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The linear combination of atomic potentials (LCAP) approach is implemented in the AM1 semiempirical
framework and is used to design molecular structures with optimized properties. The optimization procedure
uses property derivative information to search molecular space and thus avoid direct enumeration and evaluation
of each molecule in a library. Two tests are described: the optimization of first hyperpolarizabilities of
substituted aromatics and the optimization of a figure of merit for n-type organic semiconductors.

I. Introduction

Chemical space is vast, with an estimated 1065 stable
molecules accessible with a molecular weight below 850.1 For
example, there are more then 1029 possible derivatives of
n-hexane.2 Designing optimal new molecular materials with
specified properties requires scanning chemical space. Explora-
tion by direct enumeration and evaluation is prohibitively costly.
Traditional methods to design new structures are often based
on structure-activity relationships or combinatorial methods.
These are “forward design” strategies that start with a molecule,
evaluate its properties, and suggest strategies for improvement.

Inverse methods begin with the target properties and seek
structures that optimize these properties.3 “Inverse design” can
be implemented with continuous or discrete methods. Integer-
based exploration of discrete space can be inefficient (e.g.,
branch and bound methods4). Although continuous optimization
has been explored previously,5,6 it can be challenging to
associate optimization results with specific molecules. We
recently described a linear combination of atomic potentials
(LCAP) approach to transform molecular optimization, a
challenge of discrete optimization, into a continuous optimiza-
tion problem.7 The LCAP approach has since been used with a
plane wave based density functional theory and a gradient
directed Monte Carlo approach8 to optimize molecular hyper-
polarizabilities. A Hückel-based continuous optimization of atom
types has also been implemented on molecular scaffolds that
produce extremely large libraries.9 Others have applied related
ideas to drug design10,11 and protein folding.12

The LCAP method expands the external electrostatic poten-
tials as a linear combinations of atomic (or chemical group)
potentials

Equation 1 describes the external electrostatic potentialυ(r) of
a molecule consisting ofM sites, each withnR possible groups.
The λi

R coefficients define the admixture of an atom or group
at positionR. Whenλi

R ) 0 for all choices ofi except a single

one andλi
R )1 for exactly one choice ofi for all R sites,υ(r)

corresponds to a real chemical species; such potentials are called
chemical representable (CR).7 Otherwise,υ(r) corresponds to
an “intermediate” or alchemical species. Sinceλi

R are continu-
ous variables, the property optimization is a search forλi

R

coefficients that produce molecules with the most favorable
property values.

In our initial tests of the LCAP strategy, we have found that
property surfaces need not be smooth, especially when changes
of λi

R are accompanied by changes in the total number of
electrons or of the molecular geometry. The roughness of the
surface increased with the molecular diversity of the library.
Following property derivatives continuously on the surface may
therefore lead to two main problems. First, the search may stall
in one of many local extrema corresponding to alchemical
species. Second, most of the optimization cost will be spent
exploring alchemical species, rather than real molecules. Trying
to overcome the first problem by interpolation of the alchemical
atoms to the nearest real atoms does not guarantee retaining
the maximal property values. In order to overcome these
challenges, a different optimization method is used here, namely
a “gradient directed jump”.8 In this approach, the property
derivatives near a real molecule are calculated using the LCAP
method. Then a “jump” is made (based on derivative informa-
tion) to the next real molecule. The “gradient-directed jump”
retains knowledge of the property surface but avoids some of
the difficulties associated with surface roughness. The optimiza-
tion visits a series of discrete molecules, with jumps between
molecules directed by property gradients calculated only near
each molecule.

Here we describe the development of a gradient-directed
LCAP jump method in an atomic-orbital AM1 semiempirical
SCF framework13 and apply it to (1) maximizing the first
electronic hyperpolarizability of organic molecules and (2)
lowering the LUMO energy for structures based on an unsatur-
ated scaffold, with the aim of designing n-type organic
semiconductors.

II. Computational Details

II.1. LCAP in AM1. Implementing the LCAP optimization
with an AM1 semiempirical Hamiltonian requires modifying
the AM1 Hamiltonian13 and the wavefunctions to describe* To whom correspondence should be addressed.
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alchemical atoms. The essential changes include introducing
alchemical atomic masses, defining an alchemical valence orbital
basis set, and modifying the one- and two-center integrals
appropriately. The approach described here can be applied to
first-principles LCAO-MO frameworks as well. The calculations
described here were preformed with the DYNAMO implemen-
tation of AM1.14

For an alchemical atomX, the atomic charge is a linear
combination of the atomic charges of the atoms included in the
chemical library for siteR

Zi is the integer atomic charge of atomi. AM1 calculations use
a minimal valence (Slater) basis set.15 Since orbitals depend on
atom types, it is also necessary to change the atomic orbitals
based onλ. For alchemical atoms in our LCAO-LCAP approach,
each basis function is defined as a fixed linear combination of
the atomic orbitals associated with the limiting atoms

