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Dual-Basis Analytic Gradients. 1. Self-Consistent Field Theory
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Analytic gradients of dual-basis Hartree-Fock and density functional theory energies have been derived
and implemented, which provide the opportunity for capturing large basis-set gradient effects at re-
duced cost. Suggested pairings for gradient calculations are 6-31G/6-31G**, dual[-f,-d]/cc-pVTZ, and
6-311G*/6-31H#-+G(3df,3pd). Equilibrium geometries are produced within 0.0005 A of large-basis results

for the latter two pairings. Though a single, iterative SCF response equation must be solved (unlike standard
SCF gradients), it may be obtained in the smaller basis set, and integral screening further reduces the cost for
well-chosen subsets. Total nuclear force calculations exhibit up to 75% savings, relative to large-basis
calculations.

Introduction example, was parametrized at the complete basis limit, and errors
ascribed to the functional itself are sometimes due to the pairing
of a small basis set (6-31G, for example) with a large-basis-
parametrized functiondf.

Even linear scaling methods can prove intractable if the

The derivation and implementation of analytic energy
gradient$™® have been a fundamental driving force for the
usefulness of computational quantum chemistry. Nuclear forces,

in particular, allow for the efficient optimization of molecular . S
geometries and transition sta#s!3 intrinsic reaction coordi- ~ computational prefactor is high enough, and two current methods
natest4-16 and, more recently, ab initio molecular dynamics have shown noteworthy promise in th!s regard. Pseudospectral
(AIMD). 17-20 Density functional theory (DFT) has essentially (PS) meth(_)d3§f39 replace the evaluation of the two-electron
replaced Hartree-Fock (HF) as a stand-alone method for bothintégrals with numerical evaluations on a molecular grid, and
single-reference energies and gradients, due to its comparabldesolution of the identity (Rl)/density fitting (DF)*" methods
cost and scaling while including parametrized electron correla- €xPand the two-electron integrals in an atom-centered auxiliary
tion: however, HF is still often used as the reference energy for basis. Both methods very _succe_ssfully reduce the computational
subsequent perturbative correlation calculations. pref_a_ctor for small- to medu_Jm-S|zed molecules, and PS methods
Although much effoR2-31 has been made to reduce the cost additionally reduce the basis set scaling (rougtily Numerical

of self-consistent field (SCF) energy calculations (encompassing oPustness of the PS method is sometimes lacking, however,
both DFT and HF) with respect to system size, little progress leaving instabilities in potentlal energy surfaces and gradu_ents.
has been made on the basis set front. Large basis sets and tighg!//DF methods lack this problem and have received consider-
numerical thresholds produce results that are both stable and®Pl€ recent interest. Their system-size scaling is essentially
reliable, the kind of results required for accurate energetics andUnchanged, however, and thus leaves RI/DF unsuited to very
quantitative computational chemistry. Unfortunately, this regime 'rgeé molecules (although linear-scaling DF algorithms are
of high precision and accuracy is inherently unsuited to many currently being pursued in our research grfpAlthough the

of the linear scaling techniques cited above. Extended basis setsMéthod described in this paper follows a unique approach to
for example, necessarily reduce the natural sparsity in the SCF_ ca_lculahons, it is essentially stand-alone, qnd careful
overlap matrix, the inverse of which is needed in most linear @PPlication of PS or RI/DF methods may provide future
scaling algorithms. Thus, although the for#Iscaling (where augmentations to our method for energy and analytic derivative
N is the total number of atomic basis functions) has been reducedc@lculations. .

to roughly ordem with respect to system size for small basis ~ In general, SCF calculations are known to converge more
sets and one-dimensional systems, higher system-size scalinggUickly with respect to basis set size than correlated wave
are demonstrated for large basis sets, and the quartic scalindunction methods?->* However, heavily polarized quadrupfe-
very nearly holds true with respect to basis set size. Additionally, UP t0 even quintuplé-basis sets are still required to approach
large basis sets demonstrate the inherent errors of a giverihis convergencést Molecular structures, on the other hand,
method only. Accidental error cancellations do occur (as is are somewhat less sensitive to basis set efféas, at the very
sometimes seen with small-basis HF molecular structures), putleast, acceptable errors in structures translate to smaller errors
these are neither wholly systematic nor transferrable acrossin energies. Still, polarization functions beyond a minimal basis

systems. The commonly used B3L¥P3 functional, for are typically required for even qualitatively correct structures,
and polarized (and possibly augmented) tripler quadruples

