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In this article, we present a continuation of our work on the refinement of the harmonic force constantsFi,k

in benzene (in symmetrized Whiffen’s coordinates) and on a growing number of higher order (anharmonic)
force constants,Fi,j,k andFi,j,k,l, that are of importance for the benzene isotopomer invariant potential energy
surface. The refined set of harmonic and anharmonic force constants improves the agreement between the
experimental levels and those calculated theoretically. The emphasis of the present work is on the analysis of
the two notable Fermi resonances in benzene (ν8 + nν1 T (n + 1)ν1 + ν6, wheren ) 0, 1, ...m, andν20 T
ν8 + ν19 T ν1 + ν6 + ν19). For this purpose, we have further extended our fully dimensional, fully symmetrized,
and nonperturbative vibrational procedure to the vibrational structure of the benzene isotopic species with
D6h symmetry.

I. Introduction

The ground electronic state potential energy surface (PES)
of benzene has been established as a benchmark potential surface
for the evaluation of molecular vibrational models.1-37 For the
fundamental frequencies of benzene and some of its iso-
topomers, a sizable body of experimental spectroscopic data is
now available in the literature.16-37 For a semirigid molecule
such as benzene, the PES can be safely presented in the form
of a Taylor series expansion in terms of a chosen set of
vibrational coordinates.1 This expansion is particularly useful
when geometrical (symmetrized, Whiffen’s1,4) coordinatesSk

are employed instead of mass-weighted normal coordinates, as
the PES expression (expansion coefficients, i.e., force constants
Fi,k, Fi,j,k, etc.) is independent of isotopic substitution:

The exact shape of the benzene ground state PES, in
isotopically invariant form, is required, for example, for
assessment of the radiationlessT1 f S0 (ISC) rate constant in
C6H6 and C6D6.38-41 This surface has been the target of
extensive analytical research, from the standpoint of various
empirical, semiempirical, as well as ab initio calculations.1-16

Of central importance is the reliable determination of the
harmonic force constantsFi,k,1-13,15 whose values are needed
for the correct overall description of the energy hypersurface.

Ab initio13 as well as semiempirical (density functional)12,15,16

theoretical methods are as yet inferior for empirical determina-

tions8 for the assessment of the harmonic force constants in a
molecule the size of benzene. In fact, all sets of theoretically
determinedFi,k values differ considerably from the empirically
determined values that reproduce the (experimentally measured)
fundamental vibrational frequenciesνk of four benzene iso-
topomers (C6H6, C6D6, 13C6H6, 13C6D6).8

In a series of articles culminating in a benchmark review
article,8 Goodman and collaborators, through the use of
conventional Wilson’s F-G analysis,1,8 empirically determined
the best set of (34) harmonic force constants for benzene after
taking into account the strongest anharmonicities.

In a recent series of articles,42-45 we attempted to further
refine the values of the harmonic force constants for benzene
by making use of a full scale vibrational model and algorithms
that were designed for calculating the fundamental frequencies
from a set of input values for the harmonic as well as the most
important anharmonic force constantsFi,k, Fi,j,k, ... Meanwhile,
the available rich database of experimental spectroscopic
evidence for benzene and for some of its isotopomers17-37,46-52

was further extended. The fundamentals have recently been
reconsidered and summarized by Trombetti and coauthors.16,28

Despite the numerous experimental studies, however, the values
of several fundamental frequencies, especially those of the C-H
stretch modes, remain unclear.8,15,53One of the most mysterious
fundamentals,ν13, has recently been measured for C6H6.53 The
new value (∼3015 cm-1) undoubtedly will be very useful for
the further refinement of the harmonic force constant values.

