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The Hartree-Fock-Heitler-London, HF-HL, method is a new ab initio approach which variationally
combines the Hartree-Fock, HF, and the Heitler-London, HL, approximations, yielding correct dissociation
products. Furthermore, the new method accounts for nondynamical correlation and explicitly considers avoided
crossing. With the HF-HL model we compute the ground-state potential energy curves for H2 [1Σg

+], LiH
[X 1Σ+], BeH [2Σ+], BH [1Σ+], CH [2Π], NH [3Σ-], OH [2Π], and FH [1Σ+], obtaining in average 80% of the
experimental binding energy with a correct representation of bond breaking. Inclusion of ionic configurations
improves the computed binding energy. The computed dipole moment is in agreement with laboratory data.
The dynamical and nondynamical correlation energies for atomic and molecular systems with 2-10 electrons
are analyzed. For BeH the avoided crossing of the two lowest [2Σ+] states is considered in detail. The HF-
HL function is proposed as thezero-orderreference wave function for molecular systems. To account for the
dynamical correlation energy a post-HF-HL technique based on multiconfiguration expansions is presented.
We have computed the potential energy curves for H2 [1Σg

+], HeH [2Σ+], LiH [X 1Σ+], LiH [A 1Σ+], and BeH
[2Σ+]. The corresponding computed binding energies are 109.26 (109.48), 0.01 (0.01), 57.68 (58.00), 24.19
(24.82), and 49.61 (49.83) kcal/mol, with the experimental values given in parentheses. The corresponding
total energies are-1.1741,-3.4035,-8.0695,-7.9446, and-15.2452 hartrees, respectively, the best ab
initio variational published calculations, H2 excluded.

1. Introduction

It is well-known that, at the beginning of quantum chemistry,
two approaches were predominant in the attempts to explain,
with quantum theory, the forces responsible for holding atoms
together as a molecule. These were the linear combination of
atomic orbitals-molecular orbitals1-3 (LCAO-MO) and the
Heitler-London4 (HL). The two approximations represent two
different implementations of a one-particle model. In time these
techniques evolved into the analytical Hartree-Fock (HF)5,6

approximation (at the time a most promising method for atomic
systems7-9) and the valence bond (VB) approximation.10-15

Since the LCAO-MO and the HL offered only reasonable, but
not sufficiently reliable, approximations, the past 5 decades have
seen a strong effort aimed at more accurate quantum mechanical
solutions often starting from the two original approximations.
The introduction of perturbation methods with Møller and
Plesset16 opened new avenues17,18complementing the variational
approaches; recently the second-order perturbation theory has
been utilized in the CASPT2 method.19

We hasten to call to mind that today there are different
and appealing alternatives to the approaches mentioned above.
Relatively recent publications20,21 present in detail the evo-
lution and the present status of quantum chemistry. Today,
the methodological effort continues with attempts to extend
the applicability of ab initio methods to larger systems and
with proposals of increasingly reliable semiempirical
methods.22-25

Hereafter, the designation HF is used to indicate the restricted
Hartree-Fock method, but later in this work we shall expand

its definition to the complete Hartree-Fock,9 a particular
multiconfiguration expansion yielding nondynamical correlation
in atoms. In this paper the designation HL wave function is
restricted to HL type wave functions which dissociate into HF
atoms in the lowest electronic state. This restriction is introduced
to provide a unique definition for the HL functions designed to
facilitate comparison with HF functions.

From a conceptual point of view the pragmatic rush to de-
velop new techniques and methods has understandably left
numerous gaps. In addition, in the early days the enthusiasm
and a highly competitive atmosphere in the new field of compu-
tational chemistry highlighted the differences rather than the
complementary nature of the two traditional and competing
quantum chemical approaches. Today, we can afford a more
relaxed attitude.

As we all know, the computation of the electronic correlation
energy,26,27Ec, is the goal of any post-Hartree-Fock approach.
Hylleraas’28 direct use of interelectronic distances in the wave
function and Hartree et al.’s9 elimination of near-degeneracy
effects with short multiconfiguration (MC) expansions were
among the very early attempts to deal with the correlation energy
problem.

In a few situations the two quantum chemical models, HF
and HL, fail to provide a theory capable of predicting (even
qualitatively) the forces responsible for holding together atoms
in a molecule. It follows that neither one of the two models
can be chosen as a general zero-order approximation for
quantum chemistry, namely, a “reference function” which
qualitatively approximates laboratory data with consistency and
with equal accuracy at any internuclear separation.

In this work, following the introductory proposal of ref 29,
we variationally combine HF and HL models yielding the
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Hartree-Fock-Heitler-London model, HF-HL, detailed in
section 2. The latter is proposed at two accuracy levels: the
HF-HL level, which accounts for the nondynamical correlation
corrections, and the post-HF-HL level, which also accounts
for the dynamical correlation: this partitioning of the correlation
energy corrections in the context of the HF-HL model is
discussed in section 3.

2. HF-HL Computational Method

Recall that the HF method fails to reproduce bond breaking,
even qualitatively. On other occasions the method fails to predict
binding for molecules with known strong laboratory binding
energy. Furthermore, avoided state crossing, a rather frequent
molecular event, is ignored. On the other hand, the method
applies self-consistently the variational principle to a selected
electronic configuration, starting with simple trial functions, and
utilizes a robust algorithm constrained, however, by the basis
set choice (the latter must be adequate to avoid basis set
superposition errors, BSSE).

The HL method at dissociation builds the molecular wave
function with functions representing the separated neutral atoms,
with spin and angular momentum selected to ensure correct
dissociation products.3 In this work, the HL function at
dissociation is limited to neutral atomic ground states represented
either with HF functions or with more accurate approximations,
such as configuration interaction,30 CI, or MC expansions; for
the latter in this study we use the Dalton computational code.31

Since in the HF-HL model we combine the HF and the HL
functions, we consider the Hartree-Fock atoms as reasonable
first-order approximations to represent the HL atomic dissocia-
tion products. However, when we consider more accurate wave
functions for the HL (or for the HF) model, the HF (or HL)
component of the HF-HL linear combination is equivalently
improved, to ensure a “balanced HF-HL representation.

An important assumption of the HF-HL method is that the
total molecular correlation energy can be partitioned for example
into the sum of the correlation energy of the separated atoms
and correlation contributions arising from the new electron pairs
and electronic charge rearrangements concomitant with the
molecular formation process (namely, the “molecular extracor-
relation energy”32). The particular decomposition of the cor-
relation energy adopted in the HF-HL model is exposed in
detail in section 3.

The HF-HL approach is proposed as a three-step process
with increasing accuracy at each successive step. This work is
mainly concerned with the first step presented in section 2.1.
In section 2.2 we present a post-HF-HL algorithm (HF-HL
steps 2 and 3) to obtain the dynamical correlation correction.

2.1. First Step: the HF-HL Model. In the first HF-HL
step we variationally combine the HF and the HL functions,
the latter being built with HF atoms,29 thus obtaining by
construction correct dissociation products. Further the HF and
HL approximations are improved with short MC expansions,
to introduce near-degeneracy correlation energy (for details, see
section 3). Finally, if the state in consideration results from an
avoided potential energy curve crossing, then both states
participating in the crossing are explicitly considered. In this
way we account for the nondynamical correlation in the HF-
HL function.

Formally, we start by defining with obvious notation the HF,
ΨHF, and the HL, ΨHL, functions given in eqs 1 and 2,
respectively:

Above,Φi refers to theith HF molecular orbital andælk to the
lth atomic orbital of thekth determinant in the HL function.
Note that the HL functions are constructed to satisfy the correct
spin coupling constraints.33

When at dissociation the atoms in the molecule are in a state
with near-degeneracy, and/or when there is avoided crossing,
then in eqs 1 and 2 theΨHF and theΨHL are replaced by very
short MC expansions to account for near-degeneracy and
avoided crossing.

The HF-HL wave functionψ′′HF-HL is obtained by deter-
mining variationally the linear combination

where with the notationΨ′HF and Ψ′HL we indicate either
standard HF and HL functions or very short MC-HF and MC-
HL expansions, when there is near degeneracy and/or avoided
states crossing; in section 3 we shall introduce a specific notation
to avoid ambiguities.

In eq 3 thec1 andc2 coefficients are obtained variationally
by solving the equation(H - SE)C ) 0 with H and S the
interaction supermatrixes containing the Hamiltonian and the
overlap matrix elements, respectively. TheΦi orbitals ofΨ′HF

are a linear combination of a basis set of Gaussian functions,
and the same basis set is also used to expand the orbitalælk of
Ψ′HL. We recall that theΦi orbitals form an orthogonal set,
whereas theælk orbitals can be nonorthogonal. For the latter
case, following Lo¨wdin34 the interaction between two determi-
nants,da anddb, is given by

where the indicesi and k refer to the occupied orbitals ofda

andj andl to those ofdb; S(i,j) andS(i,k,j,l) are the first- and second-
order cofactors of the overlap matrixS, constructed with the
occupied orbitals ofda anddb. The cofactors are computed with
the algorithm proposed in ref 35, adapting routines from the
public domain Linpack library.36

In eq 3 we have not included ionic structures in the HL
component, since it would account for a fraction of the total
dynamical correlation, a task left for the post-HF-HL approach.
However, for the hydrogen fluoride molecule (section 10) we
have added two ionic structures37 obtaining a notable gain in
the computed binding energy.