* To whom correspondence should be addressed. Phone: 510-643-4305basis sets are required for quantitative convergence of structures.
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a correction is formed from a single SCF step in the larger, wheref is the exchange-correlation contribution to the Fock
target basis. Originally devised for HF, this method has also matrix
been applied to DF? and MP23-55 energies. In both cases,

large-basis bond energies are reproduced within roughly-0.02 o B¢
0.05 kcal/mol, well below the inherent error for either method = o 5)
and several orders of magnitude smaller than the error due to Py,

using the smaller basis set alone. Here, we present the derivation

and implementation of DB-SCF analytic gradients. Though the First, note thatF is diagonalized by both the small-basis
resulting theory requires the solution of a single SCF responseconverged coefficientsC, as well as the large-basis post-
equatiors® we will show that the costly iterative portion may diagonalization coefficientsZ' (this fact only holds for proper
be solved in the small basis. This fact, combined with significant subsets). Additionally, note that the ex&gt is not constructed
integral screening, provides useful savings for proper basis setin the large basis, for this would require an additioBalbuild
pairings, in addition to the savings already inherent in the after diagonalization of the Fock matrix, as well as large-basis

underlying DB-SCF energy calculation. z-vector terms in the gradient. Instead, the exchange-correlation
contribution to the dual-basis correctioA®-f; the small-basis
2. Methods portion does not cancel.

2.1.2. General Unrestricted Kohn-Sham Gradient and Re-
ghonse TheoryThe derivative of the small-basis energy with
respect to nuclear coordinatdollows the standard form, where
the superscript notation denotes a derivative and a parenthetical
superscript denotes differentiation of AO quantities only

In the following section, the pertinent equations governing a
dual-basis SCF gradient calculation are presented. We emphasiz
that we are constructing an exact first derivative of an ap-
proximate method; no approximations have been made to the
gradient itself. The theory is presented in the unrestricted Kohn-
Sham formalism; specializations to restricted calculations and
Hartree-Fock are made when necessary. Repeated indices implEamai = PuHy + T Jwio(uvido) — kT, (uAlov)* +

summation. W,,S;, +EQ (6)
2.1. Theory.2.1.1. Dual-Basis EnergyA DB-SCF calcula- vy ¢

tion®253 consists of a full SCF calculation in a small subset of h i th lap i | , h
the larger, target basis set; subsequently, the converged density/NereSis the AO overlap integral matrix. In eq 6, the common

matrix is projected into the large space and is followed by a grouping Of coefficient mat_rixes has been performed, resulting
single Roothaan (diagonalization) step. A correction, which IN One-particle B), two-particle {), and energy-weighted/\
accounts for first-order changes in the density matrix (or, density matrices. Each is defined as follows:

alternatively, accounts for orbital relaxation) following this

single SCF step, is then applied. The DB-SCF energy is P,= P::’Vt 7
expressed as

r?.,=Poeps ®
Eos_scr = Esmai+ AEos (1) o
whereEspa is the small-basis SCF energy in the atomic orbital Tivio = %PZ” P+ %va oPL ©)
(AO) basis W, = —P% Fy, Ps, — POFLPLD (10)
Egman = PlH,o T %PL?(”VMG)PE; - %PZv(MMm’)P%U B An analytic nuclear derivative of the DB-HF energy, then, only
SPLUAIOP L, + PP (@) 1o 5 G chotce of the duakbads. energy contston

(essentially a fixed-Hamiltonian formulation), derivatives with
H is the one-electron Hamiltoniar® is the density matrix respect to orbital rotations in the large basis vanish. However,
resulting from the converged MO coefficier@s« is used asa  since the DB-SCF energy is not variationally optimized with
scaling parameter of the HF exchange energy to include hybrid respect to small basis orbital rotations, derivatives with respect
functionals ¢ = 1 for HF, « = O for “pure” functionals, and 0  to these parameters are nonzero. Solution of a single set of
< k =< 1 for hybrid functionals), and© = P* + P, The coupled-perturbed SCF (CP-SCF) equationsz{eector equa-
exchange-correlation energy is represente@yThough this  tions®) is required; however, because of our choice of the DB
SCF energy is defined in the small basis, eq 2 is written in the energy correction, the iterative portion may be solved in the
large basis for notational simplicity. This change is permitted small basis.
since, for proper subsets, the projection of the density matrix  Following the form of ref 57, the nuclear derivative of a
leaves new basis function terms unchanged. molecular orbital coefficient is expressed as

The dual-basis energy correction is defined as
AE .o 5 _p X=Ccu* (12)
DB — (AP),[M/F uv + (AP)m/F uv (3)

whereU* defines an orbital response matrix a@ds treated as
whereAP = P' — P is the change in the density matrix upon anx-independent constant on the right-hand side. Following the
diagonalization of, whereP' is the post-diagonalization density  diagonalization of the large-basis Fock matrix, a new set of MO
matrix. Here,F is the large-basis Fock matrix built from the coefficients,C', is obtained, producing the new density matrix,
converged small-basis density matrix P'. Similarly, a derivative of these new coefficients is

