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Temperature measurements of profian(24.7 MHz), deuteron (deuterated hydroxyl grodp)55.2 MHz),

and protoriTy, (B; = 9 G) spin-lattice relaxation times of 2,5-dinitrobenzoic acid have been performed. An
analysis of present experimental data together with previously published frafe5.2 MHz) data has revealed

the following molecular motions: proton/deuteron transfer in the hydrogen bond and two-site hopping of the
whole dimer. It is shown that the proton-transfer dynamics are characterized by two correlatiortiamas

7, describing two fundamentally different motional processes, namely, thermally activated jumps over the
barrier and tunneling through the barrier. The temperature dependena#' & thie solution of Schidinger’'s
equation, which also yields the temperattiyg, where begins the tunnel pathway for proton transfer. A new
equation for the spectral density function of complex motion consisting of the three motions is derived. The
third motion (two-site hopping of the whole dimer characterized'®ycorrelation time) is responsible for a
proton Ty, minimum in high temperatures, just below the melting point. Such a minimum is not reached by
T temperature dependencies. The minimunTgfassigned to the classical hopping of a hydrogen-bonded
proton occurs in the same low-temperature regime in which the flattening of the temperature dependencies
of T, points to the dominance of incoherent tunneling. This experimental fact denies the known theories
predicting the intermediate temperature regime where a smooth transition between classical and quantum
tunneling dynamics is expected. The fit of the derived theoretical equations to the experimenta} dath

T, is satisfactory. The correlation times obtained for deuterons indicate deuteron-transfer dynamics much
slower than proton-transfer dynamics. It is concluded that the classical proton transfer takes place over the
whole temperature regime, while the incoherent tunneling occurs below 46.5 (hydrogen) or 87.2 K (deuterium)
only.

1. Introduction At variance to the above point of view, a new theoretical
) ) description of the proton transfer as a complex motion has been

The purpose of '[_h!s paper is to §tudy of the proFon-traerfer proposed in refs 1416. The complex motion means that the
dynamics of 2,5-dinitrobenzoic acid (2,5-DNBA) in a wide  proton/deuteron transfer consists of two independent, constituent
temperature regime by the NMR relaxation method. The motions, namely, classical hopping over the barrier and incoher-
measurements of proton relaxation were performed at figh [ ent tunneling through the barrier between sites corresponding
(24.7 MHz)] and low Ty, (B, = 9 G)] resonance frequencies.  tg potential energy minima (Figure 1). Since both motions take
The deuteror; (55.2 MHz) relaxation for 2,5-DNBA, deuter-  place between the same potential minima, the geometries of
ated in the mobile proton places (OD groups) was also measuredihese motions are identical. These motions characterized by the
The protonT; (55.2 MHz) measurements were published correlation times®" (thermally activated jumps over the barrier,
previously* classical motion) and™ (incoherent tunneling) contribute to

Proton/deuteron transfer in the hydrogen bonds of carboxylic separate correlation functions. As follows from the Sdimger
acid dimers is a stochastic process, which modulates theequation, the tunnel jumps take place only when the potential
interaction Hamiltonian; therefore, it can be studied using NMR barrier is transparent for the de Broglie’a wa{eThe total
relaxation methods. The assumption that the proton/deuteronspectral density of complex motion is a Fourier transform of
transfer is a single stochastic process (characterized by singlethe total autocorrelation function which is a product of the
correlation time) with a smooth transition from the classical (at separate correlation functiohs.
high temperatures) to quantum dynamics (at low temperatures) The temperature dependence of the correlation time of
of proton transfer in the intermediate temperature regime hasthermally activated jumps over the barrie?V follows the

been made in a number of papérd3 Arrhenius law:
1 Eov
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a= exp(ﬁ_) ) i \ / W
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andE,, = Eag is the activation energy (barrier height minus OH---0 0-—HO
the energy of the ground vibrational state) of Avogadro’s (A (B)