For atoms considered here,µ can be s, px, py, or pz. For example,
an alchemical atom X, intermediate between F and I, is a
combination of F atom basis functions with strengthλ1 and I
atom basis functions with strengthλ2

This scheme matches the AOs of limiting atoms and
constructs a new AO from the linear combination of eq 3. The
variational LCAO-MO alchemical wavefunction is

The one-center Hamiltonian integrals, such asUµµ (the one-
electron one-center integrals) are13

which becomes, using eq 3

for the alchemical species. There are three sums in eq 7. The
cross terms between different atom types are approximated as
averages

So

The same approach is used to calculateâµ.
Two-center integrals (µν|ησ) are calculated using an analyti-

cal expression based on the NDDO (neglect of diatomic
differential overlap) approximation.13 Two-center integrals for
alchemical atoms are calculated using the real atoms’ two-center
integrals, as implemented in the standard AM1 approach. The
two-center integrals are

Using eq 3 to define the alchemical atomic orbitals

The assumptions of eqs 8 and 9 give

Core-core repulsion terms are calculated using the same
assumptions (Supporting Information).

II.2. LCAP Gradient Directed Jumping Search. In the
molecular optimization, we use the gradient-directed jumping
search developed in our laboratory.8,9 The optimization in the
discrete molecular space is carried out by following the LCAP
gradients that improve the molecular property. In the earlier
studies,8,9 the gradients were obtained analytically. Here we use
numerical derivatives (although analytical derivatives could be
developed). Each structure optimization begins with a random
molecule (random choice of binary values forλi

R), uses the
LCAP to calculate the gradients of the property surface near
that structure, finds the steepest gradients, and “jumps” to the
next candidate molecule pointed to by those gradients. The
specific scheme is:

1. Begin with a random moleculeA (λi
R coefficients 0 or 1)

2. Calculate propertyPA of moleculeA
3. Compute the property gradients (numerically) with respect

to coefficients. There arej ) 1...M positions, and nR possible
groups for each Rj position. For each position Rj compute the
gradient of all possible atoms or groups Xi, to find the largest
one:

• Build LCAP moleculeB in the geometry of moleculeA by
changing only group Xi at position Rj to have small positive
(λi

R ) + 0.01) LCAP contribution, keeping all other groups as
in A
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• Calculate propertyPB of moleculeB
• Build LCAP moleculeC in the geometry of moleculeA

by changing group Xi at position Rj to have small negative (λi
R

) -0.01) LCAP coefficient, keeping all other groups as inA
• Calculate propertyPC of moleculeC
• The property derivative associated with changes to group

X i at position Rj is ∆ ) PB - PC

When looking for maxima, find the group Xi that has the
largest property derivative for each position Rj. When looking
for minima, find the group Xi that has the lowest property
derivative for each position Rj.

4. Build the next moleculeAnew, containing all the Xi groups
(one per Rj position) that had the largest (or lowest) property
derivative.

5. Test to see if the new molecule,Anew, was previously
visited

If no - go to step 2 for another cycle
If yes - end optimization
II.3. Calculations of Properties. Both the electric dipole

moments (µ) and the static hyperpolarizabilities (â) are calcu-
lated using the finite-field method.16 The electric field F
dependent dipole is

The total hyperpolarizability is

E is the electronic energy. TypicalFi values used are 0.1 au.

III. Applications

Electronic Energy and Dipole-Moment Surfaces.We used
the AM1-LCAO-LCAP approach to explore electronic energy
(Figure 1) and dipole moment (Figure 2) surfaces for the
continuous changeH3C-CH3 T NC-CN. This is a two-site
system whereX and Y correspond to-CH3 and -CN,
respectively.λ ) 0 denotes CH3 andλ ) 1 denotes CN. There
are three molecules in this family:H3C-CH3, NC-CH3, and
NC-CN.

The initial geometry is the AM1 optimized geometry of
H3C-CH3. The nitrogen and carbon atoms ofNC-CN and
H3C-CH3 occupy the same positions in space, and ethane has
an eclipsed structure. One hydrogen atom inH3C-CH3 is
changed to nitrogen inNC-CN, and the other two hydrogen
atoms on each carbon inNC-CN disappear in theNC-CN
structure (λ values go from one to zero). The number of valence
electrons is changed from 14 to 18. Figures 1 and 2 show that
the electronic energy and the dipole moments change smoothly
with the LCAP coefficients.

