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In this paper we discuss a simple extrapolation scheme based on the asymptotic behavior of the electronic
energies considered as functions of cutoff factor for orbital energies corresponding to virtual orbitals. The
performance of this approach is illustrated in the context of large-scale dynamic simulations for excitation
energies of the cytosine molecule in its native DNA environment. We demonstrate that the extrapolation
errors are significantly smaller than the excitation-energy fluctuations, due to the fluctuating environment.

1. Introduction Scuseria, and Savitt,led to mathematically rigorous bounds
for extrapolated correlation energies.

Since extrapolation approaches can merge both the accuracy
of underlying methodology and relatively low computational
demands, they can be considered as fit methods for treatment
of large-size systems currently beyond the reach of standard
CC approaches, especially in excited-state calculations. Recently,
we have developed, using NWChé&nhecapabilities, a suite of
programs that combines classical molecular dynamics with high-
level ab initio methods for excited staté$The main goal of
this effort was to create a framework for realistic, temperature-
dependent, excited-state calculations for biochemical systems
with an approximate description of the effects of the native
environment, including its dynamic fluctuations. Since thermal
averaging involves multiple calls to rather expensive ab initio
procedures, the low-scaling extrapolation schemes may play a
pivotal role in further advancing this area. However, this is likely
to happen only if the errors due to the extrapolation procedure

re negligible compared to standard fluctuations in the excita-
on-energy values due to a fluctuating environment.

Usually, the size of systems of biological importance prohibits
the use of extensive basis sets that include diffuse functions or

The low-scaling variants of the coupled cluster (CC) method
have been a focus of quantum chemists since the inclusion of
triply or triply and quadruply connected clusters proved to
provide a chemical level of accuracy for equilibrium ground-
state properties. For obvious reasons, mainly related to relatively
low-scaling and inherent parallelism, the noniterative CC
approaches are the best candidates to be applicable in large
scale calculations performed on massively parallel computers.
Many ground- and excited-state methods that account for the
effect of triply excited clusters such as the standard CCSD[T]
and CCSD(T) approaches, the excited-state EOMCCSD(T)
corrections® the methods based on similarity transformed
Hamiltonians'®~18 and the ground- and/or excited-state renormal-
ized!®*=2% and locally renormalized approackesdespite their
N’ numerical scaling with the system sike-have became or
will soon become standard tools in routine highly accuedie
initio calculations. Several attempts were undertaken to alleviate
the numerical overhead of these methods. The techniques base
on Laplace or Cholesky decompositfér?® of perturbative
denominators, methods striving at the reduction of the virtual

orbital spacé’** or localized approach&s=*are very efficient functions of triple- or quadruplé-quality. On the other hand,

in reducing the overall CO,StS of noniterative approaches. large basis sets are required to obtain a quantitative consensus
Some of the aforementioned methods, such as the local CCbetween experimental and theoretical predictions.
approaches, reparametrize the genuine CC methodology and lead 1he main purpose of this paper is to address, on a very basic
to energies that become functions of additional parameters.|qye| these important issues. We use a very simgarameter-
Similar ideas, based on the reparametrization and subsequenfjependent cutoff scheme for the virtual orbitals with orbital
extrapolation of the correlation energy, have been recently gnergies lying above the cutoff factor. On the basis of that, we
pursued by Bytautas and Ruedenberg in the context of fg”ela'will derive simple heuristic formulas, subsequently used in the
tion energy extrapolation by intrinsic scaling (CEES); extrapolation procedures, that describe an asymptotic depen-
Whlch relies on the extrapolation of thg correlation energy yence ofr-dependent energies. The performance of the asymp-
obtained for a sequence of truncated basis sets to the completgyic extrapolation scheme for completely renormalized equation-
basis set limit. Preliminary results clearly show that the CEEIS of.motion approach with the singles, doubles, and noniterative
procedure is capable of providing results which are fairly close triples (CR-EOMCCSD(T)) method is illustrated on the excited-

to the full configuration-interaction (FCI) energies. Other giate calculation of cytosine base in its native DNA environment.
attempts to harness the various extrapolation schemes were

discussed by Ayala, Scuseria, and S&inorder to extrapolate 2. Theory
the exact MBPT2 (second order of MghdPlesset perturbation

theory) results. A different approach, discussed by lyengar, In the combined coupled-cluster and molecular mechanics