F o =H,, + @vio)PP — kuilov)PS, + T 5. (P% P7) (4) (C) = (C)U* (12)
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In other words, via the CP-SCF formulation, the goal is to find response terms may be replacedzland the skeleton derivative

the first-order responses that leave the small-basis SCF con-matrices definingd*.

verged. 2.1.3. Dual-Basis Analytic GradienThe remaining task,
With these tools in hand, the necessary derivatives are astherefore, is to determine the DB-SCF Lagrangian and substitute

follows. Here, we utilize a component notation for clarity, with  z-vector terms when necessary. In the following equations, only

the following conventions: the a-space terms will be shown. As usual, the concomitant

u, v, 4, ... . all AOs pB-space quantities may be obtained by interchange of 3.
p,qr, ..: general MOs We may rewrite the DB energy correction as

i,j, k ...: occupied MOs

a, b, c, ...: virtual MOs (22)

Tr[(AP)*F®] = ZFi,ui,u — ZFiuiu
Unless specified, all equations will be presented in the large T T
basis set. Unadorned MO indices will represent matrices

transformed byC, and primed MO indices will represent
matrices transformed b§'. The Fock matrix+ will always be

the Fock matrix built from the (projected) small-basis density

matrix, P.
The CP-SCF equations for the orbital response%’ are

Aaﬂlubu]uu aojo + Aaﬁlﬁb«]ﬂu E .

and an analogoy$ equation, obtained by interchangewf>
pB. The A matrices are defined as

=B (13)

Aaaiabaja = éaubuaiujtx(eia - eaol) + Aaaiub(xjot + fauiuybuja + faaia’jotbu
(14)

where
Agsissia = Aasiptaje T Tain, paje T Fasis, joba (15)

where the implicita. functional derivative of thexr exchange-
correlation matrixf ¢, is defined as

O o (P™PP)

Fasie pke = TP, (16)
ot

The remaining matrices are

sapic = 2@%*0%%) — 1(@*0%i%*) — «(@*%*ib®)
Aa jabaj (17)
Assippaje = 2(i"|b%%) (18)
1
B)[;xja = FS%a - S])K?Jﬂ jo SﬂkuAbﬂJmakﬂ - és;?(ﬁAbajui/jkﬁ
19

where e denotes a molecular orbital energy. In the previous
equationsF® denotes a purely “skeleton” derivative (i.e., no

derivatives of MO coefficients).
The z-vector methoeP reduces this set ofNBequations (one

The first required nuclear derivative is then

d ()
ia = —|Higia + Z[(iaim|kakm) — k(iKY K] +
X|

joajo T

®)
Z[(i“mkﬂkﬂ)] + fu(P%, PP

=F ] X)) _

jojo €|a ajo

uka’2A|u|aJaku + f|a|a ]aku]

;Ilﬁ[EAiui&jﬁkﬁ + fiaia j/fk/i] + U;uku[Aiuiuauku + fiuiu,auku +
lﬂlﬂ kuau] + U kﬁ[Aiﬂiﬂaﬁkﬂ + fiﬂiﬂ,aﬂkﬁ + fiﬂiﬂ,kﬁaﬁ]

(23)

where the identitylJ%, + U, + S = 0, has been used.
In the subsequent derivative term, the fact that the Fock matrix
is built from P allows for elimination of the large-basis responses

(0)
Hyapa + Z[(i'“i’ﬂkak“) — k(i KK )] +

X
Firia = —

)
Z[(i'“i'%kﬂkﬂ)] + fraga(P, Pﬁ)‘

= I:|()2| w 26| "o u| o q(aku[2A| "aj'ojaka + f| 'aj’ ]akal -

2A1 aj'ej KB + fl "aj'a, jBKkB + Uauku[Ai'ui’uauku +
fi'“i'“,a“k“ + fi'“i'“,k‘laﬂ] +

Ugﬁkﬁ[Ai'ﬂi'ﬂaﬁk/f + fi'ﬂi’u,aﬁkﬁ + fi’&i'ﬂ, k/falf]

(24)

where, in eq 24, we have used the fact thaitig = —4,S%
and, thus, have eliminated all large-basis responses. In both

for each nuclear perturbation) to one. For a given gradient casesoccirt response elements remain. Only response ele-

expression, all terms multiplyingpccirt orbital response
matrices define a Lagrangiah, of the form Laaiau;ia + L
U, (Note thatL® still may contain contribution frons-space
guantities.) Subsequently, tkeéndependent-vector is defined
as
AgsioporaZooka t AgaiopsZosks = ~ Ladia (20)

with an analogoug equation. Thez-vector is used to replace
occuirt responses as

LpeicU &

axja + La/ﬂ/fu asiB (21)