Another difficulty that encumbers the straightforward deter-
mination of harmonic force constants in benzene comes from
strong Fermi resonances, because they arise from essentially
anharmonic interactions and prevent the direct experimental
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observation of some of the fundamental frequencies.8,18,30,34,54,55

At a fundamental level, there are two notable Fermi resonances
in benzene. The first one,ν8 T ν1 + ν6,34 persists up to
considerable excitation energies through the addition ofν1

quanta to each manifold (ν8 + nν1 T (n + 1)ν1 + ν6, wheren
) 0, 1 ...).54 The second perturbation is a triple30 (or even
quadruple18,55) resonance:ν20 T ν8 + ν19 T ν1 + ν6 + ν19 (or
ν20 T ν8 + ν19 T ν1 + ν6 + ν19 T ν3 + ν6 + ν15).

This work is the fourth in a series42,44,45 aimed at the
development and elaboration of a specific, fully symmetrized,
nonperturbative algorithm designed for the investigation of the
benzene vibrational structure. In the present work, we shall
concentrate on the energy levels that are involved in Fermi
resonance interactions. For this purpose, we introduce a number
of anharmonic (cubic and quartic) Hamiltonian interaction terms
in our formalism.42,44,45The calculation explicitly includes all
30 molecular vibrational degrees of freedom. The values of some
important anharmonic force constants will be determined by
fitting the calculated to the experimentally observed levels. This
article is organized as follows. Our vibrational approach will
be schematically outlined in section II. In section III, using this
approach we will study the vibrational structure of the 811n T
1n+161 Fermi resonances, forn ) 0, 1, ... In section IV, the
vibrational structure of the 201 T 81191 T 1161191 Fermi
resonance will be investigated and the calculated vibrational
structure will be compared to experimental data. In section V,
we summarize the main results and conclusions.

II. Vibrational Model and Large-Scale Computational
Approach

Our vibrational model approach and large-scale calculation
procedure38-40,63 is based on the following main principles.
Taking into account that anharmonicity in benzene is almost
entirely concentrated in the (six equivalent) C-H bonds,56-59

we describe the C-H stretch system in benzene in terms of six
local bond stretch coordinates local mode (LM) formalism,56-60

while all of the remaining 24 (non C-H stretch) vibrations in
benzene are considered to be collective, symmetrized modes
(SM), in terms of appropriately symmetrized vibrational coor-
dinatesSk.1,4 This is the so-called combined LM/SM representa-
tion. A specific feature of our approach is the definition and
employment of complex symmetrized curvilinear coordinates
qk (defined in Table 2 from ref 44), rather similar to those of
Whiffen’s.4 The basis harmonic oscillator eigenfunctions of the
SM are directly and explicitly obtained in completely sym-
metrized form, while the C-H stretch (LM) Morse oscillator
eigenfunctions have to be additionally symmetrized (in a simple
and straightforward manner), as shown in our previous work.42-44

By multiplying the (complex) symmetrized C-H stretch (LM)
eigenfunction with the eigenfunctions of all SM oscillators, we
obtained a simple, fully symmetrized, and separable vibrational
basis set|k〉 for benzene that allows for the full use of the high
molecular symmetry (D6h).42,44

According to this model, the molecular vibrational (quantum
mechanical) HamiltonianH is given as the sum of two major
parts. (i) The zeroth-order HamiltonianH0, whose eigenfunctions
are the basis functions|k〉, specified above. Thus,H0 includes
in general all diagonal harmonic force constantsFi,i and
G-matrix elementsGi,i, for the SM part, as well as the collection
of six identical (noninteracting) Morse oscillator Hamiltonians,
for the LM part. (ii) The interaction HamiltonianH1 contains a
great variety of terms responsible for the various couplings
among the basis states and hence among the molecular
vibrational (LM and SM) modes. It includes nondiagonal

harmonic force constantsFi,k and G-matrix elementsGi,k

essentially connecting pairs of SMi, k of equal symmetry. These
bilinear coupling terms are a connection between the sym-
metrized modes and the normal-mode frequencies and are a
crude approximation of the experimentally observable funda-
mentals. In addition,H1 contains a variety of higher-order
anharmonic interaction terms that are responsible for the finer
details of the molecular vibrational structure (at both the
fundamental and higher vibrational excitation energies) and in
particular for the correct description of the prominent Fermi
resonance structure. A characteristic feature of our approach is
that all the Hamiltonian interaction terms belonging toH1 are
expressed in explicit (harmonic oscillator) raising and lowering
operator forms.