number of objectsT is the temperature in Kelvincg" is the
pre-exponential factor, antl is the energy difference between
the potential minimaA = Eag — Ega). The Arrhenius law does =

not predict some final temperature for the application of eq 1, , BCAED
but at the very low temperatures, the values®fare too long A ;T/' rrrrrrrrrrrrrrr el B
to give the perceptible contribution of the corresponding spectral AN =

density to the spinlattice relaxation at the megahertz resonance A B

frequencies Ta). The best detection of*” correlation time at  Figure 1. A and B tautomers of carboxylic acid dimer and the
low temperatures is the spiifattice relaxation rate measured corresponding potential energy minim&.andv1 are local vibrational
at a low resonance frequency in the kilohertz range, that is, (1/ states.
).

Skinner and TrommsdoAfind Nagaoka et &? have derived Thus, the three stochastic processefsissical and quantum-
equations for the correlation time of incoherent tunneling. The mechanical proton jumps in the hydrogen bond and librations
temperature limitations of" are not expected from these of the whole dimer between two equilibrium positiens

formulas. independently modulate the interaction Hamiltonian. The ex-

The correlation time of incoherent tunneling following from  pression describing the spectral density function of the complex

the Schirdinger equation has been proposed in refs29; motion consisting of the three motions is derived in this paper
and applied to analyze the proton and deutefgrand also

=V expB /(E,, — )] A3) protonTy, temperature dependencies in 2,5-dinitrobenzoic acid.

Such an analysis cannot be performed in terms of the known
equations for the spectral density of proton transfer. It will be

where
shown that it is not possible to obtain an acceptable fit to the
oL [2m " Ty, data by employing these known equations.
B=— ./ 4

h Nav 2. The Theory of Spin—Lattice Relaxation
The value ofB in eq 4 depends on the massof the tunneling In the case of proton spitiattice relaxation, the average value
particle and on the width of the potential barrier. The masses ©f all dipolar interactions has to be taken into account. Since
of the tunneling proton and deuteran, are 1.67x 1027 and the whole molecules obey the Boltzmann distribution between

3.346 x 10727 kg, respectively. The width of the potential vibrational levels (a vibrational relaxation is much faster than

barrier, L, which can be estimated from the crystallographic T relaxation), the relaxation rate is given by
dat#2is L = 0.71 A (the distance between protons from two

tautomeric forms @H-+-O <> O---H—0). Thus, the values of R

B are then found to be 0.1006/6)*1 for the proton and 0.142 Z Z +n,— (6)
- . e (T) NE (T,") Y]

(«/3) 1 for the deuteronC, is the molar specific heat. 0 1701

The Schidinger equation predicts that the tunnel jumps
through the potential barrier appear when the energy of the whereN is the number of protons in a moleculep and n,.
particle is lower than the value of the potential barrier that the are the Boltzmann fractions of molecules in the separate
particle has to pass over. The energy of the particle is the sumVibrational levels/0 andv1 associated with the average energies
of the thermal energy decreasing with decreasing temperatureE.o andE,; of the ground and first excited vibrational levels.
and the vibrational energy; so for 1 mole of molecules Because the population of molecules in the second excited
CoT + E,o, WhereC, is the molar heat capacity arlo is the vibrational level is very low, it seems reasonable to take into
vibrational energy. The height of the barrMis the activation ~ account only two vibrational levelsifp + n,; = 1, n,a/ne =
energy plus the vibrational eneriy= E,, + E,¢; S0, the tunnel ~ €XP(—0E,0/RT), where 6E,01 = E,1 — E,o is the energy
jumps occur in temperatures meeting the COﬂdImQ-Iﬁ < Eoy. difference between the ground and first exited vibrational states].
The problem of the absence of correlation functions of incoher- Therefore, the values af,o andn,; are
ent tunneling at high temperatures has been discussed in the
literaturel®16.19-21 expOE,/RT)