First Hyperpolarizability Optimization of PNA Deriva-
tives. Organic molecules with large electronic hyperpolariz-
abilities typically have unsaturated bridges linking donor and
acceptor substituents.p-Nitroaniline (PNA), 1a,17,18 and its

derivatives have been studied intensively in this context. The
electronic structure and hyperpolarizability are sensitive to the
chemistry of the donor, bridge, and acceptor, as well as to the
molecular geometry.19,20

Here, as an example, we optimized the chemical structure of
PNA derivatives by changing the donor and acceptor units, as
well as by changing atom types in the bridge. Chart1b shows
all of the possible groups and their locations on a PNA-like
framework. The donor groupZ library includes-N(CH3)2,
-OH, -NH2 (planar),-NH2* (* indicates that the NH2 plane
is perpendicular to the ring),-I, -Br, -F, or-H. The acceptor

µi ) [- 3
2
{E(Fi) - E(- Fi)} + 1

12
{E(2Fi) - E(- 2Fi)}]/Fi

µtot ) x ∑
i)x,y,z

µi
2 (14)

âiii ) [- 1
2
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3

âi )
1

3
∑

k)x,y,z
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âtot ) xâx
2 + ây

2 + âz
2 (15)

Figure 1. Electronic energy surface forH3C-CH3 T NC-CN. The
contours are drawn as a function of the two CH3 weighing coefficients
(λ1 andλ2). The lower left corner corresponds toH3C-CH3, the upper
right corner corresponds toNC-CN, and the other corners correspond
to NC-CH3.

Figure 2. Dipole moment surface ofH3C-CH3 T NC-CN. The
contours are drawn as a function of the two CH3 weighing coefficients
(λ1 andλ2). The lower left corner corresponds toH3C-CH3, the top
right corner corresponds toNC-CN, and the two other corners
correspond toNC-CH3.

CHART 1
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groupY may be-NO2 (planar),-NO2* (perpendicular),-CN,
or -H, and each atom ring (X) can be CH or N. Perpendicular
geometries are twisted by 90° to the ring plane, in order to
include several geometries of the same chemical group in the
optimization. This is a small library, allowing enumeration of
all 512 structures and their properties to explore the outcome
of the LCAP optimization.

The strategy described in section II.2 was applied to optimize
âtot, and eachâtot value was calculated using the finite-field
method of section II.3. Molecular geometries were frozen and
were based on the AM1-optimized geometries of the largest
molecule (X1-4 ) CH, Y ) NO2, Z ) N(CH3)2), which is
planar. For all chemical groups, we assume that atoms are
located in the same positions as in the AM1-optimized geometry.

For example, O (of OH), N (of NH2), Br, F, and H in the donor
group Z are all located at the position of the nitrogen of
N(CH3)2. For iodine, the original distance of 1.39 Å between I
and C was too small for SCF convergence, so it was extended
to 1.85 Å. Twelve optimization runs were conducted, each
beginning with a randomly chosen molecule. On average, five
steps were required to complete the optimization. Figure 3 shows
the progress of an optimization resulting in theN,N-dimethyl
p-nitroaniline structure,1c. N,N-Dimethyl p-nitroaniline was
found to be the optimum in all 12 searches, independent of the
initial random molecule selected.

The molecule with the largestâtot, found by enumerating and
analyzing all molecules in the set (Figure 4), isN,N-dimethyl
para-nitroaniline,1c. The same molecule was found to be the
maximum in the LCAP optimization. To test the viability of
the frozen geometry assumption, we preformed AM1 geometry
optimization for each of the 512 molecules in the library and
calculatedâtot for each (Supporting Information). Comparing
the frozen geometry with the optimized geometry for several
molecules, we found that the two geometries were similar,
justifying the frozen geometry assumption. This analysis
confirms thatN,N-dimethylp-nitroaniline is indeed the species
with the largest hyperpolarizability in this library.

Organic n-Type Semiconductors.Organic semiconductors
are of great interest for applications in thin-film transistors, light-
emitting diodes, and other electronic devices.21 n-type (electron
accepting) organic semiconductors are relatively uncommon,22

and there is great interest in discovering more candidates. In
2003, the Marks group showed that a perfluoroarene-substituted
polythiophene,2a, can be used as an n-type organic semicon-
ductor.23 The investigators attributed this behavior, among other
things, to a low LUMO energy. Using2a as the lead structure
for our LCAP optimization, a large library was created and
optimization was conducted in an attempt to discover structures
with even lower LUMO energies.

Heteroatom species were varied in the LCAP optimization,
as were electronegative substituents on the terminal rings (see
Chart 2b). The chemistry at 14 sites was changed, with three
possibilities at each site, leading to 4.8 million structures
(without reducing the count for symmetry equivalent structures).

The PNA-based library assumed planar frozen geometries.
In the library of n-type semiconductors, the geometry changes
dramatically with chemical changes. Figure 5 compares the AM1
optimized geometry of2awith that of2d. When the 5-member-
ring heteroatoms are changed from sulfur to oxygen, the
geometry changes from twisted to planar.