= ZoooBoake T ZoyisBrks

Thus, by solving the single-vector equation (20), all orbital

ments in the small basis are required, however, despite the fact
that the Lagrangian contains contributions from large-basis
functions

Lacie = 2C,a[(uv1A0)(AP) — k(ui|ov)(AP), +
o (AP, + 140 (AP)]]1C,. (25)

In practice, the Lagrangian is actually implementedYals,;
and is later symmetrized so that its contribution to the AO-
basis density matrix is formed as

PZ)ZLV = ;Cubﬁzb&kucvkﬂ +C (26)

ket Cypa
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With the Lagrangian in hand, the DB-SCFvector equation savings factor (relative to an SCF calculation in the large basis)
may be solved via eq 20. In using eq 20, note that the left-hand is
side may be constructed entirely in the small basis. The Fock-

like right-hand side is constructed in the large basis (using a2 N n? n?
additional dual-basis integral screening) and is projected back dual ( 4 + 2 + g) X 1] + [g X Cn]
into the small basis prior to the transformation into the t(m) ~ a

virt space. Once thevector is obtained, the remaining gradient N -

can be summarized in a conventional form 8 N

E)ISB—SCFZ ﬁ)‘uvH :‘V + f ; (/AV|AO)X - Kf‘:fvm(ﬂMUV)x +

(34)

prAolEEY ~ As a reference point, many of our truncations have N; the
W, S, + EX + X, % (27) target basis is roughly twice the size of the smaller basis set.
For this truncation ratio and roughly 12 SCF cyclgsiual/
where full) ~ 0.12. The main savings stems from the single SCF step
- o a in the large basis but is tempered by the need for a full SCF
Puw =P+ (Pz),uv (28) calculation in the small basis. (Note that the above analysis must
be augmented for system-size scaling, as sparsity and the number
(T J)Zm _ (ﬁ’,‘; _ %sz) ® Ptf.t (29) of significant shell pairs were excluded.)
Additionally, the exchange-correlation contribution has been
_ _ 1 neglected in eq 34 and is highly dependent on the choice of
(FK)ZMUZ (PZV - ERE‘V) ® P, (30) functional and quadrature grid. Though one more functional

derivative appears in the dual-basis correction than in the DFT
energy, this term is required at every step of a standard DFT
calculation anyway during the construction of the Fock matrix.
Existing DFT machinery can be used for implementation of this
term, now built fromP instead ofP’. Note also that nearly all
current functionals depend on spin densitig% € R,‘jvq)u¢y)
and, possibly, gradient invariantg®®* = P% V(¢.¢,)). Stan-
(32) ; . uv u
dard techniques, therefore, designed to screen small values of
P during the construction of will already inherently neglect
large-basis density matrix terms and demonstrate savings in the
exchange-correlation matrix construction.
With the new density and large-basis Fock matrix, the Dual-
Basis correctior[AP-F] is calculated.
3. Gradient. Unlike standard SCF gradients, thzevector

Wi, = =P R Po, = (P)F 5P%, — Po [(y01A0) (P, —

v Ao' ov y

PP, — KPS [(vAl00)(PS, — PLIPS, — Po[f o,

(PS, — PLIPS, — P LT, (P, — PLYIPS, (31)

ov wuyLl! yo,io ov
YU _ Pl _ pa
X/,tv - Puv Ruv

with analogous terms so thaPtot = Pe + PA, for example.
Specialization to closed-shell equations can be made by noting
thata and matrices are identical, and specialization to DB-
HF gradients can be made by letting= 1 andEy; = fyc = 0.

2.2. Algorithm and AssessmentThe schematic algorithm

and cost assessment for a DB-HF gradient is described below. -
In assessing the cos, refers to the number of small-basis €duations (cf. eqs 20 and 25) must be solved for a DB-SCF

functions, andN refers to the number of strictly large-basis dradient. However, integral screening and the fact that the
functions. Unless otherwise specified, the scaling factors are térative portion may be solved in the small basis make the cost
presented with respect to basis set size. tractable. _ _ _