The proton transfer in a hydrogen bond is not the only motion No= eXpOE o/RT) + 1 7
which governs the total spectral density function. The minimum vor
of protonT,,, which can be assigned to librations of the whole
dimer (Figure 1), is observed for 2,5-DNBA at high tempera- 2"
tures. The correlation time characterizing this motion can be

defined as n,= 1 8
1 exp@E,o/RT) + 1 ®
Tl ib _ |Ib e I|b (5)
To RT, In the weak-collision limit, the spinlattice relaxation rates
, in the laboratory and rotating frames for the standard type of
whereEj, is the activation energy of this motion am'&’f is the spin interactions, such as the direct dipotipole interaction

pre-exponential factor. of homonuclear spin pais, are given by?—25
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(™). 8 (Z;) [3s (@) + 3’ (20))] @  FOF™t+on
vX

qn |7 |7]
—(C1 c) [Cl +C, ex;{ TUX)] C,+¢C, exp{ Ttyux))] X

%Sinz(an) + g Sinz(@”b) exr( |T|)] (15)

and

1 9 1 5 1
) =3 (E) [Z I w,) + > (@) + 2 J2w)

Lol (10) where
The quadrupolar interaction of the deuteron spins can be C1=

described in terms of the single-spin quadrupolar coupling
tensor. The largest tensor compongat;,is normally aligned

[ L(A)? + = L(B) + L(A)L(B)(3 co$ ©,5 — 1)]

parallel to the chemical bond. The spilattice relaxation of a @+ )
nuclear spin | with a quadrupole moment resulting from the (16)
time-dependent fluctuations of the electric field gradient at the
nucleus can be expressed®g® and
C p—
. (” ) (1 + 1L )n [Jgec (@) + 3o (20)] ’
(1o, 8\am — & [L(A)? + L(B)? ~ LAL(B)3 cod @5 — 1]
11) (a+ 1)
_ e 7

wherevx = 0 andwvx = v1; 5 is the asymmetry parameter.
The angular NMR frequency in the laboratory framejswhile where ‘& is given by eq 2. The parameter?, 2, ande™® are

w1 = v|By is the frequency of the rotating magnetic field and
Je(w1), Jggeq(@1), andJg,o(2w)) wherem =0, 1, and 2 are
the spectral density functions of the correlation functions of the
fluctuating part of the dipolar or quadrupolar Hamiltonian. These
random functions are

the correlation times characterizing the separate mot®hs:
4/5, 2/15, or 8/15 fom = 0, 1, and 2, respectively;(A) and
L(B) are thel(t) values at different sites. Usually,, for
deuterons is parallel to the chemical boadd assumes the same
value at A and B sitesgf{A) = g.{B)]. When considering the
proton relaxation, the possibility of a change in the internuclear
distance has to be taken into account. The dipolar coupling
. ) constants ar&(A) = yiy4iRs 3(A) andL(B) = yiyiRs3(B),
F(t) = L {sin[d(t)] cosp(V)] explip (D]} (13) whereRs(A) and Rs(B) are the protor-proton distances at the
2 . . A and B sites.
FA(t) = L(®) {sin’[(t)] exp[2ig(t)]} (14) Spectral densitied™(w) in spin—lattice relaxation theories

. . _ S are Fourier transforms of the correlation functions of the
The quantityL(t) in egs 9-11 equalsyjydi R 3(t), which is . . . .
the dipole coupling constant, at) = € g,4t) Q/h, which is Igﬁgfstmg functions=™(t) of the dipole or quadrupole Hamil-

the quadrupole coupling constant expressed in hertz. The polar
and azimuth angles(t) and¢(t) describe the orientation & o
or gz in the laboratory frame with theaxis in the direction of Iw) = fiw FE"(t) F™(t + 7)exp(—iwt) dr  (18)
the external magnetic fiel8y. The parameterg,, Rs, ¢, and

@ are time-dependent.