For the calculation of the molecular vibrational energy levels,
we apply a specific nonperturbative procedure, designed for
working in the higher energy domain, where the vibrational level
density grows very steeply, especially in a molecule the size of
benzene. In contrast to the conventional variational method that
yields all vibrational levels up to a given limit, our method is
based on an artificial intelligence (AI) procedure (algorithm)61

that is capable of calculating a selection of energy levels that
are significantly involved in the coupling to an initially (suitably)
chosen basis state|0〉 and are energetically located in the vicinity
of that state. The AI procedure applied by us has already been
described in considerable detail before,62,63 and therefore only
a brief account will be given here. The two most important
prerequisites for our method are first, the availability of a
symmetrized separable vibrational basis set and second, the
availability of all Hamiltonian interaction terms fromH1, in
explicit operator form. The AI selection algorithm starts by
applying consecutively all operator terms fromH1 on the initially
selected basis state,|0〉, thus generating new basis states|1〉,
|2〉, ... Each one of these states necessarily belongs to the same
symmetry species as|0〉 and is coupled to|0〉 by a matrix
element〈0|H1|k〉. Each time a new state|k〉 is generated, several
criteria are applied to establish whether it should be selected or
not. Two of the criteria have been described and applied
previously.63 The first one requires that the relative coupling
strengthKi,k (the ratio of calculated matrix element to the energy
gap) exceeds a small variable parameter C, whose value is fixed
at the outset. The second criteria is that the cumulative (product)
relative coupling strengthf(|k〉) for a probed state|k〉 should
exceed a second variable small parameter W.63 The third
criterion, introduced here for the first time, is based on a third
parameter R, an energy range around the initial state of the
search|0〉. Each newly generated state|k〉 outside that range
receives an additional reduction (proportional to its energy gap
from |0〉) in its cumulative coupling strength. This third criterion
ensures that the selected states are not energetically scattered
too far from|0〉. After all operators fromH1 have been applied
on |0〉 and a number of new basis states|k〉 selected and the
relevant coupling matrix elements calculated, the application
of the H1 operators is next started on the first of the newly
selected states,|1〉. This leads to the generation of states that
have already been selected or new basis states. In the second
case, the new state is tested and eventually selected if it satisfies
the criteria. In both cases, the matrix element coupling the newly
generated state with the parent state is calculated and stored as
matrix element of the Hamiltonian matrix. Next, the algorithm
proceeds to apply theH1 operators in sequence on each one of
the selected basis states|2〉, |3〉, ... This leads to the selection
of more new basis states and the simultaneous formation of the
Hamiltonian matrix. In the course of this procedure, some of
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the states are selected as a result of a chain (path) of
intermediately selected states, starting from|0〉. The purpose
of the second criterion (cumulative coupling strength) is to limit
the length of these coupling paths. Each one of the selected
basis states is stored and kept in computer memory, together
with the resulting Hamiltonian matrix elements. The selection
process is terminated at that point, when the application of all
operators fromH1 on the last selected state,|N〉, does not lead
to the selection of new basis states. The application of this AI
procedure for the selection of an active space A of basis states
has the advantage of being the smallest possible numberN of
basis states that are essentially involved in the coupling with
the initially chosen state|0〉 and thus is representative for the
resulting vibrational level structure around that state. As a result,
the Hamiltonian matrix is the smallest possible size for the
problem under consideration and this fact is particularly useful
for the subsequent diagonalization. The optimization of the
selected space is due first to the explicit selection of only basis
states of the same symmetry as|0〉 and second to the effect of
the selection criteria (appropriate choice of values for the
selection parameters C, W, and R). The selection of an economic
active space and Hamiltonian matrix of minimal possible size,
N, creates an opportunity to explore the higher excited vibra-
tional states in a molecule such as benzene where all of the
vibrational degrees of freedom have been included.