1. Small-Basis HF CalculatiorFirst, a full SCF calculation (&) The first step in the solution of thevector equatiorfs
is performed in the small basis (cf. eq 2). The cost for this step 'S the construction of the Lagrangian, schematically represented
scales as’(C, x n#/8), whereC, is the number of small-basis asCocd(Il + F™P)(P" — P)]Cyin, wheref ™ signifies an implicit
HF steps required for convergence. The factor of 8 comes from derivative of the XC matrix. Though the Fock-like terinP

the permutational symmetry of the electron repulsion integrals. — P) must rigorously be formed in the large basis, the same
2. Large-Basis DB-HF Correctiom single Fock matrix is screening that was exploited for the Fock build can also be used

built in the large basis a6 = H + IIP + f, whereP is the here because of the subsequent contraction with small-basis
projected density matrix produced from the small-basis SCF coefficients. This term is the secondary overall bottleneck in
and Il represents the full set of AO-basis electron repulsion the gradient calculation. After construction and contraction of
integrals. This Fock build (normally ar((n+N)#¥8) process) the |ntegrz_ils, the Fo_ck-hke matrix is prpjected back into the
benefits from significant integral screening, as mentioned in ref SMall basis for use in thevector equations. _

53. Integrals of the typeut’||io) may be eliminated if. or o The DFT-specific portion of the Lagrangian requires work
are strictly large-basis functions. Though the integrals are not present in a standard DFT calculation. One extra functional
nonzero, their contraction witR;, does not contribute to the derivative (implicit derivative, in this case) is necessary, relative

energy for the new basis functions. Thus, the screening produce§° a DFT gradient. Again, standard DFT routines can be utilized
a scaling for the Fock build of for this term, as long as the proper contracted denfity-{P)

is used.
(b) In the small basis, the iterativevector equations are
(33) solved. The cost (C, x n%8)] is small, relative to the
Lagrangian build for large basis set truncations. By transforming
for simultaneous construction of Coulomb and exchange the MO-basisz-vector back to the AO basis, thevector’'s
matrixes. For so-called “pure” functionals (in which only contribution to the 1PDM is obtained. At this stage, the DB-
Coulomb contributions are required), the first term is reduced SCF relaxed dipole moment may be calculated.
to N2n?/4. (c) Most pieces of the energy-weighted density matrix (cf.
This Fock matrix is then diagonalized to obtain new MO eq 31) are now available. The z-vector equation give® —
coefficientsC' and a new density matriR. Note that the overall P) andfimP(P" — P). The remainindIP, andfimP(P,) can be

4 T27%8

(Q(SNan Nn® n“)
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TABLE 1: Errors in Dual-Basis DFT Geometries, Relative to Large (Target) Basis Set Geometries in &

single basis dual basis
basis MAD max MAD max # above 0.01 A % recovery

6-31G/6-31G** 0.0391 0.188 0.0070 0.049 41 82.1
6-31G*/6-3H+G** 0.0046 0.073 0.0003 0.009 0 93.5
6-311G/6-31%#+G(3df,3pd) 0.0446 0.217 0.0087 0.071 45 80.5
6-311G*/6-311+G(3df,3pd) 0.0083 0.050 0.0004 0.010 0 95.2
dual[-f,-inner d}/cc-pVTZ 0.0190 0.262 0.0005 0.005 0 97.4
dual[-f,-outer d]/cc-pVTZ 0.0014 0.011 1 92.6
duall[-f,-2d]/cc-pVTZ 0.0078 0.062 40 58.9

aMAD = mean absolute deviation; maxmaximum absolute deviatioficc-pVDZ was used as the small basis for comparison in these values.

formed in the small basis, at the cost of anotlign/8) step. energie® 53 have demonstrated that 6-311@*serves as a
The contracted integrals can be read from disk, and the suitable subset for 6-331+G(3df,3pd);% ®* the largest Pople-
remainder ofW is matrix multiplications. style optimized basis set available. We have also constructed

(d) As in a normal SCF gradient, the most significant the analogous subset for cc-pV®23by removing the set df
bottleneck is the construction and contraction of the derivative functions and the inner set af functions on heavy atoms,
electron repulsion integrals with the 2PDM’I(*). Most leaving a 4s3pldsubset for ad4s3p2dilftarget basis. The
importantly, this term also benefits from the same type of hydrogens have their set dffunctions and the outer set of
integral screening discussed earlier. The “right” halffofn functions eliminated, leaving 3s1psubset for 8s2pldtarget
egs 29 and 30 iBy,, and thus, only integral derivativesy(|10)* basis. This pairing is denoted duall-f,-d)/cc-pVTZ in the
corresponding to small-small pairs &F need to be calculated.  remainder of this paper. (Note that this truncation is slightly
This screening is implemented in the same fashion as in the more aggressive than the truncation used for DB-MP2 energies
Fock build and RHS integrals. Though the derivative ERIs in ref 53, where the > Q extrapolation of correlated energies
formally scale as 9 times the cost shown in eq 33, the current was the goal.) Although cc-pV¥2%3 could also be used as a
implementatioP? in Q-Chem typically scales closer to 3 times  subset, only proper subsets have been explored in this work
the cost of a Fock build. because of the savings due to integral screening at several stages