(CC/MM) approach, the system is described by the Hamiltonian
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whereHquw is the standard many-electron Hamiltonian describ- states. To cope with more complicated states that have non-
ing the internal energy of the quantum-mechanical (QM) region negligible doubly excited components, one should include the

1
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where the indiceg, v, 4, andkx designate single-particle states
and the element§ and ¢}, represent one- and two-electron
integrals, respectively, wherea% (a;) operators are the usual
creation (annihilation) operators. The interaction between the
QM region and its surroundings (MM region) is contained in
the second ternHommm

Hommm = z H’

v

Q"
IR"-r]

v@;au +V{RTLR) ()

whereQ" andR[" denote charges and coordinates of the MM
region. The V{R™ {R}) term represents the interaction
between nuclei in MM and QM regions{R} represents
symbolically the set of nuclear coordinates in the QM region).
The third term in eq 1Huwm, describes the internal energy of
the MM region represented by an Amber-type force fiéldhe
HamiltonianH, defined as

(4)

effectively includes, through thEgommm term, the interaction
of the environment with the QM region.

In our CC/MM simulations of excited states we decided to
use the EOMCC formalism as one of the most establishe

H= HQM + HQM/MM

d

methodologies to calculate excited-state properties. Its basic

variant with singles and doubles (EOMCCSD) (EOMCCSD-
related methods were used in the context of advanced QM/MM
simulations described in refs 48%2) has proven to provide a
satisfactory description of vertical excitation energies for a class
of excited states dominated by single excitations with respect
to the reference function®F-customarily chosen to be a
Hartree-Fock (HF) determinant. In the EOMCCSD approach
the wave function corresponding to tKestate takes the form

®)

whereT; andT; are singly and doubly excited cluster operators
andRg; (i = 0—2) represent-tuply excited components of the
excitation operators for a given state. For obtaining the excitation
energies, a two-step procedure is invoked. First we solve the
CCSD equations for cluster amplitudes

W= (Reo + Res + ReJe™ @0

@ HCP D=0  (=1,2) (6)
whereHCCSPis the CCSD similarity transformed Hamiltonian,
HCCSD = e (M*TIHEN*T.. Second, excited-state energies
(E°M®H are obtained by diagonalizing the matrix represen-
tation of theHCCSP operator,HCCSD, in the space spanned by
the reference function and all singly and doubly excited
configurations

v EOMCCSD EOM D HEOM D
HCCSDRK — EKO CCs RKO CCSs

)

In the above equation, thee™ M vector components
correspond tdx o and all singly and doubly excited amplitudes
defining theR« 1 and Rk operators, respectively. As a rule of
thumb, the EOMCCSD method works well for the singly excited

effect of triply excited configurations in either an iterative or a
noniterative manner. In this paper we will use the noniterative
CR-EOMCCSD(T)d(IA) approximation in which the due-to-
triples corrections expressed in terms of triply excited moments

are directly added to the EOMCCSD excitation energfes,
EOMCCSD

Wy
CR—EOMCCSD(T) EOMCCSD
Wy = wy + 0«(1A) (8)
og(IA) = Zil,)i,?k Mirjéabz,j Dx 9)
i<j<kia<b<c
where the tensaZS%; is defined as
Zﬁl}fk = @)“RK,O(TlTZ +]é-|-13) + RK,1(T2 +%-|-12) +
Rt
ReaTa + Red |0 0)

with Rg 3 representing an approximation of the exact, triply
excited R¢ 3 operator, where the amplitude@,ﬁfabo are set
equal oMy /(R OV P+ € + ¢ + ek — €a — ep — €0) (€'
correspond to the HF orbital energies), an',&abc represent the
three-body moments of the EOMCCSD equations. Even for
single-point calculations the CCSD/EOMCCSD and CR-EOM-
CCSD(T) approaches are characterized by quite large compu-
tational demands ofi,?n,* and n,®ny?, respectively, whera,