For the molecular vibrational levels, the symmetric Hamil-
tonian matrixHi,k generated as a result of the AI selection
procedure has to be diagonalized. Because of the very large
dimensions thatN may assume, the diagonalization is carried
out using preliminary Lanczos tri-diagonalization.

III. Analysis of the ν8 T ν1 + ν6 Fermi Resonance in
Benzene

This is the most prominent Fermi resonance in C6H6 benzene
and persists up to quite high vibrational excitation energies
through the consecutive addition ofν1 quanta to both energy
manifolds. This resonance can be very effectively analyzed in
terms of symmetrized coordinatesqk

44 and symmetrized modes,
thus revealing the intrinsic nature of the interactions involved
in the isotopically invariant form.

It was important to initially establish the relative position of
the 81 and 6111 levels to zeroth order (i.e., without the cubic
interactions that give rise to the Fermi interaction). These were
found at the energies 81 ) 1598.4 cm-1 and 6111 ) 1601.2
cm-1. These two deperturbed energy levels practically coincide
with those determined by Pliva et al.;64 however, the assignment
is contrary to theirs in that they assigned the upper level at 1600
cm-1 to ν8, while we have assigned the lower level of this pair
at 1598 cm-1 to ν8. The difference of 3 cm-1 may not seem
very significant, taking into account that in reality the two states
are strongly mixed and pushed far away from each other by
the interaction matrix elements. It is not difficult, by minor
changes in the relevant harmonic force constant values, to adjust
the two deperturbed states in reverse order: 81 to be the upper
member at 1601 and 6111 as the lower level at 1598 cm-1.
Indeed, for the description of this resonance and all the higher
excited resonances containing equal number ofν1 quanta, this
would not make any difference. However, as we shall show in
the following section, this is important for the correct analysis
of the triple Fermi resonance aroundν20. We note that, in their
analysis, Knight et al.65 and Fischer et al.66 also assignedν8 as
the lower of two nearby levels.

Essentially two cubic force constants (in terms of sym-
metrized coordinates) can contribute to the coupling ofν8 and

ν1 + ν6: F1,6,8 andF1,6,9. The relevant Hamiltonian interaction
terms contain both kinetic63 and potential cubic parts and can
be given as:

wheres0 andt0 are the equilibrium C-H and C-C bond lengths,
respectively, andmC is the mass of the C atom. We have
included the relevant cubic terms, expressed in explicit operator
form, into the Hamiltonian interaction operatorH1 and per-
formed large-scale calculations on these vibrational levels by
choosing the initial state as either 81 or 6111. By varying the
input values of the cubic force constantF1,6,8 as well as some
of the harmonic force constants and comparing the results from
the calculations with the experimentally measured energy
levels,18,34,64,66we have been able to determine set force constant
values that ensure a satisfactory agreement between the calcu-
lated and experimentally measured frequencies. It was found
that theF1,6,9Hamiltonian terms were not significant, while the
H1,6,8 term (including the force constantF1,6,8) played the major
role in producing the famous 81 T 6111 doublet in C6H6 benzene.
Therefore, we have set the cubic force constantF1,6,9 equal to
zero (however, preserving the relevant kinetic part in the
calculation) and varied the input value of the force constant
F1,6,8to match the calculated frequencies with the experimentally
observed energy levels. The initial state was chosen as either
81 or 6111. It was found that, forF1,6,8 ) -0.3, the two levels
were at 1591.6 and 1609.7 cm-1, in very good accord with the
experimentally measured frequencies:34 1591.327 and 1609.518
cm-1. As already pointed out, to achieve this agreement, we
also had to introduce minor changes in the values of some of
the harmonic force constants that were established in our
previous work.45 Thus,F6,6 was changed from 0.671 to 0.660
andF8.8 was changed from 6.670 to 6.660 (aJ and Angstrom).