2.2. Post HF-HL. Since both the HF and the HL methods
can be extended in order to include dynamical correlation, the
equivalent feasibility exists for the HF-HL method. Keeping
in mind the decomposition of dynamical correlation energy into
two components, namely, a molecular component (the molecular
extra correlation) and a second one resulting from the sum of
the dynamical correlation energy of the separated atoms (see
section 3), we envision two steps in the post HF-HL method.

The dynamical molecular extra correlation energy is computed
in the second HF-HL step (to obtain accurate binding energies)
and the atomic dynamical correlation in the third step (to obtain
accurate total energies). The correlation techniques adopted in
the second and third steps are MC expansions complementing
each other. Thus, presently, the post-HF-HL method makes

ΨHF ) det(Φ1, ...,Φi, ...,Φn) (1)

ΨHL ) ∑
k

det(æ1k, .., æik, ...,æmk) (2)

Ψ′′HF-HL ) c1Ψ′HF + c2Ψ′HL (3)

〈da|H|db〉 )

∑
ij

hijS
(i,j) + ∑

i<k,j<l

[〈ij |kl〉 - 〈il |kj〉]S(i,k,j,l) (4)
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useswith variantssof avenues tested in post-Hartree-Fock
computations.

In the post-HF-HL method, the dynamical correlation
correction is introduced by replacing in eq 3 theΨ′HF function
with an extended MC-HF linear expansion of HF-type func-
tions,ΣpapΨp(HF), andΨ′HL with an MC-HL expansion of HL-
type functions,ΣqbqΨq(HL):

The p, q indices define excited configurations in the MC
expansions, andap, bq, are the corresponding variational
expansion coefficients. The two MC expansions comple-
ment each other. Equation 5 constitutes the second HF-HL
step.

The remaining dynamical correlation energy is computed by
solving eq 6, the third step of the HF-HL approach:

In eq 6 the indexP replaces thep of eq 5 to indicate a new
and more extended expansion. For the HL component we use
two MC-HL linear expansions, oneΣqbqΨq (present in eq 5)
with optimized atomic orbitals, the secondΣrb′rΨr (gen-
erally an extended expansion) constructed by adapting MC-
HF functions originally computed for the separated atoms. The
latter can be determined once and for all and can be used over
and over for different molecules in HF-HL computa-
tions containing atoms with the sameZ number and state
specification, thus transferable from molecule to molecule, as
exemplified by the HF-HL computations on the LiH and Li2

molecules.29

For very few electron systems the dynamical correlation can
be obtained with the first term of eq 5, namely, via CI or
CASSCF computations. For polyatomic systems the transfer-
ability of Σrb′rΨr(HL) becomes more and more important the
larger the system. The computation29 of LiH and Li2 provides
an initial example (additional work is in progress).

Recall that in the post-HF-HL method the dynamical
correlation can be introduced with a variety of alternative
techniques either ab initio or semiempirically.29,38 The exten-
sive computations by Lie and Clementi for diatomic homo-
polar molecules39 and hydrides40 have clearly shown that den-
sity functional corrections applied to short MC expansions
(used to correct the HF function near dissociation) yield
most reasonable binding and total energies. Note that for
HF-HL functions the correct dissociation is ensured by
construction; thus, the available and tested semiempirical den-
sity functionals38-40 can be used to deal with the dynamical
correlation.

3. Dynamical and Nondynamical Correlation Energy in
the HF-HL Model

The standard definition of the correlation energy relates to
the HF method. Therefore, we need more general definitions
for the correlation energy, an appropriate notation and a detailed
description on the specific partitioning of the correlation energy
adopted in the HF-HL model.

Since molecules are systems of nuclei and electrons, the
correlation energy can be defined with reference to an expansion
into one-, two-, ..., many-electron energies obtained by solving
the corresponding one-, two-, ..., many-electron exact solutions.
The approximated solution from a given nonrelativistic model

(like HF, HL, and HF-HL) brings about energy differences
relative to the energies obtained (a) with the exact one-electron
nonrelativistic model, difference called nondynamical correla-
tion, Ec(nondyn), and (b) with the exact many-electron non-
relativistic model, the total correlation energy,Ec. The difference
between the total and the nondynamical correlation energies is
the dynamical correlation energyEc(dyn).

However, if we stress the viewpoint that molecules are
composed of atoms, then the correlation energy can be broken
down into two components: one,Σaεa, for the sum of the
correlation corrections for the separated atoms and the second,
ηM, for the molecular extracorrelation energy. The two view-
points are complementary and therefore the partitioning of the
correlation energy is also complementary.

The nondynamical correlation errors in the HF model are due
to (1) neglect of near-degeneracy, (2) the constraint of doubly
orbital occupancy for molecular systems near dissociation, and
(3) neglect of avoided curve crossing.

We consider near-degeneracy. The nondynamical correlation
has been taken into account by Hartree et al.9 with short MC
expansions of the near-degenerate configurations. Later, a
different approach based on perturbation methods was proposed
first by Sinanoglu41,42and later by others.43-45 Following Hartree
at al.,9 Veillard and Clementi46 computed, with Slater-type
functions, the nondynamical correlation in the second row atoms
and ions using MC expansions of two configurationss1s22s2-
2pn and the nearly degenerate 1s22s02pn+2.

We have recomputed, with the Gaussian basis set defined in
section 4, the near-degeneracy energy correction for the ground
state of the Be [1S], B [2P], and C [3P] atoms, obtaining the
following nondynamical correlation energies: 0.043 72, 0.034 81,
and 0.019 36 hartree, respectively, in substantial agreement with
the computation by Veillard and Clementi.46 In the MC
expansion the coefficients of the near-degenerate configuration
1s22s02pn+2 are 0.25, 0.17, and 0.15 for Be, B, and C,
respectively. A relatively small amount of mixing is sufficient
to remove near-degeneracy errors in atoms and, as shown in
section 9, also in molecules.

Concerning the constraint of doubly orbital occupancy, we
recall that the HF model approaching dissociation can become
unstable, leading to grossly incorrect energies. The use of the
unrestricted HF algorithm avoids this catastrophic behavior, but
the resulting wave function is incorrect. The alternative,
proposed by Lie and Clementi39,40is of difficult implementation
for molecule larger than diatomic, particularly for multiple
bonds. For example, even in the ground state of N2 10
configurations are needed to obtain correct dissociation39 to be
compared to only two configurations (one from HF and one
from HL) in the HF-HL model, where the correct dissociation
is obtained by construction.

The third source of nondynamical correlation is related to
the degeneracy at the crossing of states with the same
symmetrysa situation very common in excited states, but also
frequently present in ground states,3 as in, for example, BeH
(see section 7).

In the HL approximation, the nondynamical correlation error
is due (1) to the neglect of near-degeneracy, (2) to the
constrained selection of the lowest atomic state at dissociation,
and (3) to the neglect of avoided state crossing.

In summary, we partitionEc as

Further, we distinguishEc(HF) from Ec(HL), since the correlation

Ψ′HF-HL ) ∑
p

apΨp(HF) + ∑
q

bqΨq(HL) (5)

ΨHF-HL ) ∑
P

aPΨP(HF) + [∑q

bqΨq(HL) + ∑
r

b′rΨr(HL)] (6)

Ec ) ∑
a

εa+ ηM (7)
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energy is an error specific for a given model, and write

For the HF-HL methodΣaεa(nondyn) is taken into account
by including near-degeneracy and avoided crossing andηM-
(nondyn) by ensuring correct dissociation: thus for the HF-
HL model the correlation is reduced to

We now introduce definitions and a specific notation needed
to ensure a coherent discussion in the following of this work.
We indicate as MC-HF and MC-HL multiconfiguration
expansions of HF type and HL type functions, respectively.
When needed, we use the specific notation HF(n), HL(m), and
HF-HL(n,m) to designate MC-HF expansions ofn configura-
tions, MC-HL expansions ofm configurations, and HF-HL
function composed by the linear combination of HF(n) and HL-
(m). The energiesEHF(n), EHL(m), andEHF-HL(n,m) correspond
to the wave functions HF(n), HL(m), and HF-HL(n,m),
respectively. Equivalent notation is used for the computed
binding energies,Eb, and the correlation energies,Ec. To indicate
a specific electronic configuration within a given MC expansion,
we use the notation HF-n, HL-m.