The proton NMR relaxation monitors the dynamics of two
protons at a distand®s, while the deuteron relaxation monitors
the dynamics of the XD chemical bond. The sources of the
differences in the spectral densities t@randv1 levels are the
different potential barriers for the classical jJumpEA§).1 =

Fo(t) = L(t) {1 — 3co<[s(t)]} (12)

Thus, the spectral density function of the complex motion
composed of the classical and tunneling jumps between the two
equilibrium positions A and B and the classical jumps between
two other equilibrium positions is

ov
Eag — .(SEL,01 and EBA)Ul.z Eag — A — 5E-L,01 (_Figure l)] and |s(qc(j(a)) Sﬂ (1 _ :_3 smz @lib) C1C2 ZTUXO ;
also different frequencies of the tunneling jumps £}/ ~ C,+GC, 1+ (wr°)
1/30¢3).0).8 As the spectral densnmﬂqm(w) depend on the Ll 2oV
fluctuations of the dipolar or quadrupolar Hamiltonian, the I S (C,) O S
results presented in this paper imply the need to derive a formula 1+ (wr‘y‘j( 2 1+ (w r°"t 2
for the correlation function of a complex motion composed of lib ovlib
three components. Two components are the classical hopping 3 sir? O, | (C))? 2t — +C,C|———+
(jumps over the barrier) and incoherent tunneling (jumps through 4 b wt'®)? 1+ (wr2™)?
the barrier) between two sites A and B of unequal energy (Figure tulib ovtulib
1). The third component describes the jumps over the barrier VX +( )2 X (19)
of Rs or g,z between two equilibrium sites of equal energy. One 14 (07™)? 2 wT2M)2

set of sites is distanced by tl®,g angle andEag potential
barrier and the second one is distanced by@hg angle and
Eip activation energy.

When the method for the correlation function calculation 1 1 1
presented in ref 14 is applied, derivation of the formula for the =—+— (20)

. N ovlib — _ov lib
complex motion Is easy: Tyx VX

where
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1 1 1
b _tu | _lib (21)
UX UX
and
1 1 1 1
ovtulib — K/ ﬁ tITb (22)

vX UX vX

Whent!y — «, eq 19 simplifies to

Je(qeg(@) =
3, P 3.
S| C, 7 sin’ Oy, 17 0 + Cz(l 4sm2 G)”b) X
2t0v 2,L_ov|ib
— T4, ;3’1 i @, — 2 23)
1+ (wtoy) 1+ (T,

which is the theoretical value of spectral density for the complex
motion consisting of two classical motions between two sites
of potential energy minimum?:3°

Whent', — o and 7t — oo, eq 19 simplifies to

ov

2t
S“CZ Uxo 2
1+ (wt

UX

Jetaen(@) = (24)

which is the equation obtained by Nagaoka et®als well as
Andrew and LatanowicéZ for the classical hopping in a double
potential.

3. Experiment

2,5-Dinitrobenzoic acid was purchased from Aldrich. By
repeated recrystallization in ethanol-OD, it was specifically
deuterated in the hydroxyl group. The deuteration was ap-
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Figure 2. Temperature dependencies of the profe(O = 55.2 MHz)
and @ = 24.7 MHz) andTy, [(A — (B. = 9 G, w = 27 x 2.47
MHz)]) for 2,5-DNBA. Solid lines represent the best fit of eqs 6 and
19 together with egs 1, 3, and 5 to the experimental data. Dotted lines
represent the best fit of experimental data when eq 23 is applied. The
arrow shows the temperature of cessation of proton tunneling jumps
(Ttun =46.5 K)

70

represented in Figure 2 by solid lines. The crystal structure of
2,5-DNBA has been solved by Grabowski and Krygowf3ki.
The obtained best-fit parameteas, A, (z3")w0, (0).0. Eib,

7o, and Oy are listed in Table 1. The best-fit parameters
and ¢y).0 were obtained front temperature dependencies,
while the best-fit parameteiSs, 7', and ©j, were obtained
from Ty, temperature dependence only. The valigs and
(t3).0 fit the experimental data ofy, as well asT;. The
dashed lines in Figure 2 show the fits of eqs 6 and 23 to the
experimental data. Equations 19 and 23 differ by the taking
into consideration the tunneling motion. It is clearly visible that
low-temperature minimurily, can be assigned to the classical
motion.