(ny) designates the number of correlated occupied (unoccupied)
orbitals. For QM/MM simulations this situation is even worse,
due to the need for multiple calls of expensive QM-related
procedures. To reduce this prohibitively large numerical cost,
in the last few decades we have witnessed an enormous effort
striving at reducing the scaling of the approximate CC/MBPT/
EOMCCI/CI approaches in order to make them applicable in
situations characterized by considerable system size or large
dimension of the basis set. Also, in all approaches that attempt
to achieve the infinite basis set limit, the correlation energies
(as well as the underlying Hartre&ock) were parametrized
with respect to the quality of the basis 8&t>’ In this paper

we want to discuss a simple extrapolation model for calculating
excitation energies, which is parametrized with respect to a
cutoff factor for orbital energies. We will show that the errors
of the extrapolation model developed here are an order of
magnitude smaller than the excitation energy discrepancies
characteristic for a typical QM/MM simulation. Therefore, in
the context of high-level QM/MM calculations these simplified
schemes may assume more practical dimension by making, at
least at an approximate level, the use of more extensive basis
sets in realistic simulations feasible.

Let us assume that we decided to use in the calculations of
energies corresponding to a given basis set only a limited subset
of all virtual orbitals with corresponding orbital energies less
than a given threshold The set of these virtual orbitals along
with all correlated occupied orbitals will be denotedgswhile
all remaining virtual orbitals form the s&,, so we have

Q=Q +Q, (12)
where the sef2 is composed of all correlated orbitals. In the
next step we will try to relate the results of a given correlated
method that uses only orbitals from thy set with the results
of the same method which employs the full set of orbitéls,
for sufficiently large values of parameter. This analysis can
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be conveniently carried out using standard perturbative reason-

ing. Without loss of generality, let us focus our attention on

any truncated configuration interaction method that uses a

subspace spanned by uprtduply excited configurations with
respect to a given Hartred-ock determinant. This space can
be defined by the projection operat®. The orbital set
decomposition (11) naturally entails related decomposition of
the P space:

P=P,+Q, (12)
where P; represents the subspace Bfspace which contains
the Slater determinants constructed from the orbitals defining
the Q; set. Its orthogonal complement in tiRespace will be
referred to as th&), space. To relate the low-lying energies
Ex . and corresponding staté¢dy 0K =0, 1, 2, ...M, M <
N;, N; = dim P;) obtained by diagonalizing the matrix
representation of the Hamiltonian operator in the sgacéd,

= P,HP,, with the target eigenvaluds and eigenvectordPx]
(K=0,1, 2,..,M) of the PHP operator, let us consider the
perturbed problem

(Ho + V)W (D)= B (D)W (DD (13)

wheret-dependenty, andV; operators are defined as
Hy, = P,HP, + Q,FQ, (14)
V. =QHP, +PHQ +Q,H—-F)Q, (15)

In the above equations thEé operator represents the Fock
operator. The solutions of eq 13 fdr = 0 correspond to
eigenvalues of thel, operator, i.e.Ex ;(0) = Ex ; and|Wk (0)C

= | Dy (K = 0-2, ...,M), while for 1 = 1 we obtainEx (1)

= Ex and|Wg (1)0= |[PkOK =0, 1, 2, ...M). Once the values
of cutoff factorz are chosen to be sufficiently large, we can
expect that eachdg .Oconstitutes a very good approximation
for the target statePx[Jand, therefore, th¥; operator for these

states can be considered as a small perturbation. In such P

situation it is justified to expect that the second-order corrections,
E®), to Ex, recoverEx almost entirely: i.e.
2
Ex=E¢) +E,, (16)
Using the standard MBPT methodology and assuming inter-
mediate normalization with respect to a given referedee, ]
one can show thaiff)r takes the form

EQ = @ ,| V,ROV,|®, .0 (17)

where

|(I)A,rm)A,r| (18)
RK’T - Z EK,T_ EA,r

where the indexX\ is used to label the configurations from the
Q: space andEx ; = [@ .| F|Da LJAgain, oncer is sufficiently
large allEx; — Ex . values are simply on the order of If so,
in this asymptotic limit, theEx energies can be expressed as

A

B¢~ E+—

(19)

whereAx ; = —[®k .| V.Q; V| Pk .[] The addition of the higher
order corrections tdEg , energies results in a more detailed
description of the asymptotic behavior
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B, C
Ec=Ey, +A$+ K

‘L'3

K,r
> +
T

. (20)

Since all basis sets used in calculations are of finite dimension,
we should formally require that

AK,r = BK,r = CK,T =.=0 Drz (21)

€u
whereey is the orbital energy of the highest unoccupied orbital.
These constraints simply reflect the fact that all one-particle
basis sets used in calculations are of finite dimension. In terms
of excitation energies, which are the focus of our interest, these
formulas translate to

Q
EK—EOZwKZa}KJ-i-TK’r—i-ﬂK'T

2
T

VK,T

3
T

+ + ..

