu, OJ. Chem. Physl1962 36, 706.

(42) Sinanoglu, OAdv. Chem. Phys1969 6, 315.

(43) Siegbahn, P. E. M. INethods in Computational Physjdsierksen,

G. H. F., Wilson, S., Eds.; Reidel: Dordrecht, The Netherlands, 1983; p
189.

(44) Cioslowski, JPhys. Re. A 1991, 43, 1223.

(45) Knowles, P.; Scha, M.; Werner, H.-J.Modern Methods and
Algorithms of Quantum Chemistryol. 3; von Newmann: Jich, Germany,
2000; p 97.

(46) Veillard, A.; Clementi, EJ. Chem. Physl1969 44, 3050.

(47) Huber, K. P.; Herzberg, GVolecular Spectra and Molecular
Structure 1V. Constants of Diatomic Moleculd%n Nostrand Reinhold:
New York, 1979.

(48) Kotos, W.; Szalewicz, K.; Monkhorst, H. J. Chem. Phys1986
84, 3278.

(49) Gengenbach, R.; Hahn, Ch.; Toennies, Plis. Re. A1973 7,

98.
(50) Colin, R.; Dreze, C.; Steinhauer, I@an. J. Phys1983 61, 641.
(51) Persico, MMol. Phys.1994 81, 1463.

(57) ) Mohanty, A. K.; Parpia, F. A.; Clementi, E. IKinetically
Balanced Geometric Gaussian Basis Set for Rektic Many-Electron
Atoms MOTECC-91 Clementi, E., Ed.; ESCOM: Leiden, The Netherlands,
1991; Chapter 4, p 177.

(58) Pisani, L.; Clementi, EJ. Chem. Phys1995 103 9321, and
references cited therein.

(59) Fritsche, LPhys. Re. B 1986 33, 3976.

(60) Valderrama, E.; Ludena, E. V.; Hinze JJChem. Physl999 110,
2343, and reference cited therein.

(61) Luchow, A.; Anderson, U. J. B]. Chem. Physl996 105 7573,
and references cited therein.

(62) Bhattacharya, A.; Anderson, U. J.Bhys. Re. A1994 49, 2441.

(63) Handy, N. C.; Harrison, R. J.; Knowles, P. J.; Schaefer, H. F., lll.
J. Phys. Chem1984 88, 4872.

(64) Cencek, W.; Rychlewski, J. Chem. Phys1993 98, 1252.

(65) Stwalley, W. C.; Zemke, W. TJ. Phys. Chem. Ref. Date993
22, 87.

(66) Moore, C. EAtomic Energy Leels National Bureau of Standards,
Circular 467; NBS: Washington, D.C., 1949.

(67) Stehn, J. RJ. Chem. Physl1937, 5, 186.

(68) Mulliken, R. S.nt. J. Quantum Cheni971, 55 83. This reference
is reported incorrectly in much of the quantum chemistry literature.

(69) Bender, C. F.; Davidson, E. Rhys. Re. 1969 183 23.

(70) Bagus, P. S.; Moser, C. M.; Goethals, P.; Verhagen, Ghém.
Phys 1973 58, 1886.

(71) Cooper, D. LJ. Chem. Phys1984 80, 1961.

(72) Martinazzo, R.; Famulari, A.; Raimondi, M.; Bodo, E.; Gianturco,
F. A.J. Chem. Phys2001, 115 2917.

(73) Fuscher, M. P.; Serrano-Andse L. Mol. Phys 2002 100, 903.

(74) Bagus, P. S.; Broer, R.; Parmigiani, Ehem. Phys. Let2006
421, 148.

(75) Clementi, EJ. Chem. Physl963 38, 2248.

(76) Handbook of Chemistry and Physic&th ed.; Lide, D. R., Ed;
CRC: Boca Raton, FL, 19951996.

(77) Thomson, R.; Dalby, F. WCan. J. Phys1969 47, 1155.

(78) Phelps, P. H.; Dalby, F. WRhys. Re. Lett. 1966 16, 3.