Thus, the possibility of determination of the correlation times

proximately 97%. Powder samples were used for measurements;® and' from the temperature dependenceTptiepends not

The samples were degassed under®Iorr and sealed under
a vacuum in glass ampoules.
ProtonT; values were measured on a Bruker SXP 4/100 pulse

on the temperature range but on the resonance frequency at
which the measurements were performed. The slopésg, &fom
both sides of the minimum are higher than the slop&oin

spectrometer at 24.7 MHz by a conventional saturation recoverythe same temperature regime. This indicates Thais a result

technique with a saturation sequence of 18 fQlses, each
followed by a 4 msdelay.
ProtonT,, values were measured with a 24.7 MHz Bruker
SXP 4/100 pulse spectrometer. The quartifywas determined
by locking the signal after a 9Qoulse and observing the sub-
sequent signal intensity as a function of the field pulse duration.
The magnetic radiofrequency fieB} = 9 G was applied.
DeuteriumT; relaxation measurements were performed at a
Larmor frequency of 55.2 MHz. An aperiodic saturation pulse
sequence was employed to initially destroy #hreagnetization
M, and the subsequent buildup bf, was monitored with a
90°,—t—90° echo sequence. A measureMf was the height
of the echo.

of classical hopping, whild is mainly a result of incoherent
tunneling at these temperatures. Therefore, it can be concluded
thatTy, in the low-temperature regime is governed by classical
motion, whileT; in the same temperature regime is governed
by incoherent tunneling. Thus, thi, relaxation time in the
rotating frame is a convenient experiment to detect the rate of
classical motion, IU;’, at low temperatures.

The T1, minimum revealed by experimental points at the
highest temperatures (Figure 2), but below the melting point,
corresponds to the maximum of the function2[1 +
(2w17'0)?]. The corresponding minimum &, is a result of the
maximums of the functions?®/[1 + (w7?)?] and 2'0/[1 +
(2w,7)?]. Such a minimum is not reached in measurem@&nts

The temperature of the specimen was kept constant automati-(55.2 MHz) or T1 (24.7 MHz) below the melting point.
cally during a measurement by an Oxford temperature controller Therefore,T;, measurements only detect the librations of the

to an accuracy of 0.1 K.

4. Results and Discussion

A. Proton Relaxation. The experimental temperature de-
pendencies of protori; (24.7 MHz,0) andTy, (B1 =9 G, 4)
are given in Figure 2 together with that of at 55.2 MHz O,
published previously).Fits of eq 6 together with those of eqs
19, 1, 3, and 5 and the known structural dataRgfA), Rs(B),
and the angle®ag to the experimental; and Ty, data are

whole molecule between two equilibrium positions distanced
by the angledji,. The best fit estimated for the value @jj, is
30°.

The small discontinuities in the temperature dependencies in
Figure 2 follow from the fact of inserting eq 3 into eq 19. When
CoT > Eag, the correlation timer' is eliminated from the
equations for the spectral density (eq 19). Therefore, spectral
density follows eq 23 above the characteristic temperafre
whereCyTwn = Eag. The potential barrier estimated from the
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TABLE 1: The Best-Fit Parameters Obtained from the Proton T, and T,, and Deuteron T, (Deuterated Hydroxyl Group) of

2,5-DNBA
Ens (A) Eiib (g0 ()0 ‘Egb Oiib
kJ/mol kJ/mol kJ/mol S S S deg
proton 3.3 0.63 4.2 5.9 1012 3x 107° 2x 106 30
deuteron 6.3 0.42 33101 9x 108

high-temperature side of the temperature dependendg isf
3.35 kJ/mol. The excellent fit of eqs 6 and 19 (Figure 2) to the
experimental data is obtained when the temperaliyg is
assumed to be approximately 46.5 K. This value is shown by
the arrow in Figure 2. Therefore, the value@fis 72 J/mol/K.
The value of C, in solids is temperature-dependent. The
knowledge of the accuracy @, determination is important in
the temperature just below thg,, temperature. For small values
of T (C,T < Eyy), the values™ (eq 3) are mainly determined
by the value ofE,,:

™~ 15'expBy/E,,)

Therefore,C, = 72 J/Imol/K is the value of the molar heat
capacity of 2,5-DNBA just near the temperature 46.5 K.