(22)

WhereaK,r = AK,r - AO,n ﬁK,r = BK,r - BO,n YKz = CK,T - CO,Z!

etc. Our attention will be on the simplest case when only the
first two terms on the right-hand side of eq 22 are taken into
account, i.e.

aK‘[
Wy = Oy, + -

(23)
This formula can be used in defining a simple extrapolation
scheme. Let us assume that we performed a number of
calculations{w .}, corresponding to increasing values of
the  parameter, i.e.7i > 7; for i > j. For sufficiently large
values ofr parameters, which ensure fast convergence of the
MBPT expansion, (13), one can expect functions of the type

f(r.X) = % +F(Z'X)

(24)
where components of the vectar= {xy, X, ..., Xo} are the
arameters whose values are variationally optimized to provide
the best fit to the set dfw, .} T values. We will assume that
for the optimumx vector we have

oy = feyX) = oy (25)
Obviously, we do not know the functional dependence of the
I'(z,x) function but it is justified to ponder thE(z,x) function
also as a decreasing function of theparameter. The most
apparent choice df(z,x) can be defined aii’leHl/r‘, which
leads to the class dffunctions

P Xit1
=X+ ) —
At

(T X) (26)

In the next section we will employ thf functions forp =
1-3. We believe that the results derived for the truncated CI
method are also valid for other parametrizations of the wave
function. In fact, using the second quantized formalism, similar
results can be derived for the CC and EOMCC methodology.
We will apply the results of this section to the CR-EOMCCSD-
(T) vertical excitation energies corresponding to different values
of t parameters.

On the basis of the decomposition of the second quantized
form of the Hamiltonian, cluster operatdr, and excitation
operatorR

(27)



Asymptotic Extrapolation Scheme

J. Phys. Chem. A, Vol. 110, No. 48, 20063109

TABLE 1: Results of Several Asymptotic Extrapolation Models for the zzz* Excitation Energy of the Cytosine Molecule in the

cc-pVDZ, aug-cc-PVDZ, cc-pVTZ, and cc-pVQZ8% Basis Setd

basis o) o) oF)  oF] oF] o®0 X)) ffex)  feux) P

Five-Point Extrapolation

cc-pvDz 5.22 5.15 5.13 5.13 5.10 5.02 5.06 5.11 4.92 0.18

aug-cc-pvVDZ 5.00 4.98 4.96 4.93 491 4.85 4.90 4.83 4.77 0.13

cc-pvVTZ 5.13 5.08 5.06 5.03 5.02 4.98 4.97 4.92 0.06

cc-pvVQz 5.08 5.04 5.01 4.99 4.98 4.94 4.93 4.90 0.04
Three-Point Extrapolation

cc-pvDZ 5.22 5.15 5.13 5.02 5.04 5.17 5.13 0.13

aug-cc-pvVDZ 5.00 4.98 4.96 4.85 4.93 4.88 4.87 0.06

cc-pvVTZ 5.13 5.08 5.06 4.98 5.01 4.98 0.03

cc-pvVQz 5.08 5.04 5.01 4.94 4.94 491 0.03

aFive and three excitation energies corresponding to listed valuepafameters were used in the extrapolation. The exact CR-EOMCCSD(T)
excitation energy is denoted a$R(™. The values oty are discussed in the text. Thequantities are defined as mgk — fjl.

whereX; represents part of th¥ operator expressed in terms
of spin—orbital indices from the se®, while each term inx,
contain at least one index frofa,, we can easily derive similar

dynamics (MD) simulation. To calculate the excitation energies
of the quantum region, we chose to use the variant of the CR-
EOMCCSD(T) method defined by egs 8 and 9. In all calcula-

results for CC-based approaches not only for excitation energiestions the core orbitals were kept frozen.