It is noteworthy that, with these force constant values excited
higher, experimentally observed66 Fermi resonances 811n T
1n+161, for n ) 1, 2, ... were satisfactorily reproduced. In ref
66, the energies of a great number of ground electronic state
overtone and combination levels were established by measuring
the dispersed fluorescence spectra that originated from a number
of S1 benzene single vibronic levels (SVL): 00, 11, 61, 6111,
6112, and 6113. To find the absolute frequencies of an SVL in
a given spectrum and in particular those of 611n and 811n-1 (n
) 1, 2, ...) level pairs, we have calibrated all energy levels in
a given spectrum66 in such a way that assures that the two basic
Fermi levels 81 and 6111 reproduce the precisely measured values
in ref 34. In this way, we obtain 2581 and 2606 cm-1,
respectively, for the 8111 and 6112 levels from the 00 dispersed
fluorescence spectrum. Our calculation yields for these levels,
8111 ) 2581.0 and 2606.4 cm-1, are in almost perfect accord
with the experimental measurement.66 Values of 3571 and 3602
cm-1, respectively, can be estimated for the higher excited 8112

H1,6,8) - 1
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and 6113 levels from the 00 dispersed fluorescence spectrum.66

Our present calculation for these levels yields 3569.7 and 3600.1
cm-1, again in very good accord with the spectral data. For the
8113 and 6114 pair, the appropriately calibrated experimentally
measured 00 spectrum values are 4552 and 4591 cm-1,
respectively. The results from our calculations for these levels
are 4556.7 and 4591.9 cm-1. As seen, the agreement is
spectacularly good for all the Fermi levels explored. This could
be considered as strong evidence in favor of the vibrational
model employed for benzene and for the selected values of the
relevant harmonic and anharmonic force constants.

We have also carried out large-scale calculations to check
the effect of theν8 T ν1 + ν6 resonance on the vibrational
level structure of the remainingD6h symmetric isotopomers of
benzene: C6D6,13C6H6, and 13C6D6. The following computa-
tional results have been obtained. In C6D6, the combination level
ν1 + ν6 lies at 1527 cm-1, that is, definitely belowν8 whose
deperturbed value (in the absence of the cubic interaction terms
H1,6,8andH1,6,9) was calculated to be 1552.8 cm-1. TakingH1,6,8

andH1,6,9 into account shifted the calculated value ofν8 from
1552.8 to 1555.7 cm-1 (the ν1 + ν6 level is shifted down to
1525 cm-1). Thus, even in C6D6, the Fermi resonance has a
non-negligible effect and the resultingν8 frequency shifts closer
to the experimentally measured value of 1558.3 cm-1.24 Next,
in 13C6H6, a Fermi resonance 81 T 6111 of strength similar to
that in benzene C6H6 is observed. Indeed, the deperturbed (H1,6,8

andH1,6,9 excluded) levels 81 and 6111 are calculated at 1549.4
and 1542.1 cm-1, respectively. Including theH1,6,8 and H1,6,9

terms in the calculation yields for these levels the vibrational
energies of 1554.8 and 1537.0 cm-1, respectively. Finally, for
13C6D6, the deperturbed frequencies of 81 and 6111 were
calculated as 1495.8 and 1477.1 cm-1, respectively. The Fermi
resonance corrected frequencies are 1499.3 and 1474.9 cm-1.