We indicate the HF(n), HL(m), and HF-HL(n,m) correlation
energies asEc(HF)(n), Ec(HL)(m), Ec(HF-HL)(n,m); these are defined
as the energy difference betweenEHF(n), EHL(m), EHF-HL(n,m)
and the exact nonrelativistic energy.

In Figure 1 we report two examples to typify the nondy-
namical correlation energy. In the left inset we present the
correlation energy for atoms with and without near-degeneracy.
The dashed line denotes the dynamical correlation energy
obtained by subtracting from the total correlation the near-
degenerate correlation energy of Be, B, and C. In the right inset,
we report the correlation energy from the HF, the HL, and the
HF-HL models in H2 [1Σg

+]. The usual definition of correla-
tion energy related to the HF model is clearly unsatisfactory,
since, at dissociation, the correlation energy of H2 should vanish.
For the HF-HL model the correlation energy of H2 is reduced
to the dynamical component (see eq 9). In the inset the dotted
lines are interpolations from short H2 internuclear distance values
to the united atom, He [1S].

4. HF-HL Method for First- and Second-Period
Monohydrides

In this work we stress the HF-HL approach, since we are
searching for a reference function for molecular computation.
We consider as a test case the first and second row diatomic
hydrides. In Table 1 we list laboratory binding energies,47-53

Eb, equilibrium internuclear distances,Re, and “exact” nonrela-
tivistic energies at equilibrium,ET(Re), and at dissociation,ET-
(R∞), obtained from recent tabulations of atomic energies54 and
the numerical HF energy limit for atoms55 very close to previous
analytical HF computations.56 ET(Re) is obtained by adding the
laboratory binding energy toET(R∞), the “exact” nonrelativistic

Figure 1. Nondynamical correlation. Left: first and second row ground-state atomic correlation energy with and without near-degeneracy correction.
Right: correlation energy for H2 from Hartree-Fock, Heitler-London, and Hartree-Fock-Heitler-London.

TABLE 1: Laboratory Molecular Binding Energy (kcal/mol), Eb, Laboratory Equilibrium Distance (bohr), Re, Total
Nonrelativistic Energy at Equilibrium, ET(Re), and at Dissociation,ET(R∞), Atomic HF Energies (hartrees),EHF (Limit), and EHF
(This Work)

EHF (limit)
molecule Eb

a Re
a ET(Re) ET(R∞) EHF (this work)

H2 [1Σg
+] 109.48b 1.4b -1.174 4757 -1.000 000 H [2S] -0.500 000 -0.499999

HeH [2Σ+] 0.01c 7.00 -3.403 7459 -3.403 7243 He [1S] -2.861 680 -2.861679
LiH [ 1Σ+] 58.00 3.0150 -8.070 491 -7.978 062 Li [2S] -7.432 727 -7.432721
BeH [2Σ+] 49.83d 2.5371 -15.246 772 -15.167 363 Be [1S] -14.573 023 -14.573016
BH [1Σ+] 84.1e 2.3289 -25.287 95 -25.153 93 B [2P] -24.529 061 -24.529036
CH [2Π] 83.9 2.1163 -38.478 69 -38.344 99 C [3P] -37.688 619 -37.688616
NH [3Σ-] 80.5f 1.9582 -55.217 54 -55.089 25 N [4S] -54.400 934 -54.400924
OH [2Π] 106.6 1.8324 -75.737 08 -75.567 2 O [3P] -74.809 398 -74.809384
FH [1Σ+] 141.5g 1.7325 -100.459 2 -100.233 7 F [2P] -99.409 349 -99.409343

a Reference 47.b Reference 48.c Reference 49.d Reference 50.e Reference 51.f Reference 52.g Reference 53.

Ec(HF) ) ∑
a

εa(HF)(nondyn)+ ∑
a

εa(HF)(dyn) +

ηM(HF)(nondyn)+ ηM(HF)(dyn) (8a)

Ec(HL) ) ∑
a

εa(HL)(nondyn)+ ∑
a

εa(HL)(dyn) +

ηM(HL)(nondyn)+ ηM(HL)(dyn) (8b)

Ec(HF-HL) ) ηM(HF-HL)(dyn) + ∑
a

εa(HF-HL)(dyn) (9)
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energy of the separated atoms.54 For the molecules considered
here and for the accuracy at which we are aiming (0.001 hartree)
the relativistic contribution to the molecular binding is negli-
gible, even when the relativistic atomic correction57 is compa-
rable to the molecular binding energy. For example, for H2O at
equilibrium geometry the relativistic correction58 to the binding
energy is-0.000 582 hartrees. However, we recall that atZ )
13 the atomic correlation energy and the relativistic correction
are nearly equal in value.

We used the following basis sets: for the H atom [10,5,4,/
6,5,4] in the hydrides and [10,5,4,4] in the H2 and HeH
molecules; for the He atom [14,9,8,5,2]; for the Li atom [15,-
10,6,1/10,8,6,1]; for the Be atom [17,8,6,3/11,8,6,3]; for the B
atom [15,11,7,5/9,8,6,4]; for the C atom [17,13,6,5/11,8,5,4];
for the N and O atoms [17,13,5,4/9,7,5,4], and for the F atom
[18,13,5,4/12,6,5,4]. These basis sets yield the Hartree-Fock
atomic ground-state energies given in Table 1.

We have tested our proposal by comparing laboratory and
computer data for diatomic hydrides in the HF, HL, and HF-
HL models. Data from a large number of potential energy curves
are analyzed. For each potential curve we compute the energy
at 30-40 internuclear distances, stressing equally short and large
internuclear distances, the latter essential for understanding the
formation and breaking of bonds. Note that in the figures
throughout this paper the marks (circles, diamonds, and triangles,
etc.) on the potential energy curves indicate internuclear
distances for which a computation has been carried out. In
addition, in a given inset all curves are obtained with the same
number of computed points (but in a given inset the marks might
only be given on one curve).

In this work we search for a method that is (a) equally valid
in the full range of internuclear separations from near equilib-
rium to dissociation, (b) valid for ground and excited states,
(c) computationally easy, (d) of immediate physical interpret-
ability, (e) more accurate than the HF and HL approximations,
and (f) easily extendable to higher accuracy, leading eventually
to exact wave functions. We have listed above the general
characterization of a molecular “reference function”. In this work
we prove that the HF-HL function fulfills all the criteria listed
above. The search for a proper reference function is not a new
topic in quantum chemistry. We refer, for example, to papers
by Lie and Clementi,39,40 Fritsche,59 and Valderrama et al.60

We recall that the most accurate computations for the second
row hydrides are the quantum Monte Carlo,61 QMC, limited to
the experimental equilibrium internuclear distance.

In Table 2 we provide the electronic configuration of the HF
and HL functions needed in the HF-HL computation of
monohydrides. To introduce near-degeneracy correlation, we
have to consider more than one dissociation product and,
therefore, more than one set of HF and HL configurations. The
same holds true for state crossing. For the HF type functions
the characterization is provided by the molecular orbital
electronic configuration. For the HL method we specify the
atomic states used to construct the Heitler-London function at
dissociation followed by the list of the spin pairs. For example,
for LiH [ 1Σ+] we give the two atomic states at dissociation H
[2S] and Li [2S], the corresponding electronic configurations
(1s1)H and (1s22s1)Li and the spin pair 1sH2sLi. For the XH
hydrides considered here, the lowest doubly occupied orbital,
1σ2 (HF language) and the 1s2

X electron pair of the X atom
(HL language), is not reported, since it is tacitly understood to
be present.

5. H2 [1Σg
+] and HeH [1Σ+] Ground States

In this section we report on computations with the post-HF-
HL method for the H2 [1Σg

+] and HeH [2Σ+] ground state (see
ref 29 for preliminary computations).

The basis sets we have selected for this work are sufficiently
extended for HF, HL, and HF-HL computations, but likely fall
short for computations with accuracy superior to our threshold
of 0.001 hartrees. For very accurate computations we refer for
H2 [1Σg

+] to Kolos et al.,48 and to QMC data62 for HeH [2Σ+].
In the top left inset of Figure 2 we report the H2 [1Σg

+]
ground-state potential energy curves for the HF, HL, and HF-
HL approximations. In this work we have extended our previous
basis set29 by uncontracting the s functions and by adding four
4f Gaussian functions. The new binding energy is 109.26 kcal/
mol, which can be compared to the previous value29 of 108.56
kcal/mol and to the exact value of 109.48 kcal/mol. We postpone
analyses of the computed data to the end of the paper, where
we compare the entire set of computed hydrides (section 11).