but also for properties. Using this decomposition for Thend

Let us briefly describe only the basic tenets of this calculation

H operators, the corresponding CC equations can be written in(for details see ref 46). The system considered in this work

the form

P.I(F.e"c + (A, ™| =0 (28)

Q(A.e")c + (He™ )| ®0=0 (29)
whereP; andQ; are projection operators (defined in the same
way as the operators in eq 12) on the manifold of excited
configurations used to define the cluster operdter T, + T..
Simple analysis shows that tfig operator should reveal 4/
bahavior for sufficiently large values af (for details see ref
58). Similar conclusions can be inferred from the analysis of
equations forA operator used in the context of gradient and
property calculations. Using the bivariational expression for CC
expectation value for operater

BO= @((L+ A, + A)E T, + p,)e" ) @0 (30)
we arrive at the formula
LoL= [p,[H v, (31)

wherev, decays at least astlih the asymptotic limit. Obviously
the minimum value of the parameter that guarantees the 1/

consisted of the 12-mer fragment of B-DNA'{BCGCGT-
TGCGCT-5) solvated in a rectangular box (5151 x 69 A)

of SPC/E” water. To neutralize the charge, 22 sodium ions were
also added to the system, resulting in a total of 18 060 atoms.
After initial optimization the system was brought to equilibrium
by warming in stages (50 K increments) over the course of 60
ps of classical molecular dynamics simulation. Dynamic tra-
jectories were generated with constant temperature and pressure
(298.15 K, 1.025x 1C° Pa) molecular dynamics simulations
using a 15 A cutoff. The excited-state calculations were based
on a quantum representation of cytosine base capped with a
hydrogen link atom in the field of the entire DNAwvater
complex (18 048 point charges).

The first test consisted of excited-state calculations on a single
reference snapshot taken from the classical MD trajectory. The
snapshot was chosen to provide the smallest discrepancy
between resulting vertical excitation energy for the* state
and its time-averaged value within full cc-pVDZ calculations.
All snapshot calculations were performed in the field of
surrounding environment. We used four basis sets, cc-pVDZ,
aug-cc-pVDZ, cc-pVTZ, and cc-pVQE;5%n order to illustrate
the performance and dependence of our extrapolation models
on the dimension of basis set employed.

Table 1 collects the CR-EOMCCSD(T) results obtained using

bahavior can be contingent upon the system and basis se{,g.ious extrapolation schemes, which emigy,x), f(z.x), and

employed.

3. Results and Discussion

f3(z,x) trial functions described in the previous section. The
components oX vectors are subject to variational optimization
in order to provide the best fit to the calculated points. Two

As a representative application to test our extrapolation schemes have been studied: the first one uses five points

models, we have focused on the calculation of the loweast

corresponding ta, = 1.0,72 = 1.2,73 = 1.4,74 = 1.6, andr,

excited state of cytosine base in the DNA environment. The = 1.8 to extrapolate the results fag, while the other is based

main motivation behind this choice of system is the experi-

on the three-point extrapolation fof = 1.0, 7, = 1.2, andrs

mentally observed efficient excited-state deactivation mechanism= 1.4. For each value of the parameter used in CR-

that protects DNA bases against photochemical damage. TOEOMCCSD(T) calculations, a significant number of virtual
understand the mechanism of radiationless internal conversion,orbitals were excluded from the calculations. For example, for
several excited-state models have been intensively studied inthe cc-pvVQZ basis the total number of molecular orbitals
the past decade (see refs-386 and references therein). All of amounts to 590. Of those, far= 1.4, 476 virtual orbitals are
these calculations were performed either for cytosine or the not correlated in the CC/EOMCC calculations. The values of
cytosine-guanine pair in the gas phase or for the hydrated form the highest orbital energy, for cc-pvVDZ, aug-cc-pVDZ, cc-

of the cytosine. Since for the DNA bases the effect of fluctuating pVTZ, and cc-pVQZ basis sets are equal to 3.84632, 4.10223,
environment can be quite sizable, we have recently addressedl5.90914, and 43.06471 hartree, respectively. Let us start our
this problem in our hybrid CC/MM approach, which allows for analysis from Table 1 with the results for the five-point
sampling the excitation energies in the course of molecular extrapolation. For two basis sets, cc-pVDZ and aug-cc-pVDZ,
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we were able to perform full CR-EOMCCSD(T) calculations TABLE 2: Averaged Excitation Energies of zz* State
for the r* state of cytosine. For the aug-cc-pVDZ basis set, Obtained with the Triply Threaded Scheme on the Basis of
extrapolation results, except for tfiemodel, nicely compare  he CR-EOMCCSD(T) Approach