(e) The remaining DFT-only terms are®) and Xf®. of the calculation. We have not explored any of the augmented
Although the former is a non-canceling term present in a Dunning-type basis se#$,although preliminary tests suggest
standard DFT gradient, the latter term is somewhat akin to a that aggressive truncation schemes are possible. These trunca-
term present only in the DFT Hessian. However, although the tions will be the subject of future work on systems where diffuse
standard Hessian requires mixed terms of the f&¥fi (and functions are necessary. Although the dual-basis method is best
thus storage of theNgom x N2 explicit derivative matrix), the ~ suited for large basis sets, any improvements in the large
DB-DFT gradient only requires the contraction with a single molecule regime (for which small basis sets may be the only
density Xf ®, which can be folded into the functional derivative. tractable option) would still be welcomed, as semiquantitative
At this time, this efficiency improvement has not been made to ab initio or DFT results may still be an improvement over
our code and represents a severe (but unnecessary) computanolecular mechanics optimizations, in which essential chemistry
tional bottleneck. Thus, the timings presented in section 3.2 areis often absent. Thus, we have included the 6-31G/6-3¥&**
demonstrated for DB-HF only. pairing as a demonstration of the dual-basis method’s ability to

Taking into account the significant computational bottlenecks, capture the polarized doublebasis set regime.
the relative cost factor produced by a DB-SCF gradient is

3. Results
A
d 3Nn*+2Nn° + (CZ+5)% + ta 3.1. Accuracy. The DB-SCF gradient for restricted and
t( I) ~ (35) unrestricted calculations has been implemented in a development
full 3n+N)* . version of Q-Chem 3.8/ Geometries for 136 open- and closed-
8 T Yarge shell molecules (167 symmetry-unique bonffsfor which

experimental equilibrium bond lengths are known, have been

wheret * refers to the cost of exchange-correlation contributions computed at several basis set combinations, and results are
in each basis set. presented in Tables-13. (Only set-wide statistics are reported.

Note that, due to the loss of some permutational symmetry The full set of results is available in the Supporting Information.)
in the integrals, aggressive basis set truncations are required inn all cases, SCF calculations were converged to a maximum
order to demonstrate savings in the gradient alone. Imtke DIIS error of 108 a.u., and integral thresholding was set to
N regime, the gradient cost roughly breaks evenr-(1) for 1012 a.u. The convergence criteria for z-vector construction
DB-HF. For any nuclear force calculation, however, the was 10° a.u. The Q-Chem default geometry optimization
underlying SCF calculation must be completed. The savings in tolerances were used: 8 10* a.u. for maximum gradient
this portion alone is enough to render the total force calculation component and either 1®a.u. maximum energy change or 12
faster. For example, assuming five z-vector iterations and 12 x 10~% maximum displacement between optimization cycles.
SCF iterations, egs 34 and 35 can be combined to give a dual:The following discussion will focus mainly upon the DB-DFT
full ratio of roughly 0.3 forn & N. In other words, an average results, for which we have used the common B3¥#hybrid
DB-HF nuclear force calculation is roughly three times faster functional; DB-HF results will be mentioned when distinct. The
than the same job in the target basis. SG-1 grid® has been used for DFT quadrature integrations.

2.3. Basis Set PairingsThroughout the results provided in In the first two columns of these tables, single-basis errors
the next section, several common basis set pairings, denoted aare compared, to demonstrate basis set effects on molecular
small/target, are demonstrated. Previous tests of dual-basisgeometries. Not surprisingly, the effect of polarization functions



13920 J. Phys. Chem. A, Vol. 110, No. 51, 2006 Steele et al.

TABLE 2: Errors in Dual-Basis HF Geometries, Relative to Large (Target) Basis Set Geometries in &

single basis dual basis
basis MAD max MAD max # above 0.01 A

6-31G/6-31G** 0.0422 0.249 0.0022 0.049 3
6-31G*/6-31+G** 0.0035 0.057 0.0008 0.011 1
6-311G*/6-311+G(3df,3pd) 0.0067 0.042 0.0008 0.007 0
dual[-fl/cc-pVTZ 0.0133 0.053 0.0002 0.006 0
dual[-f,-inner d]/cc-pVTZ 0.0009 0.008 0
dual[-f,-2d]/cc-pVTZ 0.0018 0.016 3

aMAD = mean absolute deviation; max maximum absolute deviatioA.The 6-31G results exclude the CIO molecule, which has a HF bond
length of 6.059A (1.570 experimentaf)cc-pVDZ was used as the small basis for comparison in these values.