The HeH [2Σ+] molecule is included in this work to provide
data for a three-electron diatomic hydride, thus, completing our
study on diatomic hydrides from 2 to 10 electrons. The HeH
[2Σ+] molecule has one of the weakest bonds in chemistry (even
among van der Waals bonds) in the range 0.000 0215-
0.000 0227 hartrees49 in agreement with QMC computations,62

TABLE 2: Hydrides: Characterization for Hartree -Fock
and Heitler-London Functions
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yielding 0.000 0216 hartrees. In the top right inset of Figure 2
we report the HF, HL, and the “simple” HF-HL computations,
yielding essentially three indistinguishable repulsive curves.
Post-HF-HL computations and the QMC results,62 the latter
indicated by square marks, are also reported in the inset. For
HeH [2Σ+] the MC expansion (eq 5) yields a binding energy of
0.000 0211 hartrees, which is in agreement with experimental
data. The total energies computed at the equilibrium distance
for HF, HL, and HF-HL are essentially equal in value and
amount to -3.361 6665 hartrees (-3.361 6793 hartrees at
dissociation); for the post-HF-HL computation the computed
energy is -3.403 4746 hartrees (-3.403 4535 hartrees at
dissociation). The correlation energy for the HF, HL, and HF-
HL function amounts to-0.041 646 hartrees, essentially the
He [1S] value.

6. [X1Σ+] and [A1Σ+] States for LiH

The LiH [X1Σ+] dissociates into Li [2S] and H [2S] and the
[A1Σ+] state dissociates into in Li [2P] and H [2S]. The LiH
[1Σ+] ground-state potential energy curves are reported in the
bottom left inset of Figure 2 for the HF, HL, and HF-HL
approximations. The HF, HL, and HF-HL curves yield at the
equilibrium distance a molecular binding energy of 34.27, 43.11,
and 43.66 kcal/mol and a total molecular energy of-7.987 34,
-8.001 42, and-8.002 30 hartrees, respectively.

To exemplify the energy gains, one can obtain with relatively
short MC-HL expansions ofΣqbqψq(HL) type, we have per-
formed computations with a four-configuration optimized MC-
HL function (threeσ and oneπ) obtaining a binding energy of

55.25 kcal/mol (see curve HF-HL(1,4) in the bottom left inset
of Figure 2).

In the bottom right inset of Figure 2 we compare the potential
energies computed with the HF-HL approximation and with
post-HF-HL second and third steps. Concerning the second
step we obtain atR ) 3.015 bohr a binding energy of 57.32
kcal/mol (the experimental value is 58.00 kcal/mol) and a total
energy of-8.024 07 hartrees,-7.932 72 hartrees at dissociation.

The third step adds inner shell correlation. For this step we
add to the HF function of the second step an HL component
resulting from two MC-HL expansions,Σqbqψq(HL) and
Σrb′rψr(HL) of eq 6. The first expansion contains four configura-
tions, and we have considered 2444 terms in the second, since
from this computation we obtain also the first excited state
discussed below. For the ground state the binding energy is
56.83 kcal/mol, the total energy at equilibrium is-8.067 63
and-7.977 07 hartrees at dissociation (see bottom left inset of
Figure 2) not far from the exact energies of Table 1. Note that
the loss of 0.5 kcal/mol in the third step binding energy relative
to the second step, implies that the inner shell correlation is
more accurately accounted for in the Li atom (LiH at dissocia-
tion) than in the LiH molecule at equilibrium. This calls for an
extension of the MC-HL expansion ofΣqbqψq(HL) type and then
eventual improvements in the remaining MC expansions.
However, first of all we must examine our basis set ability to
yield inner shell correlation energy.

For the systems listed in Table 3, we have performed HF
and CASSCF computations, with all the available orbitals in
the active space. Therefore the total energies are equal to those

Figure 2. Potential energies from HF, HL, and HF-HL models for H2 [1Σg
+] (top left panel), for HeH [2Σ+] (top right panel; square marks are for

QMC computations,55 and the arrow indicates the experimental value31). Potential energies from HF, HL, and HF-HL for LiH [X 1Σ+] (bottom left
panel), HF-HL from first, second, and third steps for LiH [X1Σ+] and LiH [A1Σ+] (bottom right panel).
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one would obtain with full CI computations. Note that careful
atomic tabulation54 reports a correlation energy of-0.043 50
hartrees for Li+1[1S]. From Table 3 we conclude that (1) the
inner shell correlation energy is essentially a constant for the
ground states of Li+ [1S] and LiH2+ [X1Σ+] at different
internuclear separations, (2) our Li+ [1S] result compared to
ref 54 is in error by-0.000 92 hartrees, hereafter denoted “basis
set deficiency error”, BSDE, and (3)-0.043 50 hartrees is
assumed to be the exact value for the 1s2 correlation in LiH
[1Σ+]. Note that this value does not include the interpair
correlation energyε(1σ-2σ); from Tables 1 and 3 we obtain
ε(1σ-2σ) ) -0.002 22 hartrees at equilibrium and-0.001 79
at dissociation, the latter to be compared with-0.001 83 hartrees
from ref 54. Finally, from Tables 1 and 3, we obtain for LiH
[X1Σ+] at dissociation a BSDE of-0.000 97 hartrees. Note that
the BSDE relates to total energies, whereas the basis set
superposition error, BSSE, refers mainly to binding energies.

An attempt to improve the basis set by decontracting the s
and p functions of our basis set and by adding four new 4f and
two 5g Gaussian functions with optimized orbital exponents
yields a ground-state binding energy of 57.68 kcal/mol, a total
energy at equilibrium of-8.069 50 and-7.977 67 hartrees at
dissociation; the BSDE is reduced to-0.000 49 hartrees. Handy
et al.63 reported-8.069 04 hartrees at equilibrium and a binding
of 57.45 kcal/mol, Cencek and Rychlewski64 reported a total
energy of-8.069 221 hartrees at equilibrium. Recall that after
rather easy initial energy gains the total energy improvement
from MC expansions becomes a progressively hard computa-
tional task.

Concerning the [A1Σ+] excited state we have computed the
potential energy curve, see Figure 2, directly at the post-HF-
HL accuracy level. This computation is an example of post-
HF-HL for an excited state. The computed binding and total
energies are 24.10 kcal/mol and-7.945 74 hartrees, respec-
tively, to be compared with the a “recommended value” by
Stwalley and Zemke65 of 24.82 kcal/mol. The computed atomic
Li [ 2S] to Li [2P] excitation energy is 0.067 97 hartrees to be
compared with the experimental value of 0.067 91 hartrees.66

The potential energy has a very flat minimum; with a computed
minimum at 5.00 bohr, to be compared with the “recommended
value”65 of 4.91 bohr.

The above computations on LiH demonstrate that reasonable
zero-order energies can be obtained with the HF-HL ap-

proximation and that very accurate nonrelativistic energies can
be determined with the post-HF-HL method.

7. BeH [X2Σ+] Ground State

The literature on the BeH ground state is extensive; we refer
to only a few papers.15,67-73

In the HF model the BeH [X2Σ+] binding energy is larger
than the experimental, a rather rare event in molecular computa-
tions, even if not too surprising since the variational principle
holds for the total energy of the system and not for arbitrary
partitioning.

In the HL theory3, the BeH [X2Σ+] ground state results from
an avoided crossing68 between the two lowest2Σ+ states
analyzed below and more extensively in section 8. The ground
state of this molecule is most interesting since to form a bond
we need 2p atomic orbitals which are not present in the
dissociation products Be [1S](1s22s2) and H [2S](1s1), nor in
the HF nor in the HL approximations, unless we consider (a)
atomic near-degeneracy, Be [1S](1s22s2) with Be [1S](1s22p2),
(b) the inclusion of molecular 2p polarization functions, and
(c) avoided curve crossing with the nearest2Σ+ excited state
with 2p orbitals.

Near equilibrium the HF(1) function (see inset a of Figure
3) makes use of the 2p basis functions on the Be atom in the
2σ and 3σ molecular orbitals. The 2σ electron population is
0.47 for 2sBe, 0.28 for 2pBe, and 1.21 for 1sH; the 3σ population
is 0.77 for 2sBe and 0.33 for 2pBe. Namely, there is 2s+ 2p
and 2s- 2p hybridization with bond formation for 2σ and
nonbonding single occupation for 3σ. Around the internuclear
separation of 4.2 bohr (near the crossing of the two2Σ+ states3,68)
the HF(1) solution becomes unstable with a clear discontinuity.
The binding orbital 2σ becomes a 2s orbital on Be losing the
2p population and the nonbonding 3σ becomes the 1s on the H
atom loosing the 2s and 2p population on Be.