It is clear that the values afi,.J™w,7%,t'y) are relatively
small for proton transfer because there is virtually no difference
between the calculated spitattice relaxation times according

to eq 6 and the equation

(25)

1N N
— n
N;FZ v0

B. Deuteron Relaxation.The experimental deuteron relax-
ation timeT; (55.2 MHz) as a function of the temperature for
a powdered sample of 2,5-DNBA is presented in Figure 3
together with the theoretical best-fit plots. The valy@) =
L(B) = qcc= 175 kHz, used in these fits, was estimated from
the expressiot

1

(TlIS v0

1
= (26)
(Ty)

qcc= (442.7— 4882 ) kHz (27)
wherer is the O--O distance in angstroms, estimated to be
2.63 A22 The asymmetry parametgrhas been assumed to be
equal to zero. The angléas between the orientations of the
principal component of the electric field gradient tensgy

2,5 DNBA
100 4

DEUTERON T, [s]
S
' s

-
|

40 50 60
1000/T (K")

Figure 3. Experimental deuterom; (55.2 MHz) for 2,5-DNBA with
deuterated hydroxyl group as a function of the temperature. Solid lines

70

represent the best fit of eqs 28 and 19 together with egs 1, 3, and 5 to

the data. The dotted lines represent the best fit when the first term in

assumed to be along the-® chemical bond, was estimated
from the known structure to be®7?

We performed two kinds of fits. One of them (solid line)
weighted in the deuteron population average value of deuteron
T4, that is,

1 —
1)

1 1
n, T, - (28)
° (TT 52/0 ' (Tg 5111

where 1/T%®"),, is given by egs 11 and 19 and the other
(dotted line) with the first term of eq 28. The fit presented by
the dotted line deviates noticeably from the experimental points,
while the solid lines fit the experimental data satisfactory. The
difference between the dotted and solid lines reveals the
temperature regime where the proton transfer of molecules being
in the first excited vibrational state contributes to the deuteron
relaxation of 2,5-DNBA. Thus, a contribution to NMR spin
lattice relaxation due to proton transfer in excited vibrational
states is negligible for fast proton transfer but is significant for
slow deuteron transfer.

The best-fit parameters are listed in Table 1. As a result of
the isotope effect, deuteron-transfer parameters differ from those
of protons. Since a deuteron is heavier than a proton, it moves
slower in the hydrogen bond. The potential barkgg for the
interconversion of the A> B tautomers is higher for deuterons
than for protons.

5. Correlation Times

The best-fit parameterBag, A, (73,0, (t5).0, Eiib, andzy’
given in Table 1 can be used to calculate the theoretical
temperature dependence of the proton and deuteron correlation
times. The temperature dependencies of the correlation times
(9,0, T, and ¢Y),o obtained from fits to the dependencies
of T, (55.2 and 24.7 MHz) andy, (B, = 9G) are shown in
Figure 4 as solid lines. The points show the valuest®)(
and ¢),0 obtained from the particular experimental data [
andA = Ty (24.7 MHz),0 andO = T; (55.2 MHz), andx
and+ = Ty, (B, = 9G)]. The proton correlation times are given
in Figure 4a, while the deuteron correlation times are given in
Figure 4b. The plot of Inf{),¢] as a function of (100d) reveals
the temperatur&;,, shown in Figure 4 by the arrow. It is visible
that at this temperature the value of correlation tini#) ¢ is
comparable to the value of’),0. The plot of In[¢'),0] as a
function of (1000T) deviates from the almost linear dependence
at temperatures beloW,. This effect follows from the specific
temperature dependence @, in accordance with eq 3. The
temperaturdy,, is the highest temperature fa'{),o and ¢),1
temperature dependence.