TABLE 3: Errors in Dual-Basis B3LYP Geometries, in A,

tested, as well, with essentially one conclusion: polarization
Relative to 167 Experimental Bond Lengthd

functions are necessary in the small basis set for quantitative

basis MAD max reproduction of target basis results. The results for the 6-31G/
6-31G 0.0516 0.234 6-31G** pairing demonstrate this trend, as errors relative to
6-31G** 0.0146 0.139 the target basis are larger than errors for the tripfirings.
6-31G/6-31G** 0.0098 0.075 This pairing is retained in the context of errors relative to
cc-pvDZ 0.0260 0.261 experiment, howe_ver. For the tripebasis sets_, elimination of
cc-pVTZ 0.0100 0.072 both sets ofl functions from cc-pVTZ resulted in average errors
duall-f,-inner d]/cc-pvVTZ 0.0100 0.077 of 0.008 A; this error is still small relative to the error with
6-311G* 0.0135 0115 experimental vaIue;: (0.019 A) but does pot sufﬂuently repro-
6-311++G(3df,3pd) 0.0081 0.078 duce the target basis geometries. (Interestingly, alternative elimi-
6-311G*/6-311+G(3df,3pd) 0.0083 0.078 nation of the outed function nearly tripled the error, relative

to elimination of the inned function.) Similar results hold for
the use of 6-311G as a subset of the large Pople-style basis set.
Finally, geometry optimizations in a given basis set are often

aMAD = Mean absolute deviation; max maximum absolute
deviation.

(6-31G**) beyond a minimal basis (6-31G) is significant,
roughly 0.04 A. The cc-pVDZ cc-pVTZ transition produces
an average absolute change of 0.019 A. Even tripbdus-

followed by single-point energy calculations in a larger basis.
This practice hinges on the previously mentioned fact that
molecular geometries are often less basis set dependent than

polarization geometries are not converged with respect to basisenergies. The dual-basis version of this method was tested on

set, as 6-311G* is still 0.008 A from the 6-3+%G(3df,3pd)

the same set of molecules, as well. For dual-basis 6-311G*/6-

results. To put these numbers in context, the average deviation311++G(3df,3pd) energies on 6-31G/6-31G** geometries,
from experiment for these three target basis sets is 0.015 (6-absolute energy errors are 0.24 kcal/mol, relative to 6+3t®-
31G**), 0.010 (cc-pVTZ), and 0.008 A (6-3#1+G(3df,3pd)). (3df,3pd) energies on 6-31G** geometries. Additionally, the
In other words, basis set effects are usually larger than the same comparison was made for dual[-g,-2f]/cc-pVQZ energies
inherent error of the target basis, with respect to experimental on dual[-f,-inner d]/cc-pVTZ geometries. Average absolute
values (again reiterating the fact that B3LYP was parametrized energy errors are only 0.026 kcal/mol. Errors in relative energies
at the complete basis limit). (conformational energies, reaction energies, etc.) would presum-
Errors in dual-basis calculations, with respect to the target ably be even lower. Thus, across both energies and gradients,
basis set, are significantly smaller. For example, the 6-31G/6- the dual-basis SCF method provides consistently accurate results.
31G** pairing reduces the basis set error from 0.039 to only An even more aggressive truncation for B3LYP/cc-pvVQZ
0.007 A (and 0.042 to 0.002 A for HF). Although a reproduction energies may be possible, as well, such as retaining only the
of target basis results would be ideal, the DB-DFT results are centrald function. The presented truncation was the subset
still an 82% improvement over small basis calculations for this previously used for DB-MP2 energiés.
pairing, and HF improvements are even better. For reference, 3.2. Timings.To demonstrate the savings possible for a DB-
the MADs relative to experiment are 0.052 A for 6-31G, 0.015 SCF gradient calculation, nuclear force calculations on alanine
A for 6-31G**, and 0.010 A for 6-31G/6-31G**. tetrapeptides, GN4O4H2,,7%71 were computed @ a 2 GHz
Other basis set pairings show considerable promise, as well. Apple XServe with sufficient memory and a 7200 rpm hard
The 6-311G*/6-31%+G(3df,3pd) pairing provides a means of drive. Timings, including energy and gradient breakdowns, are
capturing very large basis set effects with only 0.0004 A average presented in Figures —13. The alanine tetrapeptides have
deviation from large basis set geometries. This error is below a roughly the same number of heavy and hydrogen atoms and,
common standard 0.001 A for “chemical accuracy” in calculated thus, represent a reasonably fair comparison, as our truncations
geometries and is sufficiently below the target basis error (vs for hydrogen are typically more drastic than for heavy atoms.
experiment) to conclude that B3LYP/6-3t1+G(3df,3pd) op- Fullerene-like systems will exhibit less dramatic savings, while
timizations may be replaced by their dual-basis counterparts. saturated hydrocarbons or water clusters, for example, will
The same result is seen for the cc-pVTZ truncation. Although significantly improve. For reference, the target-to-subset ratio
B3LYP/cc-pVTZ geometries are, on average, 0.010 A from for the three pairings on these systems is 1.83 (6-31G**), 1.98
experimental geometries, dual[-f,-inner d]/cc-pVTZ geometries (cc-pVTZ), and 2.33 (6-31t+G(3df,3pd)). The same conver-
are 0.0005 A from their large-basis counterparts and subse-gence and threshold settings were used as in the previous section.
quently within 0.010 A of experiment. Thus, we again conclude Also note that incremental Fock buifds’ were used in these
that dual-basis geometries may replace target basis geometriesalculations in order to present DB-HF timings on top of the
for cc-pVTZ. most efficient available pre-existing code.
At this point, we recommend the above three pairings for  As expected, savings are substantial for the energy portion
geometry optimizations. Other, more aggressive pairings wereof a dual-basis force calculation. The 6-31G/6-31G** and
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the 85% savings in the HF calculation produce a total job
savings of 50%. The 6-311G*/6-31HG(3df,3pd) pairing
Lt demonstrates a 27% speedup in the gradient and a total job
savings of 76%. It should be emphasized that an entire DB-HF
force calculation can be obtained three times faster than the
SCF calculation alone in the target basis for the latter pairing.