With respect to the discontinuity, Mulliken’s HF computa-
tions68 reported a slight peak at 4.28 bohr. We recall a detailed
discussion by Bagus et al.70 on the abrupt changes in the
electronic structure at internuclear distances between 4 and 6
bohr. Mulliken’s maximum in the HF approximation disappears
in CI computations.69-72 From Figure 3a (curve designated HF-
(1)) we see clearly the strong binding and the discontinuity in
the region around 4.2 bohr (in the figure a vertical line indicates
the discontinuity point). With our basis set we obtain HF

TABLE 3: HF and CASSCF Data for LiH and BeH and Related Species

index system R (bohr) -EHF (hartrees) -ECASSCF(hartrees) -Ecorr.(hartrees)

a Li [2S] 7.432 72 7.477 08 0.044 36
b Li [ 2P] 7.365 04 7.409 11 0.044 07
c Li+ [1S] 7.236 41 7.278 98 0.042 57
d LiH [X 1Σ+] 3.015 7.987 34 8.068 89 0.081 55
e LiH [X 1Σ+] 40.00 7.932 72 7.977 09 0.044 37
f LiH [X 1Σ+]a 3.015 7.987 34 8.024 07 0.044 82
g LiH2+ [1Σ] 3.015 6.906 02 6.948 62 0.042 60
h LiH2+ [1Σ] 40.00 7.211 41 7.253 98 0.042 57
a Be [1S] 14.573 02 14.665 99 0.092 98
b Be [1S]a 14.573 02 14.616 74 0.043 72
c Be2+ [1S] 13.611 30 13.654 63 0.043 33
d Be [3P] 14.511 33 14.565 77 0.054 44
e Be [3P]a 14.511 33 14.518 42 0.007 09
f BeH [2Σ+] 2.538 15.153 17 15.245 22 0.091 97
g BeH [2Σ+] 40.00 15.073 02 15.165 99 0.092 98
h BeH [2Σ+]a 2.538 15.153 17 15.198 31 0.045 14
i BeH [2Σ+]a 40.00 15.073 02 15.119 03 0.046 02
J BeH3+ [1Σ+] 2.538 12.823 94 12.867 28 0.043 34
k BeH3+ [1Σ+] 40.00 13.561 30 13.604 63 0.043 33

a Inner shell electrons not correlated.
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energies in close agreement with those of ref 70. From our
computation we conclude that the HF model is characterized
by a discontinuity between 4.20 and 4.28 bohr and a barrier of
∼2.40 kcal/mol, not far from Mulliken’s barrier of 2.3 kcal/
mol. The HF(1) binding energyEb(HF) amounts to 50.29 kcal/
mol, obtained as usual by subtracting the sum of the atomic
ground-state HF energies of Be [1S] and H [2S] from the
molecular HF energy at equilibrium, but neglecting the discon-
tinuity implications (for more details, see the extensive discus-
sion given in the next section).

The presence of the 2p functions in the basis set is essential
in order to yield the reported HF binding. To clarify this point,
we have performed two new sets of HF computations, one with
the basis set detailed in section 1 but deleting the 2p functions

(Figure 3a, curve designated “HF(no 2p funct.)”), the second
containing only s type functions (i.e., no 2p, no 3d, and no 4f,
Figure 3a, curve “HF(s funct.)”). The first computation yields
a very weak molecular binding, 6.4 kcal/mol; the second yields
no binding, but a marginal repulsion of 5.2 kcal/mol.

To recover the near-degeneracy correlation, a two-configu-
ration MC wave function, labeled HF(2), is obtained from HF-1
and HF-2 (see Table 2). The corresponding curve is given in
Figure 3b; it dissociates properly (see Table 4) into the energy
sum of the Be [1S] with inclusion of near-degeneracy correlation
and H [2S], but we see once more the discontinuity at 4.2 bohr.
The binding energy of HF(2) is 38.17 kcal/mol, which is
obtained by explicitly including near-degeneracy both at dis-
sociation and at equilibrium. The near-degeneracy stabilization

Figure 3. BeH [2Σ+] ground-state potential energy curves: (a) HF, HL, and HF-HL(1,1); (b) HF(2), HL(2), HF-HL(1,2), and HF-HL(2,2); (c)
HF(3), HL(3), and HF-HL(3,3); (d) nondynamical and dynamical HF correlation energy contributions; (e) nondynamical and dynamical HL correlation
energy contributions; (f) nondynamical and dynamical HF-HL correlation energy contributions.
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at dissociation is-0.042 72 hartrees (exactly equal to the value
for the Be [1S] atomic near-degeneracy) but only-0.025 16
hartrees at equilibrium (notably smaller than at dissociation, at
equilibrium “the Be atom in the molecule” is “less near-
degenerate” relative to Be at dissociation since with larger
energy difference).

In Figure 3c, we present a three MC configuration computa-
tion, labeled HF(3), where we have extended the previous two
MC configurations by including HF-3 (see Table 2); the latter
contains a 4σ molecular orbital belonging to the first excited
BeH [C2Σ+] state, which dissociates into Be [3P] and H [1S].
The motivation for this computation is to verify that the
discontinuity and the energy barrier originate from state crossing.
Indeed, the inclusion of this configuration leads to the HF(3)
computation with the elimination of the discontinuity and a
decrease on the barrier height. The binding of HF(3) is 40.23
kcal/mol, and the energy at dissociation is-15.116 73 hartrees
(as for HF(2), see Table 4).

We now consider the HL approximation. We note that BeH
[X2Σ+](1s22s2)Be(1s1)H has an electron pair 2s localized on Be
and a single electron on H. The near-degenerate state BeH
[C2Σ+](1s22p2)Be(1s1)H has a pair 2p on Be but again a single
electron on H; in both situations there is no electron on Be free
to form a bond with the (1s1)H. Therefore, we expect a repulsion
in the HL approximation from the configuration Be (1S)(1s2-
2s2)Be either with or without addition of the Be (1S)(1s22p2)Be

near-degenerate configuration. Indeed, the HL computations
yield no binding, and we obtain a repulsion of about 29 kcal/
mol at the laboratory equilibrium internuclear distance (see
Figure 3a, curve labeled HL(1)). Also inclusion of the near-
degenerate state Be [1S](1s22p2)Be in two MC-HL configura-

tions (1s1)H(1s22s2)Be and (1s1)H(1s22p2)Be yields no bond
formation, but the repulsion is reduced to about 16 kcal/mol
(see Figure 3b, curve labeled HL(2)). In the latter case the
nondynamical correlation penetrates from very large to shorter
internuclear separations, and at near equilibrium position it
produces an inflection point (see Figure 3b). Inclusion of the
third configuration leads to HL(3) (see Figure 3c), which is
bound by 37.37 kcal/mol. We shall discuss in detail the avoided
crossing in the next section.

In the HF-HL approximation we have performed three
computations reported in Figure 3: HF-HL(1,1) given in panel
a, HF-HL(1,2) and HF-HL(2,2) given in panel b, and HF-
HL(3,3) given in panel c. From Figure 3 it is evident that the
HF-HL energies are lower than the corresponding HF or HL
energies. Panel a shows that the HF-HL(1,1) potential curve
suffers from the Hartree-Fock discontinuity problem; the
binding energy is 50.35 kcal/mol. The function HF-HL(1,2)
yields a binding energy of 24.93 kcal/mol, and again it shows
the discontinuity. In addition it presents a rather anomalous
behavior in the region of 3.4-4.0 bohr (see panel b). We
attribute this anomalous behavior to the lack of balance between
HF and HL components; inclusion of nondynamical correlation
in only the HL (or in only the HF function) brings about an
“unbalanced” situation. The HF-HL(2,2) balanced computation
(see Figure 3b) appears more reliable; it provides a reasonable
computed binding, 39.99 kcal/mol and has no anomalous
behavior in the region of 3.4-4.0 bohr, but it does show the
discontinuity.

Inclusion of the third configuration leads to HF(3), HL(3)
discussed above and to a two-root solutions HF-HL(3,3)-a and
HF-HL(3,3)-b (Figure 3c) generating avoided crossing. The

TABLE 4: Binding Energies (kcal/mol), Total Energies (hartrees), and Correlation Energies (hartrees) from the First Step
HF-HL Approximation

computation BeH [1Σ+] computation BH [2Σ+] CH [2Π]

(a) Without Near-Degeneracy
Eb(HF-HL)(1,1) 50.35 (40.43)a Eb(HF-HL)(1,1) 72.69 67.02
Eb(HF)(1) 50.29 (40.23)a Eb(HF)(1) 64.35 57.14
Eb(HL)(1) -29.25 Eb(HL)(1) 72.16 65.82
E(HF-HL)(1,1) -15.153251 E(HF-HL)(1,1) -25.144948 -38.295442
E(HF)(1) -15.153165 E(HF)(1) -25.131587 -38.279666
E(HL)(1) -15.026465 E(HL)(1) -25.144110 -38.293515
E(HF-HL)(1,1)(R∞) -15.073009 E(HF-HL)(1,1)(R∞) -25.029109 -38.188632
Ec(HF-HL)(1,1) -0.093518 Ec(HF-HL)(1,1) -0.143002 -0.183250
Ec(HF)(1) -0.093607 Ec(HF)(1) -0.156363 -0.199026
Ec(HL)(1) -0.220307 Ec(HL)(1) -0.143840 -0.185177