Thus, it is obvious that in all three isotopomers, C6D6,13C6H6,
and13C6D6, the 81 frequency is definitely below 6111, while in
benzene C6H6 the two are almost coincident. According to our
results, 6111 is located slightly above 81. Our calculations show
that the Fermi resonance is also active in the remaining three
benzeneD6h isotopomers, although weaker than that in benzene
C6H6. Nevertheless, its effect should be taken into account when
comparing the calculated to the experimentally measured
frequencies (where available), especially for13C6H6 where the
Fermi shift is comparatively large. Table 1 summarizes the
calculated vibrational frequencies in benzene C6H6 and some
of its D6h isotopomers that are affected by the Fermi resonances,
and Table 2 contains the values of the harmonic and anharmonic
force constants involved in the Fermi interactions.

IV. Analysis of the Triple ν20 T ν8 + ν19 T ν1 + ν6 + ν19

Fermi Resonance

This resonance encompasses theν8 T ν1 + ν6 resonance
previously analyzed. The conventional notation for the normal
mode (NM) whose frequency is 1484 cm-1 in C6H6 is ν19.
However, this notation is obviously not consistent and leads to
some confusion when trying to relate the SM to NM.45 In fact,
in terms of the SM treatment, mode no. 18 is a C-H in-plane
angle distortion1,4 whose force constant isF18,18) 0.93145 and
SM frequencyωs

18, calculated usingF18,18andG18.18,1 is 1388
cm-1. On the other hand, SM no. 19 is a C-C stretch1,4 whose
force constant isF19,19) 7.40345 (typical for this type of mode)
and the SM frequency, calculated usingF19,19 and G19.19,1 is
ωs

19 ) 1244 cm-1. Upon normalization, the NM with the
fundamental frequency of 1484 cm-1 is much closer (by both
frequency and relative weight) to the higher frequency SM no.

18 and should therefore be denoted asν18, while the lower NM
frequency 1038 cm-1 is closer and corresponds to the lower
frequency SM no. 19 and should naturally be assigned asν19,
thus reversing the conventional notation for these two modes.8

In the following analysis, we shall use this changed notation
for NM ν18 andν19.

The complex Fermi resonanceν20 T ν8 + ν18 T ν1 + ν6 +
ν18 is essentially governed by two coupling matrix elements.
The first is a coupling between the 81181 and 6111181 levels.
These are in fact the two levels 81 and 6111, considered earlier
with a quantum ofν18 added to each one. The interaction
Hamiltonian term coupling those two levels has already been
identified above asH1,6,8 and contains the cubic force constant
F1,6,8 ) -0.3. The energies of the resulting pair of states,
excluding and disregarding their coupling with theν20 mode,
have been calculated here as 3074.1 and 3091.1 cm-1, respec-
tively. As discussed in the preceding section, the upper level
can be (predominantly) 6111181 and the lower 81181, or vice
versa, according to the ordering of 6111 and 81 (determined by
a small change in the values ofF6,6 andF8,8). This small change,
however, reverses the order of the deperturbed 81 and 6111 levels
and thus interchanges the predominant character of the upper
and lower levels in the Fermi diad. It is found to be of crucial

TABLE 1: Summary of Some Calculated Fundamental
Vibrational Frequencies and Combinations (in cm-1),
Affected by Fermi Interactions, for Benzene C6H6 and Some
of Its D6h Isotopomers

molecule frequency calculated
experimentally

measured

C6H6 ν8 1591.6 1591.32734

ν6 + ν1 1609.7 1609.51834

C6H6 ν8 + ν1 2581.0 258154a

C6H6 ν6 + 2ν1 2606.4 260654a

C6H6 ν8 + 2ν1 3569.7 357154a

C6H6 ν6 + 3ν1 3600.1 360254a

C6H6 ν8 + 3ν1 4556.7 455254a

ν6 + 4ν1 4591.9 459154a

C6H6 ν8 + 4ν1 5544.1 553454b

ν6 + 5ν1 5583.5 558554b

C6H6 ν20 3050.1 304830

C6H6 ν8 + ν18 3081.2 307930

C6H6 ν6 + ν1 + ν18 3102.0 310130

C6D6 ν8 1555.7 1558.324

ν6 + ν1 1525.3
13C6H6 ν8 1554.8

ν6 + ν1 1537.0
13C6D6 ν8 1495.8

ν6 + ν1 1477.1

a Estimated from the 00 dispersed fluorescence spectrum in ref 61,
by calibrating all levels so as to fit the 81 and 6111 frequencies to the
exact values from ref 34.b Estimated from the 11 dispersed fluorescence
spectrum in ref 61, by calibrating all levels so as to fit the 81 and 6111

frequencies to the exact values from ref 34.