As predicted by eqgs 1, 3, and 5, the correlation times of the
classical motions®' andz'P exist in a wide temperature range
while the tunneling correlation time exists only in low
temperatures up to the temperatdig, = Eq/Cp. Below the
Twntemperature, the thermal energy of moleculgs} is lower
than the activation energy. This temperature seems to be also

eq 28 is applied. The arrow shows the temperature of cessation ofthe point where correlation times of tunneling and classical

deuteron tunneling jumps{, = 87.3 K).

motion are of comparable value.
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Figure 4. Proton (a) and deuteron (b) correlation times as a function
of the temperature for 2,5-DNBA. Points refer to the experimental
values ¢°"),0, (t¥),0, andz'® obtained from the proton and deutertn
temperature dependencies. Profan(55.2 MHz) = O, O; proton T,
(24.7 MHz) —v, A; protonTy, (B =9 G, v = 24.7 MHz) — x, +.
Lines refer to the calculated correlation times obtained from egs 1, 3,
and 5 and best-fit parameters given in Table 1.

6. Comparison to Other Relaxation Theories

Latanowicz and Medycki

1004
2 104
H
o
z 14
o
|_
2
a 0,14
0,01—Ag 4
T T T T T T
0 10 20 30 40 50 60 70
1000/T (K™)

Figure 5. The temperature dependence of proleifO — 55.2 MHz,

O — 24.7 MHz) andTy, [(A — (B1=9 G, w, = 27 x 24.7 MHz)] for
2,5-DNBA. The dotted line represents the best fit of eqs 6, 9, 10, 29,
and 30 to the experimental dafa (55. 2 MHz). The Skinner
Trommsdorff formuld was employed for. The best-fit parameters
obtained from thél; (55. 2 MHz) temperature dependence were used
to plot theT; (dashed line- 24. 7 MHz) andT, [solid line — (B, =

9 G)] versus the temperature.

2w x 55.2 MHz, 0, = 27 x 24.7 MHz) andTy, (B1 = 9 G),
obtained for 2,5-DNBA data, by employing eq 29 (Figure 5).

7. Conclusions

The correlation time for tunneling jumps can be described
explicitly by a formula obtained directly from Schdimger’s
equation. The low temperature of the beginning of the tunneling
motion, Ty, predicted by this equation, is approximately 46.5
K for proton transfer and 87.3 K for deuteron transfer in 2,5-
DNBA dimer. These temperatures point to the temperatures
where the thermal energ@,T equals the activation energy.
Below Ty, the temperature begins the tunnel pathway for proton
transfer.

The equations derived in this paper for the total spectral
density of complex motion (classical and tunneling jumps of a
hydrogen-bonded proton, two-site hopping of the whole dimer)
fit well the T, and Ty, experimental data.

Employing the model with a single correlation time for proton

Instead of the spectral density given by eq 19, the following  transfer is not possible to fit both th, and T, experimental
equation has been used in the literature as an approximation ofyatg.

the total spectral density due to classical motion and incoherent
tunneling?~13

2 _L,total

m —
T =S o

(29)

The correlation timer®@ as a function of the temperature is
usually approximated by a biexponential dependendsose
first term is the Arrhenius-like dependence, and the second
describes the deviations from the Arrhenius law. In a number
of papers, the second term in the formula f8#' is as shown
below

1

total
T

1

TOV

1

_L,IU

(30)

wherer®¥ andz are determined by the Arrhenius and Skinner
Trommsdorff dependencies.

Differences between two models (eqs 19 and 29) are
noticeable in the calculations of spifattice relaxation rates
for high and low resonance frequencisln fact, it was
impossible to obtain an acceptable fit to both profar{w,
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