(b) With Near-Degeneracy in the HL Component
Eb(HF-HL)(1,2) 24.93 Eb(HF-HL)(1,3) 76.08 67.33
Eb(HL)(2) -17.65 Eb(HL)(3) 75.54 65.93
E(HF-HL)(1,2) -15.156455 E(HF-HL)(1,3) -25.185088 -38.313400
E(HL)(2) -15.088603 E(HL)(3) -25.184222 -38.311167
E(HF-HL)(1,2)(R∞) -15.116733 E(HF-HL)(1,3)(R∞) -25.063842 -38.206103
Ec(HF-HL)(1,2) -0.003204 Ec(HF-HL)(1,3) -0.102862 -0.165292
Ec(HL)(2) -0.158169 Ec(HL)(3) -0.103728 -0.167525

(c) With Near-Degeneracy in the HF Component
Eb(HF-HL)(2,1) 38.79 Eb(HF-HL)(4,1) 77.08 69.91
Eb(HF)(2) 38.65 Eb(HF)(4) 77.08 69.73
E(HF-HL)(2,1) -15.178555 E(HF-HL)(4,1) -25.187442 -38.317605
E(HF)(2) -15.178325 E(HF)(4) -25.186678 -38.317225
E(HF-HL)(2,1)(R∞) -15.116733 E(HF-HL)(4,1)(R∞) -25.063842 -38.206194
Ec(HF-HL)(2,1) -0.068217 Ec(HF-HL)(4,1) -0.100508 -0.161085
Ec(HF)(2) -0.068447 Ec(HF)(4) -0.101272 -0.161465

(d) With Near-Degeneracy in the HF and HL Components
Eb(HF-HL)(2,2) 40.50 Eb(HF-HL)(4,3) 77.78 70.03
E(HF-HL)(2,2) -15.181269 E(HF-HL)(4,3) -25.187796 -38.317713
E(HF-HL)(2,2)(R∞) -15.116733 E(HF-HL)(4,3)(R∞) -25.063842 -38.206109
Ec(H-HLF)(2,2) -0.065503 Ec(H-HLF)(4,3) -0.100154 -0.160979

a Rationalized HF and HF-HL binding energies from HF(3) and HF-HL(3,3).
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lower root HF-HL(3,3)-a eliminates the discontinuity and
brings about a binding of 42.71 kcal/mol to be compared with
40.23 kcal/mol for HF(3) and 37.37 for HL(3). The molecular
extracorrelation energy is 7.12 kcal/mol and the barrier height
is 0.92 kcal/mol. The upper root HF-HL(3,3)-b dissociates into
Be [3P](1s22s12p1) and H [2S] (1s1) and its minimum energy is
shifted to about 4.2 bohr, which is the crossing point.

In Figure 3d-f we analyze in detail the contributions related
to the nondynamical correlation energy for the HF (panel d),
HL (panel e), and for the HF-HL functions (panel f). In panel
d, the energy differences [HF(2)-HF(1)] is the nondynamical
HF correlation energy, which is approximately constant until
the discontinuity and thereafter increases to 0.043 72 hartrees,
the same value we have computed for the near-degeneracy
correlation in Be [1S]. The difference [HF(3)-HF(1)] represents
the sum of the nondynamical correlation discussed above and
of the correlation gained by including avoided crossing. This
correlation correction pattern follows the previous one but has
a marked increase in the region of the discontinuity, confirming
that avoided crossing is needed to eliminate the discontinuity.
In the figure the avoided crossing energy stabilization is
designated HF(3)-HF(2).

The nondynamical correlation associated with the HL func-
tions is considered in Figure 3e. The main result is that the HL
nondynamical correlation is notably larger than the correspond-
ing HF quantities. Note the large contribution at short inter-
nuclear separations. At equilibrium the near-degeneracy stabi-
lization is 0.062 14 hartrees, notably higher than for HF.

Finally in Figure 3f, we report the cumulative HF and HL
correlation correction gains obtained from the HF-HL ap-
proximation. The HF-HL data resemble more those for HF
than those for HL, since the correlation diagrams do not add
up the separated effects (panels d and e) due to the different
weights of the HF and HL components in the HF-HL function
at different internuclear separations.

A summary of the computed total energies at the equilibrium
distance and at dissociation, the corresponding correlation energy
contributions, and the binding energies are given in Table 4.

8. BeH: Binding Energy of the [X2Σ+] State and Avoided
Crossing with [C2Σ+]

We consider in detail the avoided state crossing of the [X2Σ+]
ground state with the first excited state [C2Σ+] using the HL
approximation, which allows us to follow very nicely this
process. On the contrary, note the difficulties in following the
crossing within the HF approximation.73 In Figure 4 we report
the previous HL computations for HL(1) and HL(2) and a new
computation for HL-3 (see Figure 4), which dissociates into
Be [3P](1s22s12p1) and H [2S](1s1). We have computed the
avoided crossing by making the linear combination of HL(1)
and HL-3, yielding a lower and an upper solution (curves labeled
a and a′) with binding energies of 41.39 and 9.26 kcal/mol at
an internuclear separation of 2.8 and 5.0 bohr, respectively.
Further, we have considered the linear combination of HL(2)
and HL-3, thus including the effect of near-degeneracy (solutions
designated b and b′). For HL-b and HL-b′ the minimum is
shifted to∼2.6 and 4.4 bohr, the binding energies are 31.41
and 17.81 kcal/mol, respectively.

The determination of the ground-state binding energy requires
a post-HF-HL computation. First, we verify the capability of
our basis set to yield accurate binding and total energies,
adopting a well-established MC approach, the CASSCF. We
expect to obtain energies at the same accuracy level one would
obtain by performing the somewhat more laborious computa-

tions required for the three MC expansions of the second and
third HF-HL steps (eqs 5 and 6).

In Table 3 we report HF, CASSCF, and correlation energy
data all obtained with the same basis set (section 1) at 2.583
bohr (equilibrium distance) and at 40 bohr (full dissociation).
The CASSCF computations have been carried out with all the
available orbitals in the active space, except for cases f and g,
where 80 active orbitals hae been considered. The computed
molecular dissociation energy values are confirmed by atomic
computations. Further, to analyze the correlation energy data,
we include computations with frozen core (either 1s2 or 1σ2)
and those for the ions Be2+ [1S] and BeH3+ [1Σ+]. To each
computation we assign an alphabetical index from “a” to “k”.

Concerning the binding energy the computed value (from f
and g in the table) yields 49.72 kcal/mol very close to the
experimental value of 49.83 kcal/mol. The frozen core computa-
tions h and i yield a binding of 49.75 kcal/mol. The computed
excitation energy Be [1S] to Be [3P] is 2.727 eV (from a and d)
to be compared to 2.725 eV from laboratory data66 and to 2.675
eV by using frozen core energies (b and e).

The computed total energy at equilibrium is-15.245 23
hartrees, to be compared to-15.2457(2) and-15.2231(8)
hartrees, from diffusion quantum Monte Carlo and variational
quantum Monte Carlo computations,61 respectively. To our
knowledge, this is the most accurate computation in the literature
for the BeH [X2Σ+] binding and total energies from ab initio
variational methods. Among the many previous computations
we recall bindings of 48.7770 and 48.88 kcal/mol,71 and the
corresponding total energies of-15.196 35 and-15.196 76
hartrees, both obtained with the frozen core approximation.

The computed correlation energies for Be [1S] and for BeH
[X2Σ+] are-0.092 98 and-0.092 06 hartrees, respectively (see
a and f). From the data in Table 3 we can decompose the Be
correlation energy into the pairsε(1s2) and ε(2s2) and the
interpairε(1s-2s). For BeH the pairs areε(1σ2) andε(2σ2) and
the interpairsε(1σ-2σ), ε(1σ-3σ), andε(2σ-3σ). For Be [1S]
we obtainε(1s2) ) -0.043 33 hartrees (from entry c in Table
3), ε(2s2) ) -0.043 72 hartrees (from b), andε(1s-2s) )
-0.005 93 hartrees (subtracting b and c from a). For BeH
[X2Σ+] we obtainε(1s2) ) -0.043 34 hartrees (from j), [ε(2σ2)
+ ε(2σ-3σ)] ) -0.045 14 hartrees (from h), [ε(1σ-2σ) + ε-
(1σ-3σ)] ) -0.002 70 hartrees (subtracting i and j from f).
Note thatε(1s2) andε(1σ2) are essentially equal, as found for
LiH. The correlation energy difference,∆ε, for Be [1S] and BeH

Figure 4. BeH [2Σ+]: HL potential energy for HL(1), HL(2), HL-3,
and avoided state crossings. Curves a and a′ are obtained by variation-
ally combining HL(1) and HL-3; those indicated with b and b′, by
variationally combining HL(2) and HL-3.
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[X2Σ+], namely, the molecular extra correlation energy, amount
to 0.0009 hartrees (analyzed later).

Thus, we have verified that our basis set is adequate to yield
accurate binding energy determinations and very reasonable for
nonrelativistic total energy computations.