TABLE 2: Some Harmonic and Anharmonic Force
Constants for Benzene (in mdyn and Å), Empirically
Determined or Refined in This Work

force constanta present value previous value

F20,20 5.514 5.51945

F6,6 0.666 0.67145

F8,8 6.660 6.67045

F1,6,8 -0.300 -0.42311b

F20,1,6,18 12.0

a The harmonic force constantsF20,20, F6,6, andF8,8 are given in units
mdyn/Å () aJ/Å2); F1,6,8 is in mdyn/Å2 () aJ/Å3); andF20,1,6,18 is in
mdyn/Å3 () aJ/Å4). b Obtained from ab initio calculations on the quartic
PES of benzene.
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importance when the coupling to the third state 201 that is
located at the lower energy of 3065 cm-1 is taken into account.

The experimentally observed frequencies of the Fermi triad
obtained from coupling of the three closely located states 201,
81181, and 6111181 are 3048, 3079, and 3101 cm-1, respec-
tively.30 Furthermore, the intensities of both outer levels (3048
and 3101) exceed that of the intermediate frequency 3079
cm-1.30 As seen, the upper level at 3101 cm-1 is strongly shifted
from its deperturbed position of 3091 cm-1 (see above) and
more strongly coupled to the lower 201 level (which is the only
source of spectral intensity in the triad), compared to the
intermediate state (at 3074.1 cm-1). The major cubic Hamil-
tonian interaction terms capable of coupling the SM 201 to the
Fermi pair 81181 and 6111181 areH20,8,18andH20,8,19. These two
Hamiltonian terms also contain a kinetic and a potential part,
the latter being determined by the cubic force constantsF20,8,18

andF20,8,19, respectively. The expressions for the potential parts
are:

We have varied the values of the force constantsF20,8,18and
F20,8,19 in an attempt to reproduce the three experimentally
measured frequencies given above. This, however, turned out
to be impossible. In all of the cases that were considered, the
intermediate level was found to be more strongly perturbed than
the higher energy one by interaction with the lower lying 201

state and to possess the higher intensity. This was invariably
the case for each one of the relative locations of the two higher
levels, as discussed above: 81181 higher than 6111181 or vice
versa.

Hence, it was necessary to look for another Hamiltonian
interaction term that could induce the coupling between 201 and
the Fermi pair 81181 and 6111181. For this purpose, we probed
the quartic interaction Hamiltonian termH20,1,6,18containing the
quartic force constantF20,1,6,18. The corresponding potential part
is written as:

Including this term in the calculations produced the required
effect, but only for the configuration when 6111181 was placed
above 81181. The three frequencies, calculated at the value
F20,1,6,18 ) 12.0, were 3050.1, 3081.2, and 3102.3 cm-1, in
satisfactory agreement with the experimentally measured val-
ues: 3048, 3079, and 3101 cm-1. Furthermore, the intensity
distribution was correct, namely, the two states at 3050.1 and
3102.3 cm-1 had higher intensity than the intermediate state
when the entire initial excitation was localized on the zeroth
orderν20 (symmetrized) mode.

We consider all this an indication that the uppermost level
in the triplet should originate from the 6111181 state while the
intermediate level should be predominantly 81181. This implies
that the two levels in the previously considered Fermi diad
should have predominantly 81 and 6111 character, in ascending
order, respectively.