6-31G/6-31G™
4. Conclusions
Analytic gradients for a promising perturbative approach to
SCF theory have been derived and implemented. DB-SCF
ga1G OHF gradients offer savings over standard SCF gradients at many

L Gachen stages of the theorymost notably inl'l1*-but the need to solve

the CP-SCF equations translates to savings in the gradient alone
for large basis set truncations only. A nuclear gradient, however,
necessarily requires an underlying SCF calculation, in which
significant savings have already been demonstrated. Thus, total
job times demonstrate savings of-346%. As a rule of thumb,
truncations in which the target basis is double the size of the
subset produce gradients at identical cost of the target basis and
ce-pVTZ roughly 70% savings in total nuclear force calculations.

Three basis set pairings have been presented. The 6-31G/6-
31G** pairing serves as only an approximate reproduction of
6-31G** geometries, with errors of 0.007 A, although these
dual[-f-inner d/ errors tend to produce geometries (statistically) closer to

cc-pVTZ . . . .

i experimental values. Truncations of triglebasis sets demon-
strate improved performance, in terms of both cost and accuracy,
once again placing dual-basis methods most well-suited to the
e ] large basis set regime. The larger target basis sets allow for the

ggfadiem retention of polarization functions in the smaller basis, a

0 200 400 600 800 1000 1200 1400
CPU Time (sec)
Figure 1. Nuclear force timings on a linear alanine tetrapeptide for
the 6-31G/6-31G** basis set pairing.

necessary requirement for near-exact reproduction of target basis

0 10000 20000 30000 40000 50000 properties. . .
CPU Time (sec) Thus, DB-SCF gradients serve as an economical means to

Figure 2. Nuclear force timings on a linear alanine tetrapeptide for OPt&iNing accurate nuclear forces for geometry optimizations
the dual[-f,-inner d]/cc-pVTZ basis set pairing. and AIMD simulations. For the large basis set regime in
particular, in which highly accurate results are obtained and
many standard SCF techniques are not completely applicable
(linear scaling methods, etc.), DB-SCF gradients provide a viable
alternative. In the large-molecule regime, however, these
acceleration techniques (as well as RI/DF methods) may still
prove worthwhile when coupled with dual-basis methods and
may serve as future research topics. Finally, the fact that the
BiE Gt CP-SCF equations may be solved in the small basis holds
significant promise for related research avenues. The DB/RI-
MP2 analytic gradient will be the subject of the forthcoming
paired paper, and similar applications to CIS or TD-DFT may

6-311++G(3df,3pd)

eatiG S prove worthwhile. The DB-SCF Hessiaim which the full set
O Gradient of 3N iterative response equations must be soheolds
particular promise for future work.
o 20000 40000 60000 BOOOO 100000 120000 140000
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dual[-f,-inner d]/cc-pVTZ gradients are actually slower than in
the target basis, whereas 6-311G*/6-3tG(3df,3pd) shows
noticeable savings in the gradient. Since the gradient is not the
majority cost of a standard force calculation, however, the total
job times are still reduced for all three pairings.

The small Pople-style pairing essentially represents the wors
case scenario. The DB-HF gradient is 1.6 times longer than the
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