with full CR-EOMCCSD(T) excitation energiesfR(M), with basis Rl eRM RO fifeu,x)  @RM
errors within 0.05 eV. This picture is also valid for the smaller ~ .. ,ypz 525 517 516 506 504
cc-pVDZ basis set, where, except for thescheme, the errors cc-pvTZ 5.16 5.12 5.10 5.03

with respect to the exact values of excitation energies are less
than 0.1 eV. In both cases the extrapolation based on the
simplestf; function seems to provide the most reliable results.
To better characterize the discrepancies between results obtained
with f;, f2, andfs trial functions, we define the parameter,  scheme brings us as close as 0.02 eV to the thermally averaged
which is defined as the largest difference between any two of regyits obtained with a nontruncated set of virtual orbitals. This
these extrapolation approaches, iee= max;|fi — fj|. Notably, fact clearly shows that the errors made in the asymptotic
the values op are monotonica_llly decreasing with the basis set extrapolation approach are negligible compared to typical
size. Indeed, the value gfvaries from 0.13 eV for cc-pVDZ  fiyctyation due to environment, which for CR-EOMCCSD(T)
to the small value of 0.03 eV for the cc-pVQZ basis set. This eycitation energies translates into several tenths of an electron-
observation means that the specific choice of the trial function qjt.
is not so important. The observed large discrepancies In conclusion, we hope that our asymptotic extrapolation
characteristic for smaller cc-pVDZ and aug-cc-pVDZ basis sets scheme will help to reduce effectively a very large numerical
can be attributed to the relatively small size of basis set and gyerhead associated with the use of the high-level CC/EOMCC
lack of homogeneous distribution of the orbital energies. zp initio methods that account for the effect of triply excited
Consequently, the use of more extensive basis sets leads to &onfigurations in the context of large-scale QM/MM simulations.
more stable behavior of our extrapolation models. Our results also indicate that the approximate QM/MM calcula-
These general observations are supported by the cheapetions exploiting more extensive basis sets of cc-pVXZ or aug-
extrapolation model based only on three calculated points (seeqc_pyxz (X = D, T, Q) quality are feasible. In the snapshot
Table 1). For the cc-pVDZ and aug-cc-pVDZ basis set We cgjculations we have also demonstrated that for the larger basis
observe thaff;-based extrapolation gives reasonable results, sets the asymptotic extrapolation approach reveals much more
within 0.08 eV of w“R(M. Also, the discrepancies between gtaple behavior compared to analogous calculations exploiting

aAll averaged excitation energies are reported in eV. In this
simulation the classical MD trajectory was sampled at a rate of 0.5 ps.

different extrapolation schemes gradually vanish (seepthe
parameter values) and become as small as 0.03 eV for cc-pVQZ
At this point, a word about the numerical savings is in order. If
n, and ny(r) designate the number of virtual orbitals in full
calculations and in truncated calculations defined by the
coefficient, then, per a single point CR-EOMCCSD(T) due to
triples correction calculation that scales suchngiy* (no is

smaller basis sets. The development of more efficient extrapola-

tion methods will be the focus of our future studies.
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for the large basis sets the extrapolated energies lead to errors

not exceeding 0.1 eV, the extrapolation model may be consid-
ered as a viable alternative to other low-scaling approaches.

In the second test we have calculated the dynamic average

of the energy of the first excited states*) by resampling 20

ps classical MD trajectory at a rate of 0.5 ps. The dynamic
calculations were based on the triply threaded extrapolation
model that consisted of three independent CR-EOMCCSD(T)
calculations defined by three different values of cutoff factor
71, T2, and 13 (11 < 12 < 713) for each sampling event.
Subsequently, the extrapolated valugigft oMM (in all
casesx; + X/t was used to find the best fit) has been used in
thermal averaging of the vertical excitation energy. The results
of our studies performed with the cc-pVDZ and cc-pVTZ basis
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