In the previous section we have reported an HF binding
energy of 50.29 kcal/mol obtained as usually done by subtracting
the sum of the atomic ground-state HF energies for Be [1S]
and H [2S] from the molecular HF computed energy at
equilibrium. The above binding energy value appears rather
anomalous since (1) it is obtained assuming a regular molecular
HF function, rather than the one with a discontinuity (resulting
from state crossing) and likely contaminated by near-degeneracy,
(2) it is very close (indeed larger) to the laboratory value of
49.83 kcal/mol, and (3) the molecular extracorrelation energy
is exceptionally a positive, even if small, value, 0.58 kcal/mol.

We can follow two paths to explain the rather surprisingly
binding energy value. The first simply states that the correlation
energy of the five electrons in BeH at the equilibrium geometry
is nearly equal to the correlation energy of the four electron
atom Be [1S]. This appears to be in contrast with the generally
accepted rule according to which the correlation energy increases
with the number of electrons. However, exceptions to the above
rule have been recently reported in atomic systems74 with near-
degeneracy effects, similarly to the BeH case.

The second paths considers an artifact the HF correlation
energy obtained following the traditional definition, in the case
of BeH, since the HF(1) solution exhibits a singularity at the
curve crossing. This alternative path stresses the existence of
the HF discontinuity with two and not one HF solution, and
the consequent need to account for the avoided crossing before
computing the correlation energy. We recall that, since long
ago,9 it was proposed that a single determinant is only one
among several formulations of the general HF model: in
particular situations (such as for near-degeneracy in atomic
systems) short MC functions are the HF-type functions of
preference. Curve crossing is another particular situation of high
relevance in molecular systems. The HF(3) function appears to
be a reasonable replacement for the HF(1) function for the
correlation energy computation of BeH. Its binding energy of
40.23 kcal/mol eliminates the problem related to a positive value
of the extracorrelation energy. The correlation and molecular
extracorrelation energy are thus-0.065 49 and-0.014 66
hartrees, respectively. Note that this value is indirectly supported
by the computed binding energies 37.37, 41.39, and 42.71 kcal/
mol from HL(3), from the combination of HL-3 with HL-1 and
from HF-HL(3,3), respectively. In section 11 the rationalized

binding energy is once more suggested by comparing data for
the full set of monohydrides. The value of 40.23 kcal/mol is
therefore reported in Table 4 in correspondence of the HF
binding energy.

Note that these computations bring us once more to the
conclusion that the physically meaningful reference function
for BeH can be neither the Hartree-Fock function, which is
plagued by instabilities and ambiguities, nor the Heitler-
London, which is incapable of yielding molecular binding.

9. BH [1Σ+] and CH [2Π]

The BH [1Σ+] and the CH [2Π] analysis is relatively simpler
than that for BeH [2Σ+] since there is 2p atomic orbital
availability for bond formation both in B [2P](1s22s22p1) and
in C [3P](1s22s22p2) and since the near-degeneracy in the B and
C atoms is relatively weaker than in the Be one. However, the
BH [1Σ+] and the CH [2Π] computations of the near-degeneracy
require two added configurations, the 1s22s02p3 and 1s22s12p2

for the B atom and the 1s22s02p4 and 1s22s12p3 for the C atom.
In Figure 5, we report the HF, HL, and HF-HL potential

energy curves for BH [1Σ+] (left inset) and for CH [2Π] (right
inset). The computed HF, HL, and HF-HL bindings for BH
[1Σ+] are 64.36, 72.16, and 76.08 kcal/mol. respectively, at the
internuclear separation of 2.329 bohr. In computing the HF near-
degeneracy, we include a forth function, HF-4 (see Table 2),
needed to yield a correct dissociation. The BH [1Σ+] correlation
energies in the HF(4), HL(3), and HF-HL(4,3) functions are
-0.101 27,-0.103 73, and-0.100 15 hartrees, respectively,
and the binding energies are 77.08, 75.54, and 77.78 kcal/mol,
respectively.

The HF-HL(1,3) combination of the HF(1) function and HL-
(3) functions yields a binding of 76.08 kcal/mol; note however
that this is an unbalanced computation. A balanced computation
HF-HL(4,3) yields a binding energy of 77.78 kcal/mol. This
computation has been performed for three points in the
neighborhood of the equilibrium internuclear separation and
differs only slightly from HF-HL(1,3).

The CH [2Π] potentials, reported in Figure 5, are computed
with and without inclusion of nondynamical correlation. These
computations follow the same pattern as those for the BH
molecule. The computed HF, HL, and HF-HL bindings for
CH [2Π] are 57.14, 65.82, and 67.82 kcal/mol, respectively, at
the internuclear separation of 2.122 bohr. The CH[2Π] dynami-
cal correlations energies in the HF(4), HL(3), and HF-HL-
(4,3) functions are-0.161 48, -0.167 53, and-0.160 97
hartrees, respectively, and the binding energies are 69.73, 65.93,
and 70.03 kcal/mol, respectively.

Figure 5. BH [1Σ+] (left panel) and CH [2Π] (right panel) potential energy curves for HF, HL, and HF-HL approximations with and without
nondynamical correlation, unbalanced or balanced.
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A detailed analyses of the computed energies shows a nearly
constant nondynamical correlation energy for any internuclear
distance. The variation of the weights for the HF and HL
components show a dominant HL presence from short distances
to dissociation.

In Table 4 for BeH [X2Σ+], BH [1Σ+], and CH [2Π], we
summarize the HF(n), HL(m), and HF-HL(n,m) computational
data at dissociation and at the experimental equilibrium distance
(the latter given in Table 1). For each molecule, we report the
binding energies (in kcal/mol),Eb(HF-HL), Eb(HF), andEb(HL); the
total energies (in hartrees),E(HF-HL), E(HF), E(HL), andE(HF-HL)(R∞)
at dissociation; and the correlation energies,Ec(HF-HL), Ec(HF),
andEc(HL). We tabulate the following separately: (a) the energies
without near-degeneracy, (b) near-degeneracy in the HL com-
ponent (indices 1,2 for BeH, 1,3 for BH and CH), (c) inclusion
of near-degeneracy in the HF component (indices 2,1 for BeH,

4,1 for BH and CH), and (d) inclusion of near-degeneracy in
the HF and HL components (indices 2,2 for BeH, 4,3 for BH
and CH).

The tabulation of the four cases has been reduced in length
by reporting specific energy data only for the first presence in
the table; for example the HF(1) energy is relevant in the a and
b subtabulations but is given only in a.

10. HF-HL Model for NH [ 3Σ-], OH [ 2Π], and HF [1Σ+]

For the ground-state molecules NH [3Σ-], OH [2Π], and HF
[1Σ+], the HF-HL computations are equivalent to those for LiH,
since there is no near-degeneracy in the N [4S], O [3P], and F
[2P] atoms. Therefore, for these molecules the only contribution
to the nondynamical correlation energy is that gained by mixing
HF and HL functions. The computed HF, HL, and HF-HL
potential energy curves are reported in Figure 6. In Table 5 we
report, for the experimental equilibrium distance, the binding
energies (in kcal/mol),Eb(HF-HL), Eb(HF), and Eb(HL); the total
energies (in hartrees),E(HF-HL), E(HF), E(HL), andE(HF-HL)(R∞)
at dissociation; and the correlation energies,Ec(HF-HL), Ec(HF),
andEc(HL). In Table 5 we also report data for H2.

For NH [3Σ-], OH [2Π], and HF [1Σ+] the HF binding
amounting to 48.59, 70.16, and 101.23 kcal/mol, respectively,
increases to 60.29, 79.62, and 108.36 kcal/mol, respectively, in
the HF-HL approximation. The HL binding is deeper than the
HF binding for H2, LiH, NH, and OH but not for HF.

We conclude that, for all the hydrides considered in this work,
the HF-HL approximation is superior to either the HF or the
HL approximations.

Furthermore, we recall that, in the present HF-HL first-step
approximation, we have not considered ionic structures for the
HL component. Inclusion of two of these structures for the HF
molecule leads to a HF-HL computation with five configura-
tions (HF, HL covalent, HL ionic F-H+, and HL ionic F+H-),
yielding a binding of 132.5 kcal/mol. A very extensive CASSCF
(8,22) computation (8 electrons into an active space of 22
orbitals, generating over 13 million determinants) yields a
binding energy of 131.99 kcal/mol. This comparison shows that
very compact HF-HL functions can yield not only correct
dissociation but also reasonable binding energies.

11. HF, HL, and HF-HL Binding Energies

In Figure 7 we consider two quantities: In the top panel the
binding energies from HF, HF-HL, and the experimental data,
in the bottom panel the molecular extracorrelation energy from
the HF and the HF-HL models. Concerning the binding energy,
we recall that the HeH and the NeH have exceedingly small
binding energies (not visible on our scale), marking the
beginning and the end to the second period hydrides. The

Figure 6. HF, HL, and HF-HL potentials for NH [3Σ-] (top panel),
OH [2Π] (middle panel), and HF [1Σ+] (bottom panel).