We changed the LCAP optimization protocol to allow
geometry evolution at each step by introducing geometry

Figure 3. Example of an optimization profile that searches for the
highestâtot (in units of 10-30 esu) of PNA analogues.N,N-Dimethyl
p-nitroaniline,1c, is found to be the optimum.

Figure 4. Calculatedâtot values for the 512 molecules in the library,
assuming a frozen geometry.

Figure 5. Comparison of the AM1 optimized geometry of2a perfluoroarene-modified polythiophene with2d perfluoroarene-modified polyfuran.
When the 5-member-ring heteroatoms are changed from sulfur to oxygen, the geometry is changed from twisted to planar.

Designing Molecules with Optimal Properties J. Phys. Chem. A, Vol. 111, No. 1, 2007179



optimization for each lead moleculeA in the second LCAP
optimization step. In each cycle of the optimization, lead
moleculeAi is geometry optimized (without LCAP), theELUMO

value is calculated, and the property derivatives are calculated
for that specific geometry (with LCAP). Following the steepest
property derivatives, a new lead moleculeAi+1 is chosen and a
new optimization cycle begins (details appear in the Supporting
Information).

Nineteen optimization runs were conducted, each begins with
a randomly chosen molecule that has the prescribed covalent
framework. An average of five steps was required to reach an
optimized structure. Figure 6 shows an optimization profile, with
the lowest LUMO energy found for perfluoroarene-furan-
thiophene-thiophene-furan-perfluoroarene,2c. Perfluoroarene-
furan-thiophene-thiophene-furan-perfluoroarene, with planar
geometry andELUMO ) -1.844 eV, was found in all nineteen
runs as the optimum structure, independent of the randomly
chosen initial molecule.

It is difficult to prove that2c is the global optimum in the
molecular library, since the library contains 4.8 million struc-
tures. Figure 7 shows calculatedELUMO values for 200 randomly
chosen structures and Table 1 shows calculatedELUMO values
for several key molecules in the2b library. All calculatedELUMO

values are above that designed using the LCAP approach, which
yields structure2c, with ELUMO ) -1.844 eV.

Table 1 shows the chemical, structural, andELUMO data for
several candidates with lowELUMO’s. Three important factors

can be deduced from this table as controlling the LUMO energy.
The first is the electronegativity of the phenyl substituents: more
electronegative substituents are more favorable.24 The second
factor is the heteroatom: the stronger theπ-donor strength, the
lower the LUMO energy.25 The third factor is the coplanarity
of the rings. Steric interactions cause chain twisting that
decreases the effective conjugation and raiseELUMO. For
example, the geometry of2a is twisted and the LUMO is located
only on the four heteroatom-containing rings. In contrast,2c is
a planar molecule, the LUMO is more delocalized, and the
LUMO is localized on the phenyl rings and on the heteroatom-
containing rings (Supporting Information). Based on these
observations, a molecule with a low LUMO energy in this
structure class should be planar, with as many fluorines on the
phenyl rings as possible, and a maximum number of sulfur
atoms in the 5-member-ring heterocycles. Even knowing these
general structure-function rules, discovering the optimum

CHART 2

Figure 6. Typical optimization profile for the lowestELUMO (in eV)
in the library based on2b. Perfluoroarene-furan-thiophene-thiophene-
furan-perfluoroarene,2c, is found to be the optimum structure.

TABLE 1: AM1 Calculated ELUMO Values for Several Key
Molecules in the 2b Library

X1-10 Y1 Y2 Y3 Y4 geometry ELUMO [eV]

2a F S S S S twisted -1.609
2e Cl S S S S twisted -1.495
2f H S S S S planar -1.397
2d F O O O O planar -1.769
2g F NH NH NH NH twisted -1.494
2h F S O O S twisted -1.398
2c F O S S O planar -1.844

Figure 7. AM1 calculatedELUMO values for 200 randomly chosen
molecules in the2b library.
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structure from a library of 4.8 million possibilities is difficult
without the LCAP strategy. These three structural factors have
been described previously,24,25and they have significant impli-
cations for the design of new organic semiconductors.

IV. Conclusions

The LCAP method was implemented in a semiempirical SCF-
LCAO electronic structure theory framework. This LCAO-
LCAP approach was used with the AM1 Hamiltonian to
optimize the properties and structures in large molecular spaces
using a gradient directed jumping strategy. We explored the
optimization of first molecular hyperpolarizabilities and LUMO
energies. In the latter case, the LCAP approach was combined
with geometry optimization. The structural library was con-
structed based on known lead molecules (2a), and the optimized
structure was predicted to have a LUMO energy about∼0.2
eV below known structures.

This study shows that the LCAO-LCAP inverse design
strategy can explore large molecular spaces using semiempirical
SCF methods. We have also demonstrated that the approach is
applicable to important molecular design challenges, including
hyperpolarizabilities and orbital energy engineering.
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