Using the same values for the harmonic and anharmonic force
constants, we also performed calculations on the vibrational level
structure around 201 in 13C6H6. In fact, calculations in our earlier
work45 yielded the value ofν20 ) 3055 cm-1, which was 10
cm below the experimentally measured value of 3065 cm-1.18

In the present work, including in the calculations all cubic and
quartic Hamiltonian interaction terms discussed above, we have

obtainedν20 ) 3062.1 cm-1. This value ofν20, which has been
pushed higher by the remaining two levels of the Fermi triad,
is now much closer to the experimentally observed value of
3065 cm-1.18

V. Conclusion

This work is the fourth in a series42,44,45aimed at an empirical
determination of an improved and reliable set of harmonic force
constantsFi,k for benzene, in the isotopically invariant form of
symmetrized (Whiffen’s) coordinates. Here it has been shown
that the refinement of the harmonic force constants requires a
detailed analysis of the well-known Fermi resonances taking
into account the anharmonic (cubic and quartic) force constants.
This is because the Fermi resonances in benzene distort the
observed fundamental frequencies away from their related
harmonic frequencies that define the harmonic force constants.

We have extended our vibrational model and large-scale
calculations approach forD6h benzenes by introducing a number
of cubic and even quartic Hamiltonian interaction terms that
are relevant to the Fermi interactions in question. Our aim has
been to obtain an agreement of the calculated vibrational levels
around theν8 and theν20 fundamentals with the experimentally
observed Fermi doublet and triplet frequencies, respectively.
In this way, we have been able to determine some important
anharmonic force constants and additionally refine some of the
harmonic force constants obtained previously45 and also derive
certain additional information about the vibrational level
structure in benzene.

The findings in the present work could be summarized as
follows. From a consideration of the Fermi resonanceν8 T ν1

+ ν6, we have come to the conclusion that the deperturbed
(excluding Fermi interactions) vibrational level 6111 is located
slightly above the 81 level. The Fermi interaction between these
two states is produced by theH1,6,8Hamiltonian interaction term,
with a cubic force constant ofF1,6,8 ) -0.3. To obtain the
calculated energies of the Fermi doublet in good agreement with
the experimentally measured frequencies, it was necessary to
slightly change the previously determined values of theF6,6 and
F8,8 harmonic force constants. The upper and lower levels in
this doublet predominately are of 6111 and 81 character. We
have also carried out calculations on the Fermi resonance
affected levels in the remaining threeD6h benzene iso-
topomers: C6D6, 13C6H6, and13C6D6. We have found that, in
all three molecules, the two levels 81 and 6111 are perceptibly
affected by the cubic Hamiltonian interaction termH1,6,8, and
the effect is strongest in13C6H6. Calculations on higher excited
Fermi pairs in C6H6 benzene 811k and 611k+1 (k ) 1, 2, ...) have
yielded results in very good conformity with the experimentally
measured data, and this should be regarded as a corroboration
of the values determined for the harmonic and anharmonic force
constants.

The theoretical study of theν20 T ν8 + ν18 T ν1 + ν6 + ν18

resonance in C6H6 follows from the analyses of theν8 T ν1 +
ν6 resonance. Our calculations have shown that the coupling of
the 201 level with the pair of levels 81181 and 6111181 is mainly
due to the quartic Hamiltonian interaction termH20,1,6,18and a
quartic force constant ofF20,1,6,18) 12.0.

Our theoretical work on theS0 potential hypersurface of
benzene will be continued. The values of some harmonic and
anharmonic force constants will be further refined by taking
into account some of the recently measured fundamental
frequencies53 that differ substantially from previously adopted
values. The calculations will be extended to the higher excited
vibrational level structure of benzene, in the range of the first
C-H stretch overtone.

H20,8,18) F20,8,18(q20aq8bq18a + q20bq8aq18b) (4)

H20,8,19) F20,8,19(q20aq8bq19a + q20bq8aq19b) (5)

H20,1,6,18) F20,1,6,18q1(q20aq6bq18a + q20bq6aq18b) (6)
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