TABLE 5: Binding Energy, Eb(HF-HL) (1,1) (kcal/mol), Total
Energy (hartrees) at Equilibrium, E(HF-HL) (1,1)(Re), and at
Dissociation,E(HF-HL) (1,1)(R∞), and Correlation Energy
Ec(HF-HL) (1,1)(Re) from the First Step HF-HL
Approximation

computation H2 [1Σ+] LiH [ 1Σ+] NH[2Π] OH [3Σ-] HF [1Σ+]

Eb(HF-HL) 94.50 43.66 60.29 79.62 108.36
Eb(HF) 83.83 34.27 48.59 70.16 101.23
Eb(HL) 94.28 43.11 57.30 72.26 92.17
-E(HF-HL) 1.150595 8.002298 54.997006 75.437153 100.084049
-E(HF) 1.133599 7.987338 54.978355 75.421187 100.070665
-E(HL) 1.150247 8.001415 54.992242 75.425426 100.058248
-E(HF-HL)(R∞) 0.999999 7.932719 54.900922 75 99.911365
-Ec(HF-HL) 0.023873 0.068193 0.220534 0.299927 0.375151
-Ec(HF) 0.040872 0.083153 0.239185 0.315893 0.388535
-Ec(HL) 0.024221 0.069076 0.225298 0.311654 0.400952
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seemingly irregular behavior of the experimental data is a
manifestation of an empirical rule for thissequenceof homo-
geneous molecules, the monohydrides:for a giVen period of
the atomic table the hydrides with the same spin multiplicity
haVe binding linearly increasing with the number of electrons,
and the higher the spin multiplicity, the higher the binding.
Recall that the ground state for LiH, BH, and HF is a singlet
state, for BeH, CH, and OH is a doublet state, and for OH is a
triplet state. (A nearly equivalent rule is known from correlation
energy studies in atomic sequences75). The HF-HL model
predicts a binding energy pattern which closely follows the
experimental one, with 81% average agreement. For the HF
and HL models the computed binding has an average agreement
of 69 and 66%. In computing the above average errors, we have
not considered the repulsive energies.

In the bottom panel of Figure 7 we display the molecular
extracorrelation energy, namely, the error of the HF and HF-
HL computed molecular binding. For H2 and LiH the binding
energy errors are approximately equal, 14.5 and 15.3 kcal/mol
from HF-HL computations, and 35.6 and 23.73 kcal/mol from
HF computations, respectively. For bonds formed with 2p
electrons (and this includes also BeH due to the near-
degeneracy) both models, HF and HF-HL, present correlation
energy patterns that smoothly increase withZ.

12. HF and HF-HL Correlation Energies

It is of interest to compare (1) atomic and molecular
correlation energies,Ec(n), in systems characterized byn
electrons and (2) in the hydrides the values ofEc(n) at the united
atom, at equilibrium and at dissociation. The comparison brings

in evidence of the shortcoming of the HF model and the relative
superiority of the HF-HL model.

In Figure 8, using data from Tables 1, 4, and 5, we report
theEc(n) values in the ordinate versusn in the abscissa, where
n represents the number of electrons both in the atomic and in
molecular systems. In addition, the abscissa represents the
internuclear distances: for a XH(n) hydride,Ec(n) varies from
the internuclear separationR(XH) ) 0 bohr plotted atn on the
abscissa, toR(XH) ) 10 bohr made to correspond ton - 1.
Alternatively stated, each interval,n to n - 1, also represents
the scaled internuclear separations fromR(XH) ) 0 to R(XH)
) 10 bohr, which corresponds essentially to dissociation.

In Figure 8 we plot the total HF atomic correlation energies
(full bullet) without and with near-degeneracy. In addition, for
the hydrides at a few internuclear separations, we report the
correlation energiesEc(HF) connected by a dashed line, the total
Ec(HF-HL) (square marks connected by a solid line), and the
dynamicalEc(HF-HL) (triangle marks connected by a solid line).
The atomic correlation energy value for the atom withZ ) n is
equal to the correlation energy of XH(n) at the united atom,
R(XH) ) 0, both in the HF-HL and HF approximations. In
addition, the atomic correlation energy value for the atom with
Z ) n - 1 corresponds to the correlation energy of XH(n) at
dissociation,R(XH) ) ∞ in the HF-HL approximation, but
not for the HF approximation, which breaks down approaching
dissociation (exception made for BeH). The HF correlation
energy increases sharply concomitant with the HF model
breakdown; in the graph we have reported the HF correlation
at the united atom, at the equilibrium internuclear distance, and
atR(XH) ) 10 bohr. The HF-HL correlation energy is reported
at the united atom, at the equilibrium internuclear distance, at
R(XH) ) 3Re and atR(XH) ) 10 bohr. Note that atR(XH) )
3Re the HF-HL correlation is essentially equal to its value at
dissociation.

From the figure it is evident that the atomic correlation energy
is the dominant component of the hydrides total molecular
correlation, exception made for those containing very few
electrons. Note that the difference in spin multiplicity comparing
the XH molecule and the X atom forn ) 6 (3P and1Σ) andn
) 7 (4S and2Π) appears to be rather unimportant, at least for
the energy scale of the figure. The role of the molecular
extracorrelation in molecular binding is evident, but at the same
time the overall graph shows that the XH systems are essentially
perturbed atoms, especially for large values ofn. Finally, the
graph clearly points out that the HF representation becomes
physically meaningless shortly after equilibrium (approximately
after R(HX) ) 2Re) up to dissociation, whereas the HF-HL

Figure 7. Top: Hydride binding energies from the HF and HF-HL
approximations and from experiments. Bottom: Molecular extracorre-
lation energy from the HF and HF-HL models.

Figure 8. Total and dynamical atomic and molecular correlation
energies. See text for details.
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representation is realistic from the united atom to dissociation.
The fact that HF-HL is the model of preference at any
internuclear distance shows that it is the “reference function”
for molecular systems.

For BeH [X2Σ+] we have plotted forn ) 4 to n ) 5 the
value for the correlation energy which corresponds to the
rationalized binding energy of 40.23 kcal/mol.

13. Dipole Moment for the Second Row Hydrides

We have shown that, at a very moderate incremental cost in
computational complexity, the HF-HL model notably improves
the realism in bond energy prediction, from united atom to
dissociation, relative to the HF and HL models. The dipole
moment, µ, is another basic observable in modeling the
electronic structure of molecules. The dipole moment for the
hydrides of the second row, reported in Table 6, is obtained
from computations in the HF, HL, and HF-HL models and
from experiments.76-78 The HF-HL method appears reliable
also for dipole moment computations. In addition we stress that
the computed HF-HL dipole moment in the HF-HL ap-
proximation goes correctly to zero at dissociation, whereas the
HF model often yields dipole moment values totally unphysical
at large internuclear separations.

The reported values ofµ are for the equilibrium distance;
we recall thatµ varies strongly with the internuclear distances,
yielding maxima and minima. This observation suggests to
report the|∆µ| for two distancesR1 andR2, with R1 < Re < R2

and∆R ) R1 - R2 ) 0.2 bohr. From the table we see that the
computed value ofµ, taking into account|∆µ| brackets the
experimental value.

14. Conclusions

We have presented a new variational computational method,
the Hartree-Fock-Heitler-London and compared Hartree-
Fock, Heitler-London, and Hartree-Fock-Heitler-London
potential energy curves for the first and second period hydrides.
Keeping in mind preliminary computations29 for Li 2 and F2,
we conclude that neither the HF nor the HL approximation is
capable of systematically reproducing, at least qualitatively, the
basic molecular binding features known experimentally (bond
breaking and bond formation). Further, the HF model breaks
down at dissociation, preventing any assessment of the correla-
tion correction for internuclear separations larger than about
twice the equilibrium distance. The two traditional methods,
however, have the high merits of mathematical simplicity and
immediate physical interpretability and, because of these two
basic qualities, have historically provided two distinct quantum
chemical “reference” wave functions for theoretical and com-
putational chemistry. More importantly, the two methods are
at the origin of the most basic concepts in physical chemistry
and in chemical physics.

The HF-HL method merges the two historical paths, at a
marginal increase in computational complexity, retaining at the

same time the physical interpretability of the two original
contributions. The combination of the two methods into the HF-
HL approach eliminates grossly unphysical aspects, particularly
at large internuclear separations, and accounts for nondynamical
correlation and state crossing. Furthermore, the HF-HL ap-
proach systematically predicts molecular binding more correctly
than those obtained from either the Hartree-Fock or the
Heitler-London models. Finally, by reducing the correlation
energy error to its dynamical component, it simplifies the
computational task in post-HF-HL computations.

Therefore, the HF-HL approach provides a reliable “zero-
order reference wave function”, while maintaining mathematical
simplicity and immediate physical interpretability based on the
two traditional chemical models, LCAO-MO and